
HAL Id: hal-04130871
https://hal.science/hal-04130871

Submitted on 16 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A dynamic multi-axis control allocation scheme for
real-time applications

Edouard Sadien, Clément Roos, Abderazik Birouche, Mathieu Carton,
Christophe Grimault, Louis-Emmanuel Romana, Michel Basset

To cite this version:
Edouard Sadien, Clément Roos, Abderazik Birouche, Mathieu Carton, Christophe Grimault, et al..
A dynamic multi-axis control allocation scheme for real-time applications. International Journal of
Control, 2023, pp.1-12. �10.1080/00207179.2023.2186308�. �hal-04130871�

https://hal.science/hal-04130871
https://hal.archives-ouvertes.fr


A dynamic multi-axis control allocation scheme for real-time

applications

E. Sadiena, C. Roosb, A. Birouchec, M. Cartona, C. Grimaulta, L-E. Romanaa and
M. Bassetc

aAirbus Operations S.A.S., Toulouse, France; bONERA The French Aerospace Lab,
Toulouse, France; cIRIMAS, Université de Haute-Alsace, Mulhouse, France

ARTICLE HISTORY

Compiled January 12, 2023

ABSTRACT
The Dynamic Weighting Control Allocator (DWCA) was introduced by Sadien et
al. (Control Engineering Practice, 2019) to solve the allocation problem raised by
the yaw control of an on-ground aircraft. It handles the classical tradeoff between
virtual reference inputs realisation and control power minimization. But it also offers
three specific features. First, the actuators reach saturation almost simultaneously,
which allows an efficient recovery in case of failure. Then, several industrial require-
ments are taken into account, such as implementation ease, low computational cost
and compatibility with certification constraints. And finally, the actuators can be
prioritised, the last ones being used sparingly (to avoid overheating, fatigue, mainte-
nance cost. . . ) only when the virtual reference inputs cannot be realised by the first
ones only. But despite its attractiveness, the DWCA is limited to the 1-dimensional
case, which means that only one degree of freedom can be controlled. This is not
sufficient to deal with today’s challenges in the aeronautical and automotive fields
for example, where certain control problems are inherently multi-dimensional. With
the progressive advent of autonomous cars, new concepts of light hybrid or electric
vehicles are for example emerging, where both hydraulic and electric actuators are
mounted on each wheel to improve the combined management of speed and steer-
ing. In this context, this paper introduces a non-trivial generalisation of the DWCA,
which retains the various characteristics and advantages of the initial version, and
can be used in the multi-dimensional case.

KEYWORDS
multi-dimensional control allocation; weighted pseudo-inverse with dynamic weight
adaptation; actuator prioritisation

1. Introduction

A classical way to control a dynamical system is to design a controller that produces
several virtual reference inputs, typically a number of forces and moments equal to the
number of degrees of freedom to be controlled, each of them being then realised by a
single actuator. But to improve the performance of the system and to make it safer,
it can be relevant to use several actuators to control the same degree of freedom, or
conversely to involve an actuator in the control of several degrees of freedom. When
the number of actuators exceeds the number of degrees of freedom, the system is said
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to be overactuated, and a control allocation algorithm is used to convert the virtual
inputs into individual actuator commands in an optimal way. A good algorithm should
mainly allow to produce any realisable virtual inputs while minimising control power,
and to minimise the allocation error in case of control power deficiency. It should
also cope with the actuator limitations, such as their sometimes slow dynamics or
their position and rate saturations. Other criteria resulting from industrial constraints
must finally be taken into account. A control allocator should be compatible with
implementation constraints such as limited computational power, and in particular
avoid time-consuming operations. It should also often be compatible with stringent
certification constraints, which can prevent the use of non-deterministic techniques or
solver-based approaches. And it should in many cases be able to establish a priority
between some primary and secondary actuators, the latter being used sparingly (to
avoid overheating, fatigue, maintenance cost. . . ) only when the virtual inputs cannot
be realised by the former.

The literature on control allocation is very rich, as shown by the surveys Johansen
and Fossen (2013); Oppenheimer, Doman, and Bolender (2010), and more recently Sa-
dien et al. (2020), which presents and compares more than 20 techniques on a realistic
aeronautical benchmark. More generally, the applications are numerous, notably in the
aerospace (Durham, Bordignon, & Beck, 2017; Sadien, 2020), automotive (Schwartz,
Siebenrock, & Hohmann, 2019; Wang, Gaoa, Wang, Wang, & Wang, 2021; Yue, Fang,
Zhang, & Shangguan, 2021) and marine (Fossen, Johansen, & Perez, 2008; Ji, Bui, Bal-

achandran, & Kim, 2013; Witkowska & Śmierzchalski, 2018) fields. If most of the ex-
isting techniques try to fulfill the main objectives mentioned above, only some of them
are able to deal with actuator limitations, and almost none of them take into account
a wide range of industry-oriented requirements, as pointed out in Sadien (2020). This
observation motivated the development of the Dynamic Weighting Control Allocator
(DWCA) in Sadien et al. (2020), inspired from the well-known weighted pseudo-inverse
and daisy chaining techniques (Oppenheimer et al., 2010). This algorithm intelligently
manages the trade-off between minimising actuators use and attaining the maximum
virtual control, while meeting all the aforementioned specifications, in particular the
priority management between the various actuators. Promising results were obtained
when applied to the on-ground aircraft runway centerline tracking problem. The occa-
sional use of differential braking only when the classical actuators (nose-wheel steering
system and rudder) reach their limits indeed significantly reduces the risk of runway
excursions during landing with strong crosswinds and degraded runway conditions.
Statistical results on a high-fidelity Airbus simulator revealed that the lateral devia-
tion and the actuators use are significantly reduced in difficult situations compared to
an Airbus reference control allocator.

