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Sliding Mode Control of Tethered Drone: Take-off and Landing under
Turbulent Wind conditions

Zakeye AZAKI, Jonathan DUMON, Nacim MESLEM, Ahmad HABLY

Abstract— Tethered flight is a highly nonlinear and uncertain
process that requires robust control approaches to master its
operation. However, there have been only a few researches on
the control of the take-off and landing phases of these systems.
This paper proposes a sliding mode controller, for tethered
drones, to track a desired flight trajectory. Additionally, a
three-dimensional Extended Kalman filter is integrated into the
control strategy to estimate and compensate for aerodynamic
disturbances. Controller performance is evaluated against wind
turbulence conditions and modeling uncertainties. The results
are compared with those of a non-linear feedback linearization
controller.

Keywords: Tethered drones, Sliding Mode Control, Aero-
dynamic Disturbances, Extended Kalman Filter.

I. INTRODUCTION

Tethered drones have a wide range of potential applications.
In this present work we focus on using them in the specific
field of airborne wind energy (AWE). The purpose of AWE
systems is to harvest high-altitude wind energy and convert
it into electrical energy [1], [2]. There are two classes of
AWE systems, depending on where energy is produced [3].
On the one hand, there are on-board production systems
where classical wind turbines are mounted on flying wings
and transmit electricity to the ground via conductive tethers.
On the other hand, there are on-ground production systems
whereby the device follows a predetermined trajectory and
produces aerodynamic lift and drag forces transmitted via a
tether to an on-ground station for conversion into electricity.
Different types of wings are used: soft, rigid, etc.
The dynamics of the AWE systems are strongly nonlinear and
parameter-dependant. Uncertainties and external disturbances
have to be handled by the appropriate controllers. Moreover,
several partially known or unknown forces affect the AWE
system. These forces include aerodynamic forces that are
affected by wind speed and direction, which can be difficult to
measure. As a result, the AWE system becomes very uncertain
and its control performance is significantly impacted due to
this fact.
As a critical challenge for AWE Systems, automating tethered
flight must be mastered to achieve operating success. It
is essential to recognize that we are dealing with a broad
spectrum of automatic control strategies that must perform
robustly under extreme operating conditions. The system
needs to operate in different phases, including take-off and
landing, as well as power generation. Most of the literature
addresses the problem of control during power generation
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Fig. 1: Drone-based Magnus AWE prototype.

[4], [5].
Few studies have been conducted to assign the phases of
take-off and landing of AWE systems. One solution is to
use a multicopter as described in [6] for the take-off and
landing phases. In that study, the motion of the AWE system
is considered in 2D. Hierarchical feedback controller-based
3D control strategy for an untethered system was presented in
[7]. However, the proposed control strategy showed a decline
in performance when exposed to turbulent wind.
In this present work, we have focused on the problem of
control during the vertical take-off and landing of a drone-
based Magnus system for an on-ground production application.
In our previous work [8], the control strategy based on the 3D
feedback linearization technique (FL-PID) has been designed
to deal with a part of the system’s non-linearities. On other
hand, integral actions have been added in the closed loop to
cope with the neglected (considered as disturbances) unknown
forces. Although the results in [8] showed that the (FL-PID)
control strategy provides good tracking performance for low
and homogeneous wind speeds, however for turbulent and
extreme wind speed conditions, the neglected aerodynamic
forces, that was considered as disturbances, become significant
and affect the desired behavior of the system.
In light of this, the present paper proposes to tackle the control
problem through a 3D robust Nonlinear Sliding Mode Control
(SMC). For this, we based on the first order SMC [9]. In
addition, it is of great interest to estimate the unknown forces
acting on the system in order to obtain a more precise model
of the system and further master its dynamical behavior. To do
this, we have implemented an Extended Kalman filter (EKF)
to estimate online these unknown forces. These estimates
are then integrated as feed-forward into the control design to



anticipate the effects of disturbances and other external inputs
on the system’s output, thus improving the performance of
the SMC to counteract these disturbances. The overall SMC-
augmented with feed-forward control is referred as (FF-SMC).
To validate the performance and robustness of this control
strategy, (FF-SMC) is compared to the (FL-PID) control. The
paper ends with some conclusions and future work.
Paper Organization: In section II we illustrate the system’s
3D mathematical model. We describe the design of the (FF-
SMC) control strategy in Section III. Section IV represents
the realistic simulator and the wind speed model utilized to
generate simulations. Lastly, in section V we present some
results that validate the robustness of the control strategy.

