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ABSTRACT/WEB SUMMARY 

Metabolomics provides crucial information on the metabolism of living organisms, by detecting 
and quantifying metabolites in biofluids, biopsies or extracts. Metabolomics studies involve 
analysing large collections of very complex samples by NMR or mass spectrometry methods. 
The resulting 1D spectra are characterized by the ubiquitous overlap between metabolite 
signals, justifying the need for the acquisition of 2D spectra on such samples. However, the 
long acquisition time of conventional 2D NMR makes it incompatible with the high-throughput 
nature of metabolomics, which explains why the acquisition of 2D spectra is generally limited 
to a subset of samples. In this chapter, we will describe how fast 2D NMR methods can lead 
to experimental times that become compatible with the systematic incorporation of 2D NMR 
in metabolomics workflows. Most frequently used 2D NMR methods include non-uniform 
sampling and ultrafast 2D NMR, but fast-pulsing methods and Hadamard spectroscopy have 
also shown some potential. In this chapter, we highlight how fast 2D NMR can facilitate the 
identification of biomarkers in untargeted metabolomics studies. We also discuss the use of 
fast quantitative 2D NMR strategies to provide accurate quantification of metabolites in 
targeted metabolomics approaches. Finally, we describe the promising combination of fast 2D 
NMR methods with hyperpolarization. 

  



 

 
 

13.1. Introduction to Metabolomics 

13.1.1. General background 

Just like genomics aims to sequence and study the DNA contained in a complex mixture of 

organisms at a large scale, as transcriptomics does with RNA and proteomics with proteins, 

metabolomics aims to capture the broadest screenshot of the metabolites in complex 

biological samples.1 Metabolites are defined as small molecules, which are end products and 

reactive compounds within cell regulatory reactions, usually weighting under 1,500 Da and 

pertaining to many different families. Those compounds can be endogenous such as short-

chain fatty acids, steroids, lipids, organic or amino acids, sugars, etc, or exogenous, in which 

case they are found in the environment of the studied organism of interest, such as in the diet, 

a therapeutic treatment, the microbiome, or surrounding pollutants. These omics sciences are 

conceptually top-down approaches, which aim to holistically capture as much information as 

possible to understand how a biological system responds to a stimulus.2 This is opposed to 

bottom-up approaches, for which analyses of a restricted part of the biological system of 

interest are performed to answer a specific biological hypothesis based on previous 

experimental data. Metabolomics is often considered as a particular omics science. First, it 

provides a link between genotypes and phenotypes3 hence bringing invaluable information to 

understand dynamic biomolecular mechanisms occurring at different biological levels4, and 

thus providing insights on the functionality of an organism, rather than just its capacity. 

Second, metabolomics is the most recent omics approach among the ones cited above. Still, 

metabolomics has already found numerous applications in personalized medicine5–12 and 

epidemiology13–15, pharmaceutical sciences16–20, microbiome research21,22, nutritional23–26 and 

environmental sciences27–33, exposome research34–36 as well as in food quality control37 for 

instance.  

13.1.2. Untargeted Metabolomics, Targeted Metabolomics and Fluxomics 

Through this entire chapter, the role of NMR in metabolomics, and especially the role of fast 

two-dimension (2D) NMR methods, will be discussed according to which metabolomics 

approach is applied. Indeed, metabolomics studies are usually classified into two main 

categories, depending on if the study is approached in an untargeted or a targeted fashion. A 

third category, for which fast 2D NMR techniques will push the boundaries of what is possible, 

and which seriously starts to gather attention, will also be considered through this chapter, the 

so-called stable-isotope resolved metabolomics (SIRM), also known as fluxomics. A general 

presentation and comparison of these three categories are provided below:   

• Untargeted metabolomics requires no a priori on the detected metabolites. It aims at 

detecting spectral patterns from large datasets, which are analysed through statistical 

methods to highlight potential biomarkers.  Detected metabolites depend on the limit 

of detection of the chosen analytical method, the physicochemical properties of the 

metabolites present in the sample and their degradation during sample collection, 

handling and preparation (see Figure 13.1). 