Nevertheless, the DWCA is currently limited to the 1-dimensional case, which means
that only one degree of freedom can be controlled, specifically the yaw axis for the
above example. But it would be particularly interesting to be able to deal with the
general multi-dimensional case. For the on-ground aircraft, this would allow a com-
bined management of the longitudinal velocity and the yaw rate, the brakes being
used for both actions. The need is also pressing in the automotive field, with the pro-
gressive advent of autonomous cars. New concepts of light hybrid or electric vehicles
are indeed emerging, where each wheel is equipped with an electric actuator allowing
traction and regenerative braking (i.e. capturing braking energy and storing it in the
battery), as well as a conventional hydraulic braking system. The system is therefore
highly overactuated, since no less than eight actuators are present in addition to the
main engine and the steering system to control only two degrees of freedom, namely
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speed and steering. The objective is to guarantee safety and maneuverability thanks
to effective braking without wheel lock, and to increase the vehicle’s autonomy thanks
to regenerative braking. In this context, and in addition to respecting the industrial
constraints mentioned above, the possibility of distributing the actuators into different
groups with varying degrees of priority depending on the road context really makes
sense. On the one hand, journeys in urban areas, where zero emission is a major objec-
tive, are characterised by frequent braking and accelerations. Regenerative braking is
very effective in these situations, so electric actuators should be preferred to hydraulic
brakes. On the other hand, motorway journeys are characterised by the frequent use of
cruise control by the driver (braking and acceleration are quite rare), therefore electric
regenerative braking is almost impossible. Moreover, when braking at high speed, it is
recommended to use mainly hydraulic brakes to reduce the stopping distance as they
are more efficient.

In this context, this paper introduces the Extended Dynamic Weighting Control
Allocator (EDWCA), which allows to address the aforementioned challenges. This is
indeed a non-trivial generalisation of the DWCA to the multi-dimensional case, which
retains its various characteristics and advantages, such as actuator limits manage-
ment, implementation ease, low computational cost, compatibility with certification
constraints and actuator grouping. The 2-dimensional case is presented to make ex-
planations easier and allow a graphical interpretation, but the extension to the n-
dimensional case does not raise any technical difficulty. The paper is structured as
follows. Section 2 first states the considered control allocation problem with all the
associated requirements, and Section 3 recalls a number of useful geometrical consid-
erations. The main contribution of the paper is then presented in Section 4, which
introduces the proposed control allocation algorithm (EDWCA) and shows that it
meets all specifications. Finally, the behavior of the EDWCA is assessed in Section 5
on a dedicated academic scenario.

2. Problem statement

Mathematically, an allocator solves an underdetermined system of equations, often
subject to additional constraints. It is fed by virtual inputs v(t) ∈ Rk (typically a
number of forces and moments that equals the number of degrees of freedom to be
controlled), and it delivers control inputs u(t) ∈ Rm to be sent to the actuators, where
m > k. Actuator models are assumed to be linear in u, which is almost always the
case in the literature and not very restrictive for many practical applications. Thus
given v(t), the allocation problem reduces to the computation of u(t) such that:

Bu(t) = v(t) (1)

for all t ≥ 0, where B ∈ Rk×m is the control effectiveness matrix of rank k. Actuators
having limited capabilities, some position limits are introduced:

upmin(t) ≤ u(t) ≤ u
p
max(t) (2)

where inequalities apply component-wise. The problem of finding u(t) such that equa-
tions (1)-(2) are satisfied has an infinite number of solutions when sufficient control
power is available, and a secondary objective can be defined such as minimising control
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power. On the contrary, no exact solution exists in case of control power deficiency,
and a common strategy is to minimise the allocation error Bu− v in some sense.

Remark 1. Additional constraints can be introduced to generate control inputs that
are fully compatible with actuator capacities, such as rate limits urmin ≤ u̇(t) ≤ urmax

or limited dynamics.

A wide set of methods exist to solve the aforementioned control allocation problem,
see e.g. Fossen et al. (2008); Johansen and Fossen (2013); Oppenheimer et al. (2010).
A rather exhaustive literature review is proposed in Sadien et al. (2020), which is not
reproduced here for the sake of brevity. In that work, about twenty algorithms (in-
cluding but not limited to those presented in Härkeg̊ard (2003); Oppenheimer et al.
(2010); Zaccarian (2009)) are thoroughly compared on a realistic aeronautical bench-
mark, namely runway centerline tracking after landing during the deceleration phase.
This benchmark is characterised by several requirements:

Req. 1 minimise control power whenever possible, allow the actuators to produce any
realisable virtual inputs, and minimise the allocation error in case of control
power deficiency (Enns (1998)), which are classical requirements,

Req. 2 be compatible with implementation constraints such as limited computational
power, and in particular avoid time-consuming operations,

Req. 3 be compatible with stringent certification constraints, which notably prevents
the use of non-deterministic techniques or solver-based approaches,

Req. 4 reach actuator saturations almost simultaneously to allow efficient recovery in
case of failure, since reconfiguration may take too long when a failed actuator
is at maximum deflection but not the others,

Req. 5 be able to group the actuators as ”primary” or ”secondary”, the latter being
used sparingly (to avoid overheating, fatigue, maintenance cost. . . ) only when
the virtual inputs cannot be realised by the former.

None of the control allocation techniques evaluated in Sadien et al. (2020) can handle
all these requirements, which motivated the development of a new algorithm, the
Dynamic Weighting Control Allocator (DWCA).

Beyond the considered benchmark, most requirements are recurrent in the aeronau-
tical industry, as well as in other fields such as automotive for example, as emphasised
in Section 1. Moreover, control problems are often multi-dimensional, with several
virtual inputs v to be realised. If the DWCA can deal with all aforementioned re-
quirements, it is unfortunately restricted to the 1-dimensional case, i.e. k = 1. In
this context, the main contribution of this paper is to propose a non-trivial
generalisation of the DWCA to any value of k. Note that all results are stated
for the 2-dimensional case in the sequel, where two virtual forces or moments should
be realised simultaneously, i.e. k = 2. As already highlighted in the introduction, this
is not restrictive and just allows to make explanations and graphical interpretations
easier.

