
HAL Id: hal-04130741
https://hal.science/hal-04130741v1

Preprint submitted on 16 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural networks for large deformation plasticity.
Towards real-time interactive simulations

Louis Lesueur, Anders Thorin, Daniel Weisz-Patrault

To cite this version:
Louis Lesueur, Anders Thorin, Daniel Weisz-Patrault. Neural networks for large deformation plastic-
ity. Towards real-time interactive simulations. 2023. �hal-04130741�

https://hal.science/hal-04130741v1
https://hal.archives-ouvertes.fr


Neural networks for large deformation plasticity.
Towards real-time interactive simulations

Louis Lesueur
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Laboratoire de Mécanique des Solides, CNRS UMR 7649, École Polytechnique
Institut Polytechnique de Paris, F-91128 Palaiseau, France

louis.lesueur@cea.fr

Anders Thorin
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

anders.thorin@cea.fr

Daniel Weisz-Patrault
Laboratoire de Mécanique des Solides, CNRS UMR 7649, École Polytechnique

Institut Polytechnique de Paris, F-91128 Palaiseau, France
daniel.weisz-patrault@polytechnique.edu

Abstract

In the last years, neural networks have been used to learn physical simulations in a
wide range of contexts. The present work tackles the training of neural networks for
large deformation plasticity. There are two sources of nonlinearity: geometric (large
deformation) and material (plasticity). Traditional numerical methods for plastic
simulations (such as the Finite Element method) are computationally expensive.
NNs architectures have been proposed in plasticity in some simple cases, in the
small deformations framework. The main contributions are i) the application of
NN for plasticity in large deformations, ii) a review and comparison of the existing
methods, iii) the use of a Temporal Convolutional Network that trains faster than
the existing methods, iv) an open source benchmark to the scientific community.
Altogether, these contributions enable real-time simulation of plastic behaviors.

1 Introduction

This work tackles the training of neural networks to learn the simulation of materials undergoing large
elasto-plastic deformations. Nonlinearity stems from two sources: i) a material nonlinearity, coming
from the plastic constitutive law, and ii) a geometric nonlinearity, due to the large deformation (also
referred to as finite strains) framework.

Plasticity is an irreversible mechanical process which occurs in many applications such as industrial
processes (stamping, rolling), metallic additive manufacturing, damage, etc. Because it is a history-
dependent process, solving its governing equations requires dedicated and computationally-expensive
numerical methods [Dunne and Petrinic, 2005]. In this work, we investigate the training of surrogate
models composed of neural networks to accelerate simulations. Speeding up elasto-plastic simulations
opens doors to plasticity-based interactive simulations. It may also used in optimization such as
Reinforcement Learning (RL), when the cost functional involves plasticity.

Preprint. Under review.



History-dependent processes In terms of Neural Network (NN) architecture, the history-dependent
property of plasticity guides the choice of potentially appropriate NNs. In the general framework of AI,
history-dependent processes are widely used in natural language processing [Graves, 2014]. Indeed,
in a text, the meaning of a word is determined by its predecessors, i.e. its history. History-dependent
neural networks have also allowed great advances in the fields of time series prediction [Vaswani
et al., 2017].

Machine learning and physics simulation In recent years, machine learning techniques have been
successfully applied to a wide variety of mechanical problems.

PINNs are among the most popular techniques [Raissi et al., 2019, Raissi, 2018, Raissi et al., 2018].
In these approaches, a neural network is used to solve a given Partial Differential Equation (PDE).
These networks take in input a space-time coordinate and outputs the value of the corresponding
learned quantities. They are “physics-informed” in the sense that the cost function is applied both
on the data and on a physical model of these data. The problem with most of these approaches is
that they require the knowledge of the loading evolution on the whole resolution domain beforehand.
They are therefore unsuitable for an interactive paradigm, as the user changes the external load in an
unpredictable manner.

Another approach consists in learning the constitutive laws [Zhou et al., 2021, Liu et al., 2021, Linka
et al., 2021], which relates stresses and strains. Such laws are slow to simulate with Finite Element
software, because of the material and geometric nonlinearities. Once correctly trained, NN evaluate
much faster. One way of taking advantage of this speed up lies in the possibility of injecting them
into finite elements, and thus circumventing the difficulties related to nonlinearities. This speeds up
computations and allows interactivity.

