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ABSTRACT Photoplethysmography (PPG) is a non-invasive and cost-efficient optical technique used to
assess blood volume variations in the microcirculation. PPG technology is widely used in a variety of
wearable sensors to investigate the cardiovascular system. Recent studies have demonstrated the utility
of PPG analysis for carrying out large-scale screening to prevent and detect diabetes. However, most of
these studies require feature extraction and/or several pre-processing steps. Over the past few years, the
advent of deep learning has significantly impacted the analysis of biomedical signals. Despite their success
in other fields, however, very few studies have focused on the application of deep learning to raw PPG
signals for detecting diabetes. Existing studies have proposed large models trained on large amounts of data.
In this paper, we present a Light CNN-based model for screening the presence of type 2 diabetes using a
single raw pulse extracted from photoplethysmographic signals. In addition to the baseline architecture,
we evaluate different model architectures that take as input age and biological sex or PPG handcrafted
features. Furthermore, we apply transfer learning to all the tested architectures to evaluate the effectiveness
of harnessing pre-trained models in detecting diabetes. We tested a model pre-trained on a general PPG
shape dataset and another model pre-trained on a dataset containing hypertension PPG signals. Our model
scored an AUC of 75.5 when trained with raw PPG waves, age, and biological sex without applying transfer
learning, which is competitive with current state of the art.

INDEX TERMS Deep learning, photoplethysmography, screening, signal processing, type 2 diabetes,
transfer learning.

I. INTRODUCTION
Worldwide, three main types of diabetes exist. Type 1 dia-
betes is a chronic condition in which the pancreas produces
little or no insulin by itself [1]. Type 2 diabetes usually occurs
in adults when the body becomes resistant to insulin or does
not make enough insulin [2]. The last type is gestational
diabetes, a transient disease that some women can develop
during pregnancy [3]. In this study, we focused on type 2
diabetes, the most common one [4]. The development of
new low-cost, non-invasive and light technologies that are

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Li.

able to detect the onset of diabetes could make a differ-
ence in diabetes large-scale prevention [5]. Type 2 diabetes
(DT2) can lead to increased arterial stiffness, alteration in
heart rate variability, increased blood viscosity and heart
failure [6]. Cardiovascular activity can be assessed using
many different technologies. However, most of them require
a clinical environment or clinical expertise to be exploited.
Photoplethysmography is a non-invasive technology that can
be used to acquire cardiovascular pulse wave signals. This
technology is attracting interest from industries and the sci-
entific community thanks to its cost-effective technology
and usability. Using the PPG signal to detect diabetes is
less expensive compared to gold standard methods as the
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glycosylated hemoglobin test, and it does not require well
equipped laboratory. Another advantage is that the PPG sig-
nal is acquirable through several devices that are already used
in everyday life such as smartphones and wristbands. Devices
for diabetes test, by contrast, need to be specifically bought
and this usually becomes the case when there is a suspicion
of diabetes. Recently, several studies have investigated the
possibility of detecting the diabetes through PPG signals with
traditional, machine learning or deep learning approaches [7].
Since the availability of data is one of the main issues in
biomedical research [8], we have focused on searching for a
method that could succeed without the need of a large amount
of data. For this reason, we propose a light CNN-based model
trained over a small dataset in terms of size and signal length.
Our dataset is composed of 100 subjects (15% with diabetes)
and consists of single PPGwaves. Considering the size of our
dataset, we have investigated the effect of transfer learning.
We trained two models with two larger datasets: the first
contains generic PPG waves from 500 subjects while the
second dataset contains PPG waves from 181 hypertension
(HT) and healthy subjects. The goal is to assess if utilizing
the model weights and biases from a generic PPG shape
classification model or from a specific pathology classifica-
tion model can enhance the DT2 detection through transfer
learning.

