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A discrete static contact problem with Coulomb friction is considered. The objective is to analyze non unique solutions. Since the model depends on parameters, we explore continuation (path-following) techniques for its numerical solution. In particular, we analyse a model with one and two contact nodes.

Static contact problems with Coulomb friction

Consider a linearly elastic body Ω ⊂ R 2 being supported by a rigid foundation along the contact boundary Γ C , see Fig. 1. We seek for the displacement field u such that

-div σ(u) = f , σ(u) = Aε(u)
in Ω. Here σ(u) and ε(u) stand for the stress and the linearized strain tensors, and A is the elastic coefficient tensor. On Γ N and Γ D , there are prescribed the Neumann and the Dirichlet boundary conditions σ(u)n = h , u = 0 , respectively, where n denotes the unit outward normal to ∂Ω. The fields f and h are given external loads.

The boundary conditions on Γ C make the problem nonlinear: Let u = [u ν , u t ] and [λ ν , λ t ] be the normal/tangential components of the displacement and the stress on Γ C . Here λ ν = (σ(u)n) • n and λ t = (σ(u)n) • t , where t is the tangent vector. The unilateral contact condition is expressed as the complementarity conditions u ν ≤ 0 , λ ν ≤ 0 , u ν λ ν = 0 .

Let F > 0 be the given friction coefficient. The static Coulomb friction law reads as follows:

if u t = 0 then |λ t | ≤ Fλ ν , if u t ̸ = 0 then λ t = Fλ ν u t |u t | .
The particular cases are interpreted as stick and slip, respectively. The static Coulomb friction problem admits at least one solution provided that F is sufficiently small, see e.g. [START_REF] Eck | Existence results for the static contact problems with Coulomb friction[END_REF][START_REF] Nečas | On the solution of variational inequality to the Signorini problem with small friction[END_REF]. On the other hand, examples with multiple solutions are known ( [START_REF] Hild | Non-unique slipping in the Coulomb friction model in two-dimensional linear elasticity[END_REF][START_REF] Hild | An example of nonuniqueness for the continuous static unilateral contact model with Coulomb friction[END_REF]).

We consider a discrete version of this model. It may be understood as a FEM-approximation of the continuous problem: Let the integers n and p, n ≥ 2p, denote the degrees of freedom for displacements and the number of the contact nodes on Γ C , respectively, and f ∈ R n be the given distributed volume force. We seek for the distributed displacement field u ∈ R n , the distributed normal and tangential stress components λ ν ∈ Λ ν and λ t ∈ Λ t (F, -λ ν ) such that

(Au, v) n = (f , v) n + (λ ν , Nv) p + (λ t , Tv) p ∀ v ∈ R n , (1) 
(µ ν -λ ν , Nu) p + (µ t -λ t , Tu) p ≥ 0 ∀ (µ ν , µ t ) ∈ Λ ν × Λ t (F, -λ ν ) . (2) 
Here, A ∈ R n×n is a positive definite stiffness matrix. The full-rank matrices N ∈ R p×n and T ∈ R p×n represent the actions of the distributed contact forces in normal and tangential directions. The sets of the Lagrange multipliers Λ ν and Λ t (F, -λ ν ) are introduced as

Λ ν = R p -, Λ t (F, -λ ν ) = {µ t ∈ R p : |µ t,i | ≤ -Fλ ν,i ∀ i = 1, . . . , p}. (3) 
Note that the latter one depends on the unknown component λ ν . Referring to [START_REF] Haslinger | Contact problem with friction[END_REF][START_REF] Janovský | Catastrophic features of Coulomb friction model[END_REF], there exists a solution of ( 1)&(2) for any data f ∈ R n and F > 0 under standard assumptions. The solution set is bounded, however, the bound depends on the data. If F is sufficiently small, the solution is unique. Unfortunately, the theoretical bounds which guarantee the uniqueness depend on the mesh size of the FEM-approximation. The following statement is also well known ( [START_REF] Haslinger | Contact problem with friction[END_REF][START_REF] Janovský | Catastrophic features of Coulomb friction model[END_REF]). 2) then the solution components u and λ t are determined uniquely by λ ν .

Remark 1. If (u, λ ν , λ t ) ∈ R n × Λ ν × Λ t (F, -λ ν ) is a solution of (1)&(
Since our objective is to find non unique solutions of ( 1)&( 2), we should be aware that the solution component λ ν may not be unique.