Another approach, chosen here, is to use recurrent networks which are well-suited for sequential
simulations in hyperelasticity [Hashash et al., 2004], viscoplasticity [Chen, 2021] or thermoelasticity
[Chen et al., 2021].

Sequential machine learning Recurrent networks are designed to process I/O time series (xt, yt),
and can predict on the fly the output of a step, based on its input, while taking into account the history
of previous predictions through a state variable ht. Three main recurrent network architectures exist:
RNNs [Rumelhart et al., 1986], GRUs [Chung et al., 2014] and LSTMs [Hochreiter and Schmidhuber,
1997]. These three architectures have undergone various variations.These architectures are called
recurrent, since the same network is used to loop recursively on the entries of the time series. A
comparison between them can be found in [Cahuantzi et al., 2021].

Note that some recurrent architectures, such as PhyLSTM [Zhang et al., 2020], can adapt to a given
class of physical problems and therefore also be considered as a type of “physics-informed” network.

More recently, non-recurrent but also efficient architectures have appeared to process time series. In
particular, transformers [Vaswani et al., 2017], which rely on the attention mechanism, have shown
their effectiveness in language processing. There are also Temporal Convolutional Network (TCN)
[Lea et al., 2016], based on temporal convolutions. Unlike recurrent networks, which only take the
input of the current stage, these networks take the entire time series from its beginning to the current
stage. In practice, the inference is parallelizable so that it does not take longer than a RNN, but
requires more RAM. These architectures are an active and fruitful research topic [Zhou et al., 2020,
Grigsby et al., 2021]. Comparison between recurrent networks and TCNs can found in [Lai et al.,
2017, Bai et al., 2018].

Machine learning and plasticity The majority of the existing literature regarding machine learning
and plasticity is focused on learning the material plastic behavior, in order to eliminate the nonlinearity
and to be able to inject the learned model into classical finite elements [Mozaffar et al., 2019, Gorji
et al., 2020, Bonatti and Mohr, 2022]. More Recently, other articles have focused on direct learning
of free energy [Zhang and Mohr, 2020, Li et al., 2022]. Such approaches are more versatile. They
can be used within other numerical methods than finite elements, such as the Material Point Method
(MPM) methods. The free energy has also be learned by means of TCNs [Abueidda et al., 2021a].

The methods proposed here are standalone: they are not to be implemented within a numerical
method.

2



Worth noting are PINN-type methods adapted to plasticity, such as [Arora et al., 2022] and [Haghighat
et al., 2022]. Also, some similar methods prefer to optimize energy functions rather than displace-
ments [He et al., 2022, Abueidda et al., 2021b]. These methods use conventional dense networks, but
it is also possible to determine an appropriate architecture to enforce compliance of plasticity with
thermodynamics [He and Chen, 2022].

Finally, although neural network approaches are the most prevalent within ML, it should be noted
that one can also find attempts to model plasticity with more traditional data processing algorithms.
Notably by symbolic regression [Versino et al., 2017], by minimization of a distance over stress-strain
space [Ciftci and Hackl, 2021], or by using kernel-based methods [Gerbaud et al., 2022].

Outline The main difference in this work is that, contrary to all the above-mentioned references, it
is not limited to small deformations. The results are demonstrated using a paper clip undergoing large
quasi-static transformations, described in Section 2. The dataset generation, the proposed method, the
comparison methodology with existing architectures and the training details are provided in Section 3.
Results are presented and discussed in Section 4.

2 Problem statement

2.1 Large transformation plasticity

The basis of the theory of plasticity at finite strains is briefly recalled. It will help emphasizing
important aspects guiding the choice of appropriate NNs. Readers who are mostly interested in the
mathematical governing equations can skip directly to Eqs (14).

The transformation from the reference configuration Ω0 to the current configuration Ωt is parametrized
by x = Φ(X, t), where Φ is a bijective function called transformation, X denotes a particle in the
reference configuration, t the time, and x the location of the particle in the current configuration.
The theory is derived on a volume element dΩ0 transformed into dΩ by using the transformation
gradient F = ∇

X
Φ. Classical finite strains theory involves a stress-free configuration called released

configuration that is obtained by unloading the volume element dΩ. The transformation gradient
can therefore be decomposed into the second order tensor F

E
representing the elastic part of the

transformation while F
P

represents the plastic part:

F = F
E
· F

P
(1)

F
P

is often assumed to be isochoric i.e., detF
P

= 1 so that the volume variation reduces to
J = detF = detF

E
. Both F

E
and F

P
are incompatible in the sense that they are not gradients

of any transformation in general. The decomposition (1) is not unique a priori. The macroscopic
plasticity uniqueness is ensured by imposing the symmetry of F

E
(i.e., F⊤

E
= F

E
).

