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Abstract

Recently, there has been a growing interest for mixed-categorical meta-models based
on Gaussian process (GP) surrogates. In this setting, several existing approaches use
different strategies either by using continuous kernels (e.g., continuous relaxation and
Gower distance based GP) or by using a direct estimation of the correlation matrix. In
this paper, we present a kernel-based approach that extends continuous exponential kernels
to handle mixed-categorical variables. The proposed kernel leads to a new GP surrogate
that generalizes both the continuous relaxation and the Gower distance based GP models.
We demonstrate, on both analytical and engineering problems, that our proposed GP
model gives a higher likelihood and a smaller residual error than the other kernel-based
state-of-the-art models. Our method is available in the open-source software SMT.

1. Introduction

Expensive-to-evaluate blackbox simulations play a key role for many engineering and
industrial applications. In this context, surrogate models have shown great interest for a
wide range of applications, e.g., aircraft design [1], deep neural networks [2], coastal flooding
prediction [3], agriculture forecasting [4], turtle retinas modeling [5] or seismic imaging [6].
These blackbox simulations are generally complex and may involve mixed-categorical input
variables. Typically, an aircraft design tool has to take into account variables such as the
number of panels, the list of cross sectional areas or the material choices.

In this work, we target to learn an inexpensive surrogate model f̂ from a mixed-
categorical blackbox function given by

f : Ω× S × Fl → R. (1)

This function f is typically an expensive-to-evaluate simulation with no exploitable
derivative information. Ω ⊂ Rn represents the bounded continuous design set for the
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n continuous variables. S ⊂ Zm represents the bounded integer set where L1, . . . , Lm are
the numbers of levels of the m quantitative integer variables on which we can define an order
relation and Fl = {1, . . . , L1} × {1, . . . , L2} × . . .× {1, . . . , Ll} is the design space for the
l categorical qualitative variables with their respective L1, . . . , Ll levels. Typical examples
of f can be found in different engineering contexts. Mechanical performance of hybrid
discontinuous composite materials [7] is an example where the mixed-categorical function f
represents the stiffness value which depends on a set of input variables w = (x, c) ∈ Ω×F2.
The continuous part x has two components, the length of the fibers x1 and the proportion of
carbon fibers x2 (i.e.,Ω = [515, 12000]×[0, 1]). The categorical choices c represent the types
of carbon fibers c1 and glass ones c2 (i.e., F2 = {XN-90,T800H}×{GF,T300,C100,C320}).

For that purpose, Gaussian process (GP) [8], also called Kriging model [9], is known
to be a good modeling strategy to learn a response surface model from a given dataset.
Namely, we will consider that our unknown blackbox function f follows a Gaussian process
of mean µf and of standard deviation σf , i.e.,

f ∼ f̂ = GP
(
µf , [σf ]2

)
. (2)

For a general problem involving categorical or integer variables, several modeling strategies
to build a mixed-categorical GP have been proposed [10, 11, 12, 13, 14, 15, 16, 1]. Compared
to a continuous GP, the major changes are in the estimation of the correlation matrix,
the latter being essential to build estimates of µf and σf . Similarly to the process of
constructing a GP with continuous inputs, relaxation techniques [14, 1], continuous latent
variables [16] and Gower distance based models [15] use a kernel-based approach to estimate
the correlation matrix. Other recent approaches try to estimate the correlation matrix
independently of a kernel choice by modeling directly the possible correlation entries of
the correlation matrix [10, 11, 12, 13].

Using GP surrogates is not the only possible approach whatsoever. Random forests
are often used instead of GP as they also can model both mean and variance [17] and tree-
structured Parzen estimators have been shown to be well-adapted for such problems [18].
Other surrogate models for blackbox include ReLU functions [19], piecewise linear neural
network [20] or categorical regression splines [21]. Models other than GP could also be
based on a mixed integer kernel as for support vector regression [22] or on a mixed integer
distance as for radial basis functions [23]. Another classical modeling strategy is to consider
a different continuous model for every possible categorical choice and to build another
model peculiar to the categorical variables besides the continuous models. This categorical
model can be, for instance, a probability law [24], a multi-arm bandit [25] or an integer
model [26]. Also, in case of prior information, latent variables approaches [16] and user-
defined neighbourhood [27] based models are of great interest.

In this paper, we target to extend the classical paradigm for continuous inputs (where
a kernel is used to build the GP) to cover the mixed-categorical case. Namely, we will
present a kernel-based approach that will lead to a unified model for existing approximation
strategies [10, 14, 15]. Namely, this work unifies both distance based kernels and matrix
based kernels into a unique homogeneous formulation. This work generalizes existing
methods that were already proven to be efficient over deep learning models [14] and
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analytical test cases [15]. A similar kernel for the estimation of the correlation matrix
could be applied to continuous, integer and categorical inputs. The good potential of the
proposed approach is shown and analyzed over analytical and industrial test cases.

Another main benefit behind the use of specific kernels [10, 11, 12, 13] to handle
mixed-categorical inputs is to model accurately correlations between the variables; which
is required to get accurate GP models. It might be possible to use continuous kernels
to model categorical data but in this case one needs to define a distance function. Such
function is not trivial to define on categorical data; only simple distances are possible
(e.g., Gower distance [15]) which in general leads to poor GP models. This paper shows
in particular the utility of mixed-categorical kernel over continuous based ones on both
analytical and industrial test cases.

The GP models and the Bayesian Optimization (BO) that could be performed with
them are implemented in the Surrogate Modeling Toolbox (SMT) v2.01 [28]. Our modeling
software is free and open-source and has been used regularly in the aircraft industry, for
example with a deep learning model [29, 30, 31, 32] or with a deep gaussian process [33, 34].

The remainder of this paper is as follows. In Section 2, a detailed review of the GP model
for continuous and for categorical inputs is given. The extended kernel-based approach for
constructing the correlation matrix is presented in Section 3. Section 4 presents academical
tests as well as the obtained results. Conclusions and perspectives are finally drawn in
Section 5.

2. GP for mixed-categorical inputs

In this section, we will present the mathematical background associated with GP for
mixed-categorical variables. This part also introduces the notations that will be used
throughout the paper. In this section, we are considering the general case involving mixed
integer variables. Namely, we assume that f : Rn × Zm × Fl 7→ R and our goal is to build
a GP surrogate model for f .

