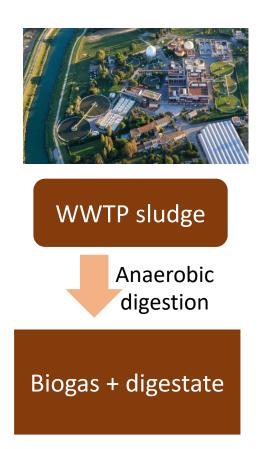
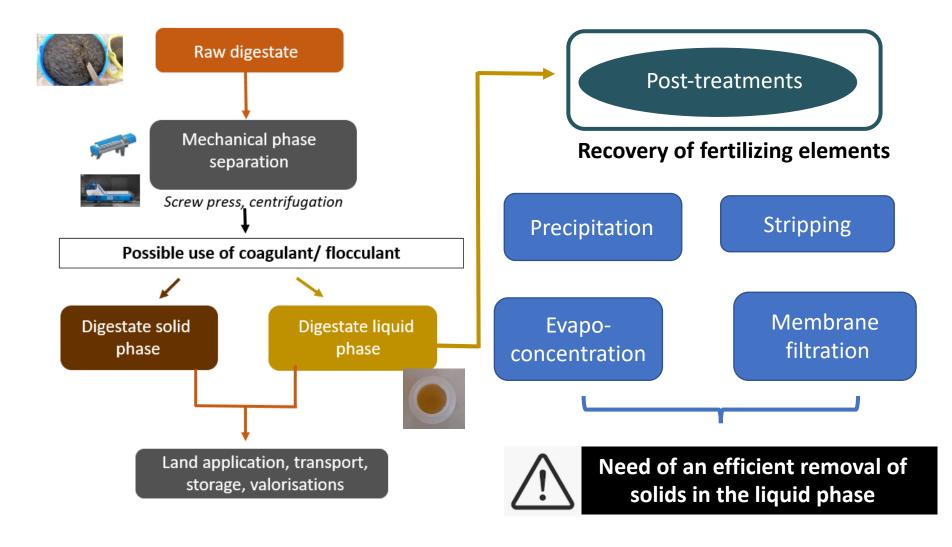


Functionalized CHitosan as a biosourced coagulant/flocculant for solid and liquid phase separation of sewage sludge digestate

S. Lèbre, G. David, C. Negrell, <u>A. Battimelli</u>, H. Carrère, E. Ruiz, L. Vachoud, C. Wisniewski





> Sludge and digestate management

Objective of the study

Interest of optimizing solid/liquid phase separation of digestates

Decrease the impact of coagulants/flocculants using **natural biopolymers**

Advantages : Produced from renewable resources

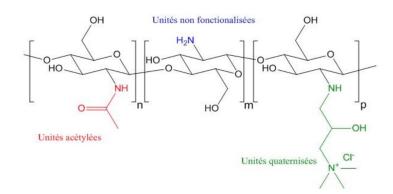
Circular economy model

Objective: Evaluate and optimize the efficiency of a biosourced **chitosan-based** coagulant/flocculant on phase separation of digestates for the recovery of fertilising elements

Experimental design with Chitosan

2nd biopolymer the most abundant in the world Obtained from chitin (shrimps)

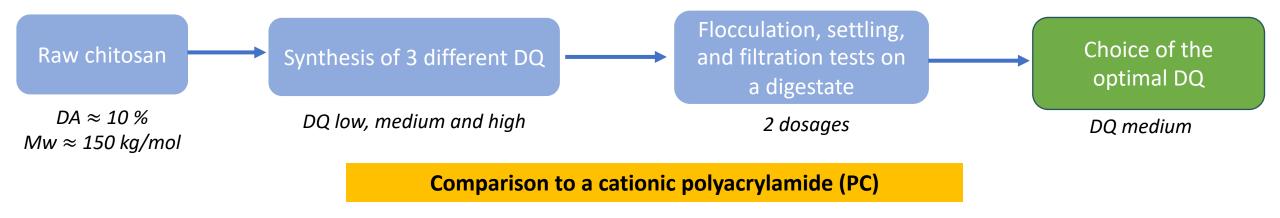
Raw Chitosan Poor solubility in water when pH > 6


Unités acétylées

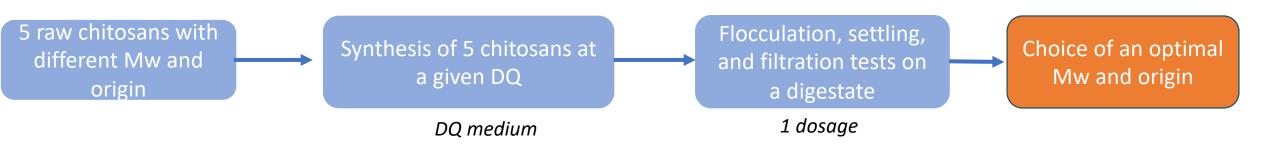
Addition of a quaternary ammonium function **Functionalized CHitosan** (CHF)

with cationic charge

Positive electric charge Better reactivity with colloids (negative charge) Soluble at the whole pH range


Functionalized chitosan is characterized by its Quaternization Degree (DQ)

(1) Loubaki et al. (1991), Chemical modification of chitosan by glycidyl trimethylammonium chloride. Characterization of modified chitosan by modified chitosan by 13C and 1H-NMR spectroscopy


Unités non fonctionalisée

Optimization of Chitosan Functionalization (CHF)

1) Effect of quaternisation degree (DQ) on digestate's dewaterability (one molar weight and origin)

2) Effect of molar weight (Mw) and Origin of CHF on digestate's dewaterability (one DQ)

Comparison to a cationic polyacrylamide (PC)

> Physico-chemical parameters of digestate after coagulation/floculation

рН

Small / (+0,3 in average)

Conductivity

Small (-0,5 à -1 mS/cm in average) more visible with chitosans

Capturing negative charges and lowering the electrical mobility of the medium⁽²⁾

Granulometry

PC : agglomeration of particles ($\approx 100-1000~\mu m$)

CHF: monomodal distribution ($\approx 30-85 \mu m$)⁽³⁾

Hypotheses: different flocculation mechanisms?