Introducing the velocity ẋ, the symmetric part of the velocity gradient denoted by

d = sym
[
∇

x
ẋ
]
= sym

[
Ḟ · F−1

]
(2)

plays a major role in defining state variables in mechanics. By using the decomposition (1) one
defines:

d
E
= sym

[
Ḟ

E
· F−1

E

]
and d

P
= sym

[
Ḟ

P
· F−1

P

]
. (3)

The cumulative plastic strain rate denoted by ṗcum is then defined as follows:

ṗcum =

√
2

3
d
P
: d

P
≥ 0. (4)

The following Green-Lagrange strain tensor characterizes the elastic part of the state:

e =
1

2

(
F⊤

E
· F

E
− 1

)
(5)

In contrast, plasticity depends a priori on the entire history of the plastic part of the transformation,
that is, at any time t, the function [0, t] ∋ τ 7→ F

P
(X, τ). However, it is often assumed for metals that

3



only the current value of the plastic tensor F
P
(X, t) along with the current value of the cumulative

plastic strain pcum(X, t) are sufficient to fully characterize the plastic part of the state. Therefore,
only three state variables are required: the current values of e, F

P
and pcum.

In addition to the Cauchy stress tensor σ, the Mandel and Piola–Kirchoff stress tensors are introduced:

Π = J F−1

E
· σ · F−1T

E
and κ = J F−1

E
· σ · F

E
(6)

Within the framework of standard generalized media, the behavior is derived from the balance
equation:

σ : d− ρ
(
Ψ̇ + Ṫ s

)
−

q · ∇
x
T

T
= D ≥ 0 (7)

where ρ the density in the current configuration, Ψ is the Gibbs free energy density per unit mass, T
the temperature, s the entropy density per unit mass, q the heat flux and D the dissipated power per
unit volume, which positive in virtue of the second law of thermodynamics. The free Gibbs energy
is assumed to only depend on F

E
, F

P
in the following way. It is decomposed into a free energy

of distortion Ψdis(e) (note that e depends only on F
E

, see Eq. (5)) and free energy blocked in the
microstructure Ψblo(FP

):
Ψ(e, F

P
) = Ψdis(e) + Ψblo(FP

) (8)

In addition, the dissipation power D is assumed to only depend on the cumulative plastic strain pcum.
And since plasticity is rate-independent deformation process, the dissipated power is proportional to
pcum:

D(pcum) =
σY

J
pcum ≥ 0, (9)

where σY > 0 is the yield stress, which is a function of the states F
E
, F

P
, pcum. It is common to

assume that σY only depends on pcum.

Based on previous assumptions and the balance equation (7), we finally obtain the following constitu-
tive relations and flow rule for large deformation (or finite strains) plasticity:

Π = ρ0
∂Ψdis

∂e

X = ρ0 FP
· ∂Ψblo

∂F
P

d
P
=

3

2

ṗcum
σY (pcum)

dev
[
κ−X

]
,

(10a)

(10b)

(10c)

where ρ0 is the density in the reference and released configurations1, dev denotes the deviatoric part
of the tensor it applies to and X is the center of the elastic domain. In this work, the elastic domain
is the convex set defined by the Von Mises yield criterion, which is the set of X that satisfies the
inequality: √

3

2
dev

[
κ−X

]
: dev

[
κ−X

]
≤ σY (pcum). (11)

In the next subsection, we will see how these governing equations (10) reduce in the use case of a
paper clip.

2.2 Paper clip in large deformations

To demonstrate and assess the capability of neural networks to learn elasto-plastic displacements in
large transformations, we introduce a use case consisting in a paper clip undergoing large deformation
under two mechanical loads, see Fig. 2a. Each mechanical load represents the fingers of someone
manipulating the paper clip. The two loading points are selected randomly (uniform distribution).
The first point is subjected to a random force sequence F 1 and a random torque sequence M1, with
∥F 1∥ ≤ 1.25N and ∥M1∥ ≤ 0.02Nm. The force F 2 and torque M2 are selected such that the
paper clip is globally balanced at each sequence step.

1Since det
[
F

P

]
= 1 the density of the reference and released configurations are identical.