Given a set of data points, called a Design of Experiments (DoE) [35], Bayesian inference
learns the GP model that explains the best this data set. A GP model consists of a mean
response hypersurface µf , as well as an estimation of its variance [σf ]2. In the following,
nt denotes the size of the given DoE data set (W,yf ) such that W = {w1, w2, . . . , wnt} ∈
(Rn × Zm × Fl)nt and yf = [f(w1), f(w2), . . . , f(wnt)]⊤. For an arbitrary w = (x, z, c) ∈
Rn × Zm × Fl, not necessary in the DoE, the GP model prediction at w writes as f̂(w) =
µ(w)+ϵ(w) ∈ R, with ϵ being the error between f and the model approximation µ [36]. The
considered error terms are random variables of variance σ2. Using the DoE, the expression
of µf and the estimation of its variance [σf ]2 are given as follows:

µf (w) = µ̂f + r(w)⊤[R(Θ)]−1(yf − 1µ̂f ), (3)

1https://smt.readthedocs.io/en/latest/
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and

[σf (w)]2 = [σ̂f ]2

[
1− r(w)⊤[R(Θ)]−1r(w) +

(
1− 1⊤[R(Θ)]−1r(w)

)2
1⊤[R(Θ)]−11

]
, (4)

where µ̂f and σ̂f , respectively, are the maximum likelihood estimator (MLE) [37] of µ and
σ. 1 denotes the vector of nt ones. R is the nt × nt correlation matrix between the input
points and r(w) is the correlation vector between the input points and a given w. The
correlation matrix R is defined, for a given couple (r, s) ∈ ({1, . . . , nt})2, by

[R(Θ)]r,s = k (wr, ws,Θ) ∈ R, (5)

and the vector r(w) ∈ Rnt is defined as r(w) = [k(w,w1), . . . , k(w,wnt)]⊤, where k is a
given correlation kernel that relies on a set of hyperparameters Θ [38, 39]. The mixed-
categorical correlation kernel is given as the product of three kernels:

k(wr, ws,Θ) = kcont
(
xr, xs, θcont

)
kint

(
zr, zs, θint

)
kcat

(
cr, cs, θcat

)
, (6)

where kcont and θcont are the continuous kernel and its associated hyperparameters, kint

and θint are the integer kernel and its hyperparameters, and last kcat and θcat are the ones
related with the categorical inputs. In this case, one has Θ = {θcont, θint, θcat}. Henceforth,
the general correlation matrix R will rely only on the set of the hyperparameters Θ:

[R(Θ)]r,s = [Rcont(θcont)]r,s[R
int(θint)]r,s[R

cat(θcat)]r,s, (7)

where [Rcont(θcont)]r,s = kcont(xr, xs, θcont), [Rint(θint)]r,s = kint(zr, zs, θint) and
[Rcat(θcat)]r,s = kcat(cr, cs, θcat). The set of hyperparameters Θ could be estimated using
the DoE data set (W,yf ) through the MLE approach on the following way

Θ∗ = argmax
Θ

L(Θ) :=

(
−1

2
yf⊤[R(Θ)]−1yf − 1

2
log |[R(Θ)]| − nt

2
log 2π

)
, (8)

where R(Θ) is computed using Eq. (7). To construct the correlation matrix, several choices
for the correlation kernel are possible. Usual families of kernels include exponential kernels
or Matern kernels [40]. In the rest of this section, we will focus mainly on the exponential
kernels and describe in details the construction of the continuous Rcont(θcont), the integer
Rint(θint) and the categorical Rcat(θcat) correlation matrices.

2.1. Correlation matrices for continuous and integer inputs
The construction of the correlation matrix Rcont(θcont) for continuous inputs, based

on an exponential kernel, can be described as follows. For a couple of continuous inputs
xr ∈ Rn and xs ∈ Rn, one sets

[Rcont(θcont)]r,s =
n∏

j=1

exp
(
−θcontj

∣∣xr
j − xs

j

∣∣p). (9)
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Different values for p can be used. Typically, when p = 1, one gets the absolute exponential
kernel (Ornstein-Uhlenbeck process [40]) and, when p = 2, the squared exponential kernel
(or Gaussian kernel [8]) is obtained. Clearly, in the continuous case, constructing Rcont(θcont)
would require the estimation of n non-negative hyperparameters, i.e., θcont ∈ Rn

+.
Thanks to a continuous relaxation technique that transforms integer inputs into

continuous ones, the integer inputs can be naturally handled with continuous kernels.
On this base, in what comes next, there will be no distinction between continuous and
integer inputs; the two of them will be handled in the same way. In fact, for integer
variables, the distance defined in the continuous case is still valid. Thus, for an integer
couple zr ∈ Zm and zs ∈ Zm, a natural extension of the exponential kernel that handles
integer variables can be given as follows:

[Rint(θint)]r,s =
m∏
j=1

exp
(
−θintj

∣∣zrj − zsj
∣∣p). (10)

In a similar fashion, constructing Rint(θint) would require the estimation of m non-negative
hyperparameters, i.e., θint ∈ Rm

+ .

2.2. Correlation matrices for categorical inputs
For categorical inputs, different choices can be made to build the correlation matrix

Rcat(θcat). Some choices are sophisticated and can therefore lead to better GP models,
but are known to be computationally expensive (particularly as the number of categorical
inputs increases) [13, 10]. On the contrary, simple extensions of the well-known continuous
kernels based on the Gower distance [15] or on the continuous relaxation techniques [41]
would be less expensive. In the rest of this section, we will describe three known techniques
to build correlation matrices for categorical inputs that are based on kernels.

2.2.1. Gower distance based kernel
The Gower distance based kernel dedicates one hyperparameter per categorical input

variable [15, 7]. Namely, for two given inputs cr ∈ Fl and cs ∈ Fl, the Hamming distance,
or score, s between the ith component of cr and cs is defined as: s(cri , csi ) = 0 if cri = csi ,
otherwise s(cri , c

s
i ) = 1. Thanks to the Hamming distance, one can straightforwardly uses

a continuous kernel to define Rcat(θcat). For instance, in the case of an exponential kernel,
the Gower distance based correlation matrix will be given by

[Rcat(θcat)]r,s = kcat(cr, cs, θcat) =
l∏

i=1

exp
(
−θcati s(cri , c

s
i )

p
)
.