Our contributions can be summarized as follows:
• Firstly, we have designed a baseline CNN model

for detecting DT2 using PPG signals. Our model
takes as input much shorter PPG segments com-
pared to the previous studies, as it operates with
single pulses normalized to a length of 1 second.
This segment length enables the model to operate
with a variety of signal lengths without requiring
a long PPG acquisition. Moreover, it allows us to
obtain a larger dataset, since we can extract up to
15 waves from a single signal, with the additional
benefit that the input layer size of the CNN model
becomes much smaller.

• We propose a Light CNN trained over a small
dataset. Our results are comparable to those
reported by Avram et al. [9] that use much larger
nets and larger datasets.

• Lastly, we utilize transfer learning to investigate the
possible benefits of using firstly a pre-trainedmodel
over a larger dataset and then fine tuning it with
a very small dataset containing DT2 PPG signals,
and secondly to investigate the relation between
hypertension and diabetes.

The rest of the paper is organized as follows: In Section II,
we present related works. In Section III, we briefly outline
the background of PPG and its correlation with diabetes.
Then, we describe the datasets used, the extracted features,
the model architecture, and the process we have followed
to investigate the transfer learning effect. In Section IV,
we present and discuss the results. Finally, in Section V,
we conclude and discuss future work.

II. RELATED WORKS
Several approaches have recently been employed in detect-
ing modifications in PPG waveforms [10], [11]. These
approaches can be categorized into three types: tradi-
tional, machine learning-based, and deep learning-based.
Bagus et al. [12] proposed a traditional approach in which
the Poincaré plot of finger PPG signals was used to sig-
nificantly discriminate (p<0.05) between healthy subjects
(glycohemoglobin<6.5%), diabetic subjects with good con-
trol (6.5%<glycohemoglobin<8%), and diabetic subjects
with poor control (glycohemoglobin<8%). Their dataset con-
sisted of 22 healthy subjects, 23 diabetic subjects with good
control, and 17 subjects with poor control. The length of the
acquired signal was not specified. In [13], Pilt et al. pro-
posed a new parameter, the PPGAI (PPG augmented index),
to assess arterial stiffness in elderly patients. This work
highlighted a significant difference (p<0.0001) between
healthy and diabetic subjects. The dataset used in this study
consisted of 24 healthy subjects and 20 diabetic subjects
who were asked to acquire finger PPG signals for one
minute. These studies demonstrated how PPG signal shape
can be used to classify DT2 with traditional approaches.
However, to achieve good classification performance, these
methods sometimes involve several steps, such as filtering,
feature extraction, and outlier detection. To simplify the pre-
processing step, researchers began to utilize machine learning
methods with basic PPG features and demographic data.
Monte-Moreno et al. [14] used a random forest and gradient
boosted model to detect diabetes with physiologically rele-
vant PPG features and demographic features, achieving an
area under the curve (AUC) of 0.7. The dataset in this study
consisted of 1,170 subjects who were asked to acquire PPG
signals twice for oneminute. 29%of the subjects were labeled
as diabetic based on their clinical records. In [15], Het-
tiarachchi used a Decision Tree model fitted with PPG fea-
tures and physiological data to detect DT2 in the presence of
hypertension (HT) and pre-hypertension. They used a public
dataset composed of short PPG signals (2.1 seconds) acquired
from 219 subjects with various pathologies [16]. The best
AUC score was obtained when detecting DT2 in the absence
of hypertension (9 healthy subjects, 9 diabetic subjects). They
achieved an AUC of 0.83. In [17], Nirala et al. proposed a
support vector machine model (SVM) to classify diabetic and
healthy subjects. They selected the ten best morphological
PPG features from a total of 37 total features, showing an
AUC of 0.97. Their dataset consisted of 141 subjects with a
five-minute-long recording each, with the diabetic subjects
represented by 69% of the total dataset. Although the results
are promising, feature extraction and identification of fiducial
points can be heavily affected by signal quality. Thus, quality
assessment is needed before applying this handcrafted feature
extraction process. Over the past few years, the advent of deep
learning has significantly impacted the analysis of biomedi-
cal signals [18]. Convolutional neural networks (CNN) are
often used in PPG analysis due to their capability of auto-
extracting discriminant features from the 1D PPG signal or
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its 2D representations [19]. In [20], Srinivasan and Foroozan
proposed a CNN model (VGGNet architecture) that utilizes
the scalogram obtained from 30-second finger PPG signals
to detect DT2. The used dataset is a subset of the MIMIC-III
dataset composed of 808 subjects (58%with type I and type II
diabetes). A total of 592 subjects presented HT, of which
290 had DT2 as well (62% of diabetics also had HT). In addi-
tion to the baseline model, they tested different architectures
with several different inputs such as HT (yes/no), age, bio-
logical sex, and heart rate. The model scored an AUC of
0.83 when trained with the PPG scalogram, age, biological
sex, and HT classification. However, the main limitation of
this approach is the difficulty of using it in portable devices
such as smartphones and smartwatches. The idea of using
raw PPG signals as input to CNN models to classify DT2 is
not yet widely explored. Avram et al. [9] proposed a CNN
model to classify the prevalence of diabetes. They used three
different datasets: the first with 53,870 subjects (7% with
diabetes), and the second and third to further validate the
model, with 7,806 (8.7% with diabetes) and 181 (21% with
diabetes) subjects, respectively. The proposed model takes a
21.3-second-long raw PPG signal as input. The PPG signal is
defined as a sequence of PPG waves. The model achieved an
averaged AUC of 0.69 over the three different datasets using a
CNN output threshold of 0.427. Furthermore, they proposed
a fusion approach where the CNN outputs and demographic
data are taken as input by a logistic regression model to
classify whether or not a PPG signal belongs to a diabetic
subject. In this case, the AUC score increased up to 0.83.
The proposed CNN model is a large network composed of
18 convolutional layers and requires a long PPG measure to
detect DT2. Additionally, the model has been trained on a
large amount of data, which is not always available in prac-
tice. The advantages and disadvantages of the cited studies
are reported in Table 1.