• In targeted metabolomics, specific compounds of interest (e.g. one or several 

biomarkers, a class of chemically similar metabolites or a biological pathway) are 

quantitatively analysed (see Figure 13.1).    

• Fluxomics allows the dynamic monitoring of intracellular biochemical reactions by 

quantitatively measuring fluxes in metabolomics pathways, following a stimulus and by 

focusing on the atoms of molecules which have been labelled thanks to the use of 

stable isotope precursors.  

All three approaches are driven by biological questions and hypotheses. Untargeted 

metabolomics is by essence an exploratory top-down technique which is thus less biased than 

targeted assays as it covers a broader part of the metabolome (see Figure 13.1). However, 

data interpretation is often more complicated, especially the metabolite identification part 



 

 
 

which is a major bottleneck in the metabolomics field. But once metabolite identification has 

been done and biomarkers have been highlighted, a targeted assay is often needed for 

biomarkers validation. As such, targeted metabolomics can be seen as a post-untargeted 

metabolomics strategy. Similarly, fluxomics can be seen as the final step following a targeted 

assay, during which concentration changes in metabolites are monitored in a continuous and 

dynamic way. 

Figure 13.1 Untargeted and targeted workflows applied in metabolomics. 

13.1.3. Metabolomics Workflow 

Metabolomics is a very collaborative and interdisciplinary field which requires skills coming 

from different backgrounds to go through the consecutive steps. If we focus only on the 

untargeted approach in a first instance, the first step is to formulate a biological question, and 

to carefully define the most adequate study design, model organism and sample to collect, in 

order to answer the question in the broadest way possible, before preparing the sample and 

acquiring the data with the most adapted analytical strategy. As explained in the previous 

section, the aim of untargeted metabolomics being to capture as much information as possible, 

analyses generate extensively large datasets composed of many variables, which represent 

the metabolite signals present in each sample. These datasets are pre-processed and 

analysed with chemometrics techniques, based on either multivariate and/or univariate 

statistical analyses, to identify metabolites involved in a specific biological pattern (e.g. a signal 

presenting a high intensity in samples coming from a specific group). As explained above, 

once metabolites of interest have been highlighted, a targeted assay can be applied so that 

their absolute quantities get measured, followed by univariate statistics to validate or not the 

initial biological hypothesis that was experiment-driven (e.g. “Is the biomarker highlighted 

using this untargeted assay a real biomarker of this specific condition?”). Depending on the 

metabolites that need to be targeted, the choice of the analytical platform to use needs to be 

carefully considered.  



 

 
 

13.1.4. Potential and limitations of NMR in Metabolomics 

The two analytical foundations of metabolomics are NMR and mass spectrometry (MS), the 

latest often coupled to separative techniques such as liquid chromatography (LC), gas 

chromatography (GC), capillary electrophoresis (CE), or ion mobility (IM). Other spectroscopic 

techniques such as Raman38 or Infrared39 spectroscopy are also being applied in the field of 

metabolomics but for the sake of simplicity, NMR advantages and limitations will be discussed 

and compared only to MS-based metabolomics, as they have been the two main techniques 

driving the metabolomics forces for the past couple of decades. NMR was initially the most 

applied technique in the field of metabolomics, as it is simple and straightforward, especially 

in terms of sample preparation and metabolite identification. It also presents the advantage, 

compared to MS, to be a non-invasive technique and the sample, once analysed by NMR, can 

be recovered and analysed with another technique if needed. However, this advantage is 

counterbalanced by the two drawbacks of NMR spectroscopy: its lack of sensitivity and the 

signal overlap arising from sample complexity. Obviously, these drawbacks drastically limit 

compound identification and biomarker discovery. On the other side, MS is highly sensitive 

since only a tiny sample volume is requested for the analysis. Therefore, MS-based 

metabolomics became the most spread technique even if it is destructive.40 Still, NMR has 

other core qualities to offer, which make this technique still very much applied in 

metabolomics. Among these qualities, we can cite its strong robustness, its high 

reproducibility, which give the possibility to study a large number of samples and to compare 

data acquired through time, on different spectrometers in different geographical locations.41 