Similarly to the continuous and integer correlation matrices, the construction of the
categorical correlation matrix based on the Gower distance kernel requires the estimation
of l hyperparameters (θcat ∈ Rl

+). Note that, as the Hamming distance can only take the
values 0 and 1, all the exponential kernels lead to the same result independently of the
value of p.
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2.2.2. Continuous relaxation based kernel
To handle categorical variables through continuous relaxation, the design space Fl is

relaxed to a continuous space Ωl constructed in the following way. For a given i ∈ {1, . . . , l},
let ci be the ith categorical variable with Li levels, and, for a given input point cr, let ℓir be
the index of the level taken by cr on the variable i. Denote ecri the one-hot encoding [41] of
cri that takes value 0 everywhere but on the dimension ℓir: ecri ∈ RLi such that

(
ecri
)
ℓir
= 1

and
(
ecri
)
k
= 0 for k ̸= ℓir. For example, if the ith component is the color with Li = 3

levels being {red, blue, green} and if the rth variable takes value blue (cri = blue), then the
corresponding index is ℓir = 2 and the corresponding one-hot encoding is ecri = (0, 1, 0).
The continuous relaxation idea is as follows. At the beginning we set Ωl to be empty, then,
for each i ∈ {1, . . . , l}, a relaxed one-hot encoding is used for ci. The latter increases the
dimension of the relaxed continuous space Ωl by Li and, at the end of the relaxation, we
get the final continuous design space Ωl ⊆ {0, 1}nl , where nl =

∑l
i=1 Li > l. Like the

Gower distance based kernel, the continuous relaxation based kernel adapts continuous
kernels to handle categorical variables, i.e., for a couple of categorical inputs cr and cs,

[Rcat(θcat)]r,s = kcat(cr, cs, θcat) =
l∏

i=1

kcat(cri , c
s
i , θ

cat) =
l∏

i=1

Li∏
j=1

kcont([ecri ]j, [ecsi ]j, θ
cat).

Typically, for an exponential continuous kernel, one has

[Rcat(θcat)]r,s =

l∏
i=1

Li∏
j=1

exp
(
−θcat∑i−1

i′=1
Li′+j

∣∣[ecri ]j − [ecsi ]j
∣∣p), (11)

and, by using the one-hot encoding structure of ecri and ecsi , it leads to

[Rcat(θcat)]r,s =

l∏
i=1

exp
(
−θcat∑i−1

i′=1
Li′+ℓir

− θcat∑i−1
i′=1

Li′+ℓis

)
.

Hence, this kernel relies on nl =
∑l

i=1 Li hyperparameters (θcat ∈ Rnl

+ ) which can be much
more higher than the number of hyperparameters required to build the Gower distance
based kernel. Due to one-hot encoding strategy, the value of p is also irrelevant for the
construction of the continuous relaxation based kernel.

2.2.3. Homoscedastic hypersphere kernel
The idea of the homoscedastic hypershere kernel [13, 10] is to directly model the

correlation matrix instead of looking for a kernel function. The use of a kernel function
guarantees the related correlation matrix Rcat to be symmetric positive definite (SPD).
However, with the homoscedastic hypershere kernel, one will directly construct an SPD
matrix with the desired properties. Namely, for a given i ∈ {1, . . . , l}, let cri and csi be a

6



couple of categorical variables taking respectively the ℓir and the ℓis level on the categorical
variable ci, [Rcat(θcat)]r,s can be formulated in a level-wise form [10] as:

[Rcat(θcat)]r,s = kcat(cr, cs, θcat) =
l∏

i=1

[Ri(Θi)]ℓir,ℓis =
l∏

i=1

[C(Θi)C(Θi)
⊤]ℓir,ℓis . (12)

For all i ∈ {1, . . . , l}, the matrix C(Θi) ∈ RLi×Li is lower triangular and built
using a hypersphere decomposition [42, 43] from a symmetric matrix Θi ∈ RLi×Li of
hyperparameters. For any k, k′ ∈ {1, . . . , Li}, the matrix C(Θi) is given by:

[C(Θi)]1,1 = 1,

[C(Θi)]k,1 = cos ([Θi]k,1) for any 2 ≤ k ≤ Li

[C(Θi)]k,k′ = cos ([Θi]k,k′)
∏k′−1

j=1 sin ([Θi]k,j) , for any 2 ≤ k′ < k ≤ Li

[C(Θi)]k,k =
∏k−1

j=1 sin ([Θi]k,j) , for any 2 ≤ k ≤ Li,

(13)

where the hyperparameters are set such that [Θi]k,k′ ∈ [0, π] for all 1 ≤ k′ < k ≤ Li. For
this kernel, the hyperparameters θcat can be seen as a concatenation of the set of symmetric
matrices, i.e., θcat = {Θ1,Θ2, . . . ,Θl}. The construction of this kernel is thus relying on
the estimation of

∑l
i=1

1
2
Li(Li − 1) hyperparameters. Unlike the previous kernels where

the elements of the correlation matrix are non-negative, the correlation values for the
homoscedastic hypersphere kernel can be negative, i.e., [Rcat(θcat)]r,s ∈ [−1, 1].

3. An exponential kernel-based model for categorical inputs

In this section, we propose an extension of the classical exponential kernels (used for
continuous inputs) to handle categorical variables. Thanks to the one-hot encoding, we can
replace the distance-based approach by an hyperparameter-based approach. This extension
will naturally lead to a generalization of both continuous relaxation and Gower distance
based kernels.

Distance based approaches (like Gower distance or continuous relaxation) can not
model every possible correlation between the various categorical choices. Therefore, these
methods do not lead to an exhaustive GP model but to an imprecise approximation. In
what follows, we propose to introduce a new formulation that includes a correlation matrix
so that we could reach a higher accuracy for the resulting distance-based GP model. To
begin with, the continuous relaxation kernel described in Eq. (11) can be reformulated as:

[Rcat(θcat)]r,s =

l∏
i=1

Li∏
j=1

exp
(
−
∣∣[ecri − ecsi ]j

∣∣p/2 [Θi]j,j
∣∣[ecri − ecsi ]j

∣∣p/2), (14)

where, for all i = 1, . . . , l, the matrix Θi ∈ RLi×Li is diagonal such that [Θi]j,j =
θcat∑i−1

i′=1
Li′+j

∈ R+, and θcat is defined as the list of hyperparameter matrices θcat =

{Θ1, . . . ,Θl}. The idea of the new kernel is the following: we start from the reformulation
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of the continuous relaxation kernel of Eq. (14). Then, as for the kernel of Eq. (12), we
consider, for every categorical variable i = 1, . . . , l, a SPD matrix Φ(Θi) ∈ RLi×Li used to
build a kernel associated with the correlation matrix Ri(Φ(Θi)). Let cri and csi be a couple
of categorical variables taking respectively the ℓir and the ℓis level of the variable ci, we set

[Rcat(θcat)]r,s =
l∏

i=1

[Ri(Φ(Θi))]ℓir,ℓis , (15)

and, for all i = 1, . . . , l, one has

[Ri(Φ(Θi))]ℓir,ℓis =

Li∏
j=1

Li∏
j′=1

exp
(
−
∣∣[ecri − ecsi ]j

∣∣p/2 [Φ(Θi)]j,j′
∣∣[ecri − ecsi ]j′

∣∣p/2), (16)

where ℓir and ℓis are the indices of the levels taken by the variables cr and cs, respectively, on
the ith categorical variable and the coefficient [Φ(Θi)]ℓir,ℓis is characterizing the correlation
between these two levels.