4



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−1

0

1

Loading step t

f 1
(t
)

Figure 1: Three examples of randomly chosen f1 sequences of 32 loading steps.

(a) Geometry of the paper clip at rest.

O1

O2

M2
F2

M1

F1

(b) The paper clip deforms in response to two random
balanced forces and torques are exerted.

Figure 2: From an initial condition at rest, the paper clip is subjected to 32 successive quasi-static
load steps at two randomly chosen points O1 and O2. Each load consists in a applying two balanced
random forces and torques at these points, as per Eqs. (12) and (13).

During one sequence, the evolution is a quasi-static, history-dependent problem. Although it does
not correspond to physical time, the quasistatic steps are indexed by t ∈ N. With u1 and v1 the force
and torque unit direction at the first point O1, the overall evolution is such that:

F1,t = f1(t)u1; M1,t = m1(t)v1 (12)

where f1 and m1 are random functions defined for t ∈ {0, . . . , 31} built by interpolating sine
functions between randomly chosen points, see Fig. 1.

For the equilibrium to be verified at any step t ∈ J0, 31K, the second force must be defined by:

F2,t = −F1,t; M2,t = −M1,t +O1,tO2,t × F1,t. (13)

The elasto-plastic problem now consists in solving Eqs. (10) for the paper clip subject to the forces
F 1, F 2 and the torques M1, M2, for each of the successive steps t ∈ J0, 31K.

Taking advantage of the slenderness of a paper clip and taking into account the large rotations of
the sections, Timoshenko beam theory is used to reduce the three-dimensional fields of Eqs. (10)
to one-dimensional fields. The corresponding equations, introducing the curvilinear coordinate s,
involve the internal forces Rt(s) and the internal bending and torque moments M t(s): the local
equilibrium equations, written in the Frenet frame of tangent τ for each part where the paper clip is
not loaded ([AO1), (O1O2), (O2B]):

dRt

ds
= 0;

dM t

ds
+ τ ×Rt = 0 (14)

complemented with the boundary conditions involving F 1, F 2 and M1,M2.

Then, material nonlinearities comes into play through a chosen nonlinear hyperelasto-plastic law
G. Together with the internal fields Rt(s) and M t(s), it determines through the Timoshenko beam
kinematics the curvature and elongation:

γ
t
, η

t
= G(Rt,M t, pcum,t). (15)

5



G gathers a hyperelastic constitutive law (10a), which governs elasticity as long as the current state
strictly satisfies the von Mises yield criterion (11), and a plastic flow evolution (10c) to compute
plasticity contribution to displacements. The paper clip is assumed to be made of steel, so the
hardening is purely isotropic and X = 0 in Eq. (10b).

The displacement field ξ = x−X can be recovered from the two geometric quantities γ
t

and η
t

by
solving an ODE.

In the end, the problem of interest is therefore to find a function F able to predict the displacements
ξt+1, as a function of the loading (F t,M t), the plastic deformation history pcum,t and ξ

t
:

ξ
t+1

= F(F t,M t, ξt, pcum,t) (16)

which is the typical form of a recurrent network.

3 Methodology

3.1 Data generation for supervised learning

The data set corresponding to the described problem is generated with the finite element software
CAST3M. Within CAST3M, the paper clip is discretized in regular Timoshenko beam finite elements
of length 0.5mm (178 elements in total). A Python wrapper was developed to wrap this software,
which is not designed for massive data generation. 2500 sequences of 32 loading steps each have been
generated. Since the use case involve strong nonlinearities which are numerically demanding, the
finite element method within CAST3M was not always able to converge. Therefore, the simulation
results was filtered to detect absurd behaviors. The resulting dataset is provided as a supplementary
material of the present article, with the objective of proposing a benchmark problem for neural network
architectures to the whole community. All the mechanical, geometric and numerical parameters are
provided in json supplementary material.

The dataset consists in 500 examples of time-series. The input of each sample is a tensor containing
the values of applied loads at each step and on every point of the discretized paper clip. The output
contains displacements, internal torques and forces, elongations and curvatures, plastic elongations
and curvatures,for each step and on every point of the paper clip. Note that in this paper only
displacements are learned, but the dataset allows more learning possibilities.

As an illustration of the dataset content, Figure 3 depicts the simulation results for the first steps.