Let r > 0 be a fixed parameter. The variational inequality ( 2) is equivalent to the non-smooth equations

λ ν = P Λν (λ ν -rNu) , λ t = P Λt(F ,-λν ) (λ t -rTu) , (4) 
see e.g. [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF][START_REF] Hild | Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics[END_REF]. Here P Λν and P Λt(F ,-λν ) are projections of R p onto Λ ν and Λ t (F, -λ ν ). Consequently, solving (1)&( 2) for (u, λ ν , λ t ) ∈ R n ×Λ ν ×Λ t (F, -λ ν ) is equivalent to finding roots of the equations ( 1)&(4). In other words, the problem can be formulated as follows:

Define H : R n × R p × R p → R n × R p × R p by z ≡   u λ ν λ t   ∈ R n+2p -→ H(z) ≡   Au -f -N ⊤ λ ν -T ⊤ λ t λ ν -P Λν (λ ν -rNu) λ t -P Λt(F ,-λν ) (λ t -rTu)   ∈ R n+2p . ( 5 
)
Then the triplet z ≡ (u, λ ν , λ t ) is a solution to the discrete contact problem with Coulomb friction if and only if H(z) = 0.

The mapping H is piecewise smooth, see [START_REF] Scholtes | Introduction to piecewise differentiable equations[END_REF]. Therefore, the roots z ∈ R n+2p of H can be efficiently approximated by the semi-smooth Newton method, see e.g. [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF][START_REF] Kunisch | Semi-smooth Newton methods for the Signorini problem[END_REF][START_REF] Ligurský | Discrete contact problems with Coulomb friction[END_REF].

Path-following the static solutions

In the sequel, we shall assume that the mapping H depends on an additional scalar parameter so that H : R n+2p × I → R n+2p , I ⊂ R. The natural candidate for the parameterization is the load f : Consider a smooth loading path α ∈ I -→ f (α) ∈ R n , and the mapping

z ≡     u λ ν λ t α     ∈ R n+2p × I -→ H(z) ≡   Au -f (α) -N ⊤ λ ν -T ⊤ λ t λ ν -P Λν (λ ν -rNu) λ t -P Λt(F ,-λν ) (λ t -rTu)   ∈ R n+2p . ( 6 
)
The role of the parameter may play also the friction, see [START_REF] Hild | Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics[END_REF]:

z ≡     u λ ν λ t α     ∈ R n+2p × I -→ H(z) ≡   Au -f -N ⊤ λ ν -T ⊤ λ t λ ν -P Λν (λ ν -rNu) λ t -P Λt(α,-λν ) (λ t -rTu)   ∈ R n+2p . (7) 
Both mappings H : R n+2p × I → R n+2p defined by ( 6) and ( 7) are continuous, piecewise smooth. The set H (u, λ ν , λ t , α) = 0 ∈ R n+2p defines generically a continuous, piecewise smooth curve in R n+2p+1 .

The objective is to trace the curve numerically, using path-following (i.e. continuation) techniques, see e.g. [START_REF] Allgower | Numerical continuation methods[END_REF][START_REF] Govaerts | Numerical methods for bifurcation of dynamical equilibria[END_REF]. Unfortunately, the quoted techniques require the curve to be smooth. The idea is to continue smooth pieces by classical path-following routines. Then the smooth parts of the curve are joined together continuously, preserving the orientation.

The aim of this paper is to explore the technique in simple examples.

3. Case study: n = 2, p = 1

In the particular case n = 2, p = 1, the discrete contact problem with Coulomb friction can be solved analytically, see [START_REF] Janovský | Catastrophic features of Coulomb friction model[END_REF] and [START_REF] Hild | Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics[END_REF].

Given a positive definite stiffness matrix A ∈ R 2×2 , an external load f ∈ R 2 and a positive friction coefficient F,

A = a -b -b a , f = f ν f t ,
the aim is to find z ≡ (u ν , u t , λ ν , λ t ) T ∈ R 4 such that

H(z) ≡     au ν -bu t -f ν -λ ν -bu ν + au t -f t -λ t λ ν -P (-∞,0] (λ ν -ru ν ) λ t -P [-F |λν |,F |λν |] (λ t -ru t )     =     0 0 0 0     .
Here P (-∞,0] and P [-F |λν |,F |λν |] are natural notations for the projection P Λν and P Λt(F ,-λν ) in the context of this section (p = 1), see Fig. 2.

