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Abstract

The aim of this paper is to present new sparsity results about the
so-called Lieb functional, which is a key quantity in Density Func-
tional Theory for electronic structure calculations of molecules. The
Lieb functional was actually shown by Lieb to be a convexification
of the so-called Lévy-Lieb functional. Given an electronic density for
a system of N electrons, which may be seen as a probability density
on R3, the value of the Lieb functional for this density is defined as
the solution of a quantum multi-marginal optimal transport problem,
which reads as a minimization problem defined on the set of trace-
class operators acting on the space of electronic wave-functions that
are anti-symmetric L2 functions of R3N , with partial trace equal to the
prescribed electronic density. We introduce a relaxation of this quan-
tum optimal transport problem where the full partial trace constraint
is replaced by a finite number of moment constraints on the partial
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trace of the set of operators. We show that, under mild assumptions on
the electronic density, there exist sparse minimizers to the resulting
moment constrained approximation of the Lieb (MCAL) functional
that read as operators with rank at most equal to the number of mo-
ment constraints. We also prove under appropriate assumptions on
the set of moment functions that the value of the MCAL functional
converges to the value of the exact Lieb functional as the number of
moments go to infinity. We also prove some rates of convergence on
the associated approximation of the ground state energy. We finally
study the mathematical properties of the associated dual problem and
introduce a suitable numerical algorithm in order to solve some simple
toy models.
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1 Introduction

The so-called Hohenberg-Kohn or Lévy-Lieb functional plays a fundamental
role in Density Functional Theory for electronic structure calculations. For
the sake of simplicity, we use here atomic units and neglect the effect of spin
in this work. For a given electronic density ρ ∈ L1(R3), which we assume
here to be of integral equal to 1 for the sake of simplicity, and a given number
of electrons N ∈ N∗, the Lévy-Lieb functional FLL(ρ) reads as the solution
of the following a minimization problem of the form:

FLL[ρ] := inf
Ψ∈HN

1
ρΨ=ρ

1

2

∫
R3N

|∇Ψ|2 +
∫

R3N

V |Ψ|2,

where

(i) HN
1 :=

∧N
i=1H

1(R3) is the set of admissible electronic wavefunctions
for a system of N electrons with finite kinetic energy, that is the set of
antisymmetric functions of H1(R3N);

(ii) for any Ψ ∈ HN
1 and x ∈ R3, ρΨ is the electronic density associated to

the wavefunction ψ;

(iii) the function V : (R3)N → R+∪{+∞} is the electron-electron Coulomb
interaction potential.

There is a wide zoology of electronic structure calculation models which rely
on various types of approximations of this Lévy-Lieb functional. Recently,
Strictly Correlated Electrons (SCE) based approximation of this functional
have drawn an increasing interest from mathematicians because it gives rise
to a symmetric multi-marginal optimal transport problem with Coulomb
cost, with the number of marginal constraints being equal to the number
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of electrons in the system. The literature about the SCE approximation
(namely the multi-marginal optimal transport with Coulomb cost) is grow-
ing considerably. Recent developments include results on the existence and
non-existence of Monge-type solutions (e.g., [CD15, CDD15, CFK13, Fri19,
BDGG12, CS16, BDPK20]), structural properties of Kantorovich potentials
(e.g., [CDMS19, DGN17, GKR19, BCD17]), grand-canonical optimal trans-
port [DMLN22], efficient computational algorithms (e.g., [BCN17, FSV22,
CEL+19, MG19, KLLY19]) and the design of new density functionals (e.g.,
[GGGG19, CF15, MUMIGG14, LDMG+16]).
Moreover, recent works indicate that the solution of this symmetric Coulomb
cost multi-marginal problem (MMOT), which is a probability measure on
R3N , is actually a sparse object at least in discrete settings. Two types of
discrete settings have been considered so far where such sparsity results have
been obtained. On the one hand, the most classical discrete approximation
consists in introducing a discrete grid X of R3. The discrete optimal trans-
port plan is then defined as a discrete probability measure defined on the
cartesian product grid XN . Actually, it was proved in [FV18, Vög21] that
the discrete optimal transport plan does not charge all the points of the dis-
crete cartesian product grid (of cardinality |X|N) but only a number of points
in this grid which scales at most linearly with M . Finding the few points
of XN which are actually charged by the discrete optimal transport plan is
not a trivial task though, and the GenCol algorithm is a numerical procedure
which aims at achieving this task. It has been first proposed in [FSV22], then
extended in [FP22] and its convergence has been analyzed for two-marginal
problems in [FP23]. On the other hand, an alternative approach which was
first considered in [ACEL21] consists in introducing an approximation of the
exact multi-marginal transport problems where the marginal constraints are
replaced by a finite number of moment constraints associated to a finite num-
ber M of ”moment functions” which are real-valued functions defined on R3.
Under some natural assumptions, this approximate problem is then equiva-
lent to approximating the solution of the dual problem associated to the exact
optimal transport problem, namely the so-called Kantorovich potential, as a
linear combination of these moment functions. The solution of this moment-
contrained optimal transport problem is still a probability measure defined
on R3N but is also a sparse object in the sense that it can be written as a dis-
crete measure charging a number of points belonging to R3N which scales at
most linearly with the number of moment constraints. Finding the location
of these points then reads as a non-convex optimization problem defined on
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a continuous (and not a discrete set) set, and stochastic gradient algorithms
have been proposed in [ACE22] in order to find such optimal points, and nu-
merically tested on three-dimensional settings involving N = 100 electrons.
We also refer the reader to the works [CFM14, BCN17, NP22, Lel22, HCL23]
where alternative numerical methods have been proposed for the computa-
tion of the SCE limit of the Lévy-Lieb functional, which do not rely on
sparsity arguments.

The objective of this work is to prove similar sparsity results for the
so-called Lieb functional, which is a convex relaxation of the Lévy-Lieb func-
tional, the expression of which is given under the following form:

FL[ρ] := inf
Γ∈S+

1 (HN
0 ), ρΓ=ρ

Tr

[(
− 1

2
∆ + V )Γ

)]
, (1)

where HN
0 :=

N∧
i=1

L2(R3), S+
1 (H

N
0 ) denotes the set of non-negative trace-class

self-adjoint operators on HN
0 and where ρΓ is the electronic density associ-

ated to Γ ∈ S+
1 (H

N
0 ), the precise definition of which will be given below.

Actually, problem (1) is a particular instance of quantum optimal transport
problem. We refer the reader to [GMP16, GP17] for references on earlier
works on closely related types of problems. Notice that problem (1) can be
understood as a quantum version of a multi-marginal optimal transport
problem. Moreover, it still enjoys the nice property, as the original problem,
of being a linear programming problem. Our aim here is to prove that so-
lutions of approximations of problems (1) where the partial trace constraint
is relaxed by a finite number of moment constraints enjoy similar sparsity
properties than solutions of moment constrained multi-marginal symmetric
classical optimal transport problems, such as those which were established
in [ACEL21]. More precisely, we prove, using the so-called Tchakaloff’s the-
orem (notice that for the usual entropic regularization of MMOT we cannot
use this kind of approach), that the solutions of moment constrained approx-
imations of (1) can be written under the form Γ =

∑K
k=1 αk|Ψk⟩⟨Ψk|, where

K ∈ N∗ scales at most linearly with the number of moment constraints,
and where for all 1 ≤ k ≤ K, αk ∈ [0, 1], Ψk ∈ HN

1 and |Ψk⟩⟨Ψk| is the
orthogonal projector of HN

0 onto the vectorial space spanned by Ψk (using
bra-ket notation). We will, finally, exploit this sparsity structure in order to
propose some numerical scheme in order to approximate the solution of (1).
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Notice that solving (5) for a small systems can be exploited (as done in some
recent works for the Levy-Lieb functional [SPTP23, BVMTG22]) in order
to build approximations of the Lieb functional for larger systems by means
of machine learning techniques. Let us finally mention here that particu-
lar moment-constrained approximations of the Lieb functional have already
been considered in [Gar22] for the construction of Kohn-Sham potentials.
The novel results brought by the present contribution in comparison to the
latter work is (i) the extension of existence and convergence results to more
general moment constraints that the one considered in [Gar22]; (ii) the re-
sults on the sparsity structure of associated minimizers; (iii) convergence rate
of the approximate ground state energy; and (iv) study of the mathematical
properties of the associated dual problem.

The outline of the article is the following. In Section 2, we recall some fun-
damental results about the exact Lieb functional. The moment-constrained
approximation we consider here and the associated sparsity result on their
minimizers is presented in Section 3. Convergence results of the moment-
constrained approximation towards the exact Lieb functional are presented
in Section 4.1. In Section 4.2, we also prove some rates of convergence of
the associated approximation of the ground state energy to the exact one.
Section 5 is devoted to present some results about the dual formulation of the
moment-constrained problem in the case of electronic density with support
included in bounded domains. We, finally, introduce a numerical method in
Section 6 exploiting the sparsity result and the convenient dual formulation
as an SDP problem. Some numerical experiments for small systems are then
predented.

2 The exact Lieb functional

Let us first introduce some notation together with the problem we consider
in this work. We use here atomic units and neglect the influence of spin for
the sake of simplicity.