3.2 Networks architectures

3.2.1 Three Recurrent networks

The three classical architectures of recurrent networks are compared on the dataset: RNN, GRU and
LSTM. The three considered networks take as input the loading at step t in the form of a tensor of
size (Npts × 6), as well as the state vector denoted by ht, and gives as output the displacements, the
plastic strains, as well as the state vector at step t+ 1.

In order to be objective, the same encoder for the loads, with two hidden layers, is used in the three
cases. It projects the loadings in a latent space of size 256. Three recurrent cells are chained, then the
same decoder is used in output in the three cases, see Figure 4.

3.2.2 TCN

By design, TCN takes as input the whole sequence of loadings up to step t (in the form of a tensor of
size (S ×Npts × 6)), and gives as output the whole sequence of displacements and corresponding
plastic deformations, see Figure 5.

To have a point of comparison with the recurrent architectures, the TCN used has the same order of
magnitude of parameters (see table). It is possible to use either a shared encoder between the loads,
the same as for the recurrent cells, or a transformer encoder.

6



Figure 3: Example of the first 4 steps of a sequence in the dataset generated with CAST3M. Units are
meters, and Pascal for the stress.

6

1
7
8

(Ft;Mt) FC
512

Rec Rec Rec

ht−1

ht

256
FC

9

1
7
8

(ξt; ε
p
t )

Figure 4: Recurrent neural network testing architecture. Yellow elements are tensors, violet are FC
layers, blue are recurrent cells. The hidden state ht is initialized at 0.

In addition, a variant of the TCN is investigate: it is designed by replacing the FC encoder by a
transformer (referred to as TCN-tf in the tables).

(F0;M0)

...

(Ft;Mt)

Enc

(ξ0; ε
p
0)

...

(ξt; ε
p
t )

Figure 5: TCN network testing architecture. Purple arrows represent dilated convolutions. At each
level, the same dilated convolution is used on each temporal input. The encoder can be the samed
shared FC encoder as in the recurrent framework, or a transformer encoder.

7



3.2.3 Methodology for the architecture comparisons

Number of parameters With regard to recurrent networks, the difference between the number of
parameters of each network, as the encoder and decoder are fixed, is only related to the architecture of
the recurrent cell that composes it. In the case of TCN, it contains a similar number of parameters to
that of GRU. The comparisons that follow therefore focus on the ability of each of these architectures
to represent plasticity, at a fixed latent space size.

However, the TCN with transformer encoder has a significant higher amount of parameters than the
other tested networks. And this gap is explained by the use of a different encoder. So, to be fair, it
can only be compared to the TCN with fully connected encoder, and the comparison will hold on the
capacity of the transformer encoder to represent input data in a same sized latent space.

Network RNN LSTM GRU TCN TCN-tf

Parameters 22406 23894 23398 23038 91790

Inference time and memory usage As explained in the literature review, the main difference
between recurrent networks and TCNs lies in their management of the input series. While the
recurrent network loops on each time input, the TCN takes the entire series as input. This has the
advantage of being able to parallelize calculations, but generates greater memory usage.

Network RNN LSTM GRU TCN TCN-tf

Inference time 0.00071 0.00064 0.00062 0.00061 0.00061

3.3 Networks training

All experiments where conducted on an NVIDIA A100 GPU. Empirically, using an L1 loss on
outputs yielded better results in convergence velocity. This is probably related to the fact that the L2

loss favors the average values, and therefore converges more easily towards the equilibrium position
of the paper clip (zero displacements) rather than to the deformed configuration.

4 Results and discussion

Training times For each architecture, training times are similar (around 1 hour). However, the
convergence of TCN with transformer and TCN is faster than others (by 10 to 15min).

Metrics To evaluate the performance of the model on the dataset, several metrics are calculated on
the test set:

• Precision at n mm: inspired by 3d reconstruction algorithms. For each predicted position,
the distance with its ground truth position is calculated, if it is less than n, the prediction is
considered correct. The metric is then the ratio of good predictions to the total number of
predictions. It must tend close to 1.

• MSEs between predictions and ground truths.
• Maximum errors on predicted values.

Network RNN LSTM GRU TCN TCN-tf
prec1mm 0.95 0.97 0.97 0.98 0.98
prec0.5mm 0.85 0.87 0.88 0.88 0.89
MSEξ 0.35mm 0.28mm 0.30mm 0.23mm 0.25mm

All tested architectures give satisfying results. However, TCN seems to perform better than classical
recurrent units. And this advantage can be amplified by adding a transformer encoder.