Notations. The (i, j)-entry, the ith row and the jth column of a matrixM are denoted
mij , mi× and m×j respectively. The ith element of a vector v is denoted vi, while v

j

represents either the value of v at point j if j is a number or a letter, or a vector set
if j is a symbol. The dependence on t is omitted in the sequel to improve readability.
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3. Geometry of the 2-dimensional control allocation problem

This section is mostly derived from Durham (1993); Durham et al. (2017), and is
intended to facilitate the understanding of the algorithm proposed in Section 4. The
Attainable Moment Set (AMS) contains all values taken by the virtual inputs v ∈ R2

when the control inputs u ∈ Rm span the feasible control input set U = [upmin u
p
max].

This means that problem (1)-(2) has a solution if and only if v belongs to the AMS. The
vertices of U form a set u† with 2m elements, and the set of virtual inputs generated
by u† is denoted v†. The elements of v† are two by two symmetrical with respect
to the point v = B (upmax − upmin), which is equal to zero in the common case where
upmax = −upmin. Moreover, the AMS is the convex hull of v† and has 2m vertices, which
implies that the 2m − 2m remaining elements of v† lie strictly inside the AMS.

Let’s now introduce the set of points that form the boundary of the AMS and the
control inputs that generate them, denoted v⋆ and u⋆ respectively. According to the
above, v⋆ is a polygon whose 2m edges are parallel two by two. Furthermore, along one
edge of each pair, each control input stays at either its lower or upper limit (defined
by upmin and upmax), except one that varies from its lower to its upper limit, let’s say
the jth one. And along the other edge, each control input stays at its opposite limit,
except the jth one that varies in the same way as before. Importantly, both edges
are parallel to the vector b×j formed by the jth column of B, which corresponds to
the efficiency of the varying control input. There is a simple way to determine which
combination of lower and upper limits should be considered on each of the two edges

for all but the jth control inputs. The control effectiveness matrix B =

[
b11 . . . b1m
b21 . . . b2m

]
is

pre-multiplied by the vector tj defined as follows:

tj =


[
−b2j
b1j

1

]
if b1j ̸= 0

[
1 0

]
otherwise

(3)

so that the jth element of tjB ∈ Rm is equal to zero. On one edge, each control input
except the jth one is set to its upper (resp. lower) limit if the corresponding element
of tjB is positive (resp. negative). And on the other edge, the opposite limits are set,
as already mentioned above. This is an important property that will play a key role
in Section 4.2. If there is more than one zero in tjB, the problem is degenerated and
can be solved by ganging the corresponding control inputs, since the latter all have
the same efficiency on both axes.

Example: Let’s consider m = 3 control inputs u = [u1 u2 u3]
T , which contribute to

the generation of a 2-dimensional virtual input v = [v1 v2]
T as follows:

v = Bu =

[
0.8147 0.1270 0.6324
0.9058 0.9134 0.0975

]u1u2
u3

 (4)
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with some position constraints upmin and upmax:

−1 ≤ u1 ≤ 1

−0.5 ≤ u2 ≤ 0.5

−2 ≤ u3 ≤ 2

(5)

The corresponding AMS is shown in Figure 1. The elements of v† are identified by
black asterisks, while the boundary v⋆ is marked with blue lines. v⋆ is composed of
2m = 6 edges obtained from 6 elements of u†, and the remaining 2m − 2m = 2
elements of v† are strictly inside the AMS as expected. Let’s now determine the two
opposite edges on which only the first control input varies. According to the above,
they are parallel to the efficiency vector b×1 of the first control input, i.e. the first
column of B, which is represented in red in Figure 1. These are therefore the edges
v1v2 and v3v4. The matrix B is then pre-multiplied by t1 =

[
−0.9058

0.8147 1
]
, which leads

to t1B = [0 0.7722 − 0.6056]. This means that on one (resp. the other) edge, the first
control input varies between its lower and upper limits −1 and 1, while the second
and third ones are fixed to 0.5 (resp. −0.5) and −2 (resp. 2). Using this result and

equation (1), it can finally be concluded that the four vertices v1 = [2.0160 0.6441]T ,

v2 = [0.3866 − 1.1675]T , v3 = [−0.3866 1.1675]T and v4 = [−2.0160 − 0.6441]T are

generated by u1 = [1 − 0.5 2]T , u2 = [−1 − 0.5 2]T , u3 = [1 0.5 − 2]T and u4 =

[−1 0.5 − 2]T respectively. □

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

Figure 1. Attainable Moment Set for example (4)-(5)

4. Proposed control allocation technique

The Dynamic Weighting Control Allocator (DWCA) introduced in Sadien et al. (2020)
is a pseudo-dynamical control allocation technique, which solves problem (1)-(2) in the
1-dimensional case while meeting all additional requirements listed in Section 2. The
Extended Dynamic Weighting Control Allocator (EDWCA) described in this section
can be seen as a non-trivial extension of the DWCA to the n-dimensional case. It has
the same characteristics as the DWCA (actuator grouping, consideration of actuator
dynamics and position limits. . . ) and meets the same requirements (low computational
power, compliance with certification constraints. . . ). But its implementation is
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significantly more complicated than for the DWCA for two main reasons
detailed below.

