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DEGENERATE HOMOCLINIC BIFURCATIONS IN COMPLEX

DIMENSION 2

ROMAIN DUJARDIN

Abstract. Unfolding homoclinic tangencies is the main source of bifurcations in 2-
dimensional (real or complex) dynamics. When studying this phenomenon, it is com-
mon to assume that tangencies are quadratic and unfold with positive speed. Adapting
to the complex setting an argument of Takens, we show that any 1-parameter family
of 2-dimensional holomorphic diffeomorphisms unfolding an arbitrary non-persistent
homoclinic tangency contains such quadratic tangencies. Combining this with recent
results of Avila-Lyubich-Zhang and former results in collaboration with Lyubich, this
yields the abundance of robust homoclinic tangencies in the bifurcation locus for com-
plex Hénon maps. We also study bifurcations induced by families with persistent
tangencies, which provide another approach to the complex Newhouse phenomenon.
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1. Introduction

Bifurcation theory is the study of the mechanisms creating instability in smooth dy-
namics. For surface diffeomorphisms, the most basic such mechanism is the unfolding of
a homoclinic tangency, and a long standing conjecture of Palis predicts that homoclinic
tangencies are the building block of all bifurcations. Recall that a homoclinic tangency
is a tangency between the stable manifold and the unstable manifold of a saddle periodic
point. We refer the reader to the classical monograph of Palis and Takens [28] for an
introduction to this topic.

When studying the unfolding of a homoclinic tangency, it is common to restrict to
a 1-parameter family (or more generally a finite dimensional parameter family) where
the unfolding is “as transverse as it can be”, namely that the tangency is quadratic and
detaches with positive speed. Without these assumptions, the analysis of the bifurcation
becomes much more delicate –the situation is somehow parallel to the difference between
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DEGENERATE HOMOCLINIC BIFURCATIONS IN COMPLEX DIMENSION 2 2

the quadratic family and a general multimodal family in one-dimensional dynamics. In
the smooth (Ck) category this restriction is essentially harmless since one can always
ensure these properties in a generic family –hence the usual terminology generic homo-
clinic tangencies. On the other hand, going to the analytic, or even algebraic, category,
where the parameter spaces are typically much smaller, the genericity of such tangencies
become an interesting problem. In [17], the prevalence of homoclinic tangencies in the
space of complex Hénon mappings of a given degree was studied by M. Lyubich and the
author, and the Palis conjecture was confirmed under mild dissipativity assumptions.
However, the question of the genericity of these tangencies was left open.

In a remarkable, but seemingly not so well-known, paper, Takens [35] proved that
in any family of real-analytic surface diffeomorphisms presenting an “inevitable tan-
gency” (that is, in which a tangency must happen for topological reasons), then under
a non-degeneracy assumption on the eigenvalues at the saddle point, generic tangencies
are dense in the tangency locus. Other relevant references include Robinson [29] and
Davis [13], where cascades of sinks are created from tangencies of arbitrary order for
real-analytic diffeomorphisms of surfaces (in [29]) and for C8- diffeomorphisms under a
C8 linearizability condition (in [13]). Many of the techniques developed in these papers
take advantage of plane topology and geometry, so non-trivial work needs to be carried
out to adapt them to the complex setting. Note that conversely, obtaining degener-
ate tangencies from non-degenerate ones is also interesting and leads to rich dynamical
phenomena (see e.g. [21, 22]).

˛

The first main result in this paper is a generalization of Takens’ theorem to holomor-
phic diffeomorphisms.

Theorem A.1. Let pfλqλPΛ be a holomorphic family of holomorphic diffeomorphisms
defined in some domain Ω Ă C2, parameterized by a complex manifold Λ. Assume that
in the neighborhood of some λ0 P Λ, fλ possesses a saddle fixed point pλ with a non
persistent homoclinic tangency at λ0. Assume furthermore that there is no persistent
relation of the form uaλs

b
λ “ 1, where sλ and uλ are the respective stable and unstable

multipliers of pλ and a and b are positive integers.
Then there exists λ1 arbitrary close to λ0 such that pλ1 has a quadratic homoclinic

tangency, unfolding with positive speed.

Note that the notion of “unfolding with positive speed” really makes sense only if
Λ is 1-dimensional (see §3 for a thorough discussion). For higher dimensional families,
this means that there is a 1-dimensional family though λ0 in which this property holds.
Hence the result is strongest when Λ is 1-dimensional, and we will prove it in this case.
We note that in the quadratic case, the “positive speed” assertion of the theorem was
independently established in [3].

To understand the subtlety of this result we have to recall how secondary tangencies
are produced from the unfolding of an initial homoclinic tangency. The mechanism is
of course very classical. Assume that pfλqλPΛ is a family of local diffeomorphisms of C2,
and p “ ppλq is a fixed saddle point such that for λ “ λ0, W sppλ0q is tangent to W uppλ0q
at τ . We can work in local coordinates px, yq where pλ “ p0, 0q W s

locppλq “ tx “ 0u
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and W u
locppλq “ ty “ 0u. Iterating τ if necessary, we may assume that it belongs to

W s
locppλ0q, so there is a branch ∆u

λ0
ĂW upλ0q tangent to tx “ 0u at τ . Assume that pλ0

belongs to some horseshoe (in the complex case this is automatic, see Proposition 3.2),
whose stable lamination accumulates tx “ 0u. When λ moves in parameter space, the
horseshoe persists and the branch ∆u

λ is pulled across the stable lamination, so new
tangencies are created (see Figure 1).

Figure 1. Creation of a secondary tangency

Now imagine a toy model for this situation where the stable manifolds of the horseshoe
are just vertical lines and ∆u

λ moves under a horizontal translation. In the holomorphic
case one can easily imagine that the speed of motion of ∆u

λ cannot vanish on a Cantor set
of parameters (of course the reality is more complicated because the Cantor set of vertical
lines moves with the parameter), so most tangencies should occur with positive speed.
On the other hand, on this toy model it is unclear why, if we start with a tangency of
high order, the order of the secondary tangencies would generically decrease. The point
of Takens’ proof is to understand how the stable lamination of the horseshoe differs from
a Cantor set of vertical lines, in order to lower the order of tangency. In this respect, a
key notion is that of dynamical slope (see §4.2). The argument also requires delicate Ck

estimates for these vertical graphs, for large k (see §4.1). The structure of the proof in
the complex case is roughly the same as that of [35], but the technical details differ in
many ways.

˛

As a consequence of Theorem A.1, all the phenomena associated to (one-dimensional)
unfoldings of generic homoclinic tangencies appear in Λ. In particular by the recent work
of Avila, Lyubich and Zhang [3], if pfλq is dissipative, Λ contains Newhouse domains
with robust homoclinic tangencies (1) and residually infinitely many sinks.

1We use the terminology “persistent homoclinic tangency” only for a persistent tangency between
the stable and unstable manifold of some periodic point, and the adjective “robust” for Newhouse-type
tangencies associated to hyperbolic sets.
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Another consequence is an extension and a strengthening of the “universality of the
Mandelbrot set” phenomenon [24]: applying the quadratic renormalization theory of [28],
it follows that in any one dimensional family Λ, baby Mandelbrot-looking sets (contrary
to [24], we do not have to deal with Multibrot sets) appear in parameter space near any
homoclinic tangency (2). An interpretation of Theorem A.1 from the point of view of
the analogy with one-dimensional dynamics is that active critical points of higher order
do not exist for 2D diffeomorphisms (at least, under a non-resonance assumption).

For polynomial automorphisms of C2 (i.e. generalized complex Hénon maps), we can
get rid of the non-resonance assumption, at the expense of potentially choosing another
periodic point.

Theorem A.2. Let pfλqλPΛ be a holomorphic family of dissipative polynomial auto-
morphisms of C2 of constant dynamical degree, parameterized by a complex manifold Λ.
Assume that fλ0 admits a non-persistent homoclinic tangency. Then there exists λ1 P Λ
arbitrary close to λ0 such that fλ1 has a quadratic homoclinic tangency, unfolding with
positive speed.

If Λ is an open subset of the space of all generalized Hénon maps of a given degree,
by Buzzard-Hruska-Illyashenko [11, Thm 1.4] there is no persistent resonance between
the multipliers of a given periodic point, so Theorem A.1 applies directly. In particular
no dissipativity assumption is required in this case. Let us also point out that a weaker
version of this result was recently established by Araujo and Moreira in [1, Appendix],
in which fλ0 is perturbed in an infinite dimensional space of entire mappings.

For families of polynomial diffeomorphisms of C2, it was shown in [17] that in the
moderately dissipative regime |Jacpfq| ă degpfq´2, homoclinic tangencies are dense in
the bifurcation locus. Theorem A.2 thus implies that these homoclinic tangencies can
be chosen to be quadratic with positive speed. Putting this together with the results of
Avila-Lyubich-Zhang [3] we obtain:

Corollary A.3. In any holomorphic family of moderately dissipative polynomial diffeo-
morphisms of C2 of a given degree, the bifurcation locus is the closure of its interior.

˛

The second main result of the paper is that for families of polynomial automorphisms
of C2, persistent homoclinic tangencies also induce bifurcations.

Theorem B.1. Let pfλqλPΛ be a substantial family of polynomial automorphisms of C2

of constant dynamical degree, parameterized by a connected complex manifold Λ. Assume
that there is a persistent homoclinic tangency associated to some saddle periodic point p

(with multipliers u and s) such that the function λ ÞÑ ln|uλ|
ln|sλ|

is non-constant. Then pfλq

is not weakly J›-stable.

We refer to the Appendix for the meaning of the word “substantial” and the notion of
weak J›-stability from [17], which is a weak form of structural stability on the Julia set.
Here we content ourselves with pointing out that any dissipative family is substantial by

2These are not actual copies of the Mandelbrot set, since by the aforementioned results of [3], the
bifurcation locus has non-empty interior.
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definition, and that in this case the failure of weak J›-stability means that some saddle
bifurcates to a sink.

Since this result applies to any open subset of Λ, in the dissipative regime it follows
from [17, Cor. 4.5] that Newhouse parameters, that is parameters displaying infinitely
many sinks, are dense in Λ. Thus we obtain an alternate approach to the existence of such
parameters which does not involve stable intersections of Cantor sets (see Yampolsky-
Yang [36] for yet another approach, also using [17]).

It is quite simple to find examples of families satisfying the assumptions of Theo-
rem B.1. For instance, it is classical that in the space of quadratic Hénon mappings with
parameters pa, cq P C› ˆ C, fa,cpz, wq “ paw ` z2 ` c, azq, any (degenerate) parameter
of the form p0, cq where c is strictly post-critically finite can be continued (in infinitely
many ways) as a 1-parameter family of Hénon maps with a persistent tangency. It fol-
lows that t0u ˆ BM (where M is the Mandelbrot set) lies in the closure of the set of
Newhouse parameters. In this case the assumption on the multipliers is easy to check
because the Jacobian tends to zero along the parameter curve, so sλ Ñ 0 while uλ is
bounded away from 0 and infinity.

It is worth mentioning that two such curves, landing at p0,´2q, were studied in detail
by Bedford and Smillie in [5, 6], in the real setting. Along these families, the Julia set
J› is contained in R2, and no sink nor additional tangency is created as the Jacobian
varies. This shows that Theorem B.1 is really about complex parameters.

To get further and prove the abundance of Newhouse parameters in the bifurcation
locus, we have to check that the assumption on the multipliers is generically satisfied,
up to a change of periodic point. This is similar in spirit to Theorem A.2, but also more
delicate, and requires to work in the space of all polynomial automorphisms of a given
degree.

Theorem B.2. Let Λ be an irreducible component of the space of generalized Hénon
mappings of degree d ě 2, and λ0 P Λ a parameter displaying a homoclinic tangency.
Then in any neighborhood of λ0 there is a hypersurface Λ1 Ă Λ satisfying the assumptions
of Theorem B.1. In particular if |Jac fλ0 | ď 1, then λ0 belongs to the closure of the set
of Newhouse parameters.

To prove this, we have to rule out the unlikely phenomenon that as soon as a tangency
is created near λ0, then along the corresponding hypersurface where this new tangency
persists, the non-resonance condition of Theorem B.1 fails. Even if such a coincidence
is hardly plausible, excluding it requires some non-trivial arguments. In particular we
make heavy use the genericity results of [11].

Together with [17], Theorem B.2 gives an alternate argument for the following weak
version of Corollary A.3.

Corollary B.3. In the family of all moderately dissipative polynomial diffeomorphisms
of C2 of a given degree, the bifurcation locus is contained in the closure of the set of
Newhouse parameters.

This result is much weaker than Corollary A.3 because, instead of open sets where
Newhouse parameters are residual, it only provides codimension 1 laminations. On the
other hand, the proof is simpler since it does not resort to the results of [3]. Note that it
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is expected that, conversely, Newhouse parameters belong to the bifurcation locus, but
no proof is known so far.

It is natural to wonder whether Theorem B.1 admits a local version as in Theorem A.1.
The statement would be: in any family of diffeomorphisms of Ω Ă C2 with a persistent

homoclinic tangency, and such that ln|uλ|
ln|sλ|

is non-constant, there is also a non-persistent

tangency. There is a simple mechanism for this in the real setting, which goes back to
the work of Gavrilov and Shil’nikov [20].