II. CONTROL INPUTS AND MATHEMATICAL MODEL

In this section, we recapitulate the mathematical model
of the system. The detailed derivation of this model can be
found in our previous work [8] for interested readers. This
simplified model has been specifically derived to design a
control strategy for the take-off and landing phases of the
AWE system. However, more complex model is used for
simulation testing as is described in section IV.

The system under study is the drone-based AWE system
and it is represented in Fig. 1. This system is composed of
two main elements: the first one is a flying device composed
of Magnus wing fixed to a drone with a combined mass
denoted by mK . The second one is an on-ground winch of
inertia IW , radius RW , and mass mW = IW

R2
W

. Both elements
are connected through a tether. Note that the tether model
has not been considered in the dynamical model. On the
contrary, it is assumed that the tether of length r is taut and
approximated as a straight line. This assumption could still
be of less importance for small tether length where drag
and linear mass is negligible w.r.t tether tension. The tether
traction force TT is derived from the rotational equilibrium
on the base of the on-ground winch as follows,

TT = ur +mW r̈ + Ff (1)

where ur is the on-ground winch motor torque and Ff

represents the dry friction of the on-ground winch.
The system is considered as a rigid point mass represented

by its polar position vector ξ = [r, η, β]T where r is the
tether length, η is the azimuth angle and β is the elevation
angle. The translation velocity of the flying device vk can
be decomposed, in the spherical coordinate system, into a
radial velocity component vk,r = ṙ, an azimuthal velocity
component vk,η = rη̇cβ and a polar velocity component
vk,β = rβ̇. The acceleration components are derived from
differentiation of vk with respect to time as follows

v̇k =

 r̈
rη̈cβ
rβ̈

+

 −rβ̇2 − rη̇2c2β
2ṙη̇cβ − 2rη̇β̇sβ
2ṙβ̇ + rη̇2cβsβ

 (2)

where ’s’ and ’c’ refer respectively to sine and cosine
functions. Based on the fundamental principle of dynamics,

a 3D nonlinear model of the system can be derived:

ξ̈ =


1

mK+mW
[mK(rβ̇2 + rη̇2c2β)− Psβ + uT ]
1

rcβ
[−2ṙη̇cβ + 2rη̇β̇sβ ]

− 1
r [2ṙβ̇ + rη̇2cβsβ + 1

mK
Pcβ ]


︸ ︷︷ ︸

B(ξ,ξ̇)

+

− 1
mK+mW

0 0

0 1
mKrcβ

0

0 0 1
mKr


︸ ︷︷ ︸

A(ξ,ξ̇)

(uruη
uβ


︸ ︷︷ ︸

u

+

−Fu,r

Fu,η

Fu,β


︸ ︷︷ ︸

Fu

)

(3)

where P is the system’s weight. The unknown forces vector
Fu could be viewed as composition in between the Magnus
aerodynamic forces Fa, the on-ground dry friction Ff and
the forces due to propeller performance variation and due for
example to the embedded battery voltage variation Fp,

Fu,r = Fa,r + Fp,r + Ff

Fu,η = Fa,η + Fp,η

Fu,β = Fa,β + Fp,β

(4)

We assume that the control inputs of the system consist
of the on-ground winch motor torque ur and the drone’s
Euler angles Θ = [ϕ, θ, ψ]T and thrust force TD. The thrust
force TD is represented by its projections uT , uη and uβ
into the radial, azimuthal and polar directions respectively.
For this, the control variables could be described as uT and
the control input vector u = [ur, uη, uβ ]

T . The computation
of the desired values of this control variables is illustrated in
the section III.

One can notice that the proposed model (3) is invalid for
a tether length r = 0 and/or β = π

2 since the system is in a
singular configuration. As such a configuration is undesirable
in practice and may lead to unbounded response, we define an
acceptable flying region Ω which is bounded by the following
constraints,

• the flying device is docked to a support at r ̸= 0,
• the tether’s elevation is such that β ≤ βmax where
βmax <

π
2 ,

• maximum allowable wind speed of 10m/s have been
established.