LetN ∈ N∗ denote the number of electrons in the molecule of interest. Let
us assume that there are Nnu ∈ N∗ nuclei in the molecule, the positions and
electric charges of which are denoted byR1, . . . , RNnu ∈ R3 and Z1, . . . , ZNnu ∈
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N∗. For all x ∈ R3, let us denote by

vnu(x) := −
Nnu∑
n=1

Zn
|x−Rn|

the Coulomb electric potential generated at x ∈ R3 by the Nnu nuclei.
Let H := H1(R3) and HN :=

∧N
i=1H

1(R3). For any Ψ ∈ HN , we denote
by ∥Ψ∥ its L2(R3N) norm and by ρΨ the electronic density associated to the
wavefunction Ψ, namely the real-valued function defined over R3 as follows:

∀x ∈ R3, ρΨ(x) := N

∫
(R3)N−1

|Ψ(x, x2, . . . , xN)|2 dx2 . . . dxN .

For a given set of nuclei positions R := (R1, . . . , RNnu) and charges Z :=
(Z1, . . . , ZNnu), one can compute the ground state energy as a minimization
over a density ρ, that is

E[R,Z] = inf
ρ∈IN

{
FLL[ρ] +

∫
R3

vnuρ

}
, (2)

where IN := {ρ ∈ L1(R3), ρ ≥ 0,
√
ρ ∈ H1(R3),

∫
R3 ρ = N} and

FLL[ρ] := inf
Ψ∈HN

1
ρΨ=ρ

{
1

2

∫
R3N

|∇Ψ|2 +
∫

R3N

V |Ψ|2
}

(3)

is called the Levy-Lieb functional. In ((3)), the function V : (R3)N → R+ ∪
{+∞} is defined as follows: for all (x1, . . . , xN) ∈ (R3)N ,

V (x1, . . . , xN) =
∑

1≤i<j≤N

1

|xi − xj|
. (4)

The Levy-Lieb functional is the central object in Density Functional Theory
and its knowledge would allow the computation the electronic ground state
energy of any molecule. However, it turns out that FLL is not convex, it is
therefore convenient to look at a convexification proposed by Lieb [Lie83a]
where the minimization is performed over the set of mixed states instead of
the set of pure ones as in (3). More precisely, we consider here the alternative
minimization problem

FL[ρ] := inf
Γ∈S+

1 (HN
0 )

ρΓ=ρ

Tr (HNΓ), (5)
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where HN := −1
2
∆ + V is a self-adjoint operator on HN

0 with domain

D(HN) = HN
2 :=

∧N
i=1H

2(R3), S+
1 (H

N
0 ) denotes the set of trace-class self-

adjoint non-negative operators on HN
0 . For all Γ ∈ S+

1 (H
N
0 ), there exists an

orthonormal basis (Ψi)i∈N∗ of HN
0 and a non-increasing sequence (αi)i∈N∗ of

non-negative numbers such that

Γ =
+∞∑
i=1

αi|Ψi⟩⟨Ψi|, (6)

using so-called bra-ket notation. Then, the associated electronic density ρΓ
is defined as follows: for all x ∈ R3,

ρΓ(x) := N
+∞∑
i=1

αi

∫
(R3)N−1

|Ψi(x, x2, . . . , xN)|2 dx2 . . . dxN =
+∞∑
i=1

αiρΨi
(x).

We know that there exist positive constants ε,D > 0 such that HN+D ≥
ε(−∆+ Id) (in the sense of self- adjoint operators on HN

0 ). We also denote
by S1,1(H

N
0 ) the set of self-adjoint operators Γ on HN

0 with finite kinetic
energy, i.e. such that Tr

(
|HN +D|1/2Γ|HN +D|1/2

)
< +∞.

Remark 1. It can then be easily checked that, Γ ∈ S1,1(H
N
0 ) if and only if

Γ ∈ S1(H
N
0 ) and Tr(HNΓ) < +∞. Then, if Γ admits an eigendecomposition

of the form (6), necessarily Ψi ∈ HN
1 as soon as αi > 0.

It is well-known then that the infimum in (3) and (5) is attained.

Remark 2 (Convexification). It is worth highlighting that FL is indeed the
convexification of FLL in the sense that

FL[ρ] = inf
∀i≥1, αi≥0, ρi∈IN∑+∞

i=1 αi=1∑+∞
i=1 αiρi=ρ

+∞∑
i=1

αiFLL[ρi]

It is useful noticing that FL admits a dual problem.

Theorem 3 ([Lie83a]). Duality holds in the sense that

FL[ρ] = sup
v∈L3/2(R3)+L∞(R3)

Hv
N≥0

{∫
R3

v(x)ρ(x)dx

}
, (7)
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where

Hv
N = HN −

N∑
i=1

v(xi).

The constraint in (7) has to be understood in the sense of self-adjoint
operators, namely for all Ψ ∈ HN

1 , ⟨Ψ|Hv
N |Ψ⟩ ≥ 0.

Remark 4. It is important to notice, for the following, that it can be easily
proved that the infimum in (3) and (5) is attained. However, it happens that
the supremum in (7) is not attained for most densities ρ (we refer the reader
to [LLS19]).

3 Moment-constrained approximation and spar-

sity result

We focus now on a first approximation of (5) by using the moment constraint
approach which has previously been studied in the framework of classical
optimal transport [ACEL21, ACE22]. We also refer to [Gar22] where a par-
ticular instance of moment-constrained approximation of the Lieb functional
has been considered for the computation of Kohn-Sham potentials.

We begin by introducing here some notation. From now on, we fix an
electronic density ρ ∈ IN . Let us recall that we have F := L3/2(R3) +
L∞(R3) ⊂ L1

ρ(R
3). For any f ∈ F, we denote by

∥f∥F := inf
f3/2 ∈ L3/2(R3), f∞ ∈ L∞(R3),

f3/2 + f∞ = f

∥f3/2∥L3/2(R3) + ∥f∞∥L∞(R3).

Let M ∈ N∗, given a collection of M functions Φ := (φ1, . . . , φM) ∈ FM ,
the main idea of the moment-constrained approximation consists in replacing
the density constraint in (5) with theM scalar moment constraints associated
to the functions φ1, . . . , φM , that is∫

R3

φmρΓ =

∫
R3

φmρ, ∀m = 1, · · · ,M. (8)

Notice that (8) is equivalent to∫
R3

φρΓ =

∫
R3

φρ, ∀φ ∈ Span{Φ}. (9)
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We denote by S+
1 (H

N
0 ,Φ, ρ) the set of Γ ∈ S+

1 (H
N
0 ) satisfying constraints

(8) (or equivalently (9)).
In the following, we show that there exists at least one solution to the cor-

responding moment-constrained Lieb optimization problem admits a sparse
solution ΓΦ

opt, such that there exists an integerK ≤M+2, weights ω1, · · ·ωK ≥
0 and wavefunctions Ψ1, · · · ,ΨK ∈ HN

1 such that

K∑
k=1

ωk = 1 and ΓΦ
opt =

K∑
k=1

ωk|Ψk⟩⟨Ψk|. (10)

In other words, we will show that there exists a finite-rank minimizer ΓΦ
opt

the rank of which is at most K ≤M + 2.

3.1 Tchakaloff’s theorem on Hilbert spaces

Let us first recall the following proposition which is an immediate conse-
quence of Tchakaloff’s theorem, see [BT06]. For any Hilbert space H, we
denote by B(H) the Borel σ-algebra of H.

Proposition 5. Let µ be a Borelian measure on a Hilbert space H concen-
trated on a Borel set A ∈ B(H). Let J0 ∈ N∗ and Λ : H → RJ0 a Borel
measurable map. Assume that the first moments of Λ♯µ exists, that is∫

RJ0

∥x∥dΛ♯µ(x) =
∫
H

∥Λ(Ψ)∥dµ(Ψ) < +∞,

where ∥ · ∥ denotes the Euclidean norm of RJ0. Then there exists an integer
1 ≤ K ≤ J0, elements Ψ1, · · · ,ΨK ∈ A and weights ω1, · · · , ωK > 0 such
that

∀j = 1, · · · , J0,
∫
H

Λj(Ψ)dµ(Ψ) =
K∑
k=1

ωkΛj(Ψk) =

∫
H

Λi(Ψ) dµd(Ψ),

where Λj is the j−th component of Λ, and µd =
K∑
k=1

ωkδΨk
.

The main idea of the proof of the sparsity result announced above is to
define a measure associated to an operator Γ ∈ S+

1 (H
N
0 ). Assume that the
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operator Γ can be written as

Γ =
+∞∑
i=1

αi|Ψi⟩⟨Ψi| (11)

for some sequence (Ψi)i∈N∗ of normalized functions of HN
0 and non-negative

real numbers (αi)i∈N∗ such that
∑

i∈N∗ αi = N . Then we can define a Borelian
measure µΓ : B(HN

0 ) → R+ associated to the decomposition (11) of the
operator Γ as

µΓ =
+∞∑
i=1

αiδΨi
.

Naturally, there is no unique such measure µΓ associated with an operator Γ
since it heavily depends on the decomposition (11). However, we will see in
the following that this is not a problem for our purpose here.