To prove Theorem B.1, we take a different path and use the notion of moduli of
stability, introduced by Palis [27] and further developed e.g. by Newhouse, Palis and
Takens [26] and also by Buzzard [10] for diffeomorphisms of C2. In all these references,
the authors start with a topological conjugacy between two diffeomorphisms in a neigh-
borhood of an orbit of tangency to deduce a differentiable rigidity of the multipliers
([27] further relies on plane topology considerations). We show that this notion can be
adapted to the context of the weak J›-stability theory of [17], which does not yield topo-
logical conjugacies. As observed above, the results of [5, 6] show that it is essential here
to work in the complex setting. A key idea is that the holomorphic motion of saddle pe-
riodic points admits a natural extension to stable and unstable manifolds, which satisfy
good distortion properties. This provides a reasonably simple proof of Theorem B.1,
which takes advantage of the global geometric structure of complex Hénon mappings
and showcases the techniques of [17].

Note that it is actually also possible to adapt the Gavrilov-Shil’nikov mechanism to
the complex setting, at least for quadratic tangencies. The details (which are a bit
technical) will appear elsewhere.

Remark 1.1. Theorems B.1 and B.2 bear some similarity with recent work of Gauthier,
Taflin and Vigny [19], where “higher bifurcations” are studied in spaces of regular en-
domorphisms of PkpCq (see also [2], as well as [16] for a brief account on this topic).
These theorems can actually be interpreted from the perspective of higher bifurcations
(at least in the moderately dissipative regime): indeed the bifurcation locus has some
codimension 1 structure given by the hypersurfaces of persistent homoclinic tangencies,
and inside these hypersurfaces Theorem B.1 can recursively be used to construct new
tangencies. One might expect that the analogue of Theorem B.2 holds recursively, so
that if Λ is a component of the space of polynomial automorphisms of given degree,
then on a dense subset of the bifurcation locus there should be dimpΛq “independent”
tangencies.

Outline. We start in Section 2 with some geometric preliminaries on submanifolds of
the bidisk. In Section 3, we apply basic ideas from local complex geometry to define
and give a neat treatment of the notions of order, speed exponent and multiplicity of a
non-persistent tangency. Theorems A.1 and A.2 are proven in Section 4. As explained
above, the most delicate point is to produce quadratic tangencies, which requires Ck

graph transform estimates (§4.1) and to develop a notion of dynamical slope (§4.2).
In Section 5 we study persistent tangencies and prove Theorems B.1 and B.2. In the
Appendix we briefly review the notion of weak stability from [17].

Notation and conventions. The unit disk in C is denoted by D and we let B “ DˆD.
The letter C stands for a “constant” which may change from line to line, independently
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of some asymptotic quantity that should be clear from the context. We make heavy use
of the following notation: we write a À b if |a| ď C |b|, a — b if a À b À a, and a – b
if a „ cb for some c P C›. We denote by }¨}Ω the uniform norm in a domain Ω. The
eigenvalues at a saddle periodic point will be generally denoted by u and s (or uλ and
sλ in the presence of a parameter), where it is understood that |u| ą 1 and |s| ă 1.

Acknowledgments. Thanks to Artur Avila, Misha Lyubich and Zhiyuan Zhang for
their work on the complex Newhouse phenomenon which prompted me to finally tackle
this project, to Sébastien Biebler for many discussions on this topic, and to Marc Chap-
eron for his help with Sternberg’s theory.

2. Preliminary geometric lemmas

2.1. Transversality lemma. The following basic lemma is very useful.

Lemma 2.1 (see [4, Lem. 6.4]). Let ∆ and ∆1 be two holomorphic disks with an iso-
lated tangency of order h at p. Then if ∆2 is a holomorphic disk disjoint from ∆ and
sufficiently C1 close to it, it intersects ∆1 transversally in h` 1 points close to p.

Observe that this result does not hold in higher dimension, due to the possibility of
non-proper intersections: this is precisely the reason why Theorem A.1 is non-trivial (cf.
the formalism of §3.2). An explicit example where the higher dimensional version of
this lemma fails is obtained by lifting the basic toy model from the Introduction to the
projectivized tangent bundle.

2.2. Horizontal and vertical varieties in B. Recall that B is the unit bidisk. We
let BhB “ D ˆ BD (resp. BvB “ BD ˆ D) be its horizontal (resp. vertical) boundary. A
subvariety V in some neighborhood of B is horizontal (resp. vertical) in B if V XBhB “ H
(resp. V X BvB “ H). A horizontal (resp. vertical) subvariety is a branched cover over
the unit disk for the first (resp. second) projection so it has a degree, which is the degree
of this cover. If V1 (resp. V2 is a horizontal (resp. vertical) variety of degree d1 (resp.
d2), then V1 and V2 intersect in d1d2 points, counting multiplicity (see e.g. [14] for more
details on these notions).

Lemma 2.2. Let ∆ be a horizontal submanifold in B of degree d which is a union of
holomorphic disks, and pWiqiPI an arbitrary collection of disjoint vertical disks. Then
the total number of tangencies between ∆ and the Wi, counting multiplicities, is bounded
by d´ 1

Proof. The union of the Wi and BvB “
Ť

ζPBD tζuˆD is a lamination by vertical graphs.
By Lemma 2.1, by slightly perturbing the radius of the bidisk, we may assume that ∆
is transverse to BvB. If we fix a horizontal slice, for instance L :“ D ˆ t0u, which we
identify to D, this lamination can be viewed as a holomorphic motion of BDYp

Ť

WiXLq,
which can be extended to a motion of D by Slodkowski’s theorem [31]. Note that since
the motion is the identity on BD, it must preserve D. The corresponding lamination of
B by vertical graphs fills up the whole bidisk.

Let π : BÑ D be the projection along this lamination. Since ∆ intersects any vertical
graph in d points, π|∆ : ∆ Ñ D is a branched cover of degree d. If we can show that
this branched cover satisfies the Riemann-Hurwitz formula, then the total number of



DEGENERATE HOMOCLINIC BIFURCATIONS IN COMPLEX DIMENSION 2 8

tangencies, counting multiplicity, is at most pd ´ 1q, and the lemma follows. To prove
this fact, we first note that by Lemma 2.1, only finitely many Wi are tangent to ∆.
They correspond to the critical points of π|∆. Then we argue as in the usual proof of the
Riemann-Hurwitz formula, by pulling back a triangulation of the base whose vertex set
contains the critical values, and computing the Euler characteristic of the pulled-back
triangulation (which is equal to the number of components of ∆). The only delicate
point is to show that at the critical points, π behaves topologically like a holomorphic
map: this follows from the fact that near such a point, π is of the form u ˝ k, where u is
a holomorphic map and k is a quasiconformal homemorphism (see [15, p. 590]). �

Lemma 2.3. Let ∆ be a horizontal submanifold in B of degree d which is a union of
holomorphic disks. Assume that there is a vertical graph W in B which is tangent to
order d´ 1 to ∆. Then ∆ has d vertical tangencies in B

Proof. Fix R ă 1 such that W is vertical in RD ˆ D. Since the number of vertical
tangencies of ∆ is finite, there exists R ď R1 ď 1 such that ∆ is transverse to BpR1DqˆD.
Without loss of generality we replace D by R1D. Each component of ∆ is a horizontal
submanifold intersecting W . Since W X ∆ admits d points counting multiplicities, we
infer that W X∆ is reduced to the tangency point, of multiplicity d. Hence ∆ is made of
a single component, and the result follows from the Riemann-Hurwitz formula applied
to the first projection. �

2.3. Tangency creation lemma.

Lemma 2.4 (see [17, Prop. 8.1]). Let p∆λqλPΛ be a holomorphic family of horizontal
submanifolds of degree d in B, with Λ » D. Assume that for λ close to BΛ, ∆λ is a
union of horizontal graphs, and that this property does not hold for some λ0 P Λ.

Let pWλqλPΛ be a holomorphic family of vertical graphs in B. Then there exists a
non-empty finite set of parameters such that ∆λ and Wλ are tangent.

The finiteness of the set of tangency parameters was not stated in [17, Prop. 8.1]
but it is explicitly mentioned in its proof (see also [34] for a counting of the number of
tangency parameters).

3. Complex geometry of homoclinic tangencies

3.1. Conventions. Let Ω Ă C2 be an open set and f : Ω Ñ fpΩq Ă C2 be a diffeo-

morphism with a saddle fixed point p, with local stable and unstable manifolds W
s{u
loc ppq

(we use the notation W s
locppq for the component of W sppq X Ω containing p). In such a

semi-local setting, the global stable manifold W sppq is the set of points x P Ω such that
fnpxq belongs to Ω for every n ě 0 and eventually falls into W s

locppq, and likewise for
W uppq.

Assume that there is a tangency between W sppq and W uppq at τ . We will generally
use the following normalization: upon iteration one may assume that τ P W s

locppq; we
pick local coordinates px, yq P B such that p “ 0, fpx, yq “ pux, syq`h.o.t. and W s

locppq “
tx “ 0u, so that τ “ p0, y0q. The branch of W uppq tangent to W s

locppq at τ , denoted ∆u, is
locally of the form x “ ϕpyq, where ϕ a holomorphic function defined in a neighborhood
of y0, with ϕpy0q “ ϕ1py0q “ 0 (see Figure 1). We say that the tangency is of order h
if the order of contact –which must be finite– equals h ` 1, that is ϕpyq – py ´ y0q

h`1
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as y Ñ y0 (recall that this means ϕpyq „ cpy ´ y0q
h`1 for some c ‰ 0). So a quadratic

tangency is a tangency of order 1.
Now let f depend holomorphically on a parameter λ P Λ, so that all the above defined

objects depend holomorphically on λ, and are denoted by fλ, W
s{u
λ , etc. The parameter

space Λ is typically the unit disk, but for clarity we keep the notation Λ. The tangency
parameter is denoted by λ0, and without loss of generality we assume λ0 “ 0. Our study
is local near λ0, so we may reduce Λ without further notice. Again we choose local
coordinates px, yq such that pλ “ p0, 0q and W s

locppλq “ tx “ 0u.
The tangency is non-persistent if for λ ‰ λ0 close to λ0, ∆u

λ is not tangent to W s
λppλq,

hence in a holomorphic setting it must intersect it transversally. It is not so easy in
the smooth category to define a formal notion of “speed of motion” for the tangency:
first, when λ ‰ λ0, there is no homoclinic tangency to work with. A common idea is
to consider vertical tangencies of ∆u

λ as a kind of “virtual” tangency, and look at the

speed of motion of these tangencies (3). Next, in the complex setting, when h ą 1
the tangency usually splits into h vertical tangencies, which may or may not be followed
holomorphically. The good news is that there is still a unequivocal notion of a generically
unfolding or “positive speed” tangency, as we explain in §3.3 below.

Note that for persistent tangencies, it may be the case that for λ “ λ0 the tangency
is of order h, while for λ ‰ λ0 it splits off into a persistent tangency of order h1 ă h
together with h´ h1 vertical tangencies.

3.2. Lifting to the projectivized tangent bundle. The following viewpoint was de-
veloped in [17, §9.1]. Consider a family of two holomorphically varying smooth complex
submanifolds pVλqλPΛ and pWλqλPΛ in B, with Λ “ D. For every λ, we denote by PTVλ
(resp. PTWλ) the lift of Vλ (resp. Wλ) to the projectivized tangent bundle PTB » BˆP1.

Finally, we define a 2-dimensional subvariety zPTV of Λ ˆ B ˆ P1 by putting together

the PTVλ, that is zPTV X tλu ˆ Bˆ P1 “ PTVλ, and likewise for {PTW A non-persistent

tangency between V0 and W0 then corresponds to an isolated intersection of zPTV and
{PTW . Let us denote by p0 the corresponding intersection point Since in this case

codim
p0

´

zPTV X{PTW
¯

“ codim
p0

´

zPTV
¯

` codim
p0

´

{PTW
¯

,

this intersection is proper so it has nice properties, in particular the intersection multi-

plicity mult
p0

´

zPTV ,{PTW
¯

is well-defined (see [12, §12]). By definition this number is

the multiplicity of the tangency.

Lemma 3.1. With notation as in §3.1, {PTW s and {PT∆u are smooth, and

(1) mult
p0

´

{PTW s, {PT∆u
¯

ě h,

where h is the order of tangency.

Proof. The multiplicity in (1) can be computed by intersecting two curves, as follows. Re-
call that we fixed local coordinates such that W s

locppλq “ tx “ 0u, and ∆u
λ “ tx “ ϕλpyqu.