Remark 1. One can easily see that Eq. (16) generalizes the continuous relaxation approach.
In fact, by setting Φ(Θi) = Θi to be a diagonal matrix, we recover Eq. (14).

Now, by using the one-hot encoding nature of the vectors ecri and ecsi , we get naturally
what follows. Namely, if cri = csi , one deduces that [Ri(Φ(Θi))]ℓir,ℓis = exp(0) = 1. Otherwise,
if cri ̸= csi , we get

[Ri(Φ(Θi))]ℓir,ℓis = exp

(
−

Li∑
j=1

Li∑
j′=1

∣∣[ecri − ecsi ]j
∣∣p/2 [Φ(Θi)]j,j′

∣∣[ecri − ecsi ]j′
∣∣p/2)

= exp
(
−
(
[Φ(Θi)]ℓir,ℓir + [Φ(Θi)]ℓis,ℓis + [Φ(Θi)]ℓir,ℓis + [Φ(Θi)]ℓis,ℓir

))
= exp

(
−[Φ(Θi)]ℓir,ℓir − [Φ(Θi)]ℓis,ℓis − 2[Φ(Θi)]ℓir,ℓis

)
.

(17)

Remark 2. Note that the resulting correlation matrix Ri(Φ(Θi)) does not depend on the
chosen parameter p (used within the definition of the exponential kernels). Therefore, in
our case, when dealing with categorical variables kernels, there will be no distinction between
squared or absolute exponential kernels.

In addition, as far as the matrices Θi respect a specific parameterization, we will show
that our approach guarantees that the correlation matrix R is SPD with a unit diagonal
and off-diagonal terms values in [0, 1] [44]. In general, the latter properties are required to
be satisfied by the correlation matrices. Otherwise, one may get numerical issues to build
the GP model, see Eq. (3) and Eq. (4). For that purpose, for a given i ∈ {1, . . . , l}, we
propose to use the following parameterization for the hyperparameter matrix Φ(Θi):

[Φ(Θi)]j,j := [Θi]j,j ≥ 0

[Φ(Θi)]j,j′ :=
log ϵ

2
([C(Θi)C(Θi)

⊤]j,j′ − 1) if j ̸= j′,
(18)
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where the parameter ϵ is chosen as a small positive tolerance (0 < ϵ ≪ 1) and the matrix
C(Θi) is a Cholesky lower triangular matrix that relies on the symmetric matrix Θi of
Li(Li− 1)/2 elements in [0, π

2
]. The elements of C(Θi) represent the coordinates of a point

on the surface of a unit radius sphere as in [13, 10]. They are described in Eq. (13). Note
that, by taking into consideration the symmetry of the matrix Θi, the total number of
hyperparameters for the categorical variable i is Li(Li+1)

2
.

In the next theorem, we will show that the parameterization given by Eq. (18)
guarantees the desirable properties for the correlation matrices Ri(Θi) and therefore
for the matrix Rcat. In particular, we will show that the matrix Rcat(θcat) is SPD with
elements in [0, 1], i.e., for all s, r ∈ {1, . . . , nt}, [Rcat(θcat)]r,s ∈ [0, 1].

Theorem 1. Assume that, for all i ∈ {1, . . . , l}, Φ(Θi) satisfies the parameterization
of Eq. (18). Then the matrix Rcat(θcat), given by Eq. (15), is SPD with elements in [0, 1].

Proof. Indeed, for all i ∈ {1, . . . , l}, by using Eq. (17) and Eq. (18), one has

[Ri(Φ(Θi))]ℓir,ℓis = [Wi]ℓir,ℓis [Ti]ℓir,ℓis , if ℓir ̸= ℓis
[Ri(Φ(Θi))]ℓir,ℓir = 1,

where [Wi]ℓir,ℓis = exp
(
−[Θi]ℓir,ℓir − [Θi]ℓis,ℓis

)
and [Ti]ℓir,ℓis = exp

(
−2[Φ(Θi)]ℓir,ℓis

)
. The

matrix Ri(Φ(Θi)) is thus defined as a Hadamard product (i.e., element-wise product
of matrices) [45]. Hence, by application of the Schur product theorem [46, Lemma 3.7.1], it
suffices to show that the matrices Wi and Ti are SPD to prove that Ri is also SPD. Taking
into account that, for all s, r ∈ {1, . . . , nt}, ecri and ecsi are one-hot encoding elements of
RLi , the matrix Wi corresponds to the correlation matrix associated with the exponential
kernel in the continuous space, i.e.,

[Wi]ℓir,ℓis = exp
(
−[Θi]ℓir,ℓir − [Θi]ℓis,ℓis

)
=

Li∏
j=1

exp
(
−[Θi]j,j

∣∣[ecri − ecsi ]j
∣∣p).

Hence, since the diagonal elements of Θi are positive, the matrix Wi is SPD. In fact, the
kernel function ϕ(x) = exp[−θ|x|p] is positive definite for a given positive θ if 0 < p ≤ 2 [47,
Corollary 3]. Regarding the matrix Ti, by using the fact that Θi satisfies Eq. (18), one has

[Ti]ℓir,ℓis = ϵ exp
(
−(log ϵ)[C(Θi)C(Θi)

⊤]ℓir,ℓis
)
. (19)

For an ϵ ∈ (0, 1), the matrix −(log ϵ)[C(Θi)C(Θi)
T ] is SPD as a Cholesky like-

decomposition matrix. Thus, Ti is also SPD as the Hadamard exponential of an SPD
matrix [48, Theorem 7.5.9].

For the second part of the proof, the matrix C(Θi) is constructed by hypersphere
decomposition such that the values of C(Θi)C(Θi)

⊤ belong to [0, 1] [49]. Hence,

[Ti]ℓir,ℓis = ϵ exp
(
−(log ϵ)[C(Θi)C(Θi)

⊤]ℓir,ℓis
)
≥ ϵ exp 0 = ϵ,

[Ti]ℓir,ℓis = ϵ exp
(
−(log ϵ)[C(Θi)C(Θi)

⊤]ℓir,ℓis
)
≤ ϵ

ϵ
= 1.
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Also, the elements of the matrix Wi are in [0, 1] since the diagonal elements of Θi are
chosen to be positive. Consequently, the extra-diagonal elements of Ri are in [0, 1]. Finally,
the Hadamard product being conservative for those two latter properties, one concludes
that the correlation matrix Rcat(θcat) is SPD and all its elements are in [0, 1].