The solution components u ν and u t are interpreted as normal and tangential displacements, while λ ν and λ t are normal and tangential stresses at the contact point. Fig. 3 shows FEM-interpretation of the problem, [START_REF] Hild | Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics[END_REF]. Note that in linear elasticity, the elements of A are functions of the Lamé coefficients λ ≥ 0 and µ > 0. In particular, a = (λ + 3µ)/2 and b = (λ + µ)/2.

Fixing F > 0, consider the solution map

f = (f ν , f t ) T -→ z = (u ν , u t , λ ν , λ t ) T , (8) 
which relates a given load f to a solution z of H(z) = 0. In general, it is a piecewise linear multivalued function, whose graph is a union of graphs of linear functions over cones forming a decomposition of R 2 . The particular form of the cones, say σ i , depends on the size of F (for the explicit formulae see [START_REF] Ligurský | Discrete contact problems with Coulomb friction[END_REF]). Consequently, one can distinguish three qualitatively different situations, namely 0 < F < a/b, F > a/b and F = a/b shown in Fig. 4, Fig. 5 and Fig. 6 (mind the reversed scale of f ν and recall that the solution component λ ν determines the components u ν , u t and λ t uniquely, see Remark 1). Let us notice that each of the linear functions of the solution map gives solutions with the same contact mode, i.e. no contact, contact-stick or contact-slip.

P (-∞,0] (x) x -η P [-η,η] (x) η x Figure 2: Projectors x -→ P (-∞,0] (x), x -→ P [-η,η] (x), η = F|λ ν |.

Continuation: Varying load

Consider the following continuation problem.

Problem 1. For F > 0 and a smooth loading path given, define

α ∈ I -→ f (α) ≡ (f ν (α), f t (α)) T ∈ R 2
      u ν u t λ ν λ t α       ∈ R 4 × I -→ H(u ν , u t , λ ν , λ t , α) ≡     au ν -bu t -f ν (α) -λ ν -bu ν + au t -f t (α) -λ t λ ν -P (-∞,0] (λ ν -ru ν ) λ t -P [-F |λν |,F |λν |] (λ t -ru t )     ∈ R 4 .
Follow the implicitly defined curve

H (u ν , u t , λ ν , λ t , α) = 0 ∈ R 4 .
To describe our path-following technique, we consider the following loading path:

α ∈ [-2, 2] -→ f (α) ≡ (0.25, α) T ∈ R 2 ,
see Fig. 7 on the left. The piecewise affine curve on the right of Fig. 7 represents the corresponding solution curve. Let us note that it should be interpreted as the slice f ν ≡ 0.25 of the graph in Fig. 5.

Fig. 8 illustrates performance of the path-following algorithm. The asterisk denotes the initial point, whose coordinates are available explicitly. Nevertheless, one can use the semismooth Newton method in order to find it. The smooth pieces of the solution curve are continued by a classical predictor-corrector technique with adaptive step length refinement.

In particular, we have adapted routines from MATCONT, [START_REF] Dhooge | MATCONT: A Matlab package for numerical bifurcation analysis of ODEs[END_REF].

Let us point out that we use a prediction which employs a tangent to determine an approximation of each new point of the curve. Clearly, these tangents have to be chosen so that the so-called orientation is preserved in course of the whole continuation. We recall the relevant definition (see e.g. [1, p. 9]).

Definition 1. Let H be smooth at a point (u ν , u t , λ ν , λ t , α) ∈ R 5 . The tangent t ∈ R 5 satisfying ∂H(u ν , u t , λ ν , λ t , α)t = 0 is termed positively oriented iff det ∂H(u ν , u t , λ ν , λ t , α) t T > 0.
In the opposite case it is called negatively oriented.

For example, the curve in Fig. 8 was computed by using tangents with negative orientation.