Write y “ y0 ` t and ϕy0pλ, tq :“ ϕpλ, y0 ` tq so that near the point of tangency, ∆u
λ

3Then, an additional argument would be required to show that this notion is intrinsic, in a given
regularity class for the family pfλq.
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is parameterized by pt, ϕy0pλ, tqq, whose tangent vector is p1, 9ϕy0pλ, tqq, where the dot
denotes derivation with respect to the t-variable. In PTC2 » P1, denote by w the coor-
dinate in the affine chart containing r1, 0s. Thus we have local coordinates pλ, t, x, wq in
Λˆ Bˆ P1, in which we have the equations

#

x “ ϕy0pλ, tq

w “ 9ϕy0pλ, tq
for {PT∆u and

#

x “ 0

w “ 0
for {PTW s,

and it follows that both varieties are smooth and mult0̂

´

{PTW s, {PT∆u
¯

is equal to the

intersection multiplicity of the curves C :“ tϕy0pλ, tq “ 0u and 9C :“ t 9ϕy0pλ, tq “ 0u,
which admit an isolated intersection at p0, 0q. This is clear if we think of the multiplicity

as the number of intersections of generic local translations of {PT∆u and {PTW s (see [12,
§12]). Recall that the classical definition of multiplicity of the intersection of two curves

is mult0pC, 9Cq “ dimOpC2, 0q{xϕy0 , 9ϕy0y. In the situation at hand we have

(2)

#

ϕy0pλ, tq “ cth`1 `Opth`2q `O pλq

9ϕy0pλ, tq “ chth `Opth`1q `O pλq

hence OpC2, 0q{xϕy0 , 9ϕy0y contains all monomials 1, t, . . . , th´1 and its dimension is at
least h. �

3.3. Speed of motion. We now explain how the multiplicity defined above takes into
account both the order and the speed of motion of the tangency. Recall from the
proof of Lemma 3.1 that the multiplicity of tangency equals mult0pC, 9Cq, where C “
tϕy0pλ, tq “ 0u and 9C “ t 9ϕy0pλ, tq “ 0u.

For simplicity , let us first assume that 9C is irreducible at p0, 0q. For a fixed small λ ‰ 0,
the equation 9ϕy0pλ, tq “ 0 admits h solutions (that is, there are h vertical tangencies)

so 9C can be parameterized by a Puiseux series in t1{h. In usual complex geometric
language, there is a coordinate µ on the normalization of 9C such that the expression of
the composition of the normalization map and the first projection pλ, tq ÞÑ λ is µ ÞÑ µh,

hence 9C admits a local (injective) parameterization of the form µ ÞÑ pµh, θpµqq, for some
holomorphic function θ with θp0q “ 0. Writing

(3) ϕy0pλ, tq “ cth`1 `Opth`2q ` λψpλ, tq

and substituting, we infer that

(4) ϕy0pµ
h, θpµqq “ cθpµqh`1 `Opθpµqh`2q ` µhψpµh, θpµqq,

and the multiplicity m of tangency is the order of vanishing of this expression at µ “ 0
(since the tangency is non-persistent, µ ÞÑ ϕy0pµ

h, θpµqq has an isolated zero at the
origin). This yields another proof that m ě h, with equality if and only if ψp0, 0q ‰ 0,
that is,

(5) ϕy0pλ, tq “ cth`1 ` dλ` h.o.t., with d “ ψp0, 0q.

In the language of Puiseux series, this reads

(6) ϕy0pλ, θpλ
1{hqq “ cθpλ1{hqh`1 `Opθpλ1{hqh`2q ` λψpλ, θpλ1{hqq.
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The speed of motion σ of the vertical tangencies is characterized by the exponent of
λ in ϕy0pλ, θpλ

1{hqq, that is, ϕy0pλ, θpλ
1{hqq – λσ, where σ “ m{h ě 1 (which is typ-

ically not an integer), and we see that non-vanishing speed of motion at λ “ 0 (i.e.
non-degenerate unfolding) corresponds to m “ h, as expected from (5). Note that for

quadratic tangencies (h “ 1), this simply means that {PTW s and {PT∆u are transverse

at p0.
Beware, however, that non-vanishing speed of motion (i.e. σ “ 1) does not imply

that the vertical tangencies can be followed holomorphically, as shown for instance by
the example ϕy0pλ, tq “ th`1 ` λp1 ` tq, for which the abscissae of vertical tangencies

are given by λ` cλ1`1{h for some explicit c.
In the general case where 9C is reducible, write 9ϕy0pλ, tq –

śq
j“1 ξjpλ, tq (up to some

invertible element of OpC2, 0q), where ξjp0, tq “ thj ` h.o.t., and
ř

j hj “ h. Each

branch 9Cj is injectively parameterized by µ ÞÑ pµhj , θjpµqq, θjp0q “ 0, and substituting
this expression in ϕy0 as in (4) gives

(7) ϕy0pµ
hj , θjpµqq “ cθjpµq

h`1 `Opθjpµq
h`2q ` µhjψpµhj , θjpµqq.

This shows that mj ě hj , where mj “ mult0pC, 9Cjq, with equality if and only if ψp0, 0q ‰
0 (this condition does not depend on j), and σj :“ mj{hj is the speed exponent of the

block of hj tangencies corresponding to 9Cj . By the additivity of multiplicity, we conclude
that m “

řq
j“1 hjσj . Combining this relation with

ř

j hj “ h, shows that m “ h if and
only if σj “ 1 for every j, so again the equality m “ h characterizes a non-degenerate
unfolding.

3.4. Secondary intersections. The following result is specific to complex diffeomor-
phisms. Note that for polynomial automorphisms of C2 it also follows from global
arguments (see [4, §9]).

Proposition 3.2. If f : Ω Ñ C2 is a diffeomorphism with a homoclinic tangency
associated to p, then there are also transverse homoclinic intersections between W sppq
and W uppq.

To get an intuition of what is going on, let us explain the argument (which is classical)
in the oversimplified case where the dynamics in linearizable at p. In this case we can
simply write fpx, yq “ pux, syq. With notation as in §3.1 we have a branch ∆u of
W uppq tangent to W s

locppq at p0, y0q, with equation x “ ϕpyq – py ´ y0q
h`1. Pulling

back this pair of curves by for some iterate fk, we get a branch ∆s Ă W sppq tangent
to W u

locppq at px0, 0q, with equation y “ ψpxq – px ´ x0q
h`1. If px, yq P ∆u with

|x| ! 1, then a tangent vector to ∆u at px, yq is v — pxh{ph`1q, 1q, whose slope is

— x´h{ph`1q. Likewise, if px, yq P ∆s with |y| ! 1, then the slope of ∆s at px, yq is

— yh{ph`1q. Now let us assume for the moment that some version of the argument
principle guarantees that fnp∆uq intersects ∆s for large n, so there exists px0, y0q P ∆u

such that pxn, ynq “ pu
nx0, s

ny0q P ∆s. Then with notation as above, v — pu´nh{ph`1q, 1q

so its image under dfn is — punu´nh{ph`1q, snq whose slope is snu´nh{ph`1q. On the other

hand the slope of T∆s at pxn, ynq is — snh{ph`1q " snu´nh{ph`1q so fn∆u is transverse
to ∆s. Making this argument rigorous in the non-linearizable case is quite technical,
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and it is remarkable that in the complex setting all these estimates can be replaced by
geometric analysis considerations.

Proof. We keep notation as above, and use the formalism of horizontal/vertical objects
and crossed mappings from [23] (or Hénon-like mappings of degree 1 in the language of
[14]). Consider a thin vertical bidisk around W sppq of the form Dp0, δq ˆ D. Then for
small enough δ, ∆u is a horizontal disk of degree h`1 in Dp0, δqˆD. Likewise, reducing δ
if necessary, ∆s is a vertical disk of degree h`1 in DˆDp0, δq. By the Inclination lemma,
for large n, fn defines a crossed mapping of degree 1 from Dp0, δq ˆ D to D ˆDp0, δq.
Therefore the graph transform Ln∆u of ∆u (that is, its image under the crossed mapping)
is a horizontal disk of degree h` 1 in DˆDp0, δq, so it intersects ∆s in ph` 1q2 points,
counting multiplicities. We claim that for large n all these intersections are transverse.
Indeed when δ is small enough, ∆s X pD ˆ Dp0, δqq is contained in Dpx0, rq ˆ Dp0, δq,
where r ă |x0| {2. Now, since Ln∆u admits a tangency of order h with W s

locppq and since
by the maximum principle it is a topological disk, by the Riemann-Hurwitz formula it
admits no other vertical tangency (see also Lemma 2.2). So Ln∆uXpDpx0, rqˆDp0, δqq
is the union of h`1 horizontal graphs disjoint from Dpx0, rqˆt0u, and close to it. Then
by Lemma 2.1 these graphs must be transverse to ∆s, and we are done. �

Remark 3.3. Since there are homoclinic intersections, W uppq must accumulate itself.
In particular there are disks contained in W uppq arbitrary C1 close to ∆u. Applying
Lemma 2.1 again then produces transverse intersections between these disks and W s

locppq,
such that the angle between the tangent spaces at the intersection is arbitrary small.
This observation will be crucial later.

3.5. Comments on higher dimensional families. Still working under the conven-
tions of §3.1, assume in this paragraph only that k :“ dimpΛq ą 1. Let T Ă Λ be the
locus of tangency between W s

λ and ∆u
λ. Our purpose is to study the basic properties of

T .
Arguing exactly as in Lemma 3.1, we see that {PTW s and {PT∆u are smooth and of

codimension 2 in ΛˆBˆP1, so [12, §3.5] dimp{PTW sX{PT∆uq ě 2pk`1q´pk`3q “ k´1.
It is clear that the natural projection πΛ : ΛˆBˆP1 Ñ Λ is finite and locally proper in

restriction to {PTW s X {PT∆u, so it preserves dimensions [12, §3.3] and T is an analytic
subset of dimension at least k ´ 1. Since the tangency is not persistent, dimpT q ă k,
and we conclude that dimpT q “ k ´ 1, that is, T is an analytic hypersurface.

Slightly abusing terminology, we say that the homoclinic tangency has positive speed if
there exists a smooth 1-dimensional subfamily Λ1 Q λ0 along which this property holds.

Then, in the 4-dimensional subspace Λ1ˆBˆP1, the intersection {PTW sX{PT∆u (which
is reduced to a point) is transverse. Counting dimensions in the tangent space, it is easy
to see that it implies the corresponding transversality in ΛˆBˆP1. And since the fibers

of the projections πΛ and πΛ1 coincide, we also deduce that in ΛˆBˆP1, {PTW sX{PT∆u

is transverse to π´1
Λ ptλ0uq. This implies that if the unfolding has positive speed, T is

smooth at λ0.

4. Unfolding degenerate tangencies

4.1. Linearization and graph transform estimates. As in [35, §3], a key technical
fact in the argument of Theorem A.1 is that in the graph transform, higher derivatives
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converge faster and faster to zero. This is obvious for the linear map fpx, yq “ pux, syq:
indeed the forward iterate of the graph y “ γpxq is y “ Lnγpxq, with Lnγ : x ÞÑ

snγpx{unq so }pLnγqp`q} “ Oppsu´`qnq. It is unclear to us whether such an estimate
holds in general, and to achieve this, as in [35] we use C` linearization, which imposes
some conditions on the multipliers u and s. Even if this belongs to real dynamics, we
want to salvage as much complex geometry as possible –in particular we need to be
able to talk about the complex multipliers u and s, and not only their moduli, which
is important in the parameter exclusion in §4.3– so the presentation is different from
that of Takens (and since this matter is quite delicate we actually give more details). In
particular we will not switch between different coordinate systems in the proof of the
main theorem, and always stay in holomorphic coordinates, which in our opinion makes
the argument neater.

An important remark is that to achieve }pLnγqpjq} “ Oppsu´jqnq for all j ď ` it is not
enough to merely know the existence of a system of C` linearizing coordinates: we also
need this coordinate system to be flat up to a high orderK “ Kp`q along the separatrices,

to prevent lower derivatives of the chart to spoil the estimate }pLnγqpjq} “ Oppsu´jqnq.
Finally, we need some uniformity of these estimates with respect to parameters.

4.1.1. Normal form. The first stage is to put f in an appropriate normal form, under a
non-resonance condition. Denote by M the maximal ideal of the local ring of germs of
holomorphic functions in pC2, 0q, that is, the ideal of functions vanishing at the origin.
Recall that if fpx, yq “ pux, syq ` h.o.t., a resonance of order k is a relation of the
form u “ uasb or s “ uasb, where a and b are positive integers with a ` b “ k. When
|s| ă 1 ă |u|, this can be rewritten as uasb “ 1, with a ` b “ k ´ 1. It is well-known
that resonances are obstructions to holomorphic (and even formal) linearization. More
precisely, a resonance of the form u “ uasb (resp. s “ uasb) prevents from killing the
term xayb in the first (resp. second) component of f . Conversely, if f has no resonance
up to order k, a holomorphic (actually polynomial) change of coordinates brings f to
the form

(8) fpx, yq “ pux` g1px, yq, sy ` g2px, yqq, with g1, g2 PM
k`1.

The following more precise normal form is presumably known to some experts. We
include the proof for completeness.

Proposition 4.1. Let f P DiffpC2, 0q with a saddle fixed point at the origin, with eigen-
values u and s. If there is no resonance up to order k ` 1, f can be brought to the
form

(‹k) fpx, yq “ puxp1` yg1px, yqq, syp1` xg2px, yqqq, with g1, g2 PM
k.

by a holomorphic change of coordinates.