III. MATERIAL AND METHODS
In this section, we describe the used datasets and the models
we implemented to classify the presence of diabetes. Figure 4
shows an overview of the followed process.

A. PHOTOPLETHYSMOGRAPHY AND DIABETES
Photoplethysmography (PPG) is an optical measurement that
assesses blood volume changes in the peripheral circulation.
A photoplethysmograph is composed of a light emitting diode
(LED) and a photo-detector (PD) [21]. The light emitted
from the diode is partially transmitted through the tissues,
the arteries and arterioles and then detected by the photo-
detector, as shown in Figure 1. The PPG signal therefore
contains information about the hemodynamic state of the
subject [22].

As previously mentioned, diabetes is strongly correlated
with cardiovascular diseases (CVDs). Although the direction-
ality of the relationship between arterial stiffness and dia-
betes remains unknown, it has been confirmed that diabetes
and increased arterial stiffness are linked [23]. It has also

FIGURE 1. PPG transmitting technology with light emitting diode and
photo-detector.

FIGURE 2. PPG waves from diabetic and non-diabetic subjects. The
absence of the dicrotic notch in the dashed dotted red wave is
observable, whereas the typical modifications due to diabetes are not
clearly visible in the dashed red wave. The black line represents the PPG
wave from a non-diabetic subject, the red dashed line represents the PPG
signal from a diabetic subject, and the red dashed dotted line represents
the PPG wave from a diabetic signal. All subjects are middle-aged
(50-70 years old).

been confirmed that blood viscosity increases with blood
glucose [24]. Heart rate variability (HRV) has been shown
to be lower in all age groups of diabetic patients compared to
healthy subjects [25]. Additionally, even in the early stages of
diabetes mellitus, ECG alterations such as sinus tachycardia,
changes in heart rate variability, and left ventricular hyper-
trophy, may be observed [26]. Arterial wall stiffness, blood
viscosity, and changes in heart polarization/depolarization
directly affect PPG wave shapes. As a result, diabetes can
potentially be detected by analyzing the PPG pulse shape
through various methods that estimate the aforementioned
parameters [13], [27]. However, the differences between dia-
betic and non-diabetic PPG waves are sometimes not obvi-
ous. The PPG signal is affected by several physiological
modifications [28], and identifying one among them can be
very challenging. Figure 2 shows three different PPG waves:
in black, a PPG wave from a non-diabetic subject; in red
dotted and red dashed dotted lines, two waves from diabetic
subjects. The absence of the dicrotic notch in the dashed-
dotted red wave is clearly observable, whereas in the dashed
red wave, the typical modifications due to diabetes are not
clearly visible. All subjects belong to the same age range.
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TABLE 1. Literature review summary.