This is much more difficult to reach for MS-based studies, especially without the rigorous use 

of quality controls.42–44 Other advantages of NMR are the fact that 1D NMR, under carefully 

adjusted experimental conditions45–47,  is quantitative without the need to use calibration 

curves or labelled internal standards for each metabolites of interest, but with only one single 

external standard. NMR is also unbiased, provides structural information, and can be applied 

without extensive sample preparation and be easily interpreted. By considering those assets, 

NMR remains a particularly reliable analytical method, as highlighted, for instance,  in 

applications to clinical metabolomics and personalized medicine.10 

13.2. 2D NMR in Metabolomics 

The overwhelming majority of NMR metabolomics experiments rely on one-dimensional (1D) 
proton-detected spectroscopy. 1D 1H experiments are easy to implement and offer good 
sensitivity and throughput with a typical limit of detection in the micromolar range, in a few 
tens of minutes on high field instruments.48 Therefore, 1D 1H spectroscopy, associated with 
well-documented databases, is the tool of choice in most NMR metabolomics studies. Still, 1D 
1H NMR suffers from strong peak overlap issues, which are further compounded by a great 
diversity of metabolite concentrations. Such peak situations often prevent the unambiguous 
detection and identification of biomarkers in untargeted metabolomics, and also make it 
difficult to accurately quantify targeted metabolites. Several approaches are available to deal 
with this limitation. The decomposition of complex overlapped spectra into individual 
metabolite patterns is an efficient method.49–51 However, it mostly relies on databases which 
are often specific to a given biological matrix (e.g. plasma, urine…) and sometimes require 
expensive commercial software. Alternatively, one can rely on 13C NMR spectroscopy, whose 
extended chemical shift range considerably reduces peak overlap.52 However, it results in a 
major sensitivity penalty -particularly at natural 13C abundance- and often requires tailored 
NMR probes to improve the limit of detection. More recently, pure-shift 1H NMR methods have 
emerged to collapse multiplets into singlets, hence reducing peak overlap.53 Although some 
attempts have been made to apply pure-shift NMR in metabolomics, these methods suffer 
from low sensitivity and from the impact of strong coupling, which makes them quite 
impractical for complex diluted samples.54,55 
 



 

 
 

Two-dimensional (2D) spectroscopy appears as a straightforward alternative for 
metabolomics.56 First, it provides a better separation of overlapping peaks by spreading them 
along two orthogonal dimensions. Figure 13.2 illustrates such potential in the correlation 
spectroscopy (COSY) spectrum of a human urine sample. Second, it brings crucial structural 
information that can help identify unknown metabolites. Third, 2D NMR spectroscopy offers a 
diversity of homo- and hetero-nuclear pulse sequences that users can choose from to address 
their needs in terms of peak separation, resolution, sensitivity and throughput. Typically, 
homonuclear 2D experiments offer a good sensitivity but a sometimes-limited separation 
between overlapping peaks, while heteronuclear 2D experiments provide a better peak 
separation, albeit at the cost of a lower sensitivity due to the natural 13C abundance. 
 