Proof. We review the proof of the existence of the local stable and unstable manifolds, by
checking that the corresponding change of coordinates are sufficiently tangent to identity
at the origin. Let us first deal with the local unstable manifold. We follow Sternberg [32,
Thms 7 to 9, §9]. To stick with the notation of [32, p. 823], we put T “ f´1. Thanks
to the non-resonance assumption, we can assume that

(9) T px, yq “ pu´1x` g̃1px, yq, s
´1y ` g̃2px, yqq, with g̃1, g̃2 PM

k`2.
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We first look for a change of coordinates R : px, yq ÞÑ px, y ´ φpxqq with φ1p0q “ 0 such
that RTR´1px, 0q “ p˚, 0q, so that the axis ty “ 0u is invariant, hence it is the local
stable manifold of T (unstable manifold of f). The existence (and uniqueness) of such
a φ is guaranteed by the Stable Manifold Theorem. Here we only need to check that
φpxq “ Opxk`2q. With T as in (9), the relation RTR´1px, 0q “ p˚, 0q is equivalent to

(10) s´1φpxq ` g̃2px, φpxqq “ φpu´1x` g̃1px, φpxqqq.

In other words, φ is a fixed point of the operator D defined by

(11) Dφ : x ÞÝÑ s
`

φpu´1x` g̃1px, φpxqqq ´ g̃2px, φpxqq
˘

.

This is a contracting operator in a suitable Banach space of holomorphic functions on
rD for small r, and since g1, g2 P Mk`2, it preserves the closed subspace of functions
vanishing to order k ` 2, and the fixed point belongs to this subspace, as desired.

Then we do the same with the stable direction, by a change of coordinate of the form
px, yq ÞÑ px ´ ψpyq, yq, therefore we have shown that there is a change of coordinate
tangent to the identity to the order k`1 such that the stable and unstable manifold are
the coordinate axes. In these new coordinates, f is of the form
(12)

fpx, yq “ pf1px, yq, f2px, yqq “ puxp1` h1px, yqq, syp1` h2px, yqq, with h1, h2 PM
k`1.

To reach the desired form p‹kq we linearize f inside W
s{u
loc p0q. More precisely, we

consider the one-dimensional map h : x ÞÑ f1px, 0q “ uxp1 ` h1px, 0qq “ ux ` Opxk`2q.
By Koenigs’ theorem it is locally conjugate to x ÞÑ ux by some local diffeomorphism φ.
Moreover, examining the proof (see e.g. [25]) reveals that φpxq “ x`Opxk`2q. So if we
conjugate f by px, yq ÞÑ pφpxq, yq, in the new coordinates we get

(13) fpx, yq “ puxp1` h̃1px, yqq, syp1` h̃2px, yqq, with h̃1, h̃2 PM
k`1,

and furthermore h̃1px, 0q “ 0, hence h̃1px, yq “ yĥ1px, yq, with ĥ1px, yq P Mk. Repeat-
ing this operation in the stable direction (which does not affect the form of the first
coordinate of f) concludes the proof. �

4.1.2. Let f be a diffeomorphism defined in 2B, with a saddle fixed point at the origin,
which is of the form p‹kq of Proposition 4.1. Fix a constant ρ ą 0 such that

(14) 1` ρ ď |u| ď 1` ρ´1 and 1` ρ ď |s|´1
ď 1` ρ´1

If }g1}2B and }g2}2B in p‹kq are small enough, then by the Cauchy estimates, the graph
transform L acting on horizontal graphs in B is well defined. We leave it as an exercise
to the reader to check that the condition

(15) maxp}g1}2B , }g1}2Bq ď
ρ

10

is sufficient. Note that if f is of the form p‹kq in some small neighborhood of 0, then by
scaling the coordinates we can assume that it is defined in 2B and achieve any desired
bound on maxp}g1}2B , }g1}2Bq.

Proposition 4.2. For every integer ` ě 2, there exists k “ kp`, ρq such that if f is a
diffeomorphism defined in 2B of the form p‹kq satisfying (14) and (15), then there exists

a constant C “ Cp`, ρ, }g1}2B , }g1}2Bq such that for every j ď `,
›

›pLnγqpjq
›

›

D ď C
ˇ

ˇsu´j
ˇ

ˇ

n
.
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Proof. The proof proceeds by constructing a Cr-diffeomorphism linearizing f , which is
tangent to the identity up to order r along the axes, for a sufficiently large r. In a first
stage we estimate the required value of r, and then we follow Sternberg [33] to show that
if k is large enough, such a linearization exists.

Step 1. Estimation of the order of differentiability r.
Here we show that there exists r “ rp`, ρq such that if there exists a Cr-diffeomorphism

R whose image contains a neighborhood of D ˆ t0u, linearizing f , i.e. R ˝ L “ f ˝ R
with Lpx, yq “ pux, syq (for convenience the notation here is as in [33], except that f is
denoted by T there), and which is tangent to the identity up to order r along ty “ 0u,

then
›

›pLnγqpjq
›

›

D ď C
ˇ

ˇsu´j
ˇ

ˇ

n
for every j ď `.

Write R “ pR1, R2q and denote by π1, π2 the coordinate projections, so that R1 ´ π1

and R2´π2 have vanishing first r derivatives along ty “ 0u. Start with R´1pty “ γpxquq
which is of the form y “ ψpxq and iterate L to get a sequence of graphs y “ ψnpxq “
snψpxu´nq, whose image under R is ty “ γnpxqu, where γn “ Lnγ. Unwinding the def-
initions gives R2px, ψnpxqq “ γnpR1px, ψnpxqqq, and we have to estimate the derivatives
of γn. A caveat is in order here: x is a complex variable and γn is holomorphic, but R
is not, so formally we have to write x “ x1 ` ix2 and deal with the partial derivatives
Bi1x1B

i2
x2 . For notational ease, we not dwell on this point and do as if everything was

holomorphic (this does not change the structure of the estimates).
Write rγn “ γnpR1px, ψnpxqqq and let us estimate the derivatives of rγn ´ ψn. The

jth-derivative of rγnpxq ´ ψn “ pR2 ´ π2qpx, ψnpxqq is a sum of terms involving the
partial derivatives of R2 ´ π2 multiplied by polynomial expressions in the derivatives
of ψn (which can be computed exactly using the Faa Di Bruno formula). Analyzing

this expression and using BjpR2 ´ π2qpx, yq “ Opyr´jq and ψ
pjq
n “ Oppsu´jqnq, it is not

difficult to convince oneself that the dominant term is the one obtained by differentiating
with respect to the first variable (i.e. the first two real variables) of pR2´π2q, that is, the
only term which comes with no additional multiplicative factor. This term is of order of

magnitude Op|ψn|
r´j
q “ Op|s|npr´jqq, and we conclude that

ˇ

ˇ

rγ
pjq
n ´ ψ

pjq
n

ˇ

ˇ À |s|npr´jq.

We now choose the order r such that for every j ď `, snpr´jq “ oppsu´jqnq. For

this it is enough that |s|r´j ă
ˇ

ˇsu´j
ˇ

ˇ, that is |s|r ă
ˇ

ˇspsu´1qj
ˇ

ˇ, hence it suffices that

r ą p1` αq`` 1, where α is such that |u|´1
“ |s|α, and the choice

(16) rp`, ρq “ 2`

ˆ

1`
lnp1` ρ´1q

lnp1` ρq

˙

`

works.
Now let us estimate

ˇ

ˇγ
pjq
n

ˇ

ˇ. Recall that rγn “ γnpR1px, ψnpxqqq, and that at this stage

we know that
ˇ

ˇ

rγ
pjq
n

ˇ

ˇ “ Oppsu´jqnq. Write hnpxq “ R1px, ψnpxqq. This is a diffeomorphism

such that hnpxq ´ x “ Opsrnq. Arguing as above shows that Bhnpxq “ 1 ` Opsnpr´1qq

and for 2 ď j ď r, Bjhnpxq “ Opsnpr´jqq. It follows that the inverse diffeomorphism h´1
n

satisfies the same estimates. Indeed, the expression for the jth partial derivatives of h´1
n

is a rational function whose denominator is a power of Bhnpyq, y “ h´1
n pxq, and whose

numerator is a polynomial expression in the Bihnpyq, i ď j, with a single term of order

j. Plugging in the estimate Bihnpxq “ Opsnpr´iqq shows that Bjh´1
n pxq “ Opsnpr´jqq.
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Now we write γn “ rγn ˝ h
´1
n . Taking the jth derivative of this expression gives a sum

of terms of the form PipBh
´1
n , . . . , Bjh´1

n qB
i
rγnph

´1
n q, with i ď j. When i “ j, Pi depends

only on Bh´1
n , so this term is of order of magnitude OpBjrγnq “ Oppsu´jqnq, and all the

other terms involve higher derivatives of h´1
n , so they are bounded by Opsnpr´jqq. Our

choice of r guarantees that snpr´jq “ oppsu´jqnq so we conclude that
ˇ

ˇγ
pjq
n

ˇ

ˇ ď C
ˇ

ˇsu´j
ˇ

ˇ

n
,

as announced.

Step 2. Construction of a Cr-linearization.
We follow step by step the proof of Theorem 1 pp. 628-629 in [33] to show that there

exists k “ kpr, ρq such that if f is of the form p‹kq and satisfies (14) and (15), then
a Cr-diffeomorphism R linearizing f as in Step 1 exists. The assumption that f is of
the form p‹kq is precisely the conclusion of Lemma 7 in [33]. Sternberg constructs R by
first prescribing it on some fundamental domain of Bz txy “ 0u for the action of L, then
extending R to Bz txy “ 0u by the equivariance, and finally showing that R together
with its first r derivatives approach the identity along the axes. (We enlarge a little bit
B here so that RpBq Ą D ˆ t0u.) Bounding these derivatives relies on the iteration of
an operator DT introduced in equation (19) p. 629 (all references in the next few lines
are relative to [33]). The order k (which is denoted by q there) is chosen at this stage,
according to the requirement that the estimate (20) holds with α ă |u|r. Thus k depends
only on r and ρ, hence ultimately on ` and ρ. Then, the growth of }Dn

T } is governed by
α “ αp`, ρq, }g1} and }g2} (see equations (20) and (21) on p. 629; g1, g2 correspond to
the error term F ), and we are done. �

Remark 4.3. In the proof of Theorem A.1 we will actually use this result with the stable
and unstable directions reversed; of course for this it is enough to apply the result to
f´1. We prefer to stick with this presentation here to make the comparison with [33]
easier.

Remark 4.4. It is a much studied and difficult problem to study the dependence of the
integer k in terms of pr, ρq. No explicit estimates are given in [33]; results in this direction
can be found e.g. in [7, 30].

4.1.3. Comments on families. If f belongs to some family pfλq, the property of having
no resonance up to a certain order is open in parameter space. In this case it follows from
the proof of Proposition 4.1 that in this open set, fλ is reduced to the form p‹kq in a fixed
neighborhood of the origin, by a change of coordinates depending holomorphically on λ.
After proper rescaling we may assume that fλ is defined in 2B and the corresponding
}g1,λ}2B and }g2,λ}2B are locally uniformly bounded. It follows that in Proposition 4.2,
the implied constant C is locally uniformly bounded as well.

4.2. Dynamical slope. In [35, §3.4], Takens defines a notion of angle of crossing, that
we prefer to call dynamical slope, whose purpose is to make the estimates in the Incli-
nation Lemma more precise, and plays an important role in the main argument. To
understand the idea, let us consider the real linear case: if fpx, yq “ pux, syq and v is a
tangent vector at p0, y0q, y0 ‰ 0, with slope m, then its nth image is a tangent vector at
p0, ynq “ p0, s

ny0q with slope mn “ psu
´1qnm. So if α ą 1 is such that su´1 “ sα, we

see that mny
´α
n is an invariant quantity, which by definition is the dynamical slope. In

particular, if the dynamical slope is non-zero, then mn – psu
´1qn. This definition can
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be extended to the non-linear case by linearization, under an appropriate non-resonance
assumption.

In the complex setting, we cannot directly extend this definition (because y´αn does
not make sense), so we content ourselves with explaining that there is a well-defined
notion of having non-zero dynamical slope, which suffices for our needs (see Remark 4.6
for further discussion).

For concreteness, assume that f P DiffpC2, 0q is of the form p‹kq and consider the
action of f (denoted by f›) on projective tangent vectors rvs P PTC2|W s

locp0q
. If rvs “ rv1 :

v2s is not tangent to W s
locp0q “ tx “ 0u its slope is by definition slopeprvsq “ v2{v1. We

work under a non-resonance condition, and to allow for some uniformity it is convenient
to express it in terms of the constant ρ of (14).

Proposition 4.5. Let f P DiffpC2, 0q be of the form p‹kq for some k ě 1, with a
saddle point at the origin, and assume that there is no resonance up to order k1pρq “

2` lnp1`ρ´1q

lnp1`ρq , where ρ is as in (14).

Then there exists an invariant holomorphic section Z of the bundle of PTC2|W s
locp0q

Ñ

W s
locp0q, disjoint from rTW ss, such that if rvs P PTC2|W s

locp0q
neither belongs to the image

of Z nor to rTW ss, then slopepfn› rvsq – pu
´1sqn.

By definition Z is the zero dynamical slope section. Since Z is uniformly transverse
to W s

loc, it follows that any tangent vector which is sufficiently close to TW s
loc, but not

tangent to it, has non-zero dynamical slope.