B. DATASETS
In this study, we utilized three datasets. A PPG wave is
defined as the portion of the PPG signal that contains all
information related to one heartbeat. The primary dataset
consists of type 2 diabetic PPG waves (DB_DT2). Two addi-
tional datasets were employed to assess the impact of transfer
learning. The first one (DB_shape) comprises 12,000 PPG
waves that have been classified as high and low quality using
our CNNmodel proposed in [29], then segmented into pulses,
andmanually labeled into four different classes based on their
shape, as suggested in [30]. The second dataset (DB_HT)
is composed of hypertension (HT) PPG waves. DB_HT and
DB_DT2 are composed of two separate datasets, one avail-
able online [16], and one collected at the University Hospital
of Nice (cohort register referenced BS-004) using the pOp-
métre device [31]. Since HT and DT2 frequently coexist in
the same subject, individuals who had both pathologies were
excluded from the datasets to better isolate the effect of each
pathology on the PPG signal. Table 2 summarizes the details
of the datasets used. The pOpmétre device [31] acquires
finger photoplethysmography (PPG) signals using red and
infrared LEDs, and the signals are sampled at 1 kHz. The
public dataset [16] consists of finger PPG signals acquired at
1 kHz with infrared light. Firstly, we applied a slight filter

TABLE 2. Databases description.

to the signals to remove high-frequency noise that could
affect the PPG shape. We then identified the minimum points
before and after the systolic maximum to segment the signals
into single pulses. The pulses were normalized in time and
amplitude. To perform inter-subject assessment and avoid
overfitting, pulses belonging to the same subject were used
either in training or testing.

We used 70% of the available subjects to train and validate
themodel, and 30% of the subjects to test it. The same propor-
tion of healthy and pathology subjects shown in Table 2 was
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FIGURE 3. Age and biological sex histograms of A) non diabetic and
B) diabetic subjects.

TABLE 3. PPG features extracted from the PPG waveforms.

maintained during the splitting. The presence of hypertension
(HT) and type 2 diabetes (DT2) was clinically assessed,
and no other pressure measurement or glucose analysis was
performed.

C. FEATURES EXTRACTION
To assess the potential benefits of a handcrafted feature-based
approach compared to a feature representation learning-
based approach, we designed a convolutional neural network
(CNN) that takes as input seven PPG features in addition to
the PPG pulse wave. Table 3 presents a summary of the
extracted features, which are injected after the convolutional
layers, as shown in Tables 11, 12, and 13. We selected
a significant subset of features presented in [17] that are
commonly used to assess the PPG wave shape. We excluded
derivative-based features because we did not apply any qual-
ity assessment to the HT and DT2 pulses, and the derivative
is highly affected by noise in the signal, which could lead
to errors. We also excluded features that required dicrotic
notch identification since PPG waves often present multiple
minima, and its detection is not straightforward. The selected
features are extracted from a single PPG pulse.

D. CNN ARCHITECTURE
In this study, we have evaluated several different CNN archi-
tectures to detect DT2, with a total of nine models imple-
mented for this purpose. We have also developed one model
for classifying PPG waveform and one model detecting
HT, both of which were considered for transfer learning.
The baseline architecture consists of four convolutional lay-
ers, followed by n fully connected layers. The value of n
changes during the fine-tuning process. Each CNN layer is
followed by a max pooling layer, which produces a feature
map containing the most prominent features of the previ-
ous feature map. A flattening layer is added after the last
convolution to reduce the dimensions and pass the feature
maps to the fully connected layer. We used ReLU activation
functions inside the CNN layers and a sigmoid activation
function for the classification layer. The network parame-
ters were optimized using the Adam method. In the out-
put layer, the loss function was categorical cross-entropy
with class weights to mitigate the uneven class distribu-
tions’ issue; Autonomio Talos [32] was used for learning rate
optimization.