Remark 3. For a given small ϵ > 0, the transformation

α → ϵ exp[− log(ϵ)(α− 1)] (20)

is a bijection over [ϵ, 1], thus one can deduce that (when [Ti]j,j′ > ϵ for all j, j′) there exists
a unique matrix Θ̂i such that

Ti = C(Θ̂i)C(Θ̂i)
⊤.

This, in particular, shows that if we set Wi to identity in our parameterization, then, as
far as the correlations are larger than ϵ, the homoscedastic hypersphere parameterization
of Zhou et al. [11, 10] is equivalent to our proposed one.

In the next theorem, using the hypersphere decomposition properties [43], we will show
that the correlation matrix Ri, as given by Eq. (17), can be built in an equivalent way
without the diagonal elements of the matrix Φ(Θi). Such result is of high interest as it
reduces the number of hyperparameters from Li(Li+1)

2
to Li(Li−1)

2
per categorical variable i

without any loss in the accuracy in the final model.

Theorem 2. The correlation matrix Ri, as given by Eq. (17), can be rewritten as follows

[Ri(Φ(Θ̄i))]ℓir,ℓis =exp
(
−2[Φ(Θ̄i)]ℓir,ℓis

)
, if ℓir ̸= ℓis

[Ri(Φ(Θ̄i))]ℓir,ℓir =1,
(21)

where [Φ(Θ̄i)]ℓir,ℓis = log ϵ
2
([C(Θ̄i)C(Θ̄i)

⊤]ℓir,ℓis − 1) and Θ̄i is a symmetric matrix whose
diagonal elements are set to zero (i.e., [Θ̄i]j,j = 0 for all j = 1, . . . , Li).

Proof. Indeed, by using the hypersphere decomposition [43], any SPD matrix Ti(Θi) with
unitary diagonal and values in [ϵ, 1] can be modeled as Ti(Θi) = [C(Θ̂i)C(Θ̂i)

⊤] from a
certain symmetric matrix Θ̂i without using additional diagonal elements (i.e., [Θ̂i]j,j = 0
for all j = 1, . . . , Li). Thus, using the fact that Ri(Θi) is written as the image of this SPD
matrix Ti(Θi) by the element-wise transformation of Eq. (20) bijective over [ϵ, 1], one can
deduce that there must exist a symmetric matrix Θ̄i whose diagonal elements are set to
zero (i.e., [Θ̄i]j,j = 0 for all j = 1, . . . , Li) such that

[Ri(Φ(Θ̄i))]ℓir,ℓis =exp
(
−2[Φ(Θ̄i)]ℓir,ℓis

)
, if ℓir ̸= ℓis

[Ri(Φ(Θ̄i))]ℓir,ℓir =1,

where [Φ(Θ̄i)]ℓir,ℓis =
log ϵ
2
([C(Θ̄i)C(Θ̄i)

⊤]ℓir,ℓis − 1).
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In what comes next, we will refer to our kernel when it uses the parameterization
of Eq. (21) as the Exponential Homoscedastic Hypersphere (EHH) kernel (see Remark 3).
We will call the original parameterization of the correlation matrix (as given by Eq. (17))
as the Fully Exponential (FE) kernel. Note that, as explained in Appendix A, whenever
the matrix Θi is chosen to be diagonal, the matrix Φ(Θi) used within FE kernel will also
be diagonal. Thus, we are able to recover the continuous relaxation kernel [14] and this
parameterization will be called the Continuous Relaxation (CR) kernel. Similarly, if we
choose Θi to be of the form θi × ILi

where θi ∈ R+ and ILi
is the identity matrix of size

Li, we are able to recover the Gower distance based kernel [15]: this parameterization will
be called the Gower Distance (GD) kernel.

As mentioned earlier, the EHH kernel is similar to the FE kernel. Therefore, we can
deduce that the EHH kernel generalizes the CR kernel and also that the CR kernel
generalizes the GD kernel. Table 1 gives all the details associated with the four categorical
kernels described above, i.e., GD, CR, EHH and FE.

Table 1: Description of the four categorical kernels (GD, CR, EHH and FE) using our proposed exponential
parameterization.

Kernel Θi = [Ri(Θi)]ℓir,ℓis = # of Hyperparam.

GD
θi
2

×


1 9 Sym.9
0 1 9
... . . . . . . 9
0 . . . 0 1

 exp
(
−[Φ(Θi)]ℓir,ℓir − [Φ(Θi)]ℓis,ℓis

)
1

CR


[Θi]1,1 9 9 Sym.

0 [Θi]2,2 9
... . . . . . . 9
0 . . . 0 [Θi]Li,Li

 exp
(
−[Φ(Θi)]ℓir,ℓir − [Φ(Θi)]ℓis,ℓis

)
Li

EHH


0 9 Sym.9

[Θi]1,2 0 9
... . . . . . . 9

[Θi]1,Li
. . . [Θi]Li−1,Li

0

 exp
(
−2[Φ(Θi)]ℓir,ℓis

)
1
2
Li(Li − 1)

FE


[Θi]1,1 9 Sym.9
[Θi]1,2 [Θi]2,2 9

... . . . . . . 9
[Θi]1,Li

. . . [Θi]Li−1,Li
[Θi]Li,Li

 exp (−[Φ(Θi)]ℓir,ℓir − [Φ(Θi)]ℓis,ℓis − 2[Φ(Θi)]ℓir,ℓis)
1
2
Li(Li + 1)

To sum up, we have seen that the HH kernel can be more general than the EHH one
(as it can deal with negative correlations) and that EHH generalizes both CR and GD.
All these categorical models can be unified in a single formulation as follows. For each
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i ∈ {1, . . . , l}, a hyperparameter matrix Θi is associated with each variable ci, i.e.,

Θi =


[Θi]1,1 9 Sym.9
[Θi]1,2 [Θi]2,2 9

... . . . . . . 9
[Θi]1,Li

. . . [Θi]Li−1,Li
[Θi]Li,Li

 .

The correlation term [Ri(Θi)]ℓir,ℓis associated with ci can be formulated in the following
level-wise form:

[Ri(Θi)]ℓir,ℓis = κ([Φ(Θi)]ℓri ,ℓsi ) κ([Φ(Θi)]ℓsi ,ℓri ) κ([Φ(Θi)]ℓri ,ℓri ) κ([Φ(Θi)]ℓsi ,ℓsi ),

where κ can be set either to any positive definite kernel (to get GD, CR, EHH or FE
kernels) or to identity (to get HH kernel). The transformation function Φ(.) is selected
such that, for any SPD matrix Θi, the output matrix Φ(Θi) is also SPD. Table 2 gives a
list of possible choices for Φ when the is function κ is set to exponential or identity. For all
categorical variables i ∈ {1, . . . , l}, the matrix C(Θi) ∈ RLi×Li (lower triangular) is built
using a hypersphere decomposition.