The EDWCA is based on the weighted pseudo-inverse approach (Oppenheimer et
al., 2010) and requires to solve:

arg min
u∈Rm

1

2
uTW−1u subject to Bu = v (6)

where W ∈ Rm×m = diag (w1, . . . , wm) is a positive weighting matrix, B =[
b11 . . . b1m
b21 . . . b2m

]
∈ R2×m is the control effectiveness matrix and v ∈ R2 is the vector

of virtual inputs to be realised. The general solution is:

u = WBT (BWBT )−1vobj (7)

where vobj is the virtual inputs objective, equal to v if v belongs to the AMS, and to a
projection of v on the boundary v⋆ of the AMS otherwise, as explained in Section 4.1.
In the literature, the weighting parameters wi are often chosen constant and equal to
the squared position limits of the actuators, which allows to minimise the required
control power, but neither ensures that the actuators saturate simultaneously nor
guarantees that any realisable virtual inputs v can be reached (Durham, 1993). In
this context, the main originality of the proposed approach lies in the choice of the
wi, which are constantly adapted to meet the desired requirements. This choice was
rather straightforward in the 1-dimensional case, but is much more tricky in the 2-
dimensional case, since each actuator is characterised by two efficiencies b1i and b2i,
which can be completely different. This first issue is addressed in Section 4.2.

The DWCA is also inspired by daisy chaining (Oppenheimer et al., 2010), which
separates the control inputs into several groups of decreasing priority (two in the
present case), in order to limit the use of the actuators from the last groups. Actuators
from the primary group are used first up to their maximum capability, and only then
are the actuators from the secondary group used. In the 1-dimensional case, the sharing
of the virtual input vobj between both groups is straightforward. All primary actuators
are brought to their positions limits, which generates a virtual input vp. The remaining
virtual input vs = vobj − vp is then realised with the secondary actuators, which is
always possible. The 2-dimensional case is again much more tricky, since attaining
the boundary of the AMS no longer implies that all actuators are at their limits, as
shown in Section 3. Moreover, the decomposition of vobj into vp and vs should be
done carefully. There are apparently an infinite number of choices, since vp can be any
point on the boundary v⋆ of the AMS of the primary actuators, but some of them
(including the most obvious one in some cases, as shown on an example) can make the
allocation problem unfeasible although a solution exists. This second issue is addressed
in Section 4.3.

But first of all, the feasibility of the virtual inputs v is checked in Section 4.1, where
the relation between v and vobj is formally stated.

Remark 2. To make the equations simpler, it is assumed without loss of generality
that upmin < 0 < upmax, which is almost always the case in practice. But the pro-
posed algorithm can be easily extended to any values of upmin and upmax, and actuator
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jamming may also be considered. To do so, the initial problem (6) is reformulated as:

arg min
u∈Rm

1

2
(u− ū)T W−1 (u− ū) subject to Bu = v (8)

where the ith element of ū ∈ Rm represents the preferred position of the ith actuator in[
upmini

upmaxi

]
, or the current position of the ith actuator if the latter is jammed. Note

that the preferred position is assumed to be 0 in this paper when upmin < 0 < upmax,
but another choice could be made via ū. The general solution is:

u = ū+WB̄T (B̄WB̄T )−1v̄ (9)

where the corrected control effectiveness matrix B̄ and the effective virtual inputs v̄
are constructed from B and v as described in Sadien (2020).

4.1. Determination of the virtual inputs objective vobj

The feasibility of the virtual inputs v is first verified, and vobj is computed from the
position of v with respect to the AMS. To do that, the edge v1v2 of the AMS is searched
for, which intersects the half-line starting at the origin O and passing through v. In
practice, it is obtained by selecting the two vertices of the AMS whose angles bound
that of v in the tightest way. The intersection point vB ∈ v⋆ corresponds to the largest
virtual inputs that can be realised in the direction of v. It is referred to as the boundary
virtual inputs and can be expressed as follows:

vB = ρv = v1 + λv12 (10)

where v12 = v2 − v1. The parameters ρ and λ are obtained by solving the linear
equation: [

v − v12
] [ρ
λ

]
= v1 (11)

where the matrix
[
v − v12

]
is non-singular since Ov and v1v2 are not parallel, and

λ ∈ [0, 1]. A value ρ ≥ 1 indicates that the virtual inputs v lie inside or on the boundary
of the AMS, and are therefore feasible. The boundary control inputs uB ∈ u⋆ which
generate vB, and therefore satisfy BuB = vB, are finally computed as follows:

uB = u1 + λu12 (12)

where Bu1 = v1, Bu2 = v2 and u12 = u2 − u1.
Example (continued): Consider the vector of virtual inputs v = [1.5 0.25]T rep-
resented by the blue asterisk in Figure 2. It can be seen that v is feasible, since it lies
inside the AMS. The edge v1v2 is obtained by selecting the vertices of the AMS whose
angles bound that of v in the tightest way. Here, the latter is +9.5 deg, while those
of v1 = [2.0160 0.6441]T and v2 = [0.3866 − 1.1675]T are +17.7 deg and −71.7 deg
respectively. Solving equation (11) leads to ρ = 1.1267 > 1 and λ = 0.2 ∈ [0 1].
The boundary virtual and control inputs vB and uB are finally computed using equa-
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tions (10) and (12):

vB = 1.1267

[
1.5
0.25

]
=

[
1.6900
0.2817

]
(13)

uB =

 1
−0.5
2

+ 0.2

−20
0

 =

 0.6
−0.5
2

 (14)

and vB is represented by a red circle in Figure 2. □

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

Figure 2. Determination of the boundary virtual inputs vB

In the proposed approach, the m actuators associated with the m control inputs
u are separated into two groups. The use of the secondary group is triggered when
the virtual inputs v cannot be realised using the primary group only. Without loss
of generality, it is assumed in the sequel that the first n and the last l actuators,
where n + l = m, form the primary and secondary groups respectively. The AMS of
the primary actuators, the secondary actuators and all actuators are denoted AMSp,
AMSs and AMSa in the sequel. Similarly, a subscript p, s or a is added to vB, uB and
ρ to indicate that these variables refer to AMSp, AMSs and AMSa respectively. The
following strategy is implemented:

• If ρp ≥ 1, the secondary actuators are not used, since v can be realised using the
primary ones only, and vobj = v.
• If ρp < 1 and ρa ≥ 1, v can be realised using all actuators, and vobj = v.
• If ρa < 1, equation (1) has no solution, and a way to make the problem feasible

is to set vobj = ρav = vBa , where v
B
a denotes the boundary virtual inputs that

can be realised using all actuators.