In other words, we say that it is negatively oriented. The classical continuation breaks down at the so-called transition points. These are the points marked by circles on the right of Fig. 7. In fact, they correspond to the boundary points of the sets σ i and the mapping H is not differentiable there. Consequently, tangents to the solution curve exist only in generalized sense at these points, see Fig. 9. (Here and in what follows, the notion of tangent orientation is enlarged from the interiors of domains where H is differentiable to their neighbourhoods.) In order to locale the transition points and to join the smooth pieces of the curve together, we introduce the test function κ = (κ 1 , κ 2 , κ 3 ) : R 5 → R 3 as

κ 1 (u ν , u t , λ ν , λ t , α) = λ ν -ru ν , κ 2 (u ν , u t , λ ν , λ t , α) = -Fλ ν + λ t -ru t , κ 3 (u ν , u t , λ ν , λ t , α) = Fλ ν + λ t -ru t .
Let us notice that when evaluating κ along the solution curve, a sign-change of one of its components indicates a transition point because individual smooth pieces consist of points with distinct contact modes.

Furthermore, we assign to each point (u ν , u t , λ ν , λ t , α) of the curve the so-called character given by the triplet

  χ (-∞,0] (κ 1 (u ν , u t , λ ν , λ t , α)) χ [0,+∞) (κ 2 (u ν , u t , λ ν , λ t , α)) χ (-∞,0] (κ 3 (u ν , u t , λ ν , λ t , α))   ,
where χ (-∞,0] and χ [0,+∞) stands for the characteristic function of the interval (-∞, 0] and [0, +∞), respectively. Obviously, the character may attain just six values on the solution curve, namely

  0 1 0   ,   0 0 1   ,   0 1 1   ,   1 1 0   ,   1 0 1   ,   1 1 1   .
Note that the characters (0, 1, 0) T , (0, 0, 1) T , (0, 1, 1) T , (1, 1, 0) T , (1, 0, 1) T and (1, 1, 1) T correspond to no contact, contact-slip and contact-stick points, respectively. (In our code, these points are classified as class 1 and class 2 and class 3 instead.) Furthermore, one can easily verify that in the case of a point (u ν , u t , λ ν , λ t , α) where H is differentiable, the differential ∂H(u ν , u t , λ ν , λ t , α) is uniquely determined by the character of this point. Now consider a transition point which lies on the border between two smooth pieces of the solution curve, i.e. such that two different contact modes coexist there. As explained before, one component of the test function κ vanishes at this point. Hence, if the classical pathfollowing technique arrives at its vicinity (and it has numerically broken down there) the value of this component of κ at the last computed point is close to zero. With regard to this component, one can easily deduce the character of the points beyond the transition point. But with this character at hand, the other smooth piece can be reached. Indeed, in light of the new character, a new differential ∂H is determined, which yields a new orientationpreserving tangent. Finally, it suffices to restart the classical continuation technique from the last computed point, but with the new tangent.

To illustrate behaviour of the algorithm when solving the example considered (taking the negative tangent orientation), three transition points were identified on the path: index: 19 msg: 'contact, slip -> contact, stick' class: 3 index: 36 msg: 'contact, stick -> contact, slip' class: 2 index: 55 msg: 'contact, slip -> no contact' class: 1

In particular, let us focus on the transition executed at the point No 55. For example, the point No 44 has the coordinates (u ν , u t , λ ν , λ t , α) T = (-0.0000, -0.1874, -0.0626, 0.2503, -0.6251) T .

The corresponging negatively oriented tangent is v = (0, -0.2132, 0.2132, -0.8528, 0.4264) T and the value of the test function is κ(u ν , u t , λ ν , λ t , α) = (-0.0626, 0.6880, 0.1874) T . The character of this point is (1, 1, 0) T , hence contact-slip.

As the continuation (of the points with character (1, 1, 0) T ) proceeds further, the value of κ 1 tends to zero. Numerically, we detect κ 1 being sufficiently small (beyond a prescribed threshold). The last point of this sequence is the point No 55 in Fig. 8: (u ν , u t , λ ν , λ t , α) T = (-0.0000, -0.2500, -0.0000, 0.0000, -0.5000) T .

Here, the negatively oriented tangent is v = (0, -0.2132, 0.2132, -0.8528, 0.4264) T and the test function is κ(u ν , u t , λ ν , λ t , α) = (-0.0000, 0.2500, 0.2500) T . Naturally, character of this point is (1, 1, 0) T , hence contact-slip. Observe that the continuation data show the clear tendency κ 1 ↗ 0.