The drop of precision between 0.5mm and 0.1mm is due to the precision used in CAST3M during
data generation, which is equal to 0.1mm and prevent the network from being more precise.

8



Visual results Figures 6 and 7 depicts examples of predictions made with the best network (TCN
with transformer encoder)

Figure 6: Example of predictions (ground truth in blue, prediction in orange) made with the best
model (TCN with transformer).

Figure 7: Example of predictions with the worse error in the test set (ground truth in blue, prediction
in orange) made with the best model (TCN with transformer).

5 Conclusion

This work tackles the design and training of NNs for the computation of elasto-plastic deformations in
the large deformations framework. Because of the material and geometric nonlinearities, traditional
solvers (such as the Finite Element Method) for such problems are slow. That prevents interactive
simulations involving the manipulation of elasto-plastic objects. Indeed, interactivity requires real-
time solving — real time in the sense that it does not lag from the user point of view, ie. time steps of
10ms, or 1ms for haptic interactive simulations.

This work focuses on the interactive simulation of the manipulation of a metallic paper clip: this use
case combines plasticity, large deformations, and was not possible to simulate interactively before.
Indeed, FEM is too slow on this example and NN surrogate models in plasticity were limited to
small deformations, which strongly restricts the interest of interactive simulation. The dataset of this
benchmark problem is made open source for future comparisons.

Once trained, the proposed TCN is faster than the Finite Element Method by several orders of
magnitude: between two orders for small nonlinearities and three orders for strong nonlinearities
(which increases the computation time in the FEM).

9



On the benchmark problem, The TCN outperformed the other classical architectures (RNN, GRU,
LSTM),some of which had been proposed in small deformation plasticity.

The next steps will consist in assessing the capability of TCN to simulate large elasto-plastic
deformations on more industrial cases: metallic or electric cables, manipulation of flexible items
made of plastic or polymers, press-forming, etc. and in the long run, elasto-plasto dynamics.

10



References
Diab Abueidda, Seid Koric, Nahil Sobh, and Huseyin Sehitoglu. Deep learning for plasticity and

thermo-viscoplasticity. International Journal of Plasticity, 136:102852, 01 2021a. doi: 10.1016/j.
ijplas.2020.102852.

Diab W. Abueidda, Qiyue Lu, and Seid Koric. Meshless physics-informed deep learning method for
three-dimensional solid mechanics. International Journal for Numerical Methods in Engineering,
122(23):7182–7201, oct 2021b. doi: 10.1002/nme.6828. URL https://doi.org/10.1002%
2Fnme.6828.

Rajat Arora, Pratik Kakkar, Biswadip Dey, and Amit Chakraborty. Physics-informed neural networks
for modeling rate- and temperature-dependent plasticity, 2022. URL https://arxiv.org/abs/
2201.08363.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling, 2018. URL https://arxiv.org/abs/1803.01271.

Colin Bonatti and Dirk Mohr. On the importance of self-consistency in recurrent neural network
models representing elasto-plastic solids. Journal of the Mechanics and Physics of Solids, 158:
104697, 2022. ISSN 0022-5096. doi: https://doi.org/10.1016/j.jmps.2021.104697. URL https:
//www.sciencedirect.com/science/article/pii/S0022509621003161.

Roberto Cahuantzi, Xinye Chen, and Stefan Güttel. A comparison of lstm and gru networks for
learning symbolic sequences. ArXiv, abs/2107.02248, 2021.

Guang Chen. Recurrent neural networks (RNNs) learn the constitutive law of viscoelastic-
ity. Computational Mechanics, 67(3):1009–1019, March 2021. ISSN 0178-7675, 1432-
0924. doi: 10.1007/s00466-021-01981-y. URL http://link.springer.com/10.1007/
s00466-021-01981-y.

Yu Chen, Jihong Chen, and Guangda Xu. A data-driven model for thermal error prediction
considering thermoelasticity with gated recurrent unit attention. Measurement, 184:109891,
2021. ISSN 0263-2241. doi: https://doi.org/10.1016/j.measurement.2021.109891. URL
https://www.sciencedirect.com/science/article/pii/S0263224121008319.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling, 2014. URL https://arxiv.org/abs/
1412.3555.

Kerem Ciftci and Klaus Hackl. Model-free data-driven simulation of inelastic materials using
structured data sets, tangent space information and transition rules, 2021. URL https://arxiv.
org/abs/2101.10730.