 
Figure 13.2 Illustration — in the case of urine — of the separation capabilities of 2D versus 
1D NMR for metabolomics. Top: zoom of a 1H 1D NMR spectrum obtained on a human urine 
sample at 298 K, with presaturation of the water signal through a 1D-NOESY (nuclear 
Overhauser effect spectroscopy) pulse sequence. The spectrum was acquired with 64 
transients on a 700 MHz spectrometer equipped with a cryogenic probe. The signals from the 
identified metabolites are strongly overlapped, thus making their accurate quantification 
difficult. Bottom: corresponding zoom of a 1H COSY spectrum for the same sample. The 2D 
spectrum was acquired with four transients and 300 increments in the indirect dimension, with 
the same hardware configuration. All the metabolites whose signals were overlapped on the 
1D spectrum show at least one well-separated signal on the 2D spectrum, making their 
quantification possible. Val: Valine; Leu: Leucine; Ile: Isoleucine. Reproduced from Ref. 56 with 
permission Elsevier, Copyright 2017. 
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On the one hand, 2D NMR spectroscopy has been used since the early days of metabolomics 
to help identify metabolites after they had been highlighted as biomarkers through a 
conventional 1H NMR metabolomics workflow.57 In this case, 2D NMR spectra are recorded 
on a limited set of samples (and/or a fraction of the sample) for assignment purposes. Very 
advanced elucidation strategies have been developed along this line by Bruschweiler and co-
workers, making use of cheminformatics, customized databases and even combined MS/NMR 
strategies.58,59 
 
On the other hand, the systematic use of 2D NMR on larger series of samples is much more 
recent, mainly due to experiment time considerations that will be discussed in detail later in 
this chapter. Three main uses of conventional 2D NMR have been reported: 
 

• The systematic use of 2D NMR in untargeted metabolomics, is associated with a 
classical bucketing of 2D peak volumes followed by statistical analysis. Van et al. were 
one of the first to show that 2D NMR (total correlation spectroscopy - TOCSY - with 
zero-quantum filtering - ZQF -  in that case) could offer a better classification 
performance compared to 1D 1H NMR, for the metabolic profiling of urine samples from 
mice.60 Later on, Le Guennec et al. showed that 2D NMR could yield a similar group 
separation as 1D NMR in the case of model serum samples, but could provide much 
more accurate identification of relevant biomarkers.61 Féraud et al. also demonstrated 
that 2D COSY spectra processed through multivariate approaches could provide a 
higher level of clustering than 1D NMR.62 Other studies also showed that 2D NMR 
spectra acquired in metabolomics studies could also be processed with more 
advanced strategies, such as the hierarchical alignment of two-dimensional spectra-
pattern recognition (HATS-PR)63 or through image processing protocols to distinguish 
relevant signals through differential analysis by 2D NMR spectroscopy (DANS).64  
 

• The use of 2D NMR for the targeted quantification of metabolites. Although 2D NMR 
peak volumes depend on a number of parameters (mainly J-couplings and relaxation 
times) owing to the multi-pulse nature of 2D experiments, several approaches have 
been developed to achieve absolute quantification from 2D NMR experiments. The 
first one is the calibration of the 2D peak response factors through external standards, 
which was demonstrated very early65, and further illustrated in several targeted 
metabolomics studies.66,67 The second one is the design of specific pulse sequences 
-variants of the heteronuclear single quantum coherence (HSQC) experiments- which 
provide 2D peak volumes that can directly be used for quantification relying on a single 
internal or external standard, as in quantitative 1D NMR.21–23 The specificities of these 
quantitative 2D NMR approaches are described in Refs56,68. 
 

• The targeted determination of position-specific isotope enrichments in fluxomics. In 
this targeted approach, projections extracted from 2D TOCSY or HSQC spectra are 
used to access information on the repartition of isotopomers in complex biological 
samples such as extracts.69,70 Such information is difficult to access from 1D spectra 
since the overlap between metabolite peaks is further complicated by multiple isotopic 
spectral patterns. 
 

Despite the potential of 2D NMR for metabolomics and fluxomics, its use has been quite 
limited until 2010 or so, due to the long experiment time resulting from the need to sample the 
indirect dimension (t1) with a sufficient number of increments to achieve a good resolution. 
Such long experiment times (typically several hours per spectra) were barely compatible with 
the high-throughput needs of metabolomics studies on large sample cohorts. Moreover, the 
long acquisition time of conventional 2D NMR was also shown to be detrimental to 
repeatability71,72, owing to the impact of hardware instabilities in the indirect dimension that 
sometimes resulted in significant t1 noise from most concentrated metabolites. Such limitations 



 

 
 

have been largely circumvented by the development of fast 2D NMR methods, which have 
paved the way for many applications in targeted and untargeted metabolomics.  