The acceptable flying region Ω is crucial for ensuring the
safe and stable operation of the system, and its boundaries
was carefully defined and considered in simulations.

In Table I, we represent the involved parameters of model
(3) corresponding to the prototype shown in Fig. 1.

TABLE I: Physical Parameters of our prototype

Parameter Definition Value
mK Mass of the flying device 1.4 kg
mW Mass of the on-ground station rotor 0.0481 kg
RM radius of the Magnus cylinder 0.04 m
lM length of the Magnus cylinder 0.6 m
ρ Air density 1.293 kg/m3



III. POSITION CONTROL

A. Feedback Formulation

Feedback Linearization is applied to obtain the desired
control input ud = [ud,r, ud,η, ud,β ]

T as:

ud = A−1(ξ, ξ̇) ∗ [uξ − B(ξ, ξ̇)] (5)

with ∗ corresponds to matrix multiplication. uξ =
[uξ,r, uξ,η, uξ,β ]

T is the virtual input vector. To design this
virtual input uξ, we have based on SMC.
It is known that, SMC policy entails two phases: sliding
surface design and then control input design. In the first phase,
the sliding surface is chosen with an additional integral term
for each loop q ∈ {r, η, β} as:

Sq = ėq + α1,qeq + α0,q

∫ t

0

eqdτ (6)

where eq = q−qd is the tracking error for each q ∈ {r, η, β}.
The coefficients α0,q > 0 and α1,q > 0 are strictly positive
tuning parameters. Through these parameters, the system
characteristics may be considered while defining the sliding
surface. Consequently, the specifications are met as the system
achieves the sliding surface.
Now that the sliding surface has been defined, the next phase
is to design a control law steering the system trajectories
to the sliding surface in finite time despite the presence of
model imprecision and of disturbances (4). To accomplish
this, we use the first order SMC for each loop q ∈ {r, η, β}
as:

uξ,q = q̈d − α1,q ėq − α0,qeq − kqsgn(Sq) (7)

B. Feed-forward Formulation

As stated in the previous section, the AWE system is
susceptible to a variety of unmeasured forces as illustrated in
(4), which have an impact on the precision and robustness of
the system’s tracking of a given trajectory. Hence, integrating
these forces into the control design is crucial for stable and
high performing flight. Then, the control law (5) is enhanced
as follows:

ud = A−1(ξ, ξ̇) ∗ [uξ − B(ξ, ξ̇)− A(ξ, ξ̇) ∗ Fu] (8)

This control law can be formalized as combined feed-forward
plus feedback control:

ud = A−1(ξ, ξ̇) ∗ [uξ − B(ξ, ξ̇)]︸ ︷︷ ︸
ub

−Fu︸︷︷︸
uf

(9)

Such that ub is the feedback term of the proposed strategy
while uf is the feed-forward term.

C. Disturbance Estimation

In order to implement the proposed control law (9), it is
essential to have accurate measurements of the disturbance
forces Fu. However, obtaining these measurements may prove
to be a challenge. For example the aerodynamic forces Fa

acting on the system are difficult to measure directly and
they are affected by time-dependent variables such as wind
speed and direction. This presents a significant obstacle

Fig. 2: Block diagram illustrating the (FF-SMC) strategy.

for the implementation of the control law, as the system’s
performance relies on the ability to accurately measure
and compensate for these disturbances. Furthermore, this
difficulty in measuring aerodynamic forces is not unique,
as other sources of disturbance such as the ones caused
by propellers performance variation Fp can also be hard to
measure accurately.