The first case is handled in Section 4.2, while the last two are dealt with in Section 4.3.

Remark 3. When v lies outside the AMS of all actuators and is therefore unfeasible
(ρa < 1), the objective is to realise the maximum virtual inputs in the direction of
v. But alternative strategies exist, such as prioritising one of the 2 axes. This can be
done by projecting (whenever possible) either the first or the second component of v

on the boundary of the AMS, i.e. by computing ṽ1 or ṽ2 such that vobj = [ṽ1 v2]
T ∈ v⋆
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or vobj = [v1 ṽ2]
T ∈ v⋆.

4.2. Determination of the weighting matrix W

Let’s forget at first the concept of actuator groups and assume that all actuators are
treated in the same way. This operating mode may be triggered for instance when
entering an emergency situation, where maximum maneuverability has priority over
control power minimisation of the secondary actuators. Assume that ρ ≥ 1, which
means that vobj = v can be realised. The control inputs u that solve the allocation
problem are computed with equation (7) using the following weighting parameters:

wi = uplimi

2
+

1

ρ

(
uBi
Li
− uplimi

2
)

(15)

where the effective limits uplim of the actuators are defined as follows:

uplimi
=

{
upmaxi if sign

(
uBi
)
≥ 0

upmini
otherwise

(16)

and L ∈ Rm should be tuned carefully as explained below. The wi are defined as
the sum of two terms: the control power minimisation term uplimi

2
and the maximum

virtual inputs reaching term uB
i

Li
− uplimi

2
. The trade-off between these two antagonist

terms depends on the feasibility scalar ρ. When ρ is large, the virtual inputs are well
inside the AMS. In this case, wi ≈ uplimi

2
and control power is minimised. But when

ρ tends to 1, the virtual inputs tend to the boundary of the AMS as explained in

Section 4.1, i.e. v → vB, and wi → uB
i

Li
. Lemma 1 then proves that wi =

uB
i

Li
implies

u = uB provided L is any linear combination of the first and second rows of B. As
a consequence, all actuators except one reach saturation at the same time when v
reaches vB, as explained in Section 3.

Lemma 1. Let (α, β) ∈ R2 such that all elements of L = αb1× + βb2× ∈ Rm are

nonzero. If v = vB and W = diag
(
uB
i

Li

)
, then the solution to the optimisation prob-

lem (6) is u = uB.

Proof:Assume that v = vB. v is feasible, since vB lies in the AMS, so vobj = vB = BuB

according to Section 4.1 and equation (1). Then according to equation (7):

u =WBT
(
BWBT

)−1
BuB (17)

where W = diag
(
uB
i

Li

)
. Standard matrix computations lead to:

(
BWBT

)−1
BuB =

1

σ


−

m∑
i=1

m∑
j=1

b2iu
B
i u

B
j ϕij

Li

m∑
i=1

m∑
j=1

b1iu
B
i u

B
j ϕij

Li

 (18)
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where σ is the determinant of BWBT given by:

σ =
m∑
i=1

m∑
j=1

b1ib2ju
B
i u

B
j ϕij

LiLj
(19)

and ϕij = b1ib2j − b2ib1j . Each term of the sums in equation (18) is multiplied by Lj

in both the numerator and denominator. Lj is then replaced with αb1j + βb2j in the
numerator only:

(
BWBT

)−1
BuB =

1

σ


−α

m∑
i=1

m∑
j=1

b2ib1ju
B
i u

B
j ϕij

LiLj
− β

m∑
i=1

m∑
j=1

b2ib2ju
B
i u

B
j ϕij

LiLj

α
m∑
i=1

m∑
j=1

b1ib1ju
B
i u

B
j ϕij

LiLj
+ β

m∑
i=1

m∑
j=1

b1ib2ju
B
i u

B
j ϕij

LiLj

 (20)

=
1

σ

[
−αM11 − βM12

αM21 + βM22

]
(21)

It can directly be seen that M22 = σ. Then by inverting indices i and j, which is
possible because the two sums have the same number of terms, it is easy to check that
M11 = −σ. Finally:

M12 =
m∑
i=1

m∑
j=1

b1ib2ib
2
2ju

B
i u

B
j

LiLj
−

m∑
i=1

m∑
j=1

b1jb2jb
2
2iu

B
i u

B
j

LiLj
(22)

Inverting indices i and j as above in the right-hand component of equation (22) leads
to M12 = 0. Similarly, M21 = 0. As a result, equation (21) simply becomes:

(
BWBT

)−1
BuB =

[
α
β

]
(23)

By replacing Li again with αb1i + βb2i in W , a few more standard computations lead
to:

u =WBT

[
α
β

]
= uB (24)

which proves Lemma 1. This results holds for all (α, β) ∈ R2 such that Li ̸= 0 for all
i ∈ [1 m]. □

Recall now that the control inputs u which generate the desired virtual inputs v
are obtained as the solution of the L2-norm minimisation problem (6), where W is a
positive matrix. This means that all wi must be positive. According to equation (15),

wi can take any value between uplimi

2
and uB

i

Li
, since to 0 ≤ 1

ρ ≤ 1. The first term uplimi

2

being always positive, it is therefore sufficient to ensure that uB
i

Li
≥ 0. In this context,

a way to tune the parameters α and β such that Li = αb1i + βb2i has the same sign
as uBi for all i ∈ [1 m] is proposed in Lemma 2. It is assumed that all entries of B are
nonzero for simplicity reasons, but this result can be adapted to the general case.
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Lemma 2. Recall that vB lies on one of the edges of the AMS, where each control
input stays at either its lower or upper limit, except one, let’s say the jth. Let tj be
defined by equation (3) and:

s̃ = sign
(
tjb×iu

B
i

)
for all i ∈ [1 m] , i ̸= j (25)

si = sign
(
b2iu

B
i

)
for all i ∈ [1 m] (26)

I = {i ∈ [1 m] : si = −sj} (27)

If L = αb1× + βb2×, where:

α = s̃tj1 (28)

β = s̃tj2 +
1

2
sj min

i∈I

∣∣∣∣ tjb×i

b2i

∣∣∣∣ (29)

then uB
i

Li
≥ 0 for all i ∈ [1 m].