Proof. We study the dynamics of f› on PTC2|W s
locp0q

, which is a P1-bundle over the

disk. The “central fiber” PT0C2 is globally attracting and contains two fixed points,
one saddle p0, rEssq corresponding to the stable direction and one attracting p0, rEusq
corresponding to the unstable direction. Fix local coordinates py,mq near p0, rEusq (m
is the slope); the action of f› is f›py,mq “ psy, u´1smq ` h.o.t. The non-resonance
assumption implies that there cannot be any resonance of the form sk “ psu´1q for

k ď 1` ln|u|
ln|s´1|

so there is no resonance at all since for higher values of k we have |s|k ă
ˇ

ˇsu´1
ˇ

ˇ. It follows that the attracting fixed point p0, rEusq is holomorphically linearizable.

In the linearizing coordinates, the dynamics becomes L : py1,m1q ÞÑ psy1, psu´1qm1q,
so if m1 ‰ 0, the second coordinate of Lnpy1,m1q decays like cpsu´1qn with c ‰ 0.
Back to the intial coordinates, we see that there is an invariant holomorphic curve
Z “ Wwsp0, rEusq transverse to the central fiber (associated to the “slow” eigenvalue
s) such that if py,mq R Z then mn – psu´1qn. Thus we have defined the announced
section Z in some neighborhood of p0, rEusq, and we extend it to PTC2|W s

locp0q
by pulling

back. Finally, to conclude the proof, it is enough to observe that any v P PTC2|W s
locp0q

not tangent to tx “ 0u is eventually attracted by the unstable direction, so the previous
analysis applies. �

Remark 4.6. Even if it is not clear how to define the dynamical slope as a number in the
complex case, the notion of two tangent directions having the same dynamical slope does
make sense. Indeed, with notation as in the previous proof, we can pull back the foliation
 

m1 “ Cst
(

by the linearizing coordinates, which defines sections of constant dynamical

slope in PTC2|W s
locp0q

. Still, it is not obvious to decide whether two tangent directions at
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different points of W s
locp0q have the same slope or not. Since the idea of taking distinct

slopes plays an important role in [35], we have to modify the concluding argument in
the proof of Proposition 4.8 so that considering one non-zero slope is sufficient.

4.3. Reduction of Theorem A.1 to Proposition 4.8. From now on we work in a
family pfλqλPΛ, with Λ » D, admitting a non-persistent homoclinic tangency associated
to some saddle fixed point pλ at λ0, as in Theorem A.1. Recall that by assumption there
is no persistent resonance between uλ and sλ. We keep the notation and conventions
of §3.1, so in particular we always work in local coordinates such that pλ “ p0, 0q,
W u

locppλq “ ty “ 0u and W s
locppλq “ tx “ 0u, and there is a disk ∆u

λ ĂW uppλq such that
∆u

0 is tangent to tx “ 0u at p0, y0q. Rescaling the first coordinate in B if needed, we may
assume that ∆u

0 is a horizontal submanifold in B of degree h0` 1 with a unique vertical
tangency (with tx “ 0u), which admits a continuation ∆u

λ as a horizontal submanifold
of degree h0`1 in B throughout Λ, and also that the vertical tangencies escape B in the
sense that for λ close to BΛ, ∆u

λ is a union of h0 ` 1 horizontal graphs.
By Proposition 3.2, for λ “ λ0 there is a transverse intersection between W sppq and

W uppq, which thus creates a horseshoe. Pulling back this horseshoe and reducing Λ if
necessary, we may assume that the semi-local stable manifolds of the horseshoe form a
Cantor set of vertical graphs in our working bidisk B, accumulating tx “ 0u, which can
be followed holomorphically throughout Λ. The components of W sppq X B contained in
the semi-local stable manifolds of the horseshoe form a countable dense subset, which we
enumerate as pW s

i qiPN (again depending holomorphically on λ). Denote by T Ă Λ the
set of parameters such that there is a tangency between ∆u

λ and one of these components.

Lemma 4.7. T is a countable perfect set.

Proof. Denote by Ti Ă Λ the set of parameters for which a tangency occurs between ∆u
λ

and W s
i,λ so that T “

Ť

i Ti. By Lemma 2.4, each Ti is a non-empty finite set, so T is

countable. Since
Ť

W s
i is dense in a Cantor set, it is perfect. Thus, given i0 P N, there

exists a sequence pijq such that W s
ij

converges to W s
i0

, hence {PTW s
ij

converges to {PTW s
i0

(notation as in §3.2). The persistence of proper intersection shows that {PTW s
i0
X {PT∆u

is accumulated by {PTW s
ij
X {PT∆u, and since the projection to Λ is finite we infer that

any point of Ti0 is accumulated by the Tij , so T is perfect, as announced. �

Let ρ ą 0 be a constant such that the estimate (14) holds for every λ P Λ. Let
k “ maxpkph0 ` 1, ρq, k1pρqq, where these numbers are defined in Proposition 4.2 and
Proposition 4.5, respectively (both applied to f´1; see Remark 4.3). Since there is no
persistent resonance between multipliers in the family, there is a locally finite subset Fk
of Λ such that outside this locally finite set there is no resonance up to order k ` 1.
Note that T zFk is relatively open and dense in T . Pick λ1 P T zFk arbitrary close to λ0,
replace the tangency point by some iterate and take coordinates adapted to fλ1 so that
we are back to the initial situation where the tangency belongs to W s

locppλ1q “ tx “ 0u.
For fλ1 the notion of dynamical slope is well defined, and by Remark 3.3 there is a
transverse intersection ξλ1 between W sppλ1q and W u

locppλ1q whose dynamical slope is
non-zero (see the comments after Proposition 4.5), which is an open property. So we
can repeat the horseshoe construction from the previous paragraph, with the additional
property that the stable manifolds of the horseshoe have non-zero dynamical slope.
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Indeed, if the horseshoe is sufficiently thin, all semi-local stable manifolds in the branch
of the horseshoe close to ξλ1 intersect W u

locppλ1q with a non-zero dynamical slope, and
by invariance we infer that the same holds for all semi-local stable manifolds of the
horseshoe, except W s

locppλ1q.
Let Λ1 Ă T zFk be an open neighborhood of λ1 where this horseshoe can be followed

holomorphically and the slope remains non-zero, and T1 Ă Λ1 be the new corresponding
(countable perfect) tangency locus. For convenience replace fλ by some iterate so that
the horseshoe is fixed (and not fN -invariant).

For λ P T1 we have a number of tangencies between ∆u
λ and W sppq. Pick λ2 P T1

together with a tangency tpλ2q P ∆u
λ2
X W s

λ2
ppλ2q whose order is minimal among all

tangencies appearing in T1. Denote this order by h. We focus on this tangency and
normalize coordinates again so that we are back to the initial situation, which defines a
new parameter space Λ2 (where the rescaled picture persists) with associated tangency
locus T2. For λ P T2, ∆u

λ is a horizontal manifold of degree h` 1 in B, with a tangency
with some vertical graph, thus by Lemma 2.2 it is necessarily of order ď h. Since h was
chosen to be minimal, the order of tangency is equal to h, and again by Lemma 2.2, the
tangency point is unique, so it moves continuously with λ P T2 (recall that T2 is perfect).

Now we minimize the multiplicity. As before enumerate as pW s
i q the vertical com-

ponents of W sppq contained in the horseshoe. For every i, {PT∆u X {PTW s
i consists of

one or several points (which must then correspond to distinct parameters since for fixed
λ P Λ2 the tangency point is unique), with an associated multiplicity. Pick a parameter
λ3 P T2 and an intersection point where this multiplicity is minimal. Then by upper-
semicontinuity of the multiplicity, all tangencies in some open neighborhood of λ3 have
minimal multiplicity mpλq ” m (and order h). Again we take coordinates adapted to
fλ3 and iterate the tangency point so that it belongs to W s

locppq, we fix a neighborhood
Λ3 where this picture persists, and let T3 Ă Λ3 be the corresponding tangency locus.
Note that by minimality of the multiplicity, for every i there is now a unique tangency
parameter between W s

i,λ and ∆u
λ.

Theorem A.1 then reduces to the following proposition:

Proposition 4.8. With notation as above, h “ m “ 1.

Before embarking to the proof, we make one last coordinate change: fix a neighbor-
hood Λ4 of λ3 and local coordinates depending holomorphically on λ, so that in Λ4, fλ
is of the form is of the form p‹kq in 2B, with uniform bounds on }g1}2B and }g2}2B. In
particular Proposition 4.2 applies uniformly (see the comments in §4.1.3).

Without loss of generality we rename Λ4 into Λ, T3 into T , put λ3 “ 0, and resume
the conventions of §3.1.

4.4. Proof of Proposition 4.8, part I: h “ 1. We argue by contradiction so assume
that h ě 2. Fix a vertical graph Γsλ of the horseshoe in B, contained in W sppλq. Let
Γsλ X ty “ 0u “ pαpλq, 0q, so that α is a non-vanishing holomorphic function. Let Γsλ,n
be the truncated pull-back of Γsλ by fnλ , and note that Γsλ,n X ty “ 0u “ pu´nλ αpλq, 0q.

For λ “ 0 there is a tangency of order h between the branch ∆u
0 of W uppλq and

W s
locppλq at p0, y0q, which unfolds with the parameter λ. Even if the initial tangency

may split as several vertical tangencies as λ evolves, recall that by construction there is a
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unique tangency point between Γsλ,n and ∆u
λ, which by assumption is of order h, and the

tangency parameter is unique as well. Denote it by λn, and by ypλnq the y-coordinate
of the tangency point. Note that λn Ñ 0 as nÑ8.

The multipliers satisfy uλ “ u0p1`Opλqq and sλ “ s0p1`Opλqq. We will repeatedly
use the following elementary observation: if µn converges exponentially to zero, then
unµn „ un0 .

Lemma 4.9. There is a unique speed exponent σ, in particular σ “ m{h. The tangency

parameter λn satisfies |λn| – |u0|
´n{σ. More precisely we have λmn – u´nh0 .

Proof. By the case ` “ 1 of Proposition 4.2, there is a constant C such that for every λ,
Γsλ,n is contained in the “tube” Dpu´nλ αpλq, C

ˇ

ˇu´1
λ sλ

ˇ

ˇ

n
q ˆD. For λ “ λn, ∆u

λn
is a hori-

zontal submanifold of degree h`1 in B, with a tangency of order h with the vertical graph
Γsλn,n. By the maximum principle, every component of ∆u

λn
XDpu´nλ αpλq, C

ˇ

ˇu´1
λ sλ

ˇ

ˇ

n
qˆD

is a holomorphic disk. Lemma 2.3 then implies that ∆u
λn

admits h vertical tangencies in

Dpu´nλ αpλq, C
ˇ

ˇu´1
λ sλ

ˇ

ˇ

n
q ˆ D.

With notation as in §3.3, the vertical tangencies of ∆u
λ are decomposed in blocks of hj

tangencies moving like λσj , σj ě 1. Denote by xi,jpλq the abscissae of vertical tangencies,
where 1 ď i ď hj and 1 ď j ď q. These do not necessarily define holomorphic functions,
but we know that |xi,jpλq| – |λ|σj as λ Ñ 0. By the first part of the proof, for all

i, j, xj,ipλnq belongs to Dpu´nλ αpλq, C
ˇ

ˇu´1
λ sλ

ˇ

ˇ

n
q. Taking moduli we see that |xj,ipλnq| „

|uλn |
´n
|αpλnq|. From the two previous relations we get that |λn|

σj – |uλn |
´n
|αpλnq|.

Since λn Ñ 0, this shows that λn decays exponentially, so |uλn |
´n

„ |u0|
´n, hence

|λn|
σj – |u0|

´n, from which it follows that σj is independent of j and |λn| – |u0|
´n{σ.

From the discussion in §3.3 (in particular Equation (5) and the discussion following it)

we have that xj,ipλq
h – λm, so the same reasoning shows that λmn – u´nh0 , as desired. �

Recall that the equation of ∆u
λ near p0, y0q is of the form x “ ϕλpyq, with ϕλpyq “

cpy ´ y0q
h`1 `Oppy ´ y0q

h`2q ` λϕ1pλ, yq. Let Cphq be the curve in pλ, yq space defined

near p0, y0q by ϕ
phq
λ pyq “ 0 (derivative with respect to the y variable). Since

(17) ϕ
phq
λ pyq – py ´ y0q `Oppy ´ y0q

2 `Opλq,

we see that Cphq is smooth and locally a graph over the λ-coordinate, of the form y “
ψpλq, with ψp0q “ y0. Since pλ, yq ÞÑ ϕλpyq is holomorphic and ϕ10p0q “ 0, there exists
an integer q ě 1 such that ϕ1λpψpλqq – λq as λÑ 0.