3.2 Existence of sparse minimizers for Moment Con-
strained Approximation of Lieb (MCAL) functional

In the following, we denote by 1 the function defined over R3 which is iden-
tically equal to 1.

We then have the following theorem, the proof of which is postponed to
Section 7.1.

Theorem 6. Let ρ ∈ IN , M ∈ N∗ and Φ := (φ1, . . . , φM) ∈ FM such that
1 ∈ Span{Φ}. Let us assume in addition that

(Aθ) there exists a non-negative non-decreasing continuous function θ : R+ →
R+ such that θ(r) −→

r→+∞
+∞ and Cρ :=

∫
R3 θ(|x|)ρ(x) dx < +∞.

For all C > 0, let us introduce the Moment-Constrained Approximation
of the Lieb functional (MCAL)

FΦ,C
L,θ [ρ] := inf

Γ∈S+
1 (HN

0 ,Φ,ρ)
Tr (ΘΓ)≤C

Tr (HNΓ), (12)

where Θ(x1, . . . , xN) := 1
N

∑N
i=1 θ(|xi|) for all x1, . . . , xN ∈ R3. Then, for

all C ≥ Cρ, F
Φ,C
L,θ [ρ] is finite and a minimum. Moreover, for all C ≥ Cρ,

there exists a minimizer ΓΦ,C
opt,θ to (12) such that ΓΦ,C

opt,θ =
∑K

k=1 ωk|Ψk⟩⟨Ψk|,
for some 1 ≤ K ≤M + 1, with ωk ≥ 0 and Ψk ∈ HN

1 for all 1 ≤ k ≤ K.
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Remark 7. Let us remark that the existence of a minimizer to a moment-
constraint approximation of the Lieb functional has been investigated in [Gar22][Theorem 3.1].
More precisely, in the latter work, the author considers moment functions
(φm)m∈M ⊂ L∞(R3,R+), where M is a countable subset of N∗, which forms
a partition of unity of R3 i.e. such that∑

m∈M

φm = 1.

In particular, 1 ∈ Span{φm, m ∈ M}. Note that in Theorem 6, assumption
(Aθ) can be seen as an additional condition on ρ which enables to obtain
tightness of minimizing sequences. Instead, the author of [Gar22] does not
require additional conditions on ρ but considers a tightness condition on the
set (φm)m∈M which reads as

lim
R→+∞

∑
m ∈ M

(Supp φm) ∩Bc
R ̸= ∅

∫
R3

ρφm = 0, (13)

where for all R > 0, BR denotes the open ball of R3 of radius R centered at 0.
Note that our existence result, up to the cost of assuming that ρ satisfies (Aθ),
allows to treat moment constraints for which the tightness condition (13)
does not hold. For instance, one can consider a family of moment functions
(φm)1≤m≤M where (φm)1≤m≤M−1 are the characteristic functions of cells of
a mesh associated to a bounded subdomain Ω ⊂ R3 and φM = 1Ωc). It can
then be easily checked that such a family does not satisfy condition (13).

Proposition 8 (Lower semi-continuity). Suppose ρn ∈ IN such that ρn ⇀
ρ ∈ IN in L1 then lim inf FΦ,C

L,θ [ρn] = FΦ,C
L,θ [ρ].

Proof. The proof is a straightforward adaptation of the proof of Theorem
6. Assume that an = FΦ,C

L,θ [ρn] → a exists then up to the extraction of a

subsequence, there exists a trace-class operator Γ∞ ∈ S+
1 (H

N
0 ) such that(

(HN +D)1/2Γn(HN +D)1/2
)
n∈N

≤ an + 1/n

weakly converges in the sense of trace-class operators to (HN+D)1/2Γ∞(HN+
D)1/2 as n goes to infinity. Moreover, we have that

lim inf Tr (HNΓn) ≥ Tr (HNΓ∞).
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In particular Γn satisfies the right moment constraints associated to ρn as
well as Tr (ΘΓn) ≤ C. Then by using the same arguments as in step 2 of
the proof above we deduce that Γ∞ is admissible for FΦ,C

L,θ [ρ]. It follows then

FΦ,C
L,θ [ρ] ≤ Tr (HNΓ∞) ≤ lim inf FΦ,C

L,θ [ρn].

Remark 9. We see from the proof of Theorem 6 that assumption (Aθ) is
needed in order to obtain tightness of the sequence of kernel functions (γn)n∈N.
This is needed because we are considering operators defined on the space
HN

0 =
∧N
i=1 L

2(R3). Notice that such a technical assumption is not needed in
the case when one considers operators acting on functions acting on a finite
domain with Dirichlet boundary conditions. We state such a result below
without giving its proof since it follows exactly the same lines as the proof of
Theorem 6.

Let Ω ⊂ R3 be a bounded subdomain of R3. We then denote byHN
0 (Ω) :=∧N

i=1 L
2(Ω), HN

1 (Ω) :=
∧N
i=1H

1
0 (Ω), H

N
2 (Ω) :=

∧N
i=1(H

2(Ω) ∩ H1
0 (Ω)) and

F(Ω) := L∞(Ω) + L3/2(Ω). The operator HN,Ω := −1
2
∆ + V is then a

self-adjoint bounded from below operator acting on HN
0 (Ω) with domain

D(HN,Ω) := HN
2 (Ω). We also denote by S+

1 (H
N
0 (Ω)) the set of non-negative

self-adjoint trace-class operators on HN
0 (Ω). We also define IN(Ω) the set

of function ρ ∈ IN with support included in Ω. For any M ∈ N∗ and any
Φ := (φm)1≤m≤M ⊂ F(Ω) and ρ ∈ IN(Ω), we introduce S

+
1 (H

N
0 (Ω),Φ, ρ) the

set of Γ ∈ S+
1 (H

N
0 (Ω)) such that∫

Ω

ρΓφm =

∫
Ω

ρφm, ∀1 ≤ m ≤M.

Then, the following theorem holds:

Theorem 10. Let ρ ∈ IN(Ω), M ∈ N∗ and Φ := (φ1, . . . , φM) ∈ (F(Ω))M

such that 1|Ω ∈ Span{Φ}. Let us introduce

FΦ
L,Ω[ρ] := inf

Γ∈S+
1 (HN

0 (Ω),Φ,ρ)
Tr (HN,ΩΓ). (14)

Then, FΦ
L,Ω[ρ] is finite and there exists a minimizer ΓΦ

opt,Ω to (14) such that

ΓΦ
opt,Ω =

∑K
k=1 ωk|Ψk⟩⟨Ψk|, for some 1 ≤ K ≤ M + 1, with ωk > 0 and

Ψk ∈ HN
1 (Ω) for all 1 ≤ k ≤ K. Moreover, suppose ρn ∈ IN such that

ρn ⇀ ρ ∈ IN in L1 then lim inf FΦ
L,Ω[ρn] = FΦ

L,Ω[ρ].
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In view of the sparsity results we have just proved, it is natural to consider
an approximate MCAL problem, where the set of minimizers is restricted to
the set of finite-rank operators satisfying moment constraints. More precisely,
for a given K ∈ N∗, we consider the following set

O
C,Φ,K
θ :=


(ω,Ψ) ∈ RK+ × (HN

1 )
K , Ψ := (Ψ1, . . .ΨK) ∈ (HN

1 )
K ,

ω := (ω1, . . . , ωK) ∈ RK+ ,
ρ̃ :=

∑K
k=1 ωkρΨk

,
∫

R3 ρ̃(x)θ(|x|) dx ≤ C,
∀1 ≤ m ≤M,

∫
R3 φmρ̃ =

∫
R3 φmρ

 .

The approximate MCAL functional then reads as follows

FΦ,C,K
L,θ [ρ] := inf

(Ψ,ω)∈OC,Φ,K

θ

J(Ψ,ω), (15)

where

J(Ψ,ω) :=
K∑
k=1

ωk⟨Ψk|HN |Ψk⟩.

Remark 11. Notice that as soon as K ≥M+1 then we have that FΦ,C,K
L,θ [ρ] =

FΦ,C
L,θ [ρ].

Remark 12. Since ρ ∈ IN then the set O
C,Φ,K
θ is no empty. Moreover it can

be shown, by standard arguments, that there exists a minimizer to (15).

As in the case of moment constrained optimal transport [ACE22] we can
state some interesting mathematical properties on the set of minimizers of
the approximate problem (15). First, consider two elements of O

C,Φ,K
θ , then

there exists a continuous path in O
C,Φ,K
θ connecting these two elements and

such that J varies monotonically along it.

Theorem 13. Let us assume that K ≥ 2M + 2. Let (Ψ0,ω0), (Ψ1,ω1) ∈
O
C,Φ,K
θ . Then, there exists a continuous application η : [0, 1] → O

C,Φ,K
θ made

of polygonal chain such that η(0) = (Ψ0,ω0), η(1) = (Ψ1,ω1) and such that
the application t 7→ J(η(t)) is monotone.

Since the proof is a straightforward adaptation of the one for [ACE22][Theorem
1], we refer the reader to it. We only highlight that, as we did in the pre-
vious sections, given a couple (Ψ,ω) one can always associate a measure
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µ =
∑K

i ωiδψi
, then by Thchakaloff’s theorem the result follows. An inter-

esting consequence of theorem 13 concerns the minimizers of MCAL: first,
as soon as K ≥ 2M + 2 any local minimizer of MCAL (or of problem (15))
is a global minimizer. Secondly, the set of minimizers forms a polygonally
connected set.