According to the description above, the character (1, 1, 0) T is to be replaced by the character (0, 1, 0) T . This is the meaning of the message: index: 55 msg: 'contact, slip -> no contact' class: 1

Then the continuation is restarted from the point No 56: the coordinates (u ν , u t , λ ν , λ t , α) T are the same as that of the point No 55, whereas the character is set to (0, 1, 0) T . This enforces that the (negatively) oriented tangent is computed as v = (-0.2673, -0.5345, 0.0000, -0.0000, -0.8018) T . Now let us briefly comment on the recovered number of solutions of the underlying contact problem. Note that there are two exceptional transition points on the solution curve shown in Fig. 7, namely the points corresponding to (α = -1, λ ν = -0.25) and (α = -0.5, λ ν = 0). In any neighbourhood of these points, the curve cannot be described as a function of the parameter α, more precisely by f t . Such points are known as non-smooth folds, see [START_REF] Di Bernardo | Piecewise-smooth Dynamical Systems[END_REF]. As a consequence, the curve folds up twice and we encounter non-unique solutions of the model. Especially, for the loads in the range f ν = 0.25, -1 < f t < -0.5, we have exactly three qualitatively different solutions.

In the end of this subsection, let us present a few experiments with the circular loading path

α ∈ [0, 1] -→ f (α) = (f ν (α), f t (α)) T ∈ R 2 given by f ν (α) ≡ 0.9 cos(2πα -0.45) + 1, f t (α) ≡ 0.9 sin(2πα -0.45) -1.
The solutions constructed on the basis of the continuation algorithm are presented in Fig. 10, Fig. 11 and Fig. 12. For reference, we supply plots of the relevant decomposition into σ i . The initial condition is indicated by the asterisk. (Note the reversed scale of f ν in comparison with Fig. 5, Fig. 4 and Fig. 6.)

Continuation: Varying friction

Consider friction coefficient F to be the continuation parameter.

Problem 2. For (f ν , f t ) ∈ R 2 given, define       u ν u t λ ν λ t α       ∈ R 4 × (0, +∞) -→ H(u ν , u t , λ ν , λ t , α) ≡     au ν -bu t -f ν -λ ν -bu ν + au t -f t -λ t λ ν -P (-∞,0] (λ ν -ru ν ) λ t -P [-α|λν |,α|λν |] (λ t -ru t )     ∈ R 4 .

Follow the implicitly defined curve

H (u ν , u t , λ ν , λ t , α) = 0 ∈ R 4 .
The path-following algorithm is essentially the same as the one described in the previous subsection. In fact, we just need to supply the explicit formulae for the differential ∂H. Nevertheless, they differ just in the last column in comparison with the continuation with respect to loads. In what follows, we return to the usual notation for the friction coefficient and set α ≡ F. (The reason for taking α was a unified formulation of both Problem 1 and 2.)

0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 -2 -1.5 -1 -0.5 0 0.5 f t f ν λ ν -2 -1 0 1 2 -2 -1.5 -1 
f t f ν λ ν -2 -1 0 1 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ft 
1 2 -2 -1.5 -1 -0.5 0 -2 -1.5 -1 -0.5 0 f t f ν λ ν -2 -1 0 1 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ft fν σ 1 σ 2 σ 3
The two branches in Fig. 13 represent the complete solution set for the data indicated. Each branch is computed by path-following from the initial condition taking both the positive and the negative orientation.

The solution set in Fig. 14 consists also of two branches. For the given data, there exists just one branch which emanates from the initial point with F 0 = 4, namely (u 0 ν , u 0 t , λ 0 ν , λ 0 t , F 0 ) T = (-0.4, -1.0, 0, 0, 4) T . The branch consists of no contact points. However, the question is how to find the second branch. In view of the analysis in [START_REF] Hild | Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics[END_REF], the coordinates of the transition point of the type 'contact, slip -> contact, stick' are (0, 0, -0.2, 1.6, 8.0) T . Taking this point as the initial one, the other branch is recovered by continuation in the two possible directions.

For some data, the solution set consist of just one branch, see Fig. 15 and Fig. 16. The initial condition u 0 ν , u 0 t , λ 0 ν , λ 0 t , F 0 T = (0, 0, -1, 1, 4) T is classified as contact-stick. On the right: The load (f ν , f t ) T marked by the asterisk. The decomposition into σ i is related to F 0 = 4. The initial condition u 0 ν , u 0 t , λ 0 ν , λ 0 t , F 0 T = (0, 1, -2, -8, 4) T is classified as contact-slip. On the right: The load (f ν , f t ) T marked by the asterisk. The decomposition into σ i is related to F 0 = 4.
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4.