Proof: As explained in Section 3, all the elements of tjB have either the same sign
or the opposite sign as the corresponding elements of uB, except the jth one which is
zero. In other words, s̃ = sign

(
tjb×iu

B
i

)
has the same value for all i ̸= j. So setting

L̃ = s̃tjB = s̃tj1b1× + s̃tj2b2× = αb1× + β1b2× implies that L̃j = 0 and uB
i

L̃i

≥ 0 for all

i ̸= j. Let now L = L̃+ β2b2×, where β2 should be tuned to ensure that
uB
j

Lj
≥ 0 while

continuing to guarantee that uB
i

Li
≥ 0 for all i ̸= j. The condition

uB
j

Lj
≥ 0 requires

that sign (β2) = sign
(
b2ju

B
j

)
= sj . Let then β2 = sjγ, where γ > 0. There exists a

value of γ which makes the sign of Li differ from that of L̃i, i.e.
uB
i

Li
< 0, if and only

if si = −sj . And in that case, this happens if and only if γ > − sjL̃i

b2i
> 0. So choosing

γ = 1
2 mini∈I

∣∣∣ L̃i

b2i

∣∣∣, where I = {i ∈ [1 m] : si = −sj}, ensures that uB
i

Li
≥ 0 for all i ∈

[1 m]. This results in L = s̃tj1b1× +
(
s̃tj2 +

1
2sj mini∈I

∣∣∣ tjb×i

b2i

∣∣∣) b2× = αb1× + βb2×. □

Example (continued): Consider again the vector of virtual inputs v = [1.5 0.25]T

represented by a blue asterisk in Figure 2. The corresponding boundary virtual inputs
vB lies on the edge v1v2, whose vertices are generated by u1 = [1 − 0.5 2]T and

u2 = [−1 − 0.5 2]T , as computed in Section 3. So the only control input which varies

on v1v2 is the first one, i.e. j = 1, and t1B =
[
− b21

b11
1
]
B = [0 0.7722 − 0.6056].

Combining this with equation (14) leads to s̃ = sign
(
t1b×2u

B
2

)
= sign

(
t1b×3u

B
3

)
= −1,

and it can be checked that L̃ = [0 − 0.7722 0.6056] satisfies uB
i

L̃i

≥ 0 for all i ̸= 1. Let

now L = L̃ + β2b2×. As u
B
1 > 0 in (14) and b21 > 0 in (4), β2 needs to be positive

to ensure that uB
1

L̃1

≥ 0, i.e. s1 = 1. The term β2b2i being positive, it cannot make uB
3

L̃3

negative. But if γ > − L̃2

b22
= 0.8454, then uB

3

L̃3

< 0, which is undesirable. The value

γ = 1
2
0.7722
b22

= 0.4227 is finally chosen, which leads to:

L = [0 − 0.7722 0.6056]+0.4227×[0.9058 0.9134 0.0975] = [0.3829 − 0.3861 0.6468]

It can be checked that Li has the same sign as uBi , i.e.
uB
i

Li
≥ 0, for all i ∈ [1 3]. □
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Let’s now come back to the notion of actuator groups. If ρp ≥ 1, then vobj = v is
realised using the primary actuators only. In this case, the same strategy as above is
applied, and the weighting parameters wi are defined from equation (15) as follows:

wi∈[1 n] = uplimi

2
+

1

ρp

(
uBpi
Li
− uplimi

2

)
wi∈[n+1 m] = 0

(30)

where uBpi are determined as explained in Section 4.1 for i ∈ [1 n], and uBpi = 0 for
i ∈ [n+ 1 m]. The control inputs u that solve the allocation problem are then easily
computed with equation (7), and satisfy ui = 0 for all i ∈ [n+1 m].

4.3. Decomposition of vobj into vp and vs

If ρp < 1, the secondary actuators are used in addition to the primary ones to gen-
erate the virtual inputs objective vobj = min (1, ρa) v. The latter must therefore be
decomposed as the sum of vp and vs, which represent the virtual inputs objectives to
be realised by the primary and secondary actuators respectively. Much care must be
taken when doing this. Certain decompositions indeed yield an unfeasible objective vs
although vobj lies in AMSa, as illustrated below.

Example (continued): Let’s now consider m = 6 control inputs u = [u1 . . . u6]
T ,

which contribute to the generation of a 2-dimensional virtual control input v as follows:

v =

[
v1
v2

]
=

[
0.8147 0.1270 0.6324 0.5200 0.1200 1.3540
0.9058 0.9134 0.0975 0.2310 0.5700 0.8900

]

u1
u2
u3
u4
u5
u6

 (31)

with the following position limits upmin and upmax:

−1 ≤ u1 ≤ 1

−0.5 ≤ u2 ≤ 0.5

−2 ≤ u3 ≤ 2

−1 ≤ u4 ≤ 1

−1.25 ≤ u5 ≤ 1.25

−0.5 ≤ u6 ≤ 0.5

(32)

The primary and secondary groups are composed of the first three and the last three
actuators respectively. This is an extension of the illustrative example discussed pre-
viously in Sections 3 and 4, where only the primary actuators were considered. AMSp
and AMSa are represented by blue and red/purple lines respectively in Figure 3, while
AMSs is represented by blue lines in Figure 4. Let’s now consider the virtual inputs
v = [3.2683 2.5957]T represented by the blue asterisk in Figure 3. Visually, it can be
seen that v lies inside AMSa and is therefore feasible, i.e. vobj = v. A straightforward
minimum norm decomposition vobj = ṽp+ ṽs is shown by the yellow and red vectors re-
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spectively. ṽp can be realised using the primary actuators, since it lies on the boundary
of AMSp. However, ṽs cannot be realised by the secondary actuators alone, as it lies
outside AMSs in Figure 4. This obvious decomposition of vobj is thus not suitable. □