Table 2: Kernels using different choices for the function Φ.

Kernel κ(ϕ) Φ(Θi)

GD exp(−ϕ) [Φ(Θi)]j,j :=
1

2
θi ; [Φ(Θi)]j ̸=j′ := 0

CR exp(−ϕ) [Φ(Θi)]j,j := [Θi]j,j ; [Φ(Θi)]j ̸=j′ := 0

EHH exp(−ϕ) [Φ(Θi)]j,j := 0 ; [Φ(Θi)]j ̸=j′ :=
log ϵ

2
([C(Θi)C(Θi)

⊤]j,j′ − 1)

HH ϕ [Φ(Θi)]j,j := 1 ; [Φ(Θi)]j ̸=j′ := [C(Θi)C(Θi)
⊤]j,j′

In the next section, we will see how these kernels perform on different test cases. In
particular, we study numerically the trade-off between the kernel efficiencies and their
respective computational efforts (related directly to the number of hyperparamters).

4. Results and discussion

In this section, we propose several illustrations and comparisons on three different test
cases (from 2 to 10 continuous variables and 1 or 2 categorical variables up to 12 levels) to
show the interest of our method and the equivalence with other kernels from the literature.
The likelihood value and the approximate errors are the quantities of interest considered
to compare different correlation kernels.

4.1. Implementation details
The optimization of the likelihood as a function of the hyperparameters needs a

performing gradient-free algorithm, in this work, we are using COBYLA [50] to maximize
this quantity from the Python library Scipy with default termination criterion related to

12



the trust region size. As COBYLA is a local search algorithm, a multi-start technique is
used. Our models and their implementation are available in the toolbox SMT v2.02 [28].
By default, in SMT, the number of starting points for COBYLA is equal to 10 with evenly
spaced starting points.

A simple noiseless Kriging with a constant prior model for the GP is used. We
recall that the absolute exponential kernel and the squared exponential kernel are similar
for categorical variables and differ only for the continuous ones. The correlation values
range between 2.06e-9 and 0.999999 for both continuous and categorical hyperparameters.
Therefore, the constant ϵ is chosen to correspond to a correlation value of 2.06e-9. The
random DoEs are drawn by Latin Hypercube Sampling (LHS) [51] and the validation sets
are given by some evenly spaced points.

4.2. Analytic validation: a categorical cosine problem (n = 1, m = 0, l = 1 and L1 = 13)
In this section, we consider the categorical cosine problem, from [13], to illustrate the

behaviour of our proposed kernels. In this problem, the objective function f depends on
a continuous variable in [0, 1] and on a categorical variable with 13 levels. Appendix B
provides a detailed description of this function. Let w = (x, c) be a given point with x
being the continuous variable and c being the categorical variable, c ∈ {1, . . . , 13}. There
are two groups of curves corresponding to levels 1 to 9 and levels 10 to 13 with strong
positive within-group correlations, and strong negative between-group correlations.

In this example, the number of relaxed dimensions for continuous relaxation is 14. A
LHS DoE with 98 points (14×7, if 7 points per dimension are considered) is chosen to built
the Gaussian process models. The associated mean posterior models are shown on Fig. 1
for GD, CR, EHH and HH. The number of hyperparameters to optimize is therefore 2
for GD, 14 for CR and 79 for EHH and HH as indicated in Table 3. Fig. 1 shows that
the predicted values remain properly within the interval [−1, 1] only with HH and EHH
kernels. Therefore, these kernels seem to be better modeling methods.

To better assess the accuracy of each kernel, we compute the root mean square error
(RMSE) and the predictive variance adequacy (PVA) [52] are respectively given by

RMSE =

√√√√ n∑
i=1

1

n

(
f̂(wi)− f(wi)

)2
and PVA = log

 n∑
i=1

1

n

(
f̂(wi)− f(wi)

)2
[σf (wi)]2


where n is the size of the validation set, f̂(wi) is the prediction of our GP model at point
wi and f(wi) is the associated true value and the validation set consists of 13000 evenly
spaced points (see Appendix B). The values, reported in Table 3, show that the PVA is
constant, meaning that the estimation of the variance is kept proportional to the RMSE.
The RMSE decreases as the number of hyperparameters is increasing.

2https://smt.readthedocs.io/en/latest/
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(a) GD kernel (b) CR kernel

(c) EHH kernel (d) HH kernel

Fig. 1: Mean predictions for our proposed model using different kernels over the matrix Θ1 for the cosine
problem with a 98 point DoE.

Table 3: Kernel comparison for the cosine test case

Kernel # of Hyperparam. RMSE PVA CPU time (s)
GD 2 30.079 21.99 1.4
CR 14 22.347 23.04 24.5

EHH 79 1.882 23.74 514.5
HH 79 1.280 24.31 514.5

Fig. 2 shows a comparison between the FE and EHH kernels. Although the two kernels
are equivalent in exact precision, the EHH kernel shows more stable and better results in
term of the accuracy compared to the FE general kernel. For this reason, in what comes
next, only the EHH kernel will be considered on practical use cases.
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(a) EHH kernel: 79 hyperparameters, RMSE= 1.882. (b) FE kernel: 92 hyperparameters, RMSE= 22.610.

Fig. 2: Mean predictions comparison between EHH and FE kernels over the matrix Θ1 for the cosine
problem with a 98 point DoE.

The estimated correlation matrix Ri = Rcat
1 is shown in Fig. 3. For two given levels

{ℓ1r, ℓ1s}, the correlation term [R1]ℓ1r,ℓ1s is in blue for correlation values close to 1, in white
for correlations close to 0 and in red for values close to -1; moreover the thinner the ellipse,
the higher the correlation and we can see that the correlation between a level and itself
is always 1. As expected, with GD kernel, there is only one estimated "mean correlation"
as in Fig. 3a. For CR kernel (see Fig. 3b), the most important levels (1 to 9) are strongly
correlated (in blue) with one another and the other levels (10 to 13) that should also
have been correlated are badly estimated because of the kernel limitations that neglected
them. In contrast, the EHH kernel (see Fig. 3c) gives a good approximation of the real
correlations as it recovers the two groups of highly correlated levels. We recover the levels
1 to 9 as strongly similar and the levels 10 to 13 as strongly similar which is a good point
but the two groups, even if less similar, are still positively correlated with one another. The
latter between-group correlations should have been negative but the squared exponential
kernel does not allow negative values. The comparison with the HH kernel, as proposed
in [11], see Fig. 3d, shows that even if the HH kernel is more general compared to EHH
kernel, both kernels have an RMSE of the same order of magnitude (around 1.8 for EHH
and 1.3 for HH).