Fionn Dunne and Nik Petrinic. Introduction to computational plasticity. Oxford University Press,
Oxford ; New York, 2005. ISBN 9780198568261.

Paul-William Gerbaud, David Néron, and Pierre Ladevèze. Data-driven elasto-(visco)-plasticity
involving hidden state variables. Computer Methods in Applied Mechanics and Engineering, 402:
115394, 2022. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2022.115394. URL https:
//www.sciencedirect.com/science/article/pii/S004578252200456X. A Special Issue
in Honor of the Lifetime Achievements of J. Tinsley Oden.

Maysam B. Gorji, Mojtaba Mozaffar, Julian N. Heidenreich, Jian Cao, and Dirk Mohr. On the
potential of recurrent neural networks for modeling path dependent plasticity. Journal of the
Mechanics and Physics of Solids, 143:103972, 2020. ISSN 0022-5096. doi: https://doi.org/
10.1016/j.jmps.2020.103972. URL https://www.sciencedirect.com/science/article/
pii/S0022509620302076.

Alex Graves. Generating sequences with recurrent neural networks, 2014.

Jake Grigsby, Zhe Wang, and Yanjun Qi. Long-range transformers for dynamic spatiotemporal
forecasting, 2021. URL https://arxiv.org/abs/2109.12218.

11

https://doi.org/10.1002%2Fnme.6828
https://doi.org/10.1002%2Fnme.6828
https://arxiv.org/abs/2201.08363
https://arxiv.org/abs/2201.08363
https://arxiv.org/abs/1803.01271
https://www.sciencedirect.com/science/article/pii/S0022509621003161
https://www.sciencedirect.com/science/article/pii/S0022509621003161
http://link.springer.com/10.1007/s00466-021-01981-y
http://link.springer.com/10.1007/s00466-021-01981-y
https://www.sciencedirect.com/science/article/pii/S0263224121008319
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/2101.10730
https://arxiv.org/abs/2101.10730
https://www.sciencedirect.com/science/article/pii/S004578252200456X
https://www.sciencedirect.com/science/article/pii/S004578252200456X
https://www.sciencedirect.com/science/article/pii/S0022509620302076
https://www.sciencedirect.com/science/article/pii/S0022509620302076
https://arxiv.org/abs/2109.12218


Ehsan Haghighat, Sahar Abouali, and Reza Vaziri. Constitutive model characterization and discovery
using physics-informed deep learning, 2022. URL https://arxiv.org/abs/2203.09789.

Youssef Hashash, Sungmoon Jung, and Jamshid Ghaboussi. Numerical implementation of a neural
network based material model in finite element analysis. INTERNATIONAL JOURNAL FOR
NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng, 59:989–1005, 02
2004. doi: 10.1002/nme.905.

Junyan He, Diab Abueidda, Rashid Abu Al-Rub, Seid Koric, and Iwona Jasiuk. A deep learning
energy-based method for classical elastoplasticity, 2022. URL https://arxiv.org/abs/2209.
06467.

Xiaolong He and Jiun-Shyan Chen. Thermodynamically consistent machine-learned internal state
variable approach for data-driven modeling of path-dependent materials. Computer Methods in
Applied Mechanics and Engineering, 402:115348, dec 2022. doi: 10.1016/j.cma.2022.115348.
URL https://doi.org/10.1016%2Fj.cma.2022.115348.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:1735–80,
12 1997. doi: 10.1162/neco.1997.9.8.1735.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
temporal patterns with deep neural networks, 2017. URL https://arxiv.org/abs/1703.
07015.

Colin Lea, Michael D. Flynn, Rene Vidal, Austin Reiter, and Gregory D. Hager. Temporal convolu-
tional networks for action segmentation and detection, 2016. URL https://arxiv.org/abs/
1611.05267.

Xuan Li, Yadi Cao, Minchen Li, Yin Yang, Craig Schroeder, and Chenfanfu Jiang. Plasticitynet:
Learning to simulate metal, sand, and snow for optimization time integration. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=_WqHmwoE7Ud.

Kevin Linka, Markus Hillgärtner, Kian P. Abdolazizi, Roland C. Aydin, Mikhail Itskov, and Christian J.
Cyron. Constitutive artificial neural networks: A fast and general approach to predictive data-
driven constitutive modeling by deep learning. Journal of Computational Physics, 429:110010,
2021. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2020.110010. URL https://www.
sciencedirect.com/science/article/pii/S0021999120307841.