E. TRANSFER LEARNING
We implemented several models to classify whether a PPG
wave belongs to a diabetic subject or not. Firstly, we trained
a model on the DB_shape dataset to perform classification
according to the four PPG shapes proposed by [30]. We then
used the weights and biases of this shape model to pre-train
the HT model. Additionally, we employed the same shape
model weights and biases to pre-train three different models
to detect diabetes. The HT weights and biases were also used
to pre-train three DT2 models that differ in their required
inputs. The first model is trained to classify the presence of
DT2 based only on PPG pulse waves, the second requires
PPG pulse waves along with age and biological sex, while
the third model utilizes PPG pulse waves and PPG-based
features. Each of the proposed models was tested with three
different architectures. During the transfer learning process,
we trained the models and unfroze the layers starting from the
last layer to the input layer. In each new simulation, a new
layer was unfrozen, and the net was trained on the selected
dataset to fine-tune the model. To compare the benefits of
transfer learning, we implemented the same architectures for
DT2 detection without using any pre-trained models. A sum-
mary of all the implemented architectures is presented in
Table 11, Table 12, and Table 13.

IV. RESULTS AND DISCUSSION
In this section, we present and discuss the results obtained
for detecting diabetes with the proposed models. To evaluate
the overall performance of the models, we computed several
indices which are described below. The equations for these
indices are displayed in Table 4. The sensitivity (also called
recall) measures the ability to correctly identify patients
with the disease, while the specificity (also called true
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FIGURE 4. Overview of the proposed flow to assess the transfer learning efficacy in detecting diabetes. TL: transfer learning. HT: hypertension.
DT2: type 2 diabetes. CNN: convolutiona neural network.

negative rate) measures the ability to correctly identify people
without the disease. The negative predictive value (NPV) is
the ratio of subjects who were truly diagnosed as negative to
all those who had negative test results (including patients who
were incorrectly diagnosed as healthy). It predicts how likely
it is for someone to truly be healthy in case of a negative test
result.

The positive predictive value (PPV, also called precision)
is the ratio of subjects truly diagnosed as positive to all
those who had positive test results (including healthy subjects
who were incorrectly diagnosed as pathological). This score
gives a measure of how likely it is for someone to truly be
pathological, in case of a positive test result. The F1 score
is the harmonic mean of the PPV and sensitivity. The AUC
represents the degree or measure of separability, indicating
how well the model can distinguish between the classes.
Since the model classifies a single pulse, we computed the

TABLE 4. Performance parameters equation.

performance scores in three different ways: recording level,
where the scores are computed independently for each pulse;
subject’s average, where the CNN outputs corresponding
to pulses belonging to the same subject are averaged; and
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TABLE 5. Results without transfer learning.

majority voting, where the class attributed to a subject is given
by the majority class obtained by the totality of his pulses.
Tables 5, 6, and 7 present the performance results obtained
without transfer learning, with transfer learning from the
shape CNN model, and with transfer learning from the HT
model, respectively. The three best models (PPG wave, PPG
wave and age/biological sex, PPG wave and PPG features)
were selected based on their performances on the validation
set. Figure 5 shows the performances of the three selected
models. When applying transfer learning from the HTmodel,
the best performances with all three models were reached by
training only the fully connected layers without de-freezing
the convolutional block.

When applying transfer learning from the HT model,
the best performances with all three models were reached
by training only the fully connected layers without de-
freezing the convolutional block. In contrast, when applying
transfer learning from the shape model, DT2[age/biological
sex] and DT2[features] scored the best results when the
convolutional block was also fine tuned, while the DT2
model performed better with all layers pre-trained and not
de-freezed.