Fortunately, a systematic method can be implemented to decompose any vobj into
feasible vp and vs. To show that, let’s first come back to the geometrical representation
of the AMS. The edges of AMSa are exactly composed of the edges of both AMSp and
AMSs. This can for example be observed in Figures 3 and 4, where they are displayed
in red and purple respectively. The region between AMSp and AMSa in Figure 3 is
then divided into P and H zones. Each P zone is a parallelogram formed by one edge
of AMSp (blue) and the corresponding parallel edge of AMSa (red), the other two
edges (black) being referred to as the trailing edges. The H zones, represented in light
blue in Figures 3 and 4, correspond to the areas left uncovered by the P zones. Each of
them contains exactly one vertex of AMSp. When all actuators are necessary (ρp < 1),
the virtual inputs objective vobj lies in either a P or H zone.

• If vobj lies in a P zone Pi, vp is chosen as the intersection point between the
boundary of AMSp on the one hand, and the line passing through vobj and
parallel to the trailing edges of Pi on the other hand.
• If vobj lies in a H zone Hi, vp is chosen as the only vertex of Hi that belongs to

AMSp.
• If vobj lies between two adjacent zones, any of them can be considered and lead
to the same decomposition.

Example (continued): Let’s consider the same virtual inputs v = [3.2683 2.5957]T

as above. Using the proposed decomposition method, vobj = v ∈ P1 is written as the
sum of vp and vs, which are represented by the pink and green vectors respectively in
Figures 3 and 4. It is easily checked that vp and vs are both feasible, since they belong
to AMSp and AMSs respectively. □

Now that vp and vs are defined, they are realised using the primary and secondary
actuators respectively.

• The virtual inputs vp = vBp ∈ v⋆p always lie on the boundary of AMSp and

are exactly realised with up = uBp , where u
B
pi are determined as explained in

Section 4.1 for i ∈ [1 n], and uBpi = 0 for i ∈ [n+ 1 m]. There is no need here
to define weighting parameters wi as in Section 4.2.
• The virtual inputs vs are realised following the same strategy as in Section 4.2.
The weighting parameters wi are defined from equation (15) as follows:

wi∈[1 n] = 0

wi∈[n+1 m] = uplimi

2
+

1

ρs

(
uBsi
Li
− uplimi

2
) (33)

where uBsi = 0 for i ∈ [1 n] and uBsi are determined as explained in Section 4.1
for i ∈ [n+ 1 m]. The control inputs us that solve this allocation problem are
then easily computed with equation (7), where vobj = vs, and satisfy usi = 0 for
all i ∈ [1 n].

The control inputs u that solve the whole allocation problem are finally obtained as
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Figure 4. AMSs (blue lines) with H zones

15



follows:

u = up + us (34)

Remark 4. The allocator being embedded in a digital system with sample time T ,
the inclusion of rate limits urmin ≤ u̇(t) ≤ urmax can be done by conversion into effective
position limits as follows:

upmin ← max {upmin , u−T + Turmin}
upmax ← min {upmax , u−T + Turmax}

(35)

where u−T denotes the control inputs at the previous time step. Another solution to
generate control inputs that are fully compatible with actuator capacities is to filter
the weighting parameters wi, which allows to consider both the dynamics and the rate
limits of the actuators. First-order filters are introduced, whose time constants τi equal
that of the actuators (or are chosen higher if rate limits are more stringent):

wi ←
1

1 + τis
wi (36)

4.4. Algorithm summary and compliance with the requirements

The Extended Dynamic Weighting Control Allocator (EDWCA) is briefly summarised
below and the way it satisfies the five requirements stated in Section 2 is highlighted:

• If the virtual inputs v lie inside AMSp (i.e. ρp ≥ 1), they can be realised us-
ing solely the primary actuators and the virtual inputs objective is defined as
vobj = v. The weighting parameters (30) associated to these actuators are defined
to manage automatically the trade-off between minimising control power and re-
alising the largest possible virtual inputs, thus satisfying Req. 1. Moreover, as
the virtual inputs v approach the boundary of AMSp, all primary actuators ex-
cept one reach saturation at the same time, as specified by Req. 4. On the other
hand, the secondary actuators are not used in accordance with Req. 5, and the
corresponding weighting parameters are set to zero in equation (30).
• If the virtual inputs v lie outside AMSp (i.e. ρp < 1), all actuators are required

and the virtual inputs objective is defined as vobj = min (1, ρa) v. A systematic
approach is proposed to decompose vobj into feasible vp and vs. vp always lies on
the boundary of AMSp, implying that all primary actuators except one are at
their position limits. On the other hand, the secondary actuators are treated as
the primary ones in the previous case to meet Req. 1. As a consequence, when
v approaches the boundary of AMSa, all actuators except one primary and one
secondary reach saturation at the same time, thus verifying here also Req. 4.
• In all cases, the weighting parameters are filtered as in equation (36) to cater
for actuator dynamics and rate limits, before the control inputs (7) are finally
computed.

The EDWCA being deterministic and based on simple solver-free algebraic calcula-
tions, it is compatible with the implementation and certification constraints of Req.
2 and Req. 3.