Thus, it is of great interest to estimate the unknown forces
Fu. A discrete Extended Kalman filter (EKF) is synthesized to
compute online the estimated unknown force vector F̂u using
the system’s output data at hand presented by the measured or
simulated states y = ξs and simulated control inputs us. The
EKF implemented in this work is the extended version, into
the 3D frame, of the EKF developed and studied in our work
[10]. An augmented model of (3), is necessary to accomplish
this task. It is important to note that in this augmented model,
the unknown forces outlined in (4) should be treated as state
variables with zero dynamics. This augmented model is read: ξ̈

Ḟu

 =

B(ξ, ξ̇) + A(ξ, ξ̇) ∗ [u + Fu]

0

 (10)

A well-known fact is that the performance of an EKF
is primarily dependent upon the tuning of its weighting
matrices,i.e., the measurement noise covariance matrix R
and the process noise covariance matrix Q. In our research,
we have chosen to increase the eigenvalues in Q matrix
corresponding to the unknown additive forces. By doing
so, we aim to ensure that the filter gives more weight to
the disturbance dynamics, which are more uncertain, in
comparison to the other dynamics of the system. However,
the measurements are accurate and reliable, and thus the
R matrix should have small eigenvalues compared to Q.
Therefore, based on the estimation values, the (FF-SMC)
control strategy, presented in Fig. 2, is developed as:

ud = A−1(ξ, ξ̇)[uξ − B(ξ, ξ̇)]− F̂u (11)

The inputs to the drone can be specified by the desired
thrust force magnitude T d

D and the desired Euler Angles Θd.
These desired values can be determined by the kinematic
transformation presented in our previous work [8],

T d
D = ||ud||, Θd = f(ξ,ud) (12)



with ||.|| denotes the norm of a vector and f : R3×R3 → R3

is a nonlinear function. These desired values are the inputs
for the drone’s inner loops that are assumed to be stable and
high performing control loops.

D. Stability Analysis

Replacing the control law ud, designed as (11), in the
system nonlinear dynamics (3), the closed loop dynamics can
be read as:

ξ̈ = uξ + A(ξ, ξ̇) ∗∆Fu (13)

where ∆Fu = Fu − F̂u is the estimation error vector of the
unknown forces. It could as well, be considered as source of
disturbance and uncertainty.
Considering the following representation,

du = A(ξ, ξ̇) ∗∆Fu (14)

is assumed to be bounded model uncertainty vector. This
assumption may be achieved if the flying operation is
constrained in the region Ω. This was validated by multiple
simulations and we were able to obtain upper bounds of the
uncertainties in (14).
The stability analysis is carried out using lyapunov stability
theory for each loop q ∈ {r, η, β}. We define the Lyapunov
function candidate as:

Vq =
1

2
SqSq (15)

Its time derivative is calculated as:

V̇q = Sq(ëq + α1,q ėq + α0,qe)

= Sq(−kqsgn(Sq) + du,q)

≤ −(kq − |du,q|)|Sq|
(16)

The gain kq must be chosen so that kq ≥ |du,q| for each
q ∈ {r, η, β}. Using Lyapunov’s direct method, it can be
concluded that the equilibrium at the origin Sq = 0 is globally
asymptotically stable because Vq is clearly positive-definite
and V̇q is negative-definite. Therefore, Sq tends to zero as time
tends to infinity, and all trajectories starting off the sliding
surface Sq = 0 must reach it in finite time and then remain on
this surface. When sliding mode occurs on the sliding surface
(6), Sq = Ṡq = 0, and as a result, the dynamic behavior of
the tracking problem can be equivalently governed by;

Ṡq = 0 ⇒ ëq = −α1,q ėq − α0,qeq (17)

It could be seen easily that if the parameters α1,q and α0,q

are chosen such that:

Pq(s) = s2 + α1,qs+ α0,q (18)

is Hulwitz polynomial, the tracking error eq is stable and
converges exponentially to zero.
Finally, the chattering phenomena of SMC is undesirable in
practice, to eliminate and mitigate it we have replaced the
discontinuous function sgn in (7) by smooth continuous
hyperbolic tangent function tanh, Thus the intermediate
control input uξ,q for each q ∈ {r, η, β} becomes as follows:

uξ,q = q̈d − α1,q ėq − α0,qeq − kqtanh(
Sq

γq
) (19)

with γq is a tuning parameter that takes values inside the
interval (0, 1] and it allows one to satisfy a trade-off between
control effectiveness and chattering attenuation.