Corollary 14. Assume that K ≥ 2M + 2. Then, any local minimizer of
(15) is a global minimizer. Moreover, the set of minimizers of (15) is a

polygonally connected subset of O
C,Φ,K
θ .

4 Some convergence results

The aim of this section is to gather some convergence results on the MCAL
approximation towards solutions of the exact problem.

4.1 Convergence of the MCAL functional to the exact
Lieb functional

The aim of this section is to prove that, under some appropriate assumptions,
the MCAL functional converges to the exact Lieb functional as the number
of moment constraints go to infinity. Let us denote here by D(R3) the set of
C∞ real-valued functions defined on R3 with compact support.

More precisely, let ρ ∈ IN such that there exists a function θ : R+ → R+

satisfying assumption (Aθ). Let Cρ :=
∫

R3 θ(|x|)ρ(x) dx and let C > Cρ.

For all n ∈ N∗, let Mn ∈ N∗ and Φn := (φnm)1≤m≤Mn ⊂ F be a sequence
of functions belonging to F and which satisfies 1 ∈ Span{Φn} for all n ∈ N∗

together with the following density conditions:

(AΦ) for all f ∈ D(R3),

inf
gn∈Span{Φn}

∥f − gn∥F −→
n→+∞

0.

Then, we have the following useful lemma that we will use in the sequel.

Lemma 15. Let (ρ̃n)n∈N∗ ⊂ IN such that supn∈N∗ ∥
√
ρ̃n∥H1(R3) < +∞ and

such that for all n ∈ N∗,

∀gn ∈ Span{Φn},
∫

R3

ρ̃ngn =

∫
R3

ρgn.
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Then, (ρ̃n)n∈N∗ converges in the sense of distributions to ρ as n goes to in-
finity.

Proof. The proof uses the same lines as the proof of [Gar22][Theorem 3.2].
We rewrite it here for the sake of completeness. Let f ∈ D(R3) and let
(fn)n∈N∗ be a sequence of functions such that fn ∈ Span{Φn} for all n ∈ N∗

and ∥f − fn∥F −→
n→+∞

0. Then, it holds that∣∣∣∣∫
R3

f(ρ̃n − ρ)

∣∣∣∣ = ∣∣∣∣∫
R3

(f − fn)(ρ̃n − ρ)

∣∣∣∣
≤ C

(
∥√ρ∥2H1(R3) + sup

n∈N∗
∥
√
ρ̃n∥2H1(R3)

)
∥f − fn∥F,

−→
n→+∞

0.

Hence the desired result.

Remark 16. One example of sequence (Φn)n∈N∗ satisfying (AΦ) is the fol-
lowing: for all n ∈ N∗, let Ωn := (−n, n)3 and let Tn := {T n1 , . . . , TNn}
(with Nn := #Tn) be a regular conforming triangular mesh of Ωn, the el-
ements of which have a maximal diameter size hn such that hn ≤ 1

n
. Let

Mn := #Tn + 1 = Nn + 1. Denoting by φnm := 1|Tn
m

for 1 ≤ m ≤ Mn − 1
and by φnMn

:= 1|Ωc
n
and by Φn = (φnm)1≤m≤Mn for all n ∈ N∗, one can easily

check that the sequence (Φn)n∈N∗ satisfies (AΦ).

We then have the following convergence result, which may be seen as
an extension of [Gar22][Theorem 3.2] to more general set of moment func-
tions, up to the additional tightness assumption (Aθ), the proof of which is
postponed to Section 7.2.

Theorem 17. Let ρ ∈ IN such that there exists a function θ : R+ → R+

satisfying assumption (Aθ). Let Cρ :=
∫

R3 θ(|x|)ρ(x) dx and C ≥ Cρ. For
all n ∈ N∗, let Mn ∈ N∗ and Φn := (φnm)1≤m≤Mn ⊂ F such that assumption
(AΦ) holds. We assume in addition that there exists n0 ∈ N∗ such that
1 ∈ Span{Φn} for all n ≥ n0. Then, for all n ≥ n0, there exists at least one
sparse minimizer to (12) with Φ = Φn in the sense of Theorem 6. Besides,
it holds that

lim
n→+∞

FΦn,C
L,θ [ρ] = FL[ρ]. (16)
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Moreover, from any sequence (Γn)n≥n0 such that Γn is a minimizer for (12)
with Φ = Φn, one can extract a subsequence which strongly converges in
S1,1(H

N
0 ) to Γ∞, where Γ∞ is a minimizer of (5).

Like in Section 3.2, we can state a similar result with less technical as-
sumptions in the case when we consider operators acting on functions defined
on a bounded subdomain Ω ⊂ R3 with Dirichlet boundary conditions. We
state such a result here, using the same notation as in Section 3.2, since it
follows exactly the same lines of proof as Theorem 17. To this aim, for all
ρ ∈ IN(Ω), we introduce the exact Lieb functional defined on the domain Ω
as

FL,Ω[ρ] := inf
Γ∈S+

1 (HN
0 (Ω))

ρΓ=ρ

Tr (HN,ΩΓ). (17)

Let us point out here that there exists also ϵΩ, DΩ > 0 such that

HN,Ω +DΩ ≥ εΩ(−∆Ω + 1)

where −∆Ω refers here to the self-adjoint bounded from below operator on
HN

0 (Ω) with domain H2
N(Ω) (Laplacian with Dirichlet boundary conditions

in Ω). We also denote by S1,1

(
HN

0 (Ω)
)
the set of operators Γ ∈ S+

1 (H
N
0 (Ω))

such that Tr(−∆ΩΓ) < +∞.

Theorem 18. Let ρ ∈ IN(Ω). For all n ∈ N∗, let Mn ∈ N∗ and Φn :=
(φnm)1≤m≤Mn ⊂ F(Ω) such that for all f ∈ D(Ω),

lim
n→+∞

inf
gn∈Span{Φn}

∥f − gn∥F(Ω) = 0.

We assume in addition that there exists n0 ∈ N∗ such that 1 ∈ Span{Φn} for
all n ≥ n0. Then, for all n ≥ n0, there exists at least one sparse minimizer
to (12) with Φ = Φn in the sense of Theorem 6. Besides, it holds that

lim
n→+∞

FΦn

L,Ω[ρ] = FL,Ω[ρ]. (18)

Moreover, from any sequence (Γn)n≥n0 such that Γn is a minimizer for (12)
with Φ = Φn, one can extract a subsequence which strongly converges in
S1,1(H

N
0 (Ω)) to Γ∞, where Γ∞ is a minimizer of (5).
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4.2 Convergence rate of the ground state energy in the
bounded domain case

In this section, we restrict ourselves to the case of a bounded subdomain
Ω ⊂ R3. LetM ∈ N∗, Φ := (φm)1≤m≤M ⊂ F(Ω) be a set of moment functions.
For all v ∈ F(Ω), let us introduce the ground state energy associated to the
potential v:

E[v] := inf
Ψ∈HN

1 (Ω)
⟨Ψ|Hv

N,Ω|Ψ⟩ = inf
Γ∈S+

1 (HN
0 (Ω))

Tr (Hv
N,ΩΓ),

where

Hv
N,Ω := HN,Ω −

N∑
i=1

v(xi).

Rewriting the minimization over Γ as an external minimization over ρ ∈
IN(Ω) and then as an internal one over all Γ such that Tr Γ = ρ, it can easily
be checked that

E[v] = inf
ρ∈IN (Ω)

{
FL[ρ]−

∫
Ω

v dρ

}
. (19)

Let us also define by

EΦ[v] := inf
ρ∈IN (Ω)

{
FΦ
L [ρ]−

∫
Ω

v dρ

}
. (20)

Similarly, let us point out that, if v ∈ Span{Φ}, rewriting the minimiza-
tion over Γ as an external minimization over ρ ∈ IN(Ω) and then as an
internal one over all Γ ∈ S+

1 (H
N
0 (Ω),Φ, ρ), it holds that

E[v] = EΦ[v], ∀v ∈ Span{Φ}.

We then prove the following approximation result.

Proposition 19. Let us assume that v ∈ L∞(Ω) and that Φ = (φm)1≤m≤M ⊂
L∞(Ω). Then, it holds that

|E[v]− EΦ[v]| ≤ 2N min
w∈Span{Φ}

∥v − w∥L∞(Ω). (21)

Proof. Let vΦ = argmin
w∈Span{Φ}

∥v − w∥L∞(Ω). Let ε > 0 arbitrarily small. Let ρ,

ρΦ, ρ̃Φ and ρΦ be ε-minimizers of E[v], E[vΦ], EΦ[v] and EΦ[vΦ] respectively.
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It then holds that

E[vΦ] ≤ FL[ρ
Φ]−

∫
Ω

vΦ dρΦ

≤ E[vΦ] + ε

≤ FL[ρ]−
∫
Ω

vΦ dρ+ ε

= FL[ρ]−
∫
Ω

v dρ+

∫
Ω

(vΦ − v) dρ+ ε

≤ E[v] +

∫
Ω

(vΦ − v) dρ+ 2ε.