Rheology

PC : viscosity

CHF:

viscosity, link with dosage but no link with DQ and Mw

Hypotheses: links with physicochemical characteristics of digestate?

²Sriwiriyarat et al. (2008), Feasible use of electrical conductivity for optimizing polymer dosage and mixing time requirement in sludge conditioning

³Wang et al. (2018), Advanced anaerobic digested sludge dewaterability enhancement using sludge based activated carbon (SBAC) in combination with organic polymers

> Effect of the flocculants on the digestate's dewaterability

Settling

Raw Digestate no settling capacity:

$$\frac{Vliquid}{Vtotal} = 0$$

All: Small improvement of settling $(19-29 \% \text{ of } \frac{Vliquid}{Vtotal})$

Filtration

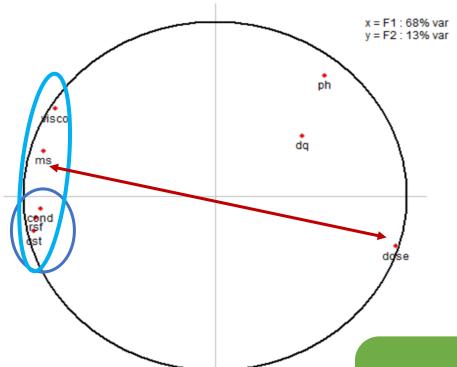
All : $\frac{Vliquid}{Vtotal}$ of 70-85 %

CHF: Improvement of filtration kinetics

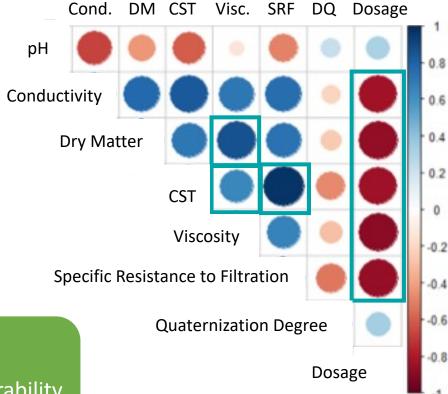
Centrifugation

All: $\frac{Vliquid}{Vtotal}$ of 45-50 %

CHF: small if Mw



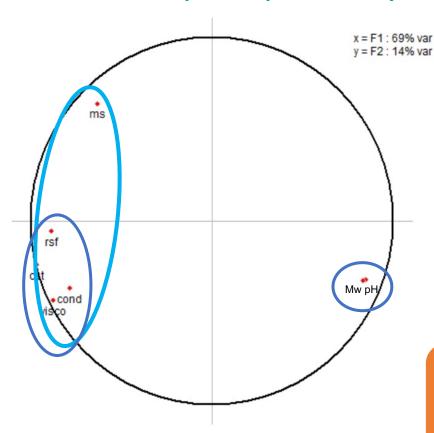
6/10

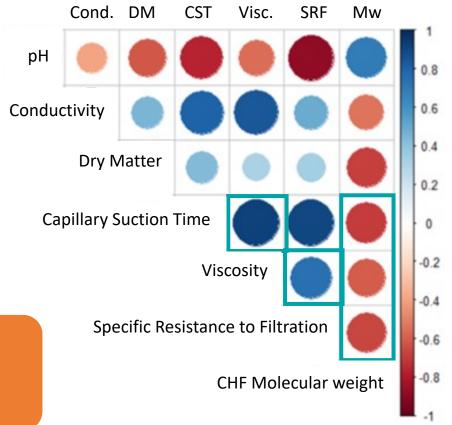

1) Effect of quaternization degree (DQ) on digestate's dewaterability (one molar weight and origin)

R data processing

Principal Component Analysis

Correlation Matrix


- Viscosity/DM/CST
- Improvement of sludge dewaterability: correlation with dose but not DQ


2) Effect of molar weight (Mw) and Origin of CHF on digestate's dewaterability (one DQ)

R data processing

Principal Component Analysis

Correlation Matrix

- Viscosity/SRF/CST
- Improvement of sludge dewaterability: correlation with Mw

Conclusions and future work

Efficiency of the functionalized chitosan

- Improves : settleability, filtration kinetics
- Efficiency: DQ and dosage, optimum for a given Mw
- Granulometry: monomodal distribution for all CHF
- Rheology: decrease of digestate's viscosity, link with the dosage

Comparison to a commercial cationic polyacrylamide

- Different results on granulometric behaviour and higher viscosity
- Suspensions difficult to homogenize due to viscosity

Outlooks with CHF

- Optimisation of dosages and centrifugation conditions
- Comprehensive study of interactions between parameters
- Tests of fertilising potential, life cycle analysis and ecotoxicology

Funded by Agence de l'eau RMC Convention n°2019 0754

Functionalized <u>CHitosan</u> as a <u>biosourced</u> coagulant/flocculant for solid and liquid phase separation of sewage sludge digestate

S. Lèbre, G. David, C. Negrell, A. Battimelli, H. Carrère, E. Ruiz, L. Vachoud, C. Wisniewski

Thank you for attention