Let x “ γλn,npyq be the equation of Γsλn,n, and note that by Proposition 4.2 (for

` “ h), we have
ˇ

ˇ

ˇ
γ
phq
λn,n

pypλnqq
ˇ

ˇ

ˇ
À

ˇ

ˇu´1
λn
shλn

ˇ

ˇ

n
. Since ∆u

λn
and Γsλn,n are tangent to order h

at ypλnq we get

(18)
ˇ

ˇ

ˇ
ϕ
phq
λn
pypλnqq

ˇ

ˇ

ˇ
ď C

ˇ

ˇ

ˇ
u´1
λn
shλn

ˇ

ˇ

ˇ

n

and since pλnq decays exponentially we get
`

u´1
λn
shλn

˘n
„

`

u´1
0 sh0

˘n
, thus

(19)
ˇ

ˇ

ˇ
ϕ
phq
λn
pypλnqq

ˇ

ˇ

ˇ
ď C

ˇ

ˇ

ˇ
u´1

0 sh0

ˇ

ˇ

ˇ

n
.
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Since there exists δ ą 0 such that in the neighborhood of p0, y0q,
ˇ

ˇϕ
ph`1q
λ

ˇ

ˇ ě δ, from (19)

we deduce that there exists ryn with |ypλnq ´ ryn| À
ˇ

ˇu´1
0 sh0

ˇ

ˇ

n
such that ϕ

phq
λn
prynq “ 0, that

is, pλn, rynq P Cphq, therefore

(20) ϕ1λnprynqq “ ϕλnpψpλnqq – λqn.

Using again the fact that ∆u
λn

and Γsλn,n are tangent at ypλnq, we get γ1λn,npypλnqq “

ϕ1λnpypλnqq. By Proposition 4.2 for ` “ 2 we have

(21)
ˇ

ˇγ1λn,npypλnqq ´ γ
1
λn,np0q

ˇ

ˇ À
›

›ϕ2λn
›

› À
ˇ

ˇu´1
0 s2

0

ˇ

ˇ

n
.

Now recall that Γsλ was chosen so that its dynamical slope is non-zero for every λ P Λ.
This is an invariant property so it holds for Γsλn,n, which by Proposition 4.5 implies

that γ1λn,np0q – pu
´1
0 s0q

n. By (21) we get γ1λn,npypλnqq – pu
´1
0 s0q

n, hence ϕ1λnpypλnqq –

pu´1
0 s0q

n. Since
ˇ

ˇϕ2λn
ˇ

ˇ is uniformly bounded, and |ypλnq ´ ryn| À
ˇ

ˇu´1
0 sh0

ˇ

ˇ

n
!

ˇ

ˇu´1
0 s0

ˇ

ˇ

n
, we

conclude that

(22) ϕ1λnprynq “ ϕ1λnpypλnqq `O
´

pu´1
0 sh0q

n
¯

– pu´1
0 s0q

n

(note that h ě 2 is used exactly here). By putting together (20) and (22) it thus follows
that λqn – pu

´1
0 s0q

n and using Lemma 4.9 we finally get that as nÑ8,

(23) u´nhq0 – pu´1
0 s0q

nm.

Lemma 4.10. If a and b are non-zero complex numbers such that an – bn then a “ b.

Proof. Indeed if z P C is such that zn Ñ c ‰ 0 then z “ 1 and c “ 1. �

Thus the relation (23) implies that u´hq0 “ pu´1
0 s0q

m, that is, um´hq0 “ sm0 . Now we
repeat this entire reasoning for every parameter λ P T , and it follows that for every

λ P T we have a relation of the form u´hqλ “ pu´1
λ sλq

m, where q depends a priori on
λ. Since |uλ| and |sλ| are uniformly bounded away from 0 and 1, and h and m are
fixed, we infer that q is uniformly bounded. Therefore we can select an infinite subset

T 1 Ă T where the relation um´hqλ “ smλ holds for a fixed q, so by analyticity um´hqλ “ smλ
for every λ P Λ. This contradicts the non-existence of persistent resonances, thereby
completing the proof. �

4.5. Proof of Proposition 4.8, part II: m “ 1. This is a rather direct consequence
of the uniqueness of the tangency parameter and the argument principle, so the result
is simpler in the complex case than in the real case.

At this stage we know that h “ 1, so ∆u
λ admits a unique vertical tangency. Denote

by xpλq its first coordinate. With notation as in §3.3, since h “ 1, we have xpλq “

ϕy0pλ, θpλqq “ cλm ` h.o.t. and 9C is irreducible. For notational simplicity we rescale
the parameter space so that c “ 1. Assume by way of contradiction that m ě 2. As
before, fix a vertical graph Γsλ contained in W sppλq with Γsλ X ty “ 0u “ pαpλq, 0q, with

αpλq ‰ 0, and let Γsλ,n its nth truncated pull back. We may assume that αpλq does not

move too much in the sense that |αpλq ´ αp0q| ď |αp0q| {10. We will show that for large
n there are m distinct parameters such that ∆u

λ is tangent to Γsλ,n, which contradicts

the minimality of m (see the comments before Proposition 4.8). For this, we use the
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following facts: (i) for large n, Γsλ,n is very close to the vertical line through pαpλqu´nλ , 0q,

and (ii) the equation xpλq “ αpλqu´nλ has m solutions.
The exact formulation of step (ii) is the following:

Lemma 4.11. If δ ă |u0|
´1 is fixed, then for sufficiently large n, there are m disjoint

topological disks Λn,i Ă Λ, 1 ď i ď m, with Λn,i Ă Dp0, C |u0|
´n{m

q, in which λ ÞÑ
xpλq ´ αpλqu´nλ realizes a biholomorphism Λn,i Ñ Dp0, δnq.

Proof of Lemma 4.11. We rely on the following fact from elementary complex analysis,
which we leave as an exercise to the reader: if f is a holomorphic function on D such
that fp0q “ 0, f 1p0q “ 1 and |f 1| ď M , then there exists r “ rpMq and a domain Ω
with Dp0, r{2q Ă Ω Ă Dp0, 3r{2q such that f |ω : Ω Ñ Dp0, rq is a biholomorphism. By
rescaling it holds with f holomorphic in Dp0, Rq, |f 1p0q| “ d, |f 1| ď dM and the image
radius is rRd.

Recall that by assumption xpλq “ λm ` h.o.t. Let us first show that there are m
solutions to the equation xpλq “ αpλqu´nλ close to the origin. Write xpλq “ gpλqm,
where g is holomorphic in some disk Dp0, Rq and g1p0q “ 1, so that by the above result
g is a univalent map Ω Ñ Dp0, rRq, for some domain Ω.

Recall that if λ is exponentially small (i.e. |λ| ď p1 ´ ηqn for some η ą 0), then
u´nλ „ u´n0 : indeed uλ “ up1`Opλqq, so

u´nλ “ u´n0 p1`Opp1´ ηqnqqn “ u´n0 expp´n lnp1`Opp1´ ηqnqqq(24)

“ u´n0 exppnOpp1´ ηqnqq „ u´n0 .

It follows that for every choice ofmth root, we have a solution λn,i of gpλq “ pαpλqu´nλ q1{m

in Ω with λn,i — |u0|
´n{m. (For notational convenience we drop the i and write λn “

λn,i.) At λn we have x1pλnq „ m |λn|
m´1

— |u0|
´npm´1q{m, while reasoning as in (24)

we get that d
dλ

ˇ

ˇ

λ“λn
pαpλqu´nλ q “ Op|u0|

´n
q. Let β be such that δ |u0|

pm´1q{m
ă β ă

u´1{m. Then in Dpλn, β
nq we get that

ˇ

ˇ

d
dλpxpλq ´ αpλqu

´n
λ

ˇ

ˇ ď C |u0|
´npm´1q{m, so by the

preliminary fact, λ ÞÑ xpλq´αpλqu´nλ realizes a biholomorphism from an approximately
round domain Λn of size — βn about λn to a disk centered at the origin and of radius

— βn |u0|
´npm´1q{m

" δn, and we are done. �

Fix δ such that maxp
ˇ

ˇs0u
´1
0

ˇ

ˇ , |u0|
´1´1{m

q ă δ ă |u0|
´1, and let pΛn,iq1ďiďm be as in

the previous lemma. Let us conclude the proof of Proposition 4.8 by showing that for
every i there is a parameter in Λn,i for which ∆u

λ is tangent to Γsλ,n. Using the fact that

Λn,i Ă Dp0, C |u0|
´n{m

q and arguing as in (24), for λ P Λn,i we get
(25)
ˇ

ˇαpλqu´nλ ´ αp0qu´n0

ˇ

ˇ “ |u0|
´n
|αpλq exppn lnp1`Opλqqq ´ αp0q| À |u0|

´n
¨ n |u0|

´n{m

Fix 1 ď i ď m and let as before λn be the unique solution of xpλnq ´ αpλnqu
´n
λn
“ 0

in Λn,i. Let us check that the assumptions of Lemma 2.4 are satisfied in the bidisk
Dpxpλnq, δ

n{2q ˆ D, for the parameter space Λn,i. First, for λ “ λn, ∆u
λn

admits a

vertical tangency at x “ xpλnq so it is not a union of graphs. By (25), for λ P Λn,i we
have

(26)
ˇ

ˇαpλqu´nλ ´ αpλnqu
´n
λn

ˇ

ˇ À n |u0|
´np1` 1

mq “ opδnq,
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hence for λ P BΛn,i and large enough n

(27) |xpλq ´ xpλnq| “ δn ´
ˇ

ˇαpλqu´nλ ´ αpλnqu
´n
λn

ˇ

ˇ ě
δn

2
.

Thus, the unique vertical tangency of ∆u
λ lies outside Dpxpλnq, δ

n{2qˆD, so in this bidisk
the horizontal manifold ∆u

λ is a union of (two) holomorphic graphs. Now by Proposition

4.2, for λ P Λn,i, Γsλ,n is a vertical graph in B, through pαpλqu´nλ , 0q, with slope bounded

by C
ˇ

ˇsλu
´1
λ

ˇ

ˇ

n
À

ˇ

ˇs0u
´1
0

ˇ

ˇ

n
. Therefore, by (25), its first coordinate its contained in

(28) D
`

αpλqu´nλ , C
ˇ

ˇs0u
´1
0

ˇ

ˇ

n˘
Ă D

´

αpλnqu
´n
λn
, C

ˇ

ˇs0u
´1
0

ˇ

ˇ

n
` Cn |u0|

´np1` 1
mq

¯

which is contained in Dpαpλnqu
´n
λn
, δn{4q “ Dpxpλnq, δ

n{4q for large enough n. Therefore
Lemma 2.4 applies and produces a tangency between ∆u

λ and Γsλ,n in each Λn,i, which
is the desired contradiction. �

4.6. The case of complex Hénon maps: proof of Theorem A.2. The proof of
Theorem A.2 relies on the weak stability theory of [17]: see the Appendix for a brief
review.

Proof of Theorem A.2. At the parameter λ0 there is a non-persistent tangency between
W spp0q and W upp0q, where p0 is some saddle periodic point (whose continuation is
denoted by pλ). If there is no persistent resonance between the multipliers of pλ, we are
done by Theorem A.1. Otherwise, let S0 be the set of saddle points at λ0, which is dense
in J›0 by [4]. Every q0 P S0 admits a local continuation qλ.

The first claim is that for every q0 in S0, there is a parameter λ1 arbitrary close to
λ0 at which there is a homoclinic tangency associated to qλ1 . Indeed at λ0, by [4, Thm
9.6], p0 and q0 belong to the same homoclinic class, and this property persists in a small
neighborhood of λ0. As in §3.1, fix a disk ∆u

0 Ă W upp0q tangent to the local stable
manifold of p0 at tpλ0q. By the inclination lemma, we can find two sequence of disks
Γsnpq0q ĂW spq0q and Γunpq0q Ă pW

upq0qq, which are respectively vertical and horizontal
submanifolds in B converging in the C1 sense to W s

locpp0q and ∆upp0q. This whole picture

persists under small pertubations, so it makes sense to talk about {PTΓunpqq and {PTΓsnpqq
as submanifolds of Λ1 ˆ B ˆ P1, and the C1 convergence in B of Γunpqλq and Γsnpqλq

at every parameter implies that {PTΓunpqq Ñ
{PT∆uppq and {PTΓsnpqq Ñ

{PTW s
locppq in

the Hausdorff sense. Therefore the persistence of proper intersections then shows that
{PTΓunpqq and {PTΓsnpqq must intersect for large n, which is the desired result.

We then conclude the proof by observing that there must exist q0 P S0 such that
there is no persistent resonance between the eigenvalues of qλ. Indeed, since there is
a non-persistent tangency, the family pfλq is not weakly stable in any neighborhood of
λ0 (see the Appendix for more explanations). So some saddle point q P S must change
type, and since we are in a dissipative setting, it bifurcates to a sink. On the other hand
assume that there is a persistent relation of the form uaλs

b
λ “ 1 for the eigenvalues of qλ.

Note that jλ “ |uλsλ| ă 1 in the family, so using |u0| ą 1 ą |s0|, we get a ą b ą 0. Then

|uλ|
a
|sλ|

b
“ |uλ|

a´b jbλ “ 1 and we get that |uλ| ą 1 at all parameters, contradicting the
fact that qλ becomes a sink in some domain of parameter space. �
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5. Bifurcations from persistent tangencies

5.1. Proof of Theorem B.1. We argue by contraposition, so assume that pfλqλPΛ is
a weakly stable substantial family of polynomial automorphisms of C2 with a persistent
tangency. Recall that substantial means that either the family is dissipative or there is
no persistent resonance between eigenvalues of periodic points (see the Appendix). It is
a necessary condition for the weak stability theory of [17] to work.

Without loss of generality we may assume that p is fixed. Our purpose is to show

that λ ÞÑ ln|uλ|
ln|sλ|

is constant by adapting the theory of moduli of stability from [27, 26].