Using similar calculations, we obtain that

E[v] ≤ E[vΦ] +

∫
Ω

(v − vΦ) dρΦ + 2ε.

As a consequence, we obtain that

|E[v]−E[vΦ]| ≤ max

(∫
Ω

|v − vΦ| dρ,
∫
Ω

|v − vΦ| dρΦ
)
+2ε ≤ N∥v−vΦ∥L∞(Ω)+2ε.

Since ε can be chosen arbitrarily small, it actually holds that

|E[v]− E[vΦ]| ≤ N∥v − vΦ∥L∞(Ω). (22)

Using similar arguments, we also obtain that

|EΦ[v]− EΦ[vΦ]| ≤ N∥v − vΦ∥L∞(Ω). (23)

Collecting (22) and (23) and using the fact that E[vΦ] = EΦ[vΦ] yields the
desired result.

Proposition 19 then enables to quantify the rate of convergence of |E[v]−
EΦn

[v]| as n goes to infinity for some particular sequences of moment func-
tions (Φn)n∈N provided that v is regular enough. As an illustration, we
analyze here the rate of convergence of a numerical method inspired from
the external dual charge approach recently proposed in [Lel22].
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Corollary 20. Let l ≥ 0 and Ω be a bounded regular subdomain of R3. Let
µ ∈ H l+1(Ω) be an external density of charge and define v ∈ H1

0 (Ω)∩H l+3(Ω)
as the unique solution to {

−∆v = µ in Ω,
v = 0 on ∂Ω.

Let (Th)h>0 be a sequence of triangular regular meshes of Ω such that

h := max
K∈Th

diam(K).

Let k ∈ N and P k
h ⊂ L∞(Ω) be the subspace of continuous Pk finite ele-

ment functions associated to the mesh Th. We denote by Vh,k the subspace of
H1

0 (Ω) ∩H2(Ω) containing all functions vh,k ∈ H1
0 (Ω) ∩H2(Ω) solution to{

−∆vh,k = µh,k in Ω,
vh,k = 0 on ∂Ω,

for some µh,k ∈ P k
h . Let Φh,k be a basis of Vh,k. Then, asuming that l ≤ k,

there exists a constant C > 0 such that for all h > 0,

|E[v]− EΦh,k [v]| ≤ CNhl+1∥v∥Hl+3(Ω).

Proof. Corollary 20 easily follows for the compact embedding H2(Ω) ↪→
L∞(Ω) and standard interpolation error results associated with finite ele-
ment approximations.

Remark 21. Denoting by Mh,k the dimension of Vh,k, it holds that Mh,k =
O
(
k
h3

)
. As a consequence, the above result implies that the rate of convergence

of EΦh,k [v] to E[v] decays like O

(
N

M
(l+1)/3
h,k

)
where Mh,k is the number of

moment constraints in the MCAL approximation.

5 Duality results for the MCAL functional

Let us begin by recalling some classical results about semi-definite program-
ming problems and introduce some notation.
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5.1 Semi-definite positive programming problems

Let n ∈ N∗. We denote by Sn the set of symmetric matrices of Rn. For any
M ∈ Sn, the notation M ≽ 0 (respectively M ≻ 0) is used to mean that
M is a semi-definite non-negative (respectively definite positive) matrix. We
also denote by Sn+ := {M ∈ Sn, M ≽ 0} and by Sn+,∗ := {M ∈ Sn, M ≻ 0}.
For all M,N ∈ Sn, we denote by ⟨M,N⟩ = Tr(MTN) the Frobenius scalar
product between M and N .

Let m ∈ N∗, C ∈ Sn, A : Sn → Rm a linear application and b ∈ Rm.
We consider here the following (primal) semi-definite positive programming
problem:

P := inf
X ∈ Sn

A(X) = b
X ≽ 0

⟨C,X⟩. (24)

The dual problem associated to (24) then reads as follows:

D := sup
(y, S) ∈ Rm × Sn

A∗(y) + S = C
S ≽ 0

⟨b, y⟩ (25)

where A∗ : Rm → Sn is the adjoint of A.
We introduce the following sets:

AP := {X ∈ Sn, A(X) = b, X ≽ 0} ,
As
P := {X ∈ Sn, A(X) = b, X ≻ 0} ,

AD := {(y, S) ∈ Rm × Sn, A∗(y) + S = C, S ≽ 0} ,
As
D := {(y, S) ∈ Rm × Sn, A∗(y) + S = C, S ≻ 0} .

We also denote by SolP and SolD the set of solutions to (24) and (25).
Then, we recall the following classical result [AL11, WSV12]:

Theorem 22. (i) If AP × As
D ̸= ∅, SolP is non-empty and bounded and

P = D;

(ii) If As
P ×AD ̸= ∅ and A surjective, then SolD is non-empty and bounded

and P = D;
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(iii) If As
P × As

D ̸= ∅ and A surjective, then SolP and SolD are non-empty
and bounded and P = D.

5.2 Dual MCAL problem

In this section we study the dual problem in the bounded domain case. We
know that the dual variable associated to the density ρ ∈ IN(Ω) is a one-
body interaction potential of the form W v(x1, . . . , xN) :=

∑N
i=1 v(xi) for a

given v ∈ F(Ω).
We then consider the following natural dual problem

DΦ
L,Ω[ρ] = sup

v ∈ Span{Φ},
∀Ψ ∈ HN

1 (Ω), ⟨Ψ|Hv
N,Ω|Ψ⟩ ≥ 0

∫
Ω

vdρ, (26)

where

Hv
N,Ω := HN,Ω −

N∑
i=1

v(xi) = HN,Ω −W v.

If we take any v :=
∑M

m=1 αmφm ∈ Span{Φ} satisfying the above constraints
and any Γ ∈ S+

1 (H
N
0 (Ω),Φ, ρ) then we have

Tr (HN,ΩΓ) ≥ Tr (W vΓ) =

∫
Ω

vdρΓ =

∫
Ω

( M∑
m=1

αmφm

)
dρΓ

≥
∫
Ω

( M∑
m=1

αmφm)

)
dρ =

∫
Ω

vdρ

which proves that FΦ
L,Ω[ρ] ≥ DΦ,C

L,Ω [ρ]. We would like to prove that this in-
equality is actually an equality. Let us introduce the ground state energy
associated to the potential v:

E[v] = inf
Ψ∈HN

1 (Ω)
⟨Ψ|Hv

N |Ψ⟩ = inf
Γ∈S+

1 (HN
0 (Ω))

Tr (Hv
NΓ).

We rewrite now the minimization over Γ as an external minimization over
ρ ∈ IN(Ω) and then as an internal one over all Γ in S+

1 (H
N
0 (Ω),Φ, ρ) (we are

considering the ground state for a potential v ∈ Span{Φ}):

E[v] = inf
ρ∈IN (Ω)

{
FΦ
L,Ω[ρ]−

∫
Ω

vdρ

}
.
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Notice that E is nothing but the Legendre-Fenchel transform of FΦ
L,Ω[ρ]. On

the other hand, we rewrite (26) in the form

DΦ
L,Ω[ρ] = sup

v∈Span{Φ}

{∫
Ω

vdρ− E[v]

}
. (27)

Thus, DΦ
L,Ω[ρ] is the Legendre transform of E. From Proposition 8 and

Fenchel duality theorem for convex lower semi-continuous functions we con-
clude the following

Theorem 23. Under the assumptions of Theorem 10, we have FΦ
L,Ω[ρ] =

DΦ
L,Ω[ρ].

We now have the following result which, taking into account the sparsity
result of Theorem 10, gives a more convenient formulation of DΦ

L,Ω[ρ].

Theorem 24. Under the assumptions of Theorem 10, there exists at least
one maximizer to (26), and it holds that

DΦ
L,Ω[ρ] = max

v ∈ Span{Φ},
∀Ψ ∈ HN

1 (Ω), ⟨Ψ|Hv
N,Ω|Ψ⟩ ≥ 0

∫
Ω

vρ

= max
v ∈ Span{Φ},

∀Ψ ∈ Span{Ψ1, . . . ,ΨK}, ⟨Ψ|Hv
N,Ω|Ψ⟩ ≥ 0

∫
Ω

vρ,

where

ΓΦ
opt,Ω =

K∑
k=1

ωk|Ψk⟩⟨Ψk|

for some 1 ≤ K ≤ M + 1, with ωk > 0 and Ψk ∈ HN
1 (Ω) for all 1 ≤ k ≤ K

is a minimizer of (14).

6 Numerical scheme

The aim of this section is to propose a new numerical scheme using the spar-
sity of minimizers of the MCAL functional to compute approximations of
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the Lieb functional. The scheme proposed here requires the resolution of
eigenvalue problems for operators acting on HN

0 (Ω), which leads to high-
dimensional problems when the number of electrons is large. The combina-
tion of the algorithm proposed here with numerical methods dedicated to
overcome the curse of dimensionality will be the object of a future work.