On this particular test case, with a 98 point DoE, the more general the kernel, the
better the performance and precision of the resulting GP. To show the DoE size impact,
on Fig. 4, we draw 6 LHS DoEs of different sizes and we plot the RMSE and computational
time for the kernels to see how they behave for different DoE sizes.
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(a) GD kernel. (b) CR kernel.

(c) EHH kernel. (d) HH kernel.

Fig. 3: Correlation matrix Rcat
1 using different choices for Θ1 on the cosine problem with a DoE of 98

points.

(a) RMSE value versus DoE size. (b) CPU time (log scale) versus DoE size.

Fig. 4: RMSE and CPU time to compute models with respect to DoE size.

As expected, when the size of the DoE is too small for the problem (here smaller than
15 points), the three model behaviours are similarly bad because too little information
is available for the hyperparameters optimization. However, when the size of the DoE is
sufficiently large, we found the same hierarchy we found with 98 points on Fig. 1 and the
more complex the model, the faster the RMSE convergence. Nevertheless, on Fig. 4b, we
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can see that the computational costs of the models scale hardly with the DoE size on a
logarithmic scale.

4.3. Application to engineering problems
To validate and compare our method on real applications, we will consider two

engineering problems of different scale to analyze the model behaviour. In Section 4.3.1,
we present an engineering beam bending problem and in Section 4.3.2, we introduce a
complex system problem from aircraft design.

4.3.1. Cantilever beam bending problem (n = 2, m = 0, l = 1 and L1 = 12)
A first engineering problem commonly used for model validation is the beam bending

problem in its linear elasticity range [13, 53].This problem is illustrated on Fig. 5a and
consists of a cantilever beam loaded at its free extremity with a force F . As in Cheng
et al. [53], we choose a constant Young modulus of E = 200GPa and a load of F = 50kN.
Moreover, as in Roustant et al. [13], we consider 12 possible cross-sections: there are 4
possible shapes, illustrated in Fig. 5b that could be hollow, thick or full. For a given
cross-section (shape and thickness), its size is determined by its surface S. Every cross
section is associated with a normalized moment of inertia Ĩ about the neutral axis. The
latter is a latent variable associated to the beam shape [54].

0 F = 50kN

δ

L

(a) Bending problem (b) Possible cross-section shapes.

Fig. 5: Cantilever beam problem.

Therefore, the problem to model has two continuous variables: the length L ∈ [10, 20]
(in m) and the surface S ∈ [1, 2] (in m2) and one categorical variable Ĩ with 12 levels. The
tip deflection, at the free end, δ is given by

δ = f(Ĩ , L, S) =
F

3E

L3

S2Ĩ
.

To compare our models, we draw a 98 point LHS as training set and the validation
set is a grid of 12× 30× 30 = 10800 points. For both squared exponential and absolute
exponential kernels, the RMSE, likelihood and computational time for every model are
shown in Table 4. We recall that squared exponential and absolute exponential kernels
differ only on the continuous variables and are the same for the categorical part. As
expected, the computational time and the likelihood increase when the model is more
complex. The DoE seems of sufficient size for this problem as the computed RMSE (i.e.,
the total displacement error) decreases with the model complexity.
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Table 4: Results of the cantilever beam models

Categorical kernel Continuous kernel Displacement error (cm) Likelihood Time (s)
GD squared exponential 1.3858 111.13 8.02
CR squared exponential 1.1604 162.26 89.1

EHH squared exponential 0.1247 256.90 2769.4
GD absolute exponential 3.2403 74.48 14.71
CR absolute exponential 3.0918 99.00 260.1

EHH absolute exponential 2.0951 102.48 19784

In Fig. 6, we have drawn the correlation matrix found between the cross-section shape
(the resulting R1 correlation matrix) for the three models. On the figure below, the higher
the correlation, the thinner the ellipse.

(a) With GD kernel. (b) With CR kernel. (c) With EHH kernel.

Fig. 6: Correlation matrix Rcat
1 using different choices for Θ1 for the categorical variable Ĩ from the

cantilever beam problem.

As expected, we have 3 groups of 4 shapes depending on their respective thickness
(respectively, the levels {1,4,7,10} the levels {2,5,8,11} and the levels {3,6,9,12}). The
more the thickness is similar, the higher the correlation: the thickness has more impact
than the shape of the cross-section on the tip deflection. However, given the database, two
points with similar L and S values will have similar output whatever the cross-section.
The effect of the cross-section on the output is always the same (in the form of 1

Ĩ
) leading

to an high correlation after maximizing the likelihood. In Fig. 6c, with the EHH kernel,
we can distinguish the 3 groups of 4 shapes and, because the correlations are close to
1, the homoscedastic hyperphere model [10] would lead to the same correlation matrix.
Also, with the CR kernel of Fig. 6b, the medium thick group {2,5,8,11} being correlated
with both the full and the hollow group, its correlation values are the higher whereas the
correlation hyperparameters associated to the two other groups are smaller. For the GD
model in Fig. 6a, there is only one mean positive correlation value as before.
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4.3.2. Aircraft design application (n = 10, m = 0, l = 2 and L1 = 9, L2 = 2)
The “DRAGON” aircraft concept has been introduced by ONERA in 2019 [55] within the

scope of the European CleanSky 2 program3 which sets the objective of 30% reduction
of CO2 emissions by 2035 with respect to 2014 state of the art. The employment of a
distributed propulsion comes at a certain cost; a turboelectric propulsive chain is necessary
to power the electric fans which brings additional complexity and weight. The turboelectric
propulsive chain being an important weight penalty, it is of particular interest to optimize
the chain and particularly the number and type of each component, characterized by some
discrete values. The definition of the architecture variable is given in Table 5a and the
definition of the turboshaft layout is given in Table 5b. For the sake of simplicity, we
restrict the optimization problem to the case of two electric cores and generators but more
optimizations have been performed in [1].

Architecture number Number of motors Number of cores Number of generators
1 8 2 2
2 12 2 2
3 16 2 2
4 20 2 2
5 24 2 2
6 28 2 2
7 32 2 2
8 36 2 2
9 40 2 2

(a) Definition of the architecture variable and its 9 associated levels.

Layout Position y ratio Tail VT aspect ratio VT taper ratio
1 under wing 0.25 without T-tail 1.8 0.3
2 behind 0.34 with T-tail 1.2 0.85

(b) Definition of the turboshaft layout variable and its 2 associated levels.

Table 5: Categorical variable definition

The analysis of “DRAGON” is treated with Overall Aircraft Design method in FAST-
OAD [56]. We are considering the following problem described in Table 6.

3https://www.cleansky.eu/technology-evaluator
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Table 6: Definition of the “DRAGON” optimization problem.