Higher dimensions? Case study: n = 4, p = 2 A natural question arises, namely whether the continuation can be extended to higher dimensions. So far, we are able to treat a small case study n = 4, p = 2, i.e. with two points on the contact boundary. More precisely, we consider the matrices A ∈ R 4×4 and N, T ∈ R 2×4 in the following form:

A =     b -b 0 0 -b a -b 0 0 -b a -b 0 0 -b a     , N = 1 0 0 0 0 0 1 0 , T = 0 1 0 0 0 0 0 1 .
Consequently, the external load f ∈ R 4 and the state variable (u, λ ν , λ t ) ∈ R n × Λ ν × Λ t (F, -λ ν ) are structured as follows:

f = (f ν,1 , f t,1 , f ν,2 , f t,2 ) T , u = (u ν,1 , u t,1 , u ν,2 , u t,2 ) T , λ ν = (λ ν,1 , λ ν,2 ) T , λ t = (λ t,1 , λ t,2 ) T .
Recall that the component λ ν governs the remaining components u and λ t . We consider both continuation problems ( 6) and [START_REF] Haslinger | Contact problem with friction[END_REF]. Since the constraints in the Lagrange multiplier sets are separated (cf. (3)), the projectors P Λν and P Λt(F ,-λν ) act at each point of the contact boundary independently according to Fig. 2. Due to this fact, the pathfollowing technique is analogous to the procedure described in the previous section: At each of the two points of the contact boundary, the test function κ and the related character are defined and on the basis of their behaviour, the transition points are treated in the course of the continuation. We just give selected examples of the constructed solution sets. 

α ∈ [-8, 2] -→ f (α) ∈ R 4 : f ν,1 (α) = 0.4, f t,1 (α) = α, f ν,2 (α) = 0.2α + 1.8, f t,2 (α) = α, see Fig.
ϕ, ψ, θ) ∈ [0, 2π] × [0, 2π] × [0, 2π] -→ f (ϕ, ψ, θ) ∈ R 4 : f ν,1 (ϕ, ψ, θ) = R 0 cos(ψ + ψ 0 ), f ν,2 (ϕ, ψ, θ) = R 0 cos(ϕ + ϕ 0 ) sin(θ + θ 0 ) sin(ψ + ψ 0 ), f t,1 (ϕ, ψ, θ) = R 0 cos(θ + θ 0 ) sin(ψ + ψ 0 ) , f t,2 (ϕ, ψ, θ) = R 0 sin(ϕ + ϕ 0 ) sin(θ + θ 0 ) sin(ψ + ψ 0 ) for R 0 > 0, ϕ 0 , ψ 0 , θ 0 ∈ R fixed.
In particular, we consider f := f (ϕ) := f (ϕ, 0, 0). The obtained results are shown in Fig. 18. To describe the constructed solution set, let us number the solutions for F = 4 (represented by the asterisks in Fig. 19):

Solution No1

(u, λ ν , λ t ) T = (-1.1, -1.5, -0.5, -1.0, 0.0, 0.0, 0.0, 0.0) T ; characters of the contact points: (0, 1, 0) T , (0, 1, 0) T ; classification: no contact, no contact.

Solution No2

(u, λ ν , λ t ) T = (-0.6, -1.0, 0.0, -0.25, -0.0, -0.25, -0.0, 1.0) T ; characters of the contact points: (0, 1, 0) T , (1, 1, 0) T ; classification: no contact, contact-slip.

Solution No3

(u, λ ν , λ t ) T = (-0.6, -1.0, 0.0, 0.0, 0.0, -0.5, -0.0, 1.5) T ; characters of the contact points: (0, 1, 0) T , (1, 1, 1) T ; classification: no contact, contact-stick.

Solution No4

(u, λ ν , λ t ) T = (0.0, -0.1, 0.0, 0.0, -0.3, -1.4, 1.2, 1.5) T ; characters of the contact points: (1, 1, 0) T , (1, 1, 1) T ; classification: contact-slip, contact-stick.