Remark 5. The objective of the proposed control allocation algorithm is to satisfy
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as much as possible the five requirements stated in Section 2. It cannot be claimed
that the computed control inputs u are optimal, as they do not minimise any cost
function covering all these requirements. This would indeed require to solve a compli-
cated optimization problem, which is incompatible with meeting Req. 2 and Req. 3.
Nevertheless, the proposed decomposition of v into vp and vs guarantees that all vir-
tual inputs inside AMSp (resp. AMSa) can be realised using the primary (resp. all)
actuators. And for this choice, the amplitude of the control inputs is minimised. This
is the EDWCA answer to Req. 1, which gathers the requirements that should clas-
sically be satisfied by a control allocation algorithm. But this decomposition is not
unique, and another might lead to lower amplitude control inputs. This is the price to
pay for a very fast algorithm compatible with demanding real-time applications char-
acterised by Reqs. 2-5. This trade-off between dealing with numerous requirements
and keeping a very low computational cost is illustrated in Section 5.

5. Numerical results and analysis

Let’s consider again the control allocation problem (31). A scenario is considered,
where the virtual inputs v pass through various zones inside and outside the AMS.
More precisely, the following spiral is used:

v(t) =

[
v1(t)
v2(t)

]
= 0.0023t

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
cos(−ωt+ ϕ0)

0.6 sin(−ωt+ ϕ0)

]
(37)

where ψ = 0.8824, ω = 0.006 and ϕ0 = 3 are constant parameters. The EDWCA
described in Section 4 is applied at t = 1, 2, . . . , 2300 to compute the control inputs u =
[u1 . . . u6]

T such that Bu best approximates the reference virtual inputs (37), while
respecting the position limits (32). As already mentioned, the primary and secondary
groups are composed of the first three and the last three actuators respectively. And
for simplicity, actuator dynamics are ignored, which amounts to setting τi = 0 in
equation (36). Figures 5 and 6 show the reference (solid black lines) and realised (solid
blue/red/yellow lines) virtual inputs in the (v1, v2) plane and as a function of time
respectively, while Figure 7 displays the corresponding control inputs. Three cases can
be observed:

• For t ≤ 772s and 1077s ≤ t ≤ 1138s, the reference virtual inputs v lie inside
AMSp. They are therefore realised exactly using solely the primary actuators,

i.e. v = B [u1 u2 u3 0 0 0]T , and the blue solid lines overlap the black solid lines
in Figures 5 and 6. No actuator reaches its limit in Figure 7, except at t = 772s
and t = 1138s where two out of three do simultaneously, since the reference
virtual inputs reach the boundary of AMSp at those precise moments.
• For 772s < t < 1077s, 1138s < t ≤ 1301s and 1546s ≤ t ≤ 1711s, the reference

virtual inputs v lie outside AMSp but inside AMSa. They are therefore realised

exactly using all actuators, i.e. v = B [u1 u2 u3 u4 u5 u6]
T , and the red solid

lines overlap the black solid lines in Figures 5 and 6. At least two primary
actuators reach their limit in Figure 7. But no secondary actuator does, except
at t = 1301s and t = 1711s where two out of three do simultaneously, since the
reference virtual inputs reach the boundary of AMSa at those precise moments.
• For 1301s < t < 1546s and t > 1711s, the reference virtual inputs v lie outside
AMSa. They cannot be realised exactly, even if all actuators are used. The yellow
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solid lines no longer overlap the black solid lines in Figures 5 and 6, but they
follow the boundary of AMSa in Figure 5, thus realising at any time the maximum
virtual inputs in the direction of the reference ones.

Let’s now analyse the performance of the EDWCA in terms of computational time.
The above scenario is executed using Matlab R2018b on a Windows 10 laptop from
2019 with an Intel Core i5-8400H CPU running at 2.5 GHz and 16 GB of RAM. As
emphasised above, the EDWCA is run 2300 times and three main tasks are performed
each time:

(1) determine the virtual inputs objective vobj and the required actuators, depending
on whether v belongs or not to AMSp or AMSa (see Section 4.1),

(2) decompose vobj into vp and vs in case all actuators are necessary (see Section 4.3),
(3) compute the vector L as explained in Lemma 1, then the weighting matrix W

using equations (30) and (33), and finally the control inputs u with equation (7).

The computational times associated with these three tasks are 0.0204s, 0.0035s and
0.0182s respectively, which represents 0.0421s in total. The average computational
time per execution of the algorithm is thus equal to 0.0421/2300=1.832×10−5s. Noting
that an implementation in C code would be even faster, it can be concluded that the
EDWCA is compatible with real-time applications.

Remark 6. The example considered in this paper is academic, but not so trivial.
First, it implies no less than 6 actuators (3 primary and 3 secondary). Then, it has
been developed so that the virtual inputs v to be realised pass through all possible
areas: inside AMSp where only the primary actuators are needed, inside AMSa but
outside AMSp where all actuators are needed, and outside AMSa where v cannot be
realised even if all actuators are used. Finally, all possible transitions between these 3
areas are studied, in both directions.

6. Conclusion

This paper presents a non-trivial generalisation of the control allocation technique
initially proposed in Sadien et al. (2020), which shares the same characteristics and
benefits as the original version, but can be applied to multi-dimensional control prob-
lems. Based on the classical pseudo-inverse approach, it handles the usual tradeoff
between virtual reference inputs realisation and control power minimisation. But it
also offers three specific features. First, the actuators reach saturation almost simulta-
neously thanks to a dynamic weight adaptation mechanism, which allows an efficient
recovery in case of failure. Then, several industrial requirements are taken into ac-
count, such as implementation ease, low computational cost and compatibility with
certification constraints. And finally, the actuators can be classified as primary or sec-
ondary to prioritise the use of some over the others. But beyond this distribution of
the actuators in several groups, it would also be relevant to allow the groups to evolve
dynamically over time. Such an improvement is typically suggested by the automotive
example mentioned in the introduction, where the primary actuators are not the same
if the vehicle evolves in a urban area or on a highway. In this perspective, the smooth
variation of the control inputs should be ensured during the transition, which will be
the subject of future research.
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Figure 5. Reference virtual inputs v (solid black lines) and realised virtual inputs Bu (solid blue/red/yellow
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Figure 7. Primary (upper plot) and secondary (lower plot) control inputs u
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