We propose here an iterative scheme which shares some common features
with the well-known Column Algorithm used for classical optimal transport
problems (see for instance [FP22, FSV22]). The aim is to construct at each
iteration n ∈ N∗ a finite set of L2-normalized wavefunctions Pn ⊂ H2

N(Ω)
which will be used to enforce the inequality constraints in the resolution of
the MCAL dual problems. More precisely, inequality constraints in small-
dimensional dual problems are enforced to hold on the space spanned by the
wavefunctions belonging to the set Pn. As a consequence, in our present
quantum optimal transprt framework, semi-definite programming problems
have to be solved at each iteration instead of linear programming problems
for classical optimal transport problems.

6.1 MCAL iterative scheme

We describe the MCAL algorithm in this section. The algorithm takes as
input data:

• Φ = (φ1, . . . , φM) ⊂ L∞(Ω) set of moment functions;

• ρ ∈ IN with support included in Ω;

• ρm :=
∫
Ω
φmρ for all 1 ≤ m ≤M .

• P̃0 ⊂ H2
N(Ω) initial finite set of L2-normalized wavefunctions.

As an output, after n iterations, the algorithm yields F n which is an
approximation of the quantity FΦ

L,Ω[ρ].

We make here the following assumption on the initial set P̃0.
Assumption (A0): let K̃0 := dim Span{P̃0} and (Ψ̃0

1, . . . , Ψ̃
0
K0
) an or-

thonormal basis of Span{P̃0}. We assume that there exists S̃ := (S̃kl)1≤k,l≤K0 ∈
SK0
+ such that for all 1 ≤ m ≤M ,

K0∑
k,l=1

S̃kl

∫
Ω

φmΨ̃0
kΨ̃

0
l = ρm.
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In the case when d = 3, a way to find such an initial set P̃0 is given
in [Lie83b]. In this case, K̃0 can be chosen to be equal to 1 and Ψ̃0

1 can be
chosen as follows: for all 1 ≤ k ≤ N and x = (x1, x2, x3) ∈ R3, define

ϕk(x) =

√
ρ(x)

N
eikf(x1),

where for all x1 ∈ R,

f(x1) =

(
2π

N

)∫ x1

−∞
ds

∫ +∞

−∞
dt

∫ ∞

−∞
duρ(s, t, u).

The family (ϕk)1≤k≤N then forms an orthonormal family of L2(R3) and one

may define Ψ̃0
1 as the normalized Slater determinant associated to the family

(ϕk)1≤k≤N .

6.1.1 Initialization step

Compute S̃0 := (S̃0
kl)1≤k,l≤K0 ∈ SK0

+ solution to

F̃ 0 := min
(Skl)1≤k,l≤Kn ∈ SK0

+ ,
∀1 ≤ m ≤M,∑K0

k,l=1 Skl
∫
Ω
φmΨ̃0

kΨ̃
0
l = ρm

K0∑
k,l=1

Skl⟨Ψ̃0
k|HN,Ω|Ψ̃0

l ⟩ (28)

Then, it holds that S̃0 =
∑K0

k=1 ω
0
k(U

0
k )(U

0
k )
T where (ω0

k)1≤k≤K0 ∈ R+
K0 are

the eigenvalues of S̃0 (assumed to be ranked in non-increasing order) and
for all 1 ≤ k ≤ K0, U

0
k := (U0

kl)1≤l≤K0 ∈ RK0 is a normalized eigenvector
associated with ω0

k so that (U0
1 , . . . , U

0
K0
) forms an orthonormal basis of RK0 .

Let K0 := max {k ∈ {1, . . . , K0}, ω0
k > 0}. For all 1 ≤ k ≤ K0, let Ψ

0
k :=∑K0

l=1 U
0
klΨ̃

0
l , and S

0 := diag(ω0
1, . . . , ωK0) ∈ SK0

+,∗. We also denote by P0 :=⋃
1≤k≤K0

{Ψ0
k}.

Remark 25. It is easy to see that, by construction, it holds that

F̃ 0 := min
(Skl)1≤k,l≤K0 ∈ SK0

+ ,
∀1 ≤ m ≤M,∑K0

k,l=1 Skl
∫
Ω
φmΨ0

kΨ
0
l = ρm

K0∑
k,l=1

Skl⟨Ψ0
k|HN,Ω|Ψ0

l ⟩ (29)

25



and that S0 is a minimizer to (29).

Remark 26. Notice also that this initialization step is useless in the case
when K̃0 = 1.

6.1.2 Iteration n ≥ 1

Step 1: Let Kn−1 := dim Span {Pn−1} and (Ψn−1
1 , . . . ,Ψn−1

Kn−1
) be an or-

thonormal basis of Span {Pn−1}. Let An−1 := (An−1
kl,m)1≤m≤M,1≤k,l≤Kn−1 ∈

RK
2
n−1×M be defined by

An−1
kl,m :=

∫
Ω

φmΨ
n−1
k Ψn−1

l .

Let Cn−1 := Ker(An−1)⊥ ⊂ RM and

V n−1 :=

{
v =

M∑
m=1

cmφm, c := (cm)1≤m≤M ∈ Cn−1

}
⊂ Span{Φ}.

Compute vn ∈ V n−1 solution to

F n = max
v ∈ V n−1

∀Ψ ∈ Span{Pn−1}, ⟨Ψ|Hv
N,Ω|Ψ⟩ ≥ 0.

∫
R3

vρ (30)

Remark 27. Using the results of semi-definite positive programming and
using similar arguments as in the proof of Theorem 24, it can be easily checked
that there exists at least one maximizer to (30). In addition, any maximizer
to (30) is also a maximizer to

F n = max
v ∈ Span{Φ}

∀Ψ ∈ Span{Pn−1}, ⟨Ψ|Hv
N,Ω|Ψ⟩ ≥ 0.

∫
Ω

vρ,

since
∫
Ω
vρ = 0 for any v =

∑M
m=1 cmφm with c := (cm)1≤m≤M ∈ Ker(An−1).

Step 2: Compute Ψvn
0 ∈ HN

2 (Ω) a L
2-normalized solution to

Hvn
N,ΩΨ

vn
0 = E(vn)Ψ

vn
0 , (31)

where E(vn) is the smallest eigenvalue of Hvn
N,Ω.

Step 3: We now distinguish two different cases.
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• Case 1: E(vn) < 0

Define P̃n := Pn−1 ∪ {Ψvn
0 }. Let Kn := dim Span{P̃n} and let

Ψ̃n
1 , . . . , Ψ̃

n
Kn

be an orthonormal basis of Span{P̃n}.

Compute S̃n := (S̃nkl)1≤k,l≤KN
∈ SKn

+ solution to

F̃ n := min
(Skl)1≤k,l≤Kn ∈ SKn

+ ,
∀1 ≤ m ≤M,∑Kn

k,l=1 Skl
∫
Ω
φmΨ̃n

kΨ̃
n
l = ρm

Kn∑
k,l=1

Skl⟨Ψ̃n
k |HN,Ω|Ψ̃n

l ⟩ (32)

Then, it holds that S̃n =
∑Kn

k=1 ω
n
k (U

n
k )(U

n
k )

T where (ωnk )1≤k≤Kn ∈ R+
Kn

are the eigenvalues of S̃n (assumed to be ranked in non-increasing order)
and for all 1 ≤ k ≤ Kn, U

n
k := (Un

kl)1≤l≤Kn ∈ RKn is a normalized eigen-
vector associated with ωnk so that (Un

1 , . . . , U
n
Kn

) forms an orthonormal
basis of RKn .

Let Kn := max {k ∈ {1, . . . , Kn}, ωnk > 0}. For all 1 ≤ k ≤ Kn, let

Ψn
k :=

∑Kn

l=1 U
n
klΨ̃

n
l , and Sn := diag(ωn1 , . . . , ω

n
Kn

) ∈ SKn
+,∗. We then

denote by Pn :=
{
Ψn

1 , . . . ,Ψ
n
Kn

}
.

Define n := n+ 1 and proceed with the next iteration.

• Case 2: E(vn) ≥ 0

Stop the algorithm.

6.2 Property of the MCAL iterative scheme

We prove the following lemma, which states that the sequence of approxima-
tions yielded by the MCAL algorithm is non-increasing. Note however that
we do not prove here that the sequence converges indeed to FΦ

L,Ω[ρ].

Lemma 28. For all n ≥ 1, it holds that

F n ≥ F̃ n = F n+1 ≥ FΦ
L,Ω[ρ].
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Proof. The first inequality is simple to see since the dual problem associated
to (32) is

F̃n = max
v ∈ Span{Φ}

∀Ψ ∈ Span
{
P̃n

}
, ⟨Ψ|Hv

N,Ω|Ψ⟩ ≥ 0.

∫
R3

vρ

≤ max
v ∈ Span{Φ}

∀Ψ ∈ Span {Pn−1} , ⟨Ψ|Hv
N,Ω|Ψ⟩ ≥ 0.

∫
R3

vρ

= F n,

since Pn−1 ⊂ P̃n.
The second equality comes from the fact that

F̃n = min
(Skl)1≤k,l≤Kn ∈ SKn

+ ,
∀1 ≤ m ≤M,∑Kn

k,l=1 Skl
∫
Ω
φmΨ̃n

kΨ̃
n
l = ρm

Kn∑
k,l=1

Skl⟨Ψ̃n
k |HN,Ω|Ψ̃n

l ⟩

= min
(Skl)1≤k,l≤Kn ∈ SKn

+ ,
∀1 ≤ m ≤M,∑Kn

k,l=1 Skl
∫
Ω
φmΨn

kΨ
n
l = ρm

Kn∑
k,l=1

Skl⟨Ψn
k |HN,Ω|Ψn

l ⟩.