 

13.3 Where do we stand in the application of fast 2D NMR techniques within 

metabolomics and fluxomics?  

Various fast 2D NMR approaches have been optimized and applied to metabolomics in the 
last decade, as described in Figure 13.3 where methods are divided into three main 
categories. The first one relies on pulse and delay manipulation strategies to reduce the 
repetition time between successive transients. The second one includes techniques that use 
different sampling strategies to reduce the number of increments in the indirect domain while 
trying to avoid penalties on resolution. Finally, the last family of strategies is based on spatial 
parallelisation of the second dimension in the so-called ultrafast (UF) method, allowing to 
record a 2D spectrum in a single-scan fashion.73,74 Each category can be subdivided into 
different approaches as shown in the Figure 13.3, and as discussed in the following respective 
sections, starting with the pulses and delays manipulation strategies section. 

 

Figure 13.3 Main fast 2D NMR methods that were applied to metabolomics and fluxomics in 
the last decade, are discussed in the following sections. The three main families of techniques 
are represented, in blue for the pulse and delay manipulation strategies, in orange for sampling 
strategies and in green for spatial parallelization techniques. Rectangles correspond to the 
main methods that belong to each family. Coloured lines link specific publications to one or 
more time-saving strategies, as some applications, demonstrated in these publications, exploit 
several time-saving strategies in combination. 

13. 3. 1. Pulse and delay manipulation strategies  

13.3.1.1. Untargeted metabolomics 

This section is dedicated to the application of untargeted metabolomics of fast 2D NMR 
methods that rely on the optimization of pulse angles and inter-pulse delays to reduce the 



 

 
 

repetition time between successive transients. One of the first developed methods is called 
SOFAST for band-selective optimized flip-angle short transient. This selective approach relies 
on (i) using a reduced recycle delay, with an optimised excitation pulse angle (e.g., using the 
Ernst angle) that enhance the available steady-state magnetization of the excited spins; (ii) 
accelerating the longitudinal relaxation of targeted protons of interest by leaving all other 
protons unperturbed. The latter cross-relax with the protons of interest via dipole-dipole 
interactions, thus considerably shortening the effective T1 of relevant protons. Motta et al. 
proposed an encouraging proof of concept75 in which SOFAST was used for real-time 
monitoring of 15N-labelled living cells with SOFAST-HMQC (heteronuclear multiple quantum 
coherence) to obtain insight into metabolism behaviour of cells in specific conditions. Thanks 
to SOFAST, Ghosh and co-workers achieved a metabolomic study using SOFAST-HMQC 
combined with non-uniform sampling (NUS).76 In their work, urine and plasma samples were 
investigated in an untargeted metabolomics workflow through which NUS and SOFAST 
strategies were used together to further reduce the experimental time without compromising 
the sensitivity of the resulting spectra. As a result, 20 peaks from plasma could be detected 
and 18 of them were assigned unambiguously, while 34 peaks could be detected for the urine 
samples from which 32 were assigned unambiguously. The resulting spectra highlight that the 
application of 35% NUS does not affect the peaks’ resolution while reducing the experimental 
time. Combining NUS and SOFAST HMQC allowed to reduce the experimental time for serum 
and urine samples by 86% and 88% respectively in comparison with classical heteronuclear 
experiments. SOFAST HMQC spectra with NUS were recorded in 1 h and 15 min versus 9 h 
for conventional experiments. Very similar results were obtained for urine samples. Note that 
applications of SOFAST in metabolomics can generally benefit from a reduced recyle delay, 
but not from the enhanced longitudinal relaxation, which is restricted to specific situations, like 
for proteins where specific proton regions are targeted. In that case it is also a band selective 
approach that speeds up the relaxation of specific protons only.77  
For small molecules where dipole-induced relaxation is much less efficient than in 
macromolecules, the ASAP (Acceleration by Sharing Adjacent Polarization) HSQC pulse 
sequence allows faster pulsing compared to SOFAST thanks to a spin-lock period placed 
during the recovery delay, which speeds up longitudinal relaxation via polarization transfer 
through scalar interactions.78,79 Watermann et al. demonstrated an application of 2D ASAP 
HSQC in an untargeted metabolomics study. 80 The aim was to determine the geographical 
origin of 128 walnut samples based on 2D HSQC data supported by multivariate analysis, 
such as PCA (principal component analysis), various statistical models and confusion 
matrices, to discriminate different geographical groups (China, Germany and France). In this 
work, ASAP HSQC, combined with 25% NUS allowed to record a good quality 2D spectrum 
with 32 scans in 33 min. However, recording a classic HSQC (4h, 256 scans) prior to the study 
was necessary for comparison and assignments. Classification of different groups was similar 
with data from 1D and 2D NMR spectra. However, the loading plots appeared significantly 
improved using data coming from 2D experiments (see Figure 13.4) thanks to the additional 
signal dispersion brought by the 13C dimension.  