Note that if pfλq is substantial, this is a contradiction, so in this case the conclusion is
that there is no weakly stable substantial family with a persistent homoclinic tangency.

By analytic continuation it is enough to prove the constancy of ln|uλ|
ln|sλ|

on an open set of

parameters, so we freely replace Λ by some open subset during the proof.
Working locally in Λ, we may also assume that the tangency point belongs to W s

locppq.
Choose local coordinates (depending holomorphically on λ) so that the conventions of

§3.1 hold, with |y0| ă 1{2, and in addition f is linear in W
s{u
loc ppq, i.e. fλpx, yq “

puλxp1` yg1q, sλyp1` xg2qq. The order of tangency h is upper-semi-continuous for the
analytic Zariski topology (see the comments in the last lines of §3.1), so we reduce
further to some open subset of Λ (still denote by Λ) where h is minimal, in which case,
arguing as in §4.3, the order h is constant and the tangency point τλ can be followed
holomorphically.

Step 1. The first step of the proof is similar to [27]. We work with a fixed parameter,
so for notational simplicity we drop the mention to λ.

As in §4.4 we fix a vertical graph Γs in B, contained in W sppq, whose equation is
x “ γpyq, with γp0q “ α. Its cut-off pull-back under fn is Γsn “ tx “ γnpyqu, with
γnp0q “ αu´n, }γn} “ Op|u|´nq and }γ1n} “ op|u|´nq. For the last estimate we may
observe that the saddle fixed point is automatically C1 linearizable and argue as in
§4.1. Alternatively, we may simply use the existence of a f´1-invariant cone field Cs
with Csx “

 

pv1, v2q P TxC2, |v2| ě C |v1|
(

as follows: for any u1 ă |u| and s1 ą |s|,

if B is small enough, then if x P B and f´1pxq P B, then for v “ pv1, v2q P TxC2,
then df´1

x pvq “ pw1, w2q P Cf´1pxq, with |w1| ď pu
1q´1 |v1| and |w2| ě ps

1q´1 |v2|. So if

pu1q´1s1 ă
ˇ

ˇu´1
ˇ

ˇ the slope |w1{w2| is smaller than
ˇ

ˇu´1
ˇ

ˇ |v1{v2| and we are done.
Now we intersect Γsn and the branch ∆u of W uppq tangent to W s

locppq at τ “ p0, y0q,

whose equation is x “ ϕpyq “ ϕpy0 ` tq “ cth`1 ` Opth`2q. Since γnpy0 ` tq “ αu´n `
opu´nq, where the op¨q is uniform in t, the solutions of γnpyq “ ϕpyq are of the form

(29) ỹpiqn “ y0 ` t̃
piq
n , where t̃piqn “

´α

c
u´n

¯1{ph`1q
` o

´

|u|´n{ph`1q
¯

, 1 ď i ď h` 1

corresponding to the various choices of ph` 1qth roots (this is elementary : argue as in
Lemma 4.11).

Lemma 5.1. Fix 0 ă ε ă 1
10 |α{c|

1{ph`1q, and rn P Γsn of the form

(30) rn “ pγnpy0 ` t0q, y0 ` t0q, with |t0| ď ε |u|´n{ph`1q .

Then dprn,∆
uq — |u|´n, and the implied constants depend only on ε.



DEGENERATE HOMOCLINIC BIFURCATIONS IN COMPLEX DIMENSION 2 25

Proof. Switching to the sup norm for notational simplicity, we have to minimize

dppγnpy0 ` t0q, y0 ` t0q,pϕpy0 ` tq, y0 ` tqq “ max p|γnpy0 ` t0q ´ ϕpy0 ` tq| , |t´ t0|q

“ max
´ˇ

ˇ

ˇ
αu´n ` op|u|´nq ´ cth`1 `Opth`2q

ˇ

ˇ

ˇ
, |t´ t0|

¯

(31)

for small t. First considering t “ t0 we see that dprn,∆
uq À |u|´n so the minimal distance

is achieved in the domain |t´ t0| À |u|
´n (otherwise the second coordinate becomes too

large). Now if |t´ t0| À |u|
´n, then |t| ď ε |u|´n{ph`1q

`Op|u|´nq, so if n is large enough,
ˇ

ˇcth`1
ˇ

ˇ ď 1
5 |αu

´n| , hence
ˇ

ˇαu´n ´ cth`1 `Opth`2q
ˇ

ˇ — u´n and the result follows. �

Lemma 5.2. If rn satisfies the assumption (30) from the previous lemma, and pmnq is a

sequence such that
ˇ

ˇ

ˇ
mn ´

ln |u|
ln|s| n

ˇ

ˇ

ˇ
ď B then there exists a compact subset L of W sppqz tpu

(for the topology induced by the biholomorphism W sppq » C), depending only on B and
containing the cluster set of pf´mnprnqq.

Conversely if all cluster values of pf´mnprnqq are contained in some compact subset

L ĂW sppqz tpu, then
ˇ

ˇ

ˇ
mn ´

ln |u|
ln|s| n

ˇ

ˇ

ˇ
ď BpLq.

Note that by construction, since rn P Γsn, fnprnq converges to pα, 0q P W uppqz tpu as
nÑ `8.

Proof. By the previous lemma, dprn,W
uppqq — |u|´n “ |s|

n ln|u|
ln|s| . So if mn “ ´

ln |u|
ln|s| n `

Op1q, we get dprn,W
uppqq — s´mn , and classical local analysis near p (e.g. the exis-

tence of a C1 linearization) shows that f´mnprnq accumulates only a compact subset
of W sppqz tpu. The details on uniformity, as well the converse statement are left to the
reader. �

Remark 5.3. In the family pfλq, the complex numbers y0, α and c depend holomorphically
on λ, and the conclusions of Lemmas 5.1 and 5.2 hold locally uniformly.

Step 2. Now we take advantage of the global holomorphic structure to show the invari-

ance of ln |uλ|
ln|sλ|

in weakly stable families.

By applying the automatic extension properties of plane holomorphic motions, it was
shown in [17, Thm 5.12 and Cor. 5.14] that in a weakly stable family, the branched
holomorphic motion of saddles extends to an equivariant normal branched holomorphic
motion of J` Y J´, which preserves the stable and unstable manifolds of saddles. In
some stable manifold W sppλq » C, it is obtained by applying the canonical Bers-Royden
extension theorem [9] to the motion of W sppλq X J

›
λ, viewed as a subset of C.

With notation as in Step 1, start with some parameter λ0, and pick a point rnpλ0q P

W sppλq as in (30), for instance rnpλ0q “ pγnpy0pλ0qq, y0pλ0qq, corresponding to t0 “ 0. As
explained above it admits a natural continuation rnpλq under the branched holomorphic
motion of J` (note that if we can choose rpλ0q P J

›
0 , then there is no need to consider

the extended motion). The key step is the following:

Lemma 5.4. There exists a neighborhood Λ1 of λ0 such that for large enough n, rnpλq
satisfies the assumption (30), that is for λ P Λ1, rnpλq “ pγn,λpy1pλqq, y1pλqq, with

|y1pλq ´ y0pλq| ă ε |uλ|
´n{ph`1q, where ε ă minλPΛ

1
10 |αpλq{cpλq|

1{ph`1q is given.
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From this point, the proof of Theorem B.1 is readily completed. Indeed, Lemma 5.2

applies so we can fix a sequence pmjqjě0 with mj “ ´
ln |u0|
ln|s0|

nj `Op1q such that

f
´mj
λ0

prnj pλ0qq ÝÑ
jÑ8

ζpλ0q PW
s
locpp0qz tp0u .

Then by the normality of the branched motion of J`, the continuations f
´mj
λ prnj pλqq

form a normal family of graphs in Λ ˆ C2. Extracting again, we may assume that it
converges to λ ÞÑ ζpλq. Since the motion of J`λ respects stable manifolds of saddle points
and is unbranched at saddle points, we infer that ζpλq PW sppλqz tpλu, and we conclude

from the converse statement of Lemma 5.2 that
ˇ

ˇ

ˇ
mj ´

ln |uλ|
ln|sλ|

nj

ˇ

ˇ

ˇ
ď B, and finally,

ln |uλ|

ln |sλ|
“ lim

jÑ8

mj

nj
“

ln |u0|

ln |s0|
,

as desired. �

Proof of Lemma 5.4. By equation (29), in the parameterization of Γsn,λ by the y-coordinate,

the intersection points of Γsn,λ and ∆u
λ form approximately a regular ph` 1q-gon of size

— |uλ|
´n{ph`1q. At the parameter λ0, y1pλ0q “ y0pλ0q, so rnpλ0q is approximately the

center of this polygon. To prove that the estimate (30) holds in a neighborhood of λ0,
it is enough to show that for λ close to λ0, rnpλq remains close to the center of the

polygon, or equivalently that in the y-coordinate, the distances
ˇ

ˇy1pλq ´ ỹ
piq
n pλq

ˇ

ˇ remain
approximately equal to each other, when varying i. For this we use a quasiconformal
distortion argument.

To be precise, we say that a map φ defined in some subset of the plane has distortion
at most δ if for every triple of distinct points x, y, z,

(32) ln

ˆ

|φpyq ´ φpxq|

|φpzq ´ φpx|
¨
|z ´ x|

|y ´ x|

˙

ď δ.

With this definition, the distortion is subadditive under composition. We choose δ once

for all such that if the distortion of
 

pỹ
piq
n pλqq1ďiďr, y1pλq

(

with respect to a regular ph`

1q-gon together with its center is bounded by 5δ, then |y1pλq ´ y0pλq| ă ε |uλ|
´n{ph`1q.

As said above, the points ỹ
piq
n pλ0q together with y0pλ0q form a regular polygon with its

center up to a small distortion δ for n ě n0pδq. Recall that by assumption |y0pλq| ă 1{2.
Consider an affine parameterization C Q ζ ÞÑ ψsλpζq PW

sppq, mapping 0 to p. Two such
parameterizations differ by a similitude that we will not need to specify, since we consider

only ratios of distances. Let ζ̃
piq
n pλq “ pψsλq

´1pỹ
piq
n pλqq. We claim that for large enough n

and every λ P Λ, the ζ̃
piq
n pλq also form a regular polygon up to distortion δ. Indeed, the

map D Q y ÞÑ pψsλq
´1pγn,λpyq, yq P C is univalent, so by the Koebe distortion theorem its

distortion on a disk of radius Op|uλ|
´n{ph`1q

q contained in Dp0, 3{4q is Op|uλ|
´n{ph`1q

q.
Thus there exists n1pδq so that for n ě n1pδq this last term is smaller than δ for every
λ P Λ, and the claim follows.

Let ζ1pλq “ pψsλq
´1prnpλqq, which is by definition the motion of ζ1pλ0q under the

Bers-Royden extension of the holomorphic motion of pψsλq
´1pJ›q. We claim that there

exists a neighborhood Λ1 of λ0, such that for every λ P Λ1 and every n ě n1pδq, the
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distortion of
 

pζ̃
piq
n pλqq1ďiďr, ζ1pλq

(

with respect to
 

pζ̃
piq
n pλ0qq1ďiďr, ζ1pλ0q

(

is smaller
than δ. A way to see this is to use the fact that the Bers-Royden extension is canonical,
hence automatically equivariant, so for λ “ λ0 we can bring the polygon to unit scale by
appropriately iterating fλ (which is just a linear contraction in the ζ-coordinate), then
use the uniform continuity of the holomorphic motion at that scale (see e.g. [9, Cor. 2]),
and then bringing it back to the original scale.

Finally, we map
 

pζ̃
piq
n pλqq1ďiďr, ζ1pλq

(

back to Γn,λ by ψsλ, which adds one more δ of

distortion. Altogether, for λ P Λ1, the total distortion of
 

pỹ
piq
n pλqq1ďiďh`1, y1pλq

(

with
respect to a regular polygon together with its center is at most 4δ, and by the choice of
δ, the proof is complete. �

Remark 5.5. The proof carries over without essential change to the heteroclinic case,
showing that if a weakly stable family admits a persistent heteroclinic tangency between

W spp1q and W upp2q, then ln|u1|
ln|s2|

is constant.

5.2. Proof of Theorem B.2. Thanks to the Friedland-Milnor classification [18], we can
assume that Λ is the space of generalized Hénon maps of some given degree sequence
pd1, . . . , dkq, that is, maps of the form hP1,a1 ˝ ¨ ¨ ¨ ˝ hPk,ak , where hP,apz, wq “ paw `

P pzq, zq, so we identify Λ with CN ˆ pC›qk. We refer to CN ˆ t0uk as the zero Jacobian

locus, and to rΛ :“ CN ˆ Ck as the extended parameter space.
If fλ admits a homoclinic tangency, by the Kupka-Smale property from [11] (4), the

tangency is not locally persistent in Λ, so this tangency persists on some local hypersur-
face T Ă Λ.

We argue by contradiction, and assume that there is a tangency parameter λ0 (asso-
ciated to some primary saddle point p) and a connected open neighborhood U of λ0 in
Λ such that for any λ1 P U displaying a homoclinic tangency, associated to any saddle

periodic point q, the function ln|uλpqλq|
ln|sλpqλq|

is constant along the corresponding local hyper-

surface T . Note that such an T may be singular, in which case the assumption means
that the constancy holds on all components of T .