Function/variable Nature Quantity Range
Model Fuel mass cont 1
with respect to Fan operating pressure ratio cont 1 [1.05, 1.3]

Wing aspect ratio cont 1 [8, 12]
Angle for swept wing cont 1 [15, 40] (◦)
Wing taper ratio cont 1 [0.2, 0.5]
HT aspect ratio cont 1 [3, 6]
Angle for swept HT cont 1 [20, 40] (◦)
HT taper ratio cont 1 [0.3, 0.5]
TOFL for sizing cont 1 [1800, 2500] (m)
Top of climb vertical speed for sizing cont 1 [300, 800] (ft/min)
Start of climb slope angle cont 1 [0.075, 0.15] (rad)
Total continuous variables 10
Architecture cat 9 levels {1,2,3, . . . ,7,8,9}
Turboshaft layout cat 2 levels {1,2}
Total categorical variables 2
Total relaxed variables 21

Twice, we draw 250 points by LHS. Over the first DoE, that is the training set, we build
the model to predict the fuel mass and over the second one, we validate our prediction
and compute the RMSE reported in Table 7. In this case, the number of hyperparameters
is 12 for GD kernel, 21 for CR kernel and 47 for EHH kernel. Evaluating the function
is costly, around 4 minutes for a single point. We observed similar performances for all
models, the performance is mostly determined by the choice of the continuous kernel.
For a problem that has that many variables, it seems useless and impractical to use a
complicated model, the GD kernel being already performing well. On Fig. 7, we plot, for
the three kernels, the approximate correlation matrices for the first categorical variable.
As we can see, when considering the general EHH kernel, as in Fig. 7c, the closer the
levels, the higher the correlation. In fact, in this case, the only difference between two
levels is the number of motors. Therefore, the more similar the number of motors, the
more similar the fuel consumption. Given that, we expect, when considering CR kernel as
in Fig. 7b that the higher correlation should appear "in the middle" {4,5,6} as these levels
are meant to be the most correlated with the others. This is what happens to a certain
extent but the levels 7 and 8 are weirdly appearing too much correlated with one another.
This could be a numerical problem, the optimization being hard with that many variables
and hyperparameters. As before, the GD kernel is the less precise and just give a mean
correlation over the whole space as in Fig. 7a. In Fig. 8, we plot, for the three methods,
the approximated correlation matrices for the second categorical variable. There is only
two engine layouts so there is only one correlation. In this case, the correlation is positive
indicating that the plane behave in the same way no matter the layout.
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Table 7: Results of the aircraft models based on a 250 point validation set

kernel number of hyperparameters kernel fuel error (kg) time (s)
GD 12 squared exponential 2115 65
CR 21 squared exponential 2068 210

EHH 47 squared exponential 2147 9450
GD 12 absolute exponential 1666 65
CR 21 absolute exponential 1664 210

EHH 47 absolute exponential 1593 9295

(a) GD kernel. (b) CR kernel. (c) EHH kernel.

Fig. 7: Correlation matrix Rcat
1 using different choices for Θ1 for the turboelectric architecture variable.

(a) GD kernel. (b) CR kernel. (c) EHH kernel.

Fig. 8: Correlation matrix Rcat
2 using different choices for Θ2 for the turboshaft layout variable.

One can note that increasing the number of motors or changing a layout will not
change the way an aircraft flies. For example, having more motors will only increase the
fuel consumption by a given factor. The latter will always remain positive and related to
the continuous variables. Hence, in this test case, we do not have opposite effects between
two categorical levels.

In most industrial applications, radically opposite effects over a complex system do
not occur so often. For instance, on the industrial applications that can be found on the
literature, there was not a clear need for negative correlation values [10, 13, 16]. Therefore,
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in practice, the exponential model is not that limiting compared to the homoscedastic
hypersphere model.

5. Conclusion

In this work, we have proposed a class of kernels for GP models that extends the
exponential continuous kernels to the mixed-categorical setting. We showed that this
class of kernels generalizes Gower distance and continuous relaxation based kernels. A
classification between the proposed kernels as well as a proof of the SPD nature of
the resulting correlation matrices have been also proposed. Numerical illustrations on
analytical toy problems showed the good potential of the proposed kernels to reduce the
number of hyperparameters and thus the computational time. The implementation of our
proposed method has been released in the toolbox SMT v2.04.

When considering complex kernels, a good approach would be to use a model reduction
technique such as Kriging with Partial Least Squares (KPLS) [57] that is derived from
the construction of the correlation matrix via a kernel function. KPLS is an adaptation
of the Partial Least Squares regression for exponential kernels and is used to reduce the
number of hyperparameters and handle a large number of mixed inputs. Further works
will consider to include such dimension reduction techniques to improve the computational
efficiency of our model and tackle higher dimensional problems.
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Appendix

In Appendix A, we give the parameterization that allows us to obtain the continuous
relaxation kernel using our proposed framework. In Appendix B, the cosine test case is
detailed.

4https://smt.readthedocs.io/en/latest/
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Appendix A. Continuous relaxation is a particular instance of our proposed
FE Kernel.

To show that CR is a particular instance of FE, it suffices to show that the matrix
Φ(Θi) is diagonal whenever Θi is set to a diagonal one. In fact, assume that we have,
in our general model, [Θi]j ̸=j′ = 0, ∀(j, j′) ∈ {1, . . . , Li}. Knowing that cos(0) = 1 and
sin(0) = 0, the matrix C(Θi) writes as

C(Θi) =


1 0 0 0
1 0 . . . 0
...

... . . . 0
1 0 0 0

 and C(Θi)C(Θi)
⊤ =


1 1 1 1
1 1 . . . 1
...

... . . . 1
1 1 1 1


Therefore, we also have

[Φ(Θi)]j ̸=j′ =
log ϵ

2
([C(Θi)C(Θi)

⊤]j,j′ − 1) = 0, ∀(j, j′) ∈ {1, . . . , Li}

that is the continuous relaxation kernel.

Appendix B. Categorical cosine case

This test case has one categorical variable with 13 levels and one continuous variable
in [0, 1] [13]. Let w = (x, c) be a given point with x being the continuous variable and c
being the categorical variable, c ∈ {1, . . . , 13}.

f(w) = cos

(
7π

2
x+

(
0.4π +

π

15
c
)
− c

20

)
, if c ∈ {10, . . . , 9}

f(w) = cos

(
7π

2
x− c

20

)
, if c ∈ {10, . . . , 13}

The reference landscapes of the objective function (with respect to the categorical choices)
are drawn on Fig. B.9.

Fig. B.9: Landscape of the cosine test case from [13].

The DoE is given by a LHS of 98 points. Our validation set is a evenly spaced grid of
1000 points in x ranging for every of the 13 categorical levels for a total of 13000 points.
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