E. SMC Tuning

The tuning parameters of the sliding surface in (6) are
chosen using pole placement methodology, so the polynomial
Pq(s) in (18) is Hulwitz for each loop q ∈ {r, η, β}:

α1,q = 1.4wq, α0,q = w2
q

In this way, the closed loops achieve a second order time
response with overshoot less than 5%. The natural frequencies
are tuned such that wr = 10rd/s is higher than wη = 4rd/s
and wβ = 5rd/s. This is because the reel-in and reel-out of
the tether is controlled by the on-ground station motor-winch.
This actuator is very fast and accurate compared to the drone
that acts on the η-loop and β-loop.

IV. SIMULATION ENVIRONMENT

Using a realistic simulator that we have developed, the
performance of the proposed control strategy is evaluated.
Fig. 3 illustrates the different blocks of this simulator:

• Drone Block- In addition to the six degrees of freedom
dynamics, this model also accounts for communication
delays, inner control loops, battery model, aerodynamic
forces due to the drone’s body, and the four actua-
tors’ motors and propellers model. We implement the
ROS/PX4 architecture which is used in our Lab for
simulation purposes. More details are described in our
article [8].
To further study the robustness, we have included realis-
tic modeling errors. Specifically, we have considered
variations in battery voltage that result in an error
between the desired thrust force T d

D and the simulated
generated force T s

D, represented by T d
D − T s

D. This
error is depicted in Fig. 8 and is associated with the
uncertainties in Fp.

• On-ground Winch- The on-ground station motor-winch
subsystem is approximated as a fast first order dynamics:

u̇s,r =
1

τur

(ud,r − us,r) (20)

with us,r being the simulated on-ground motor torque.
In simulation testing, Ff = 0.4sgn(ṙ) is represented by
a classical static friction model.

• Magnus Wing- Simulations are conducted using this
block to investigate the robustness of the control strategy
against turbulent wind. The aerodynamic forces modeled
as in [11] reads:

Fa := Fa(va, wM , SM ) (21)

where:
• wM is the rotational speed of the Magnus motors,
• SM = 2lMRM is the projected surface area of the

Magnus cylinder,
• va = vw − vk is the apparent wind velocity vector.
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Fig. 3: Block diagram illustrating the simulation environment.

The proposed scenario considers a turbulent wind with
speed vector vw = [vw,x, vw,y, 0]

T , displayed in Fig. 4. At the
beginning, the wind is assumed to be directed in x−direction.
After 6 sec a change in the wind direction is introduced.

The derivation of the time evolution of the wind speed
model vw,x is developed in [12]. In the latest article, a
wind speed model based on mixtures of Markov chain and
stochastic differential equation has been proposed. The goal
of the model is to produce hourly averaged wind speed
sequences with statistical characteristics that are comparable
to the wind speed that has been recorded.

In this present study, we investigate our control approach
using a wind speed of class 2 wind turbulence and with an
hourly average that falls between (8, 9.4] m/s.

V. RESULTS AND DISCUSSIONS

In this section, we present some simulation results to
validate the performance of the (FF-SMC) control proposed
in section II in comparison with the (FL-PID) control in [8].
The Integral Absolute Error (IAE) is used as a metric of
comparison.

These control strategies can handle both the take-off and
landing of the drone-based AWE system. The considered
take-off/landing scenario is described in Table II, starting
from an initial condition ξi = [0.5m, 0°, 20°]T .

Fig. 5 presents the estimated F̂u together with the assumed
simulated values (assumed to be actual values) Fu generated
by the realistic simulator models. The high level of aero-
dynamic disturbances depicted in the figure is noteworthy,
especially considering the small prototype size. By comparing
the curves in this figure, it can be seen that the applied EFK
provides good estimation results in terms of accuracy and
rapidity of convergence.

TABLE II: Desired trajectory ξd,ξ̇d

Time [s] Operation Phase ṙd[m/s] η̇d[deg/s] β̇d[deg/s]
0 < t < 10 Take-off 0.07 2 2.5

10 ≤ t < 25 Hovering 0 0 0
25 ≤ t < 35 Landing -0.07 -2 -2.5
35 ≤ t < 40 End of scenario 0 0 0
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Fig. 4: Time evolution of the wind speed.
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Fig. 5: Simulated and Estimated disturbance forces.