 

 
 

 

Figure 14.4 (a) PCA score plot of the differentiation of Chinese (CN) and German (DE) walnut 

samples using the 1D 1H NOESY spectra with the corresponding loading plot below (c). 

Explained variance: PC1 = 41%, PC2 = 21%. (b) PCA score plot obtained by the ASAP HSQC 

spectra with the corresponding loading plot below (d). Explained variance: PC1 = 54%, PC2 

= 8%. Adapted from Ref. 80. 

13.3.1.2. Targeted metabolomics 

As described in section 13.2, multiple attempts have been made in conventional 2D NMR to 
provide direct quantification of the metabolites of interest in targeted metabolomics. However, 
despite good analytical performance, conventional 2D NMR methods are not fast enough to 
deal with the high-throughput nature of metabolomics, especially when calibration procedures 
are required, which justifies the need for rapid acquisition methods. A few studies report the 
use of fast pulsing methods along this direction.  

In 2018, Farjon et al., optimized a quantitative 2D HSQC method providing direct quantification 
of metabolites of interest in a reduced experimental time.81 This method was an upgraded 
version of a previously developed experiment called QUIPU (quantitative perfect and pure 
shifted) HSQC.82 The original QUIPU experiment included several elements to yield absolute 
concentrations from HSQC spectra with a single internal reference, but was quite time-
consuming. The accelerated version, Q-QUIPU (quick QUIPU) combines several time-saving 
strategies with quantitative pulse sequence elements like spectral aliasing, NUS and VRT 
(variable recycling time) to make it faster.81 Principles of NUS and aliasing are discussed in 
more detail in section 13.3.2, but VRT is a strategy that belongs to fast-pulsing methods and 
is hence described here. With VRT, the 2D experiment starts with usual quantitative repetition 

times such as Tr  5T1, but is progressively reduced through successive t1 increments and 
ends with Tr ≪ T1.83 The list of decreasing repetition times follows a function (a decreasing 
exponential for instance) that is equal to unity for the t1 increment where maximum signal is 
expected (the first increment for many 2D pulse sequences) to leave peak volumes unaffected. 
This built-in apodization reduces the experimental time of 2D NMR experiments by a factor of 
5-10 while leaving peak volumes intact. Based on this accelerated quantitative method, 
metabolites in breast cancer cell extracts at mmol/L concentrations and below were quantified 
using lactate as an internal reference.81 Each spectrum was recorded with an experimental 



 

 
 

time of 5 h which corresponds to a significant time-saving compared to an experimental time 
around 32 h for the reference QUIPU spectrum. 