In addition, we know, by definition of Kn and of Ψn
1 , ..., Ψ

n
Kn

that there
exists at least one minimizer to the second minimization problem which is a
positive definite matrix, that is the diagonal matrix with entries ωn1 , . . . , ωKn .
Using standard results of semi-definite positive programming, it holds that
the dual problem associated to the second minimization problem introduced
in the last line of the calculations above is precisely

F n+1 = max
v ∈ Span{Φ}

∀Ψ ∈ Span {Pn} , ⟨Ψ|Hv
N,Ω|Ψ⟩ ≥ 0.

∫
R3

vρ = F̃n.

Hence the desired result.
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6.3 Numerical results

The numerical tests presented in this section were performed using Julia. In
particular, the finite element code developped in [QC23] was used to solve
the eigenvalue problems (31), and the ProxSDP library was used for the
resolution of the semi-definite programming problems. The associated code
can be found on ZENODO with the DOI 10.5281/zenodo.11669900.

We present in this section some preliminary numerical results on a toy
numerical test case with N = 2, d = 1 and Ω = (−L,L) with L = 10.
More precisely, for a given value D ∈ N∗, the solution of problems (31)
is approximated using a Galerkin approximation in the finite element (P1)
discretization space

WD = Span
{
ϕ1 ∧ ϕ2, ϕ1, ϕ2 ∈ V D

}
where

V D =
{
ϕ ∈ C(Ω)| ϕ(−L) = ϕ(L) = 0, ϕ|(−L+ (i−1)2L

D
,−L+ i2L

D ) ∈ P1, ∀0 ≤ i ≤ D
}
,

and

∀ϕ1, ϕ2 ∈ V D, ∀x, y ∈ Ω, ϕ1 ∧ ϕ2(x, y) =
1√
2
(ϕ1(x)ϕ2(y)− ϕ2(x)ϕ1(y)).

The moment functions (φm)1≤m≤M are chosen to be P1 hat functions associ-
ated to a uniform discretization of Ω so that

ZM := Span {φm, 1 ≤ m ≤M} =
{
v ∈ C(Ω)| v|(−L+ (j−1)2L

M−1
,−L+ j2L

M−1)
∈ P1, ∀0 ≤ j ≤M − 1

}
.

The electronic density ρ of choice is constructed as follows: we define, for
all x ∈ Ω,

ϕeven(x) = 1− |x|
L

and ϕodd(x) =

{
1− |2x+ L|/L if x ≤ 0,
|2x−L|
L

− 1 otherwise.

Then, we define Ψ̃0
1 =

ϕeven
∥ϕeven∥L2(Ω)

∧ ϕodd
∥ϕodd∥L2(Ω)

and ρ = 1
2

(
|ϕeven|2

∥ϕeven∥2
L2(Ω)

+ |ϕodd|2
∥ϕodd∥2L2(Ω)

)
.

We then apply the MCAL algorithm starting from P̃0 =
{
Ψ̃0

1

}
.

Let us first highlight the influence of the parameter qvec on the perfor-
mance of the algorithm in terms of the number of iterations required to
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achieve numerical convergence. We first conduct a first series of tests with
M = 20 and D = 100.

Figure 1 highlights the behaviour of the numerical scheme with respect
to qvec.

The upper (respectively lower) figure shows the values of F n (respectively
|E(vn)|) as a function of n for different values ofM . As predicted by our the-
oretical results, for any value of qvec, the sequence (F n)n∈N is non-increasing

and we also checked numerically that F̃ n = F n+1 for all n ∈ N. In constrast,
the sequence (E(vn))n∈N∗ is not monotonous. We also observe that for any
tested value of qvec, the sequence (F

n)n∈N converges to the same limit value.
It seems that for greater values of qvec, the number of iterations n needed for
the algorithm to converge is lower.

Figure 2 highlights the behaviour of the numerical scheme with respect to
the number M of moment constraints. In these tests, D = 100 and qvec = 4.

Again, the upper (respectively lower) figure shows the values of F n (re-
spectively |E(vn)|) as a function of n for different values of M . As before,
we observe that the sequence (F n)n∈N is non-increasing and we also checked

numerically that F̃ n = F n+1 for all n ∈ N. In constrast, the sequence
(E(vn))n∈N∗ is not monotonous. We also observe that for any tested value
of M , the sequence (F n)n∈N converges to some limit value denoted here by
F∞(M) which depends on M . We observe again that the value of F∞(M)
does not increase monotonically with M , which stems from the fact that the
spaces ZM do not form an increasing family of vector spaces for the inclusion.
However, is still holds that Z10 ⊂ Z20 ⊂ Z40, and we indeed observe that
F∞(10) ≤ F∞(20) ≤ F∞(40), which is coherent with the variational struc-
ture of the moment constraint approach studied here. We also observe that
the value of E(vn) seems to stagnate in most of the numerical tests (except
the one corresponding to M = 10) to a value close to −10−5.

Lastly, Figure 3 shows the plots of the potential vn obtained after run-
ning n = 80 iterations of the MCAL algorithm for various values of M
(M = 10, 20, 30, 40). We observe that the potential value seems to converge
to some limit value of M increases. However, the number of moment con-
straints should definitely be higher to obtain a better accuracy, which was
not possible with our current implementation. More evolved versions of the
present MCAL algorothm should be designed to alleviate this bottleneck,
which will be the object of a future work.
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Figure 1: Evolution of F n (above) and |E(vn)| (below) as a function of n for
different values of M .

31



Figure 2: Evolution of F n (above) and |E(vn)| (below) as a function of n for
different values of M .

7 Proofs

We gather in this section the proofs of our main theoretical results.
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Figure 3: vn(x) as a function of x for M = 10, 20, 30, 40 (n = 80)

7.1 Proof of Theorem 6

Proof of Theorem 6. Step 1: (Finiteness) Since ρ ∈ IN , there exists at
least one element Ψ0 ∈ HN

1 such that ρΨ0 = ρ. Denoting by Γ0 := |Ψ0⟩⟨Ψ0|,
it can then be easily seen that Γ0 ∈ S+

1 (H
N
0 ,Φ, ρ) and that Tr (ΘΓ0) =∫

R3 θ(|x|)ρ(x) dx = Cρ. Thus, we immediately obtain that for all C ≥ Cρ,

FΦ,C
L,θ [ρ] > −∞.
Step 2: (Existence of minimizer) Let (Γn)n∈N be a minimizing se-

quence associated to (12). Then, we know from the proof of Theorem 4.4 of
[Lie83a] that, up to the extraction of a subsequence, there exists a trace-class
operator Γ∞ ∈ S+

1 (H
N
0 ) such that

(
(HN +D)1/2Γn(HN +D)1/2

)
n∈N

weakly

converges in the sense of trace-class operators to (HN +D)1/2Γ∞(HN +D)1/2

as n goes to infinity. To prove that Γ∞ is a minimizer to (12), it is sufficient
to prove that ρΓ∞ satisfies

∀1 ≤ m ≤M,

∫
R3

ρΓ∞φm =

∫
R3

ρφm and

∫
R3

ρΓ∞(x)θ(|x|) dx = Tr (ΘΓ∞) ≤ C.
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For all n ∈ N, let us denote by τn ∈ L2(R3N × R3N) the kernel of Γn and by
τ∞ ∈ L2(R3N × R3N) the kernel of Γ∞. Let us also denote for all n ∈ N,

γn(x1, . . . , xN) := τn(x1, . . . , xN ;x1, . . . , xN)

and by
γ∞(x1, . . . , xN) := τ∞(x1, . . . , xN ;x1, . . . , xN)

for all x1, . . . , xN ∈ R3. Let us prove that (γn)n∈N is a tight sequence. Indeed,
let R > 0 and BR be the ball of radius R of R3N . Then, denoting by 1Bc

R
the

characteristic function of the set Bc
R, it holds that for all n ∈ N,∫

Bc
R

γn =

∫
R3N

1Bc
R
γn

≤
∫

R3N

(
1

N

N∑
i=1

θ(|xi|)
θ(R)

)
γn(x1, . . . , xN) dx1 . . . dxN

=
1

θ(R)
Tr (ΘΓn) ≤

C

θ(R)
.

Let us denote byMP the multiplication operator by any function P bounded
with compact support on R3N . We then know from the proof of Theorem 4.4
of [Lie83a] that

Tr(MPΓ
∞) = lim

n→+∞
Tr(MPΓ

n).

This, together with the tightness result above, yields that (ρΓn)n∈N weakly
converges to ρΓ∞ in L1(R3). It then easily follows that for all m = 1, · · · ,M,∫

R3

φmρΓ∞ = lim
n→+∞

∫
R3

φmρΓn =

∫
R3

φmρ

and that ∫
R3

θ(|x|)ρΓ∞(x) dx = Tr (ΘΓ∞) ≤ C.

The operator Γ∞ is thus a minimizer of (12). In particular, since 1 ∈
Span{Φ}, it holds that Tr (Γ∞) = N .