The sliding surface values for each loop over time in
(6) are shown in Fig.6. The sliding surface values record
non zero values during the beginning of the take-off phase,
indicating a tracking error between the desired trajectory
and the actual motion of the system. This is because of the
significant disturbances during the begining of the operation
which could be visualized by the big estimation error ∆Fu

at the starting period in Fig.5. However, as the system adapts
and the control inputs are adjusted, the sliding surface value
gradually decreases and reaches a stable value around zero,
indicating successful tracking of the desired trajectory.

Table III shows the IAE values of each control strategy.
The lower values of IAE when controlling the system by
(FF-SMC) compared to that when implementing the (FF-
PID) emphasize that (FF-SMC) reaches better accuracy than
(FL-PID), especially in r and β dimensions.
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TABLE III: IAE metric values

IAE r η β
(FF-SMC) 8.03 26.73 25.62
(FL-PID 35.76 18.20 120.96

Moreover, to show clearly the performance and robustness
of the (FF-SMC) control strategy compared to that of (FL-
PID) control strategy, the time evolution of the tracking
errors ξs − ξd are plotted in Fig. 7. This figure shows that
the system controlled by (FF-SMC) is more stable and robust
in the transient state (fewer oscillations and less overshoots)
against wind turbulence. The choice to control the system
using a sliding mode approach is justified by its ability
to improve robustness. Additionally, despite the estimated
unknown forces not being exactly the same as the actual forces
(as shown in Fig. 5), incorporating this estimation into the
control strategy improves steady-state tracking performance.

It is evident that the (FF-SMC) control law allows for good
tracking despite model uncertainties and disturbances, but at
the cost of increased control activity, as demonstrated by the
time evolution of the drone’s thrust in Fig. 8.

VI. CONCLUSION AND PERSPECTIVE

In this research, a robust nonlinear controller was proposed
for the 3D trajectory following process applied to drone-
based airborne wind energy systems. The proposed controller
was based on the combination of the sliding mode control
and feed-forward technique. The suggested controller was
compared to our previously proposed feedback linearization
control law. We presented simulation results gathered using
realistic simulator in order to evaluate our trajectory following
control. Simulations are performed in presence of turbulent
wind, modelling errors and unmodeled dynamics. The results
confirm the expected performance and robustness increase
of the designed control strategy against the systematic
uncertainties and external disturbances compared to the
feedback linearization technique.
In future works, we plan to apply high-order sliding mode
controllers, such as the super twisting algorithm, to mitigate
the chattering phenomenon. In addition, a more detailed
robustness and stability analysis will be conducted. Moreover,
optimization-based control allocation techniques are being
studied in order to integrate the Magnus effect as an actuator,
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Fig. 7: Trajectory tracking errors of (FF-SMC) and (FL-PID).
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Fig. 8: Drone’s simulated and desired thrust. (a) system
controlled by (FF-SMC), (b) System controlled by (FL-PID).

instead of only considering it as a source of disturbances, as
is the case in this work.
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Tethered drone-based airborne wind energy system launching and
retrieving. Journal of Guidance, Control, and Dynamics, 44, 2021.

[7] L. Fagiano and S. Schnez. On the take-off of airborne wind energy
systems based on rigid wings. Renewable Energy, 107, 2017.

[8] Z. Azaki, J. Dumon, N. Meslem, A. Hably, and P. Susbielle. Modelling
and control of a tethered drone for an awe application. International
Conference on Control, Automation and Diagnosis (ICCAD), 2022.

[9] H. K.Khalil. Nonlinear Systems. 3rd Edition, Prentice Hall, Upper
Saddle River, 2002.

[10] N. Meslem, J. Dumon, A. Hably, A. El Ayachi, and A. Schanen. Online
estimation of unknown aerodynamic forces acting on awe systems.
Intelligent Systems with Applications, 16, 2022.

[11] Y. Gupta, J. Dumon, and A. Hably. Modeling and control of a magnus
effect-based airborne wind energy system in crosswind maneuvers.
20th IFAC World Congress, 50(1):13878–13885, 2017.

[12] J. Ma, M. Fouladirad, and A. Grall. Flexible wind speed generation
model: Markov chain with an embedded diffusion process. Energy,
164:316–328, 2018.