Xin Liu, Su Tian, Fei Tao, and Wenbin Yu. A review of artificial neural networks in the
constitutive modeling of composite materials. Composites Part B: Engineering, 224:109152,
2021. ISSN 1359-8368. doi: https://doi.org/10.1016/j.compositesb.2021.109152. URL https:
//www.sciencedirect.com/science/article/pii/S1359836821005321.

M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, and M. A. Bessa. Deep learning predicts
path-dependent plasticity. Proceedings of the National Academy of Sciences, 116(52):26414–
26420, December 2019. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1911815116. URL
https://pnas.org/doi/full/10.1073/pnas.1911815116.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differen-
tial equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equations,
2018. URL https://arxiv.org/abs/1801.06637.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: A navier-
stokes informed deep learning framework for assimilating flow visualization data, 2018. URL
https://arxiv.org/abs/1808.04327.

12

https://arxiv.org/abs/2203.09789
https://arxiv.org/abs/2209.06467
https://arxiv.org/abs/2209.06467
https://doi.org/10.1016%2Fj.cma.2022.115348
https://arxiv.org/abs/1703.07015
https://arxiv.org/abs/1703.07015
https://arxiv.org/abs/1611.05267
https://arxiv.org/abs/1611.05267
https://openreview.net/forum?id=_WqHmwoE7Ud
https://www.sciencedirect.com/science/article/pii/S0021999120307841
https://www.sciencedirect.com/science/article/pii/S0021999120307841
https://www.sciencedirect.com/science/article/pii/S1359836821005321
https://www.sciencedirect.com/science/article/pii/S1359836821005321
https://pnas.org/doi/full/10.1073/pnas.1911815116
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/abs/1801.06637
https://arxiv.org/abs/1808.04327


David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, October 1986. ISSN 0028-0836, 1476-4687.
doi: 10.1038/323533a0. URL http://www.nature.com/articles/323533a0.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2017. URL https://arxiv.org/abs/
1706.03762.

Daniele Versino, Alberto Tonda, and Curt A. Bronkhorst. Data driven modeling of plastic deformation.
Computer Methods in Applied Mechanics and Engineering, 318:981–1004, 2017. ISSN 0045-
7825. doi: https://doi.org/10.1016/j.cma.2017.02.016. URL https://www.sciencedirect.
com/science/article/pii/S0045782516314499.

Annan Zhang and Dirk Mohr. Using neural networks to represent von mises plasticity with isotropic
hardening. International Journal of Plasticity, 132:102732, 2020. ISSN 0749-6419. doi: https:
//doi.org/10.1016/j.ijplas.2020.102732. URL https://www.sciencedirect.com/science/
article/pii/S0749641919307119.

Ruiyang Zhang, Yang Liu, and Hao Sun. Physics-informed multi-lstm networks for metamodeling
of nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 369:113226,
2020. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2020.113226. URL https://www.
sciencedirect.com/science/article/pii/S0045782520304114.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting, 2020. URL
https://arxiv.org/abs/2012.07436.

Xu-Hui Zhou, Jiequn Han, and Heng Xiao. Learning nonlocal constitutive models with neural net-
works. Computer Methods in Applied Mechanics and Engineering, 384:113927, 2021. ISSN 0045-
7825. doi: https://doi.org/10.1016/j.cma.2021.113927. URL https://www.sciencedirect.
com/science/article/pii/S0045782521002644.

13

http://www.nature.com/articles/323533a0
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://www.sciencedirect.com/science/article/pii/S0045782516314499
https://www.sciencedirect.com/science/article/pii/S0045782516314499
https://www.sciencedirect.com/science/article/pii/S0749641919307119
https://www.sciencedirect.com/science/article/pii/S0749641919307119
https://www.sciencedirect.com/science/article/pii/S0045782520304114
https://www.sciencedirect.com/science/article/pii/S0045782520304114
https://arxiv.org/abs/2012.07436
https://www.sciencedirect.com/science/article/pii/S0045782521002644
https://www.sciencedirect.com/science/article/pii/S0045782521002644

	Introduction
	Problem statement
	Large transformation plasticity
	Paper clip in large deformations

	Methodology
	Data generation for supervised learning
	Networks architectures
	Three Recurrent networks
	TCN
	Methodology for the architecture comparisons

	Networks training

	Results and discussion
	Conclusion