Step 3: (Existence of a sparse minimizer)
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Let us now introduce the function Λ : HN
1 → RM+1 such that for all

m = 1, · · · ,M,

Λm(Ψ) =

∫
R3

φm(x)ρΨ(x)dx =

∫
RdN

φm(x)|Ψ(x, x2, ..., xN)|2dxdx2...dxN ,

and
ΛM+1(Ψ) = ⟨Ψ|HN |Ψ⟩.

It can then be easily seen that Λ is a continuous map on HN
1 .

Let Γmin be a minimizer of (12). Then, there exists a countable index set
J ⊂ N, an orthonormal family (Ψj)j∈J ofH

N
0 and a family of positive numbers

(αj)j∈J such that
∑

j∈J αj = N (this comes from the fact that 1 ∈ Span{Φ})
and

Γmin =
∑
j∈J

αj|Ψj⟩⟨Ψj|.

In addition, it can be easily checked that Ψj ∈ HN
1 for all j ∈ J. We

then define µmin :=
∑

j∈J αjδΨj
which is a Borel measure on B(HN

1 ) since
Tr (HNΓmin) is finite and TrΓmin = N . It can then be easily checked that∫

HN
1

∥Λ(Ψ)∥ dµmin(Ψ) < +∞.

Thus, by Proposition 5, there exist 1 ≤ K ≤ M + 1, Ψ1, · · · ,ΨK ∈ HN
1 and

ω1, · · · , ωK > 0 such that∫
HN

1

Λ(Ψ)dµmin(Ψ) =
K∑
k=1

ωkΛ(Ψk).

Denoting by ΓK =
∑K

k=1 ωk|Ψk⟩⟨Ψk|, it can then be easily checked that
ΓK is also a minimizer to (12). Hence the desired result.

7.2 Proof of Theorem 17

Proof of Theorem 17. The first assertion of the theorem is a direct conse-
quence of Theorem 6. Using the same arguments as in the proof of Theorem 6,
one can easily obtain that the sequence

(
(HN +D)1/2Γn(HN +D)1/2

)
n≥n0

is

compact inS+
1 (H

N
0 ). Thus, up to the extraction of a subsequence there exists
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Γ∞ ∈ S+
1 (H

N
0 ) such that Tr (HNΓ∞) < +∞ and such that

(
(HN +D)1/2Γn(HN +D)1/2

)
n≥n0

weakly converges to
(
(HN +D)1/2Γ∞(HN +D)1/2

)
n≥n0

in the sense of trace-

class operators of S+
1 (H

N
0 ).

Moreover, following again the same lines of proof, we obtain that the se-
quence (ρΓn)n≥n0 weakly converges in L1(R3) to ρΓ∞ . As a consequence,
it holds that

∫
R3 θ(|x|)ρΓ∞(x) dx ≤ C. Moreover, since for all n ∈ N∗,∫

R3 φ
n
mρΓn =

∫
R3 φ

n
mρ, using Lemma 15, we then obtain that, necessarily,

ρΓ∞ = ρ. This makes Γ∞ admissible for (5) so that we have that Tr (HNΓ∞) ≥
FL[ρ]. Notice now that for all n ≥ n0, −∞ < FΦn,C

L,θ [ρ] ≤ FL[ρ]. Thus for

any converging subsequence of (FΦn,C
L,θ [ρ])n≥n0 to some limit F∞

L , it holds that

−∞ < F∞
L ≤ FL[ρ]. For this subsequence, still denoted by (FΦn,C

L,θ [ρ])n≥n0 for
the sake of simplicity, it holds that limn→∞Tr (HNΓn) = F∞

L , and we then
have that

FL[ρ] ≥ F∞
L ≥ Tr (HNΓ∞).

Thus, necessarily, Γ∞ is a minimizer of (5). Moreover, F∞
L = FL[ρ] for any

extracted subsequence so that lim
n→+∞

Tr(HNΓn) = Tr(HNΓ∞). Using the

compactness of the Fock space of bounded particle number for the geometric
convergence [Lew11][Lemma 2.2, Lemma 2.3], we thus obtain the desired
result.

7.3 Proof of Theorem 24

Proof of Theorem 24. Step 1: Let us first prove that there exists a maxi-
mizer to the optimization problem

sup
v ∈ Span{Φ},

∀Ψ ∈ Span{Ψ1, . . . ,ΨK}, ⟨Ψ|Hv
N,Ω|Ψ⟩ ≥ 0

∫
Ω

vρ. (33)

We denote here by SK the set of symmetric matrices of RK×K . For any
φ ∈ Span{Φ}, let us consider the linear form lφ : SK → R defined as follows:

∀S := (Skl)1≤k,l≤K ∈ SK , lφ(S) :=

∫
Ω

φ(x)
K∑

k,l=1

SklΨk(x)Ψl(x) dx = Tr(φΓS),

where

ΓS :=
K∑

k,l=1

Skl|Ψk⟩⟨Ψl|.
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Let us now consider the vectorial space

L := {lφ, φ ∈ Span{Φ}}.

The space L is a finite-dimensional subspace of the set of linear forms on
SK , and its dimension J is lower or equal to the dimension of Span{Φ}.
Let (l̃1, . . . , l̃J) be a basis of L. By construction, there exists φ̃1, . . . , φ̃J ∈
Span{Φ} such that l̃j = lφ̃j

for all 1 ≤ j ≤ J . Let us then denote by

Φ̃ := {φ̃1, . . . , φ̃J}. It can then be easily checked that any element φ of
Span{Φ} can be rewritten as

φ = φ̃+ φ0,

where φ̃ ∈ Span{Φ̃} and φ0 ∈ Span{Φ} such that lφ0 = 0. In particular, this
implies that

∫
Ω
φ0ρ = 0 since for all φ ∈ Span{Φ},∫

Ω

φρ =

∫
Ω

φ(x)
K∑
k=1

ωk|Ψk(x)|2 dx = lφ(diag(ω1, . . . , ωK)).

Thus, proving that there exists a maximizer to (33) is equivalent to proving
that there exists a maximizer to

sup

v ∈ Span{Φ̃},
∀Ψ ∈ Span{Ψ1, . . . ,ΨK}, ⟨Ψ|Hv

N,Ω|Ψ⟩ ≥ 0

∫
Ω

vρ. (34)

Now, by definition of φ̃1, . . . , φ̃J , it holds that the application A : SK → RJ

defined so that for all 1 ≤ j ≤ J and all S = (Skl)1≤k,l≤K ,

A(S)j :=

∫
Ω

φ̃j

K∑
k,l=1

SklΨkΨl

is surjective. Indeed, this comes from the fact that dim Rank(A) = dim L =
J . It can then be easily checked that (34) is then equivalent to the dual
semi-definite programming problem:

sup
(y, S) ∈ RJ × SK

A∗(y) + S = C
S ≽ 0

⟨b, y⟩, (35)
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where b = (bj)1≤j≤J is such that bj =
∫
Ω
φ̃jρ for all 1 ≤ j ≤ J and C =

(Ckl)1≤k,l≤K ∈ SK with

Ckl := ⟨Ψk|HN,Ω|Ψl⟩ ∀1 ≤ k, l ≤ K.

Indeed, if (y, S) ∈ RJ×SK is a maximizer to (35), it holds that v =
∑J

j=1 yjφ̃j
is a maximizer to (34), and thus to (33).

The primal problem associated to (35) reads as

inf
X ∈ SK

A(X) = b
X ≽ 0

⟨C,X⟩, (36)

Let us also remark that
∫
Ω
ρφ =

∫
Ω
ρΓS

φ for all φ ∈ Span{Φ} if and only
if A(S) = b. Thus, this implies that there exists at least one minimizer X to
(36) which is given by X = diag(ω1, . . . , ωK) and is positive definite. Using
Theorem 22, we then obtain the existence of at least one maximizer to (35),
and hence to (33) and (34).

Step 2: To conclude the proof of the desired result, it only remains to
show that

DΦ
L,Ω[ρ] := sup

v ∈ Span{Φ},
∀Ψ ∈ HN

1 (Ω), ⟨Ψ|Hv
N,Ω|Ψ⟩ ≥ 0

∫
Ω

vρ

= sup
v ∈ Span{Φ},

∀Ψ ∈ Span{Ψ1, . . . ,ΨK}, ⟨Ψ|Hv
N,Ω|Ψ⟩ ≥ 0

∫
Ω

vρ.

On the one hand, it holds from Theorem 23, that DΦ
L,Ω[ρ] = FΦ

L,Ω[ρ]. On the
other hand, using similar arguments as in the proof of Theorem 23, it holds
that

sup
v ∈ Span{Φ},

∀Ψ ∈ W, ⟨Ψ|Hv
N,Ω|Ψ⟩ ≥ 0

∫
Ω

vρ = inf
Γ∈S+

1 (W,Φ,ρ)
Tr(HN,ΩΓ),

where W := Span{Ψ1, . . . ,ΨK}. Since, by definition of Ψ1, ..., ΨK , it holds
that FΦ

L,Ω[ρ] = inf
Γ∈S+

1 (W,Φ,ρ)
Tr(HN,ΩΓ), we obtain the desired result.
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