For DT2 detection with PPG waves, the best performances
were achieved by the CNN model trained over the DB_DT2
without transfer learning using majority voting. It achieved a
specificity of 64%, sensitivity of 75%, and an AUC of 69.5.
Transfer learning from shape resulted in the worst perfor-
mance, while transfer learning from HT scored lower results

TABLE 6. Results with transfer learning from shape model.

than the baseline. The best model had 41,316 parameters
and, considering double precision, occupies around 2MB of
space.

A. DT2 DETECTION WITH PPG WAVES, AGE, AND
BIOLOGICAL SEX
The best performances were obtained by the CNN model
trained over the DB_DT2 with age and biological sex without
transfer learning, with majority voting achieving a specificity
of 76% and sensitivity of 75%, and an AUC of 75.5.

Transfer learning from the shape and HT models scored
similar and lower results compared to the baselinemodel. The
number of parameters of the best model is 41,184. Taking into
consideration double precision, the model occupies around
2MB of space.

B. DT2 DETECTION WITH PPG WAVES AND
PPG FEATURES
The best performance was obtained by the CNN model
trained over the DB_DT2 with PPG features using transfer
learning from the shape model with majority voting, achiev-
ing a specificity of 44% and a sensitivity of 100% with an
AUC of 72. Transfer learning from HT scored the worst
results, while the model trained without transfer learning
scored similar results compared to the best one. The number
of parameters of the best model is 41,184, and taking into
consideration double precision, the model occupies around
2MB of space.
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FIGURE 5. Visual representation of the models performances. On the columns, from the left to the right: A) performances of the models trained only
with PPG waves, B) performances of the models trained with PPG waves, age and biological sex, C) performances of the models trained with PPG waves
and handcrafted features respectively. From the top to the bottom: recording level, subject’s averaged and majority voting. Yellow for the models without
transfer learning, blue for the models with transfer learning from the shape model and green for transfer learning from the hypertension model (HT).
PPV: positive predictive values; NPV: negative predictive values; SE: sensitivity; SP: specificity; AUC: area under the curve; f1: f1 score.

C. DISCUSSION
Our results suggest that PPG signals have the poten-
tial to detect diabetes. It is possible that with a larger
dataset, we could obtain even better results. Thus, the pro-
posed method could become competitive with traditional
approaches, such as the HbA1c test, which requires well-
equipped medical centers. A summary of the advantages and
disadvantages of the database is shown in Table 8.

As presented in the previous section, the DT2 and
DT2[age/biological sex] models obtained the best

performances when trained without transfer learning
(Table 10). The only model that benefited from transfer
learning was the DT2[features] one.

Despite the fact that, when applying transfer learning from
HT we reached the best performances defreezing only the
final layers, highlighting the similarity between HT and DT2
PPG waves, the fact that it did not improve the results could
be consistent with the results proposed by [15], who reported
a lower AUC score in classifying DT2 in the presence of HT.
It is not surprising that the best performances were obtained
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TABLE 7. Results with transfer learning from HT model.

TABLE 8. Database advantages and disadvantages.

TABLE 9. Best model architecture.

with the majority vote, since we did not apply any quality
assessment to the PPG waves inside DB_DT2. In fact, the
majority vote system allows the model to be more robust
to noisy PPG waves, since it does not take into account the
CNN score but only the final given class. Additionally, from

FIGURE 6. Performance of the proposed model with respect to the state
of the art with modified CNN output threshold (0.427). From the top to
the bottom: A) recording level and B) subject’s averaged and majority
voting. The reference [9] is represented with three different shades of
grey while our model is represented in green. PPV: positive predictive
values; NPV: negative predictive values; SE: sensitivity; SP: specificity;
AUC: area under the curve; f1: f1 score.