Let us start with a few reductions. Replacing fλ0 by its inverse and restricting to a
smaller subset if necessary, we may assume that |Jac fλ| ă 1 in U . By Theorem A.2,
switching to another periodic point (still denoted by p for simplicity), we may assume
that the tangency is quadratic and unfolds with positive speed, in which case the corre-
sponding hypersurface T is smooth (see §3.5). Abusing slightly, we assume for notational
convenience that p is fixed (5) and we put ourselves in the setting of §3.1. As in §4.3
we fix a horseshoe E containing p, whose local stable manifolds are vertical graphs in
B. Fix a countable set pΓnqně0 of vertical graphs contained in W sppq XW s

BpEq, which
is dense in W s

BpEq. Reducing U again we assume that these objects can be followed
holomorphically throughout U . Unfolding the tangency thus locally produces countably

4The main theorems in the introduction of [11] are stated for the space of Hénon maps of degree
d, but the authors make it clear in §2.1 that they hold in any irreducible component of the space of
generalized Hénon maps.

5This is really an abuse because we cannot simply replace f by fN . Indeed this would mean working
in some proper subset of a component of the space of polynomial automorphisms of degree dN (i.e.
the space of N th iterates of automorphisms of degree d), while our argument requires to have all the
component at our disposal.
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many disjoint hypersurfaces Tn in U of generic homoclinic tangencies associated to p
(each of which corresponding to the tangency locus between Γn,λ and ∆u

λ). Since
Ť

n Tn
is Zariski dense in U , by [11, Thm 1.4], moving to some other parameter λ10 P

Ť

n Tn if
necessary, we may assume that the multiplier map λ ÞÑ psλppq, uλppqq P C2 is a submer-
sion at λ10. Rename λ10 into λ0 and the corresponding hypersurface by T . Reducing U
we assume that λ ÞÑ psλppq, uλppqq is a submersion everywhere in U .

Lemma 5.6. The Jacobian Jacpfλq is not constant along T .

Proof. Indeed by assumption ln|uλppq|
ln|sλppq|

“ c along T . Since fλ is dissipative, it follows that

c P p´1, 0q. Assume by contradiction that Jacpfλq ” j on T . Then from uλsλ “ j we
get

ln |uλppq|

ln |j{uλppq|
“ c, hence ln |uλppq| “

c

1` c
ln |j| ,

and it follows that |uλppq| is constant along T , hence so is uλppq. Likewise, sλppq is
constant along T because uλsλ “ j. This is a contradiction because λ ÞÑ psλppq, uλppqq
has rank 2 and T has codimension 1. �

The same reasoning shows that uλppq is not constant along T . Indeed otherwise ln |sλ|
would be constant, hence so would be sλ, leading to the same contradiction. Therefore,
moving λ0 slightly and reducing U again, we may assume that uλppq R R for every λ P U .
Recall the set of disjoint hypersurfaces Tn in U constructed above.

Lemma 5.7.
Ť

n Tn is R-Zariski dense in U .

Proof. We start by showing that for every λ P U ,
Ť

n Γn,λ is R-Zariski dense in B. For
this, it is enough to show that for any y P D, Esλpyq :“ W s

BpEq X pDˆ tyuq is R-Zariski
dense in D ˆ tyu. Identify D ˆ tyu with D. Since uλppq R R and

Ť

n Γn,λ is dense in
W spEλq which is invariant, F pyq contains a sequence of points spiraling to 0 (here we use
the fact that we have a sequence of graphs in W spEλq of the form x “ αu´n ` opu´nq).
Since E is self similar, there is also such a spiral at each point of Γn,λXpDˆtyuq. Thus
Esλpyq cannot be contained in a real-analytic curve, because such a curve would have
to be smooth at one of the points of Γn,λ which is impossible because of the spiraling
phenomenon.

To complete the proof, consider any one-parameter family Λ1 in U in which the
tangency unfolds with positive speed. It is enough to show that

Ť

n TnXΛ1 is R-Zariski
dense in Λ1. We use the basic idea of homoclinic renormalization theory, which says
that, near any of its points,

Ť

n Tn X Λ1 (which is now a countable set) contains a set
which is arbitrarily close to a scaled copy of Esλ0p0q. The argument is similar to that of
§3.3, in a simpler setting since m “ 1: we leave the details to the reader (see also [28]).
Thus

Ť

n TnXΛ1 cannot be contained in a real-analytic subvariety, and we are done. �

Consider the foliation Fppq in U whose leaves are the level sets of λ ÞÑ ln|uλppq|
ln|sλppq|

P R.

Observe that the leaves are the complex hypersurfaces defined by uλppq “ sλppq
ceiα for

pc, αq P R2, but the foliation is only real-analytic. Note also that since λ ÞÑ psλppq, uλppqq
has rank 2, Fppq is a smooth foliation. Our contradiction hypothesis, together with
Lemma 5.7 implies that

Ť

n Tn is a R-Zariski dense set of leaves of Fppq.
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Since λ0 belongs to the bifurcation locus, as in Theorem A.2 we can fix another
periodic point q, which is a saddle at λ0 and bifurcates to a sink in U . Shifting λ0

slightly we may assume λ ÞÑ psλpqq, uλpqqq has rank 2 at λ0. Fix a smaller connected
open neighborhood V Ă U of λ0 in which q remains a saddle and this submersion
property persists.

Lemma 5.8. The foliations Fppq and Fpqq coincide in V .

Proof. It is enough to prove the result in some possibly smaller V 1. Since pλ0 and
qλ0 admit transverse homoclinic intersections, by the Inclination Lemma there exists a

countable set prΓmq of disjoint vertical graphs contained in W spqqXB, whose closure con-
tains W s

BpEq, which can be followed holomorphically in some V 1. Fix also a sequence of

branches r∆u
k of W upqq which converges to ∆u. Restricting to sufficiently large k, we may

assume that r∆u
k,λ remains close to ∆u

λ throughout V 1, so in particular it is of horizontal
degree 2 and its unique vertical tangency moves with positive speed. The tangency locus

between rΓm,k,λ and r∆u
k,λ is then a hypersurface rTm,k, and our contradiction hypothesis

implies that each rTm,k is contained in a leaf of Fpqq. Let V 1 be small enough so that the
leaves of Fpqq in V 1 are contained in a foliation chart, so they form a uniformly bounded
family of graphs.

The key observation is that any Γn is the limit of a sequence prΓmj q, uniformly in λ,
that is, the convergence holds for the corresponding fibered objects in ΛˆB. So for any

sequence kj Ñ8, we infer that rTmj ,kj converges to Tn in the Hausdorff topology in V 1.

This follows easily from the fact that the lifts of r∆u and Γn to the projectivized tangent

bundle are transverse (see §3.2). Since the rTmj ,kj are contained in a foliation chart of
Fpqq, it follows that Tn is a leaf of Fpqq. Thus Fppq and Fpqq coincide on a R-Zariski
dense subset, and we are done. �

Now recall that q changes type in U , and consider a connected open subset U 1 Ă
U in which q can be followed holomorphically, but its unstable multiplier crosses the
unit circle. (Recall that by the Implicit Function Theorem, q can be locally followed
holomorphically unless some eigenvalue equals 1.) Consider a parameter λ1 at which
|uλ1pqq| “ 1 and uλ1pqq ‰ 1, hence uλ1pqq “ eiβ for some β P Rz2πZ. Then the
leaf of Fpqq through λ1 is Wβ :“

 

λ P U 1, uλpqq “ eiβ
(

. Indeed the leaf is of the form
ln|uλ1 pqq|

ln|sλ1 pqq|
“ c1, but necessarily c1 “ 0. Since Fppq and Fpqq coincide near λ0, by analytic

continuation Wβ is also a leaf of Fppq, of the form uλppq “ sλppq
ceiα for some c P p´1, 0q.

Lemma 5.9. Wβ extends to an irreducible algebraic hypersurface in the extended pa-

rameter space rΛ, which intersects the zero Jacobian locus.

Let us admit this result for the moment and conclude the proof of the theorem. Let
Λdissip be the region of the parameter space made of dissipative maps. Let us first show
that the coincidence between Fppq and Fpqq propagates along Wβ XΛdissip. Since these
foliations are defined only in terms of the eigenvalues of p and q, for this it is enough to
show that we can follow these periodic points along Wβ X Λdissip. For q this is obvious

because along Wβ one multiplier is eiβ ‰ 1 and the other one is smaller than 1 in modulus
by dissipativity. For p, since Wβ is a leaf of Fppq near λ1 of the form uλppq “ sλppq

ceiα,
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by (real) analytic continuation, this property persists as long as we can follow p. But
this relation implies that if one eigenvalue hits 1, then the other one has modulus 1 as
well, which is impossible in the dissipative regime, and we are done.

Now, let λ P Wβ converge to some parameter λ2 P rΛ with Jacobian 0. For q, this
means that the stable eigenvalue tends to 0. For p, the fact that ´1 ă c ă 0 in
the relation uλppq “ sλppq

ceiα forces |sλppq|
´1
ě |uλppq|, so sλppq remains the stable

eigenvalue. Thus, as the Jacobian tends to 0, sλppq must tend to zero, hence |uλppq|
tends to infinity, which is a contradiction because fλ converges to some well-defined

1-dimensional map in rΛ. This finishes the proof of Theorem B.2. �

Proof of Lemma 5.9. Basic elimination theory shows that Wβ is defined by an algebraic

condition (see e.g. [11, §2.3]), so it defines an algebraic hypersurface in rΛ. The non-trivial
fact is that Wβ hits the zero Jacobian locus.

For concreteness let us first explain the argument in the space tfa,c, pa, cq P C› ˆ Cu of
quadratic Hénon maps, where fa,cpz, wq “ pz

2` c` aw, zq. Since by Lemma 5.6 the Ja-
cobian (which equals ´a) is non-constant along Wβ, it must take arbitrary small values
along Wβ (indeed, a bounded holomorphic function on a quasiprojective variety is con-
stant). On the other hand, there exists C such that the set tpa, cq, |c| ą C and |a| ă 1u
is contained in the horseshoe locus, and in this region all periodic points are saddles. It
follows that Wβ X Λdissip “ Wβ X tpa, cq, |a| ă 1u Ă tpa, cq, |c| ď Cu, so any sequence
pan, cnq P Wβ such that an Ñ 0 must stay bounded in C2, and we conclude that Wβ

must accumulate ta “ 0u, as asserted.
This argument can be transposed to the general case. Indeed, in [11, Prop. 5.1], given

any f “ hP1,a1 ˝ ¨ ¨ ¨ ˝ hPk,ak P Λ, the authors construct an explicit algebraic 2-parameter
family pfa,cqpa,cqPC›ˆC, with Jac fa,c Ñ 0 when aÑ 0 and such that for any A ą 0, there
exists C ą 0 such that if |c| ą C and |a| ă A, all periodic points are saddles. So as
before we conclude that Wβ accumulates the zero Jacobian locus in a bounded part of
the parameter space, and we are done. �

Appendix A. Weak stability for polynomial automorphisms of C2

Here we briefly review the notion of weak (J›-)stability from [17] (and further de-
veloped in [8]). First, recall the usual vocabulary of complex Hénon maps: K` and
K´ are respectively the sets of bounded forward and backward orbits; J` “ BK` and
J´ “ BK´ are the forward and backward Julia sets, and J› is the closure of the set of
saddle periodic points.

Any family of polynomial automorphisms of C2 of constant dynamical degree is con-
jugate to a family of compositions of Hénon mappings [17, Prop. 2.1]. A family of
polynomial automorphisms of dynamical degree d ě 2 is said to be substantial if: either
all its members are dissipative or for any periodic point with eigenvalues α1 and α2, no
relation of the form αa1α

b
2 “ c holds persistently in parameter space, where a, b, c are

complex numbers and |c| “ 1.
A branched holomorphic motion is a family of holomorphic graphs over Λ in Λˆ C2.

It is said normal if these graphs form a normal family. As the “branched” terminology
suggests, these graphs are allowed to intersect, while in a holomorphic motion they are
not.
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A substantial family pfλqλPΛ of polynomial automorphisms is said to be weakly J›-
stable if every periodic point stays of constant type (attracting, saddle, indifferent, re-
pelling) in the family. Equivalently, pfλq is weakly J›-stable if the periodic points move
under a holomorphic motion. Then the sets J›λ move under an equivariant branched
holomorphic motion [17, Thm. 4.2]. This motion is unbranched at periodic points,
heteroclinic intersections [17, Prop. 4.14], and more generally points with some hyper-
bolicity [8]. In a weakly J›-stable family, every heteroclinic or homoclinic tangency must
be persistent [17, Prop. 4.14]. Note the contraposite statement: if in a family pfλq there
is a non-persistent tangency at λ0, then some saddle point must change type near λ0.

Using the automatic extension properties of plane holomorphic motions and the den-
sity of stable and unstable manifolds of saddles, the motion of J› can be extended to a
branched holomorphic motion of J` Y J´. It is important that this extended motion
is normal in C2 and respects saddle points and their stable and unstable manifolds, as
well as the sets K˘ and their complements [17, Lem. 5.10, Thm. 5.12 and Cor. 5.14].
Thus we are entitled to simply call such a family weakly stable.
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