Solution No5

(u, λ ν , λ t ) T = (0.0, 0.0, 0.0, 0.0, -0.4, -1.5, 1.4, 1.5) T ; characters of the contact points: (1, 1, 1) T , (1, 1, 1) T ; classification: contact-stick, contact-stick.

Altogether, we found three solution branches: The first branch contains the root No1, the second one contains the roots No2 and No3 and the third one contains the roots No4 and No5. 16 

Conclusions

The aim of this contribution is to explore the path-following techniques for the discretized static Coulomb friction model. We considered parametrization with respect to the given loading path or with respect to coefficient of friction F. Genericly, the solution path is a continuous and piecewise smooth curve in the state space. The continuation idea is the following:

1. Continue the smooth pieces by classical path-following techniques. 2. Join the smooth pieces continuously, preserving the orientation.

Concerning the latter, we introduced notions like test function and character. Since these are related to each point of the contact boundary, the technique may be extended to higher dimensions.

Based on the computed solution paths, the other objective of this paper was to point out non unique solutions of the model. We explained the role of non-smooth folds in the loss of the unique solvability.

Figure 1 :

 1 Figure 1: 2D elastic body Ω in frictional contact.

Figure 3 :

 3 Figure 3: FEM-interpretation of the problem.

4 Figure 4 :

 44 Figure 4: Case 0 < F < a/b: σ 1 . . . no contact, σ 2 . . . contact-stick, σ 3 . . . contact-slip, σ 4 . . . contact-slip. Data: a = 2, b = 1, F = 0.7.

3 Figure 5 :

 35 Figure 5: Case a/b < F: σ 1 . . . no contact, σ 2 . . . contact-stick, σ 3 . . . contact-slip, σ 5 ≡ σ 1 ∩ σ 2 . . . contact-slip. Data: a = 2, b = 1, F = 4.

2 Figure 6 :

 26 Figure 6: Case F = a/b: σ 1 . . . no contact, σ 2 . . . contact-stick, σ 3 . . . contact-slip. Data: a = 2, b = 1, F = 2.

Figure 7 :

 7 Figure 7: On the left: The loading path f ν ≡ 0.25, -2 ≤ f t ≤ 2. On the right: The solution curve for a = 2, b = 1, F = 4; the line interpretations: solid . . . no contact, dashed . . . contact-stick, dash-dotted . . . contact-slip.

Figure 8 : 8 -Figure 9 :

 889 Figure 8: An illustration of the path-following algorithm with step length refinement. The solution curve is approximated by 65 points. The asterisk marks the first point. The points 19, 36 and 55 are transition points.

5 Figure 10 :

 510 Figure 10: Solution curve for a = 2, b = 1, F = 4; the loading path on the right.

fν σ 1 σ 2 σ 3 σ 4 Figure 11 :

 123411 Figure 11: Solution curve for a = 2, b = 1, F = 0.7; the loading path on the right.

  0

Figure 12 :

 12 Figure 12: Solution curve for a = 2, b = 1, F = 2; the loading path on the right.

5 Figure 13 : 5 Figure 14 : 5 Figure 15 :

 513514515 Figure13: Solution curve for a = 2, b = 1, f ν = 1, f t = -3. Two branches correspond to two initial conditions (0, -0.5, -0.5, 2, 4) T and (-1/3, -5/3, 0, 0, 4) T , classified as contact-slip and no contact, respectively. On the right: The load (f ν , f t ) T marked by the asterisk. The decomposition into σ i is related to F 0 = 4.

5 Figure 16 :

 516 Figure 16: Solution curve for a = 2, b = 1, f ν = 1, f t = -10. The initial condition u 0ν , u 0 t , λ 0 ν , λ 0 t , F 0 T = (0, 1, -2, -8, 4) T is classified as contact-slip. On the right: The load (f ν , f t ) T marked by the asterisk. The decomposition into σ i is related to F 0 = 4.

Example 1 .

 1 Data: a = 2, b = 1, F = 4, r = 1. Path-following (6) along the linear loading path
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Figure 17 :Example 2 .

 172 Figure 17: Path-following (6), a linear loading path.

Figure 18 :

 18 Figure 18: Path-following (6), a periodic loading path.

Figure 19 :

 19 Figure 19: Path-following (7), three branches plotted in one figure.
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