TABLE 10. Best model performances and overview.

a clinical point of view, the subject’s averaged output and the
majority voting are preferable to a single record analysis since
the diagnosis cannot change in a short period of time. While
age and biological sex enhanced the PPG classification, the
PPG features as additional input did not improve the per-
formances. This could be caused by the fact that the CNN
model is already capable of extracting significant features
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TABLE 11. Tested CNN architectures without transfer learning.

from the PPG wave and using additional PPG features only
replicates the information without adding additional relevant
information to the input. We will explore new features and
their relation with diabetes. In addition, we will study other
architecture combination schemes between the convolutional
features and the handcrafted features. Overall, the best per-
formance was obtained by the CNN model trained with PPG
waves, age, and biological sex without transfer learning,

reaching an AUC of 75.5. When tested negative, a subject has
a probability of 95% of truly being negative (NPV). When
tested positive, the probability decreases to 33% (PPV). The
model architecture is presented in Table 9. The model has
much fewer parameters than the deep learning architectures
considered in [9]. Our results are consistent with [33], which
showed that low-complexity models perform comparably
well or better than high-complexity models when dealing
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TABLE 12. Tested CNN architectures with transfer learning from shape model.

with small datasets. With small model architectures, a small
dataset is likely to be sufficient for reliable training of the
parameters without the need for transfer learning. Although
there is certainly room for improvement, the presented results
are comparable to the state of the art [9]. To better compare
our results with [9], we additionally computed the perfor-
mance analysis using the sameCNNoutput threshold (0.427).
The results are presented in Figure 6. In [9], the model has

been tested on different datasets. The first reference (Ref1)
is when the model is tested over the test dataset (11,313
subjects), the second (Ref 2) when tested on a contemporary
cohort dataset (7,806 subjects), and the last one (Ref 3) is
when the model is tested over a clinic cohort (181 sub-
jects). Our test set is composed of 31 subjects. The reference
results are represented in gray in the figure, while the perfor-
mance of our model is represented in green. The performance
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TABLE 13. Tested CNN architectures with transfer learning from hypertension model.

parameters have been computed also in this case with
the recording level, subject’s average, and majority voting
approach. Our model scored a comparable NPV and sensi-
tivity, while our PPV and specificity performances overcome
the state of the art. We obtain a comparable AUC. To obtain a
more reliable model, we should train our model over a more
stratified dataset containing more specific information about
the subjects’ disease.

1) LIMITATIONS
Our study has some limitations. First, the diagnosis of dia-
betes was based solely on the subject’s medical record, and no
additional glucose measurements were taken. Second, infor-
mation about the drug treatments followed by the patients
was not included in the available databases. Third, the lack
of information about medical history, such as cardiovascular
accidents, biological sex transition, and drug treatment, could
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lead to biased results due to mislabeled data, as discussed
in previous studies [34], [35]. To compensate for the unbal-
anced classes, we used penalization weights in our analysis.
However, a larger and more balanced database would be
needed to obtain a clinical validation of the model.

V. CONCLUSION
In this study, we have presented a lightweight CNN model
capable of obtaining competitive results compared to the
state of the art in classifying diabetic PPG waves. The best
performance was achieved when age and biological sex were
used as input in addition to PPG waves, without transfer
learning. The model achieved an AUC of 75.5 when calcu-
lated with majority voting. Embedding the proposed model
into a portable device for large-scale screening could improve
diabetes prevention and early treatment. Additionally, the
proposed method only requires a single PPG pulse and no
quality assessment. The chosen segment length makes the
model capable of operating with a variety of signal lengths
without requiring a long PPG acquisition. Age and biological
sex are simple parameters that do not require any clinical
knowledge and allow the model to be used by end-users
without any assistance.

Future improvements will focus on obtaining a more bal-
anced and complete database with glucose measurements and
drug treatments and validating the model with a permutation
test. We will also search for better PPG handcrafted features
to enhance DT2 detection. Since we normalized the length
of the PPG waves, one possible improvement is to inject
this information, which is related to the heart rate, as an
additional feature to the neural net. Further studies are needed
to explore the possibility of using a fused approach between
PPG waves, demographic data, and PPG features. Another
interesting future improvement is to assess the vascular status
of diabetic subjects through PPG signals.
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