More recently, Phuong and co-workers applied the Q-QUIPU HSQC methodology to quantify 
three major alkaloids in the root extract of goldenseal used as herbal supplements (see Figure 
13.5).84 They obtained an acceptable accuracy (<10%) in comparison with coupled UHPLC-
MS/UV (ultra high-performance liquid chromatography) techniques and better sensitivity than 
standard HSQC. The authors demonstrated that the deconvolution of severely overlapped 1D 
peaks failed to provide accurate quantitative results, justifying the need for a quantitative 2D 
approach. Unfortunately, the reported experimental time was 2 days because a cryogenically 
cooled probe was not available at the time of the study. Otherwise, the expected acquisition 
time would have been comprised between 3 to 5 h. 

 

Figure 13.5 Application of the 2D Q QUIPU method to quantify alkaloids in root extracts. Parts 
of 2D Q QUIPU map showing canadine (A), 𝛽-hydrastine (B), and DMSO2 (C) signals with the 
corresponding integration regions (green squares). DMSO2 was used as an internal reference. 
Reproduced from Ref. 84 with permission from Elsevier, Copyright 2018. 

13.3.1.3. Fluxomics  

While fast-pulsing strategies have not much been applied to the field of fluxomics, an 
application of ALSOFAST was reported in 2018 by Schätzlein et al.85 ALSOFAST is an 
alternative SOFAST sequence, in which the heteronuclear multiple quantum coherence of 
interest is excited with a classical INEPT (insensitive nuclei enhanced by polarization transfer) 
pulse cascade instead of the frequency-selective pulse used in SOFAST.86 Schätzlein et al. 
applied an ALSOFAST-HSQC pulse sequence to investigate the effect of different kinds of 
antioxidant gold nanoparticles on a HeLa cancer cell model grown on a 13C glucose-enriched 
medium, but also to monitor glucose metabolism in the cell model and study the antioxidant 
effect of the coated gold nanoparticles. Highly resolved 1H-13C-HSQC spectra using the 
ALSOFAST-HSQC pulse sequence were acquired, revealing the position-specific isotope 
patterns of the corresponding 13C-nuclei from carbon multiplets with a reduced experimental 
time of 30 min for 13C labelled cell extracts. Data were processed with chemometric 
multivariate tools such as OPLS-DA (orthogonal partial least squares discriminant analysis). 
HeLa cell extracts treated and untreated with nanoparticles were statistically discriminated 
and relevant metabolism pathways could be highlighted.  

13.3.1.4 Discussion 

Fast pulsing methods are just starting to be assessed for metabolomics applications. SOFAST 

and ALSOFAST make it possible to use short inter-scan delays, although they only benefit 

from enhanced longitudinal for systems in which spin diffusion is an effective relaxation 

mechanism, such as macromolecules or small molecules in viscous solvents.75 ASAP allows 

to reduce even more the interscan delay, to a few tens of microseconds, although the short 



 

 
 

recovery delay (associated with the use of spin-lock between each scan for ASAP) imposes a 

certain demand on the RF coil. In all cases, these techniques are restricted to heteronuclear 

experiments. On the other hand, VRT is more modest in terms of time reduction compared to 

the techniques cited above, but it can still provide significant time savings. However, the 

function defining the decrease of the repetition time through successive t1 increments needs 

to be adapted to the system under study. The potential of these methods for metabolomics 

remains to be fully assessed, and is likely to be complementary to the sampling strategies 

described in the next section.  

 

13. 3. 2. Sampling strategies  

13.3.2.1. Untargeted metabolomics 

Here, we highlight the application of alternative sampling strategies to untargeted 
metabolomics. Most examples concern the use of NUS, one of the most popular approaches 
to reduce the experimental time in 2D NMR. Instead of acquiring all the indirect data points as 
in conventional 2D experiments, only a randomly selected fraction of these points is sampled, 
and the spectrum is then obtained by relying on dedicated reconstruction algorithms.87 The 
percentage of experimental points recorded is chosen by the operator before the experiment. 
As a consequence, a “25% NUS” experiment will have only 25% of the total number of points 
that are sampled, resulting in a quarterly reduction of the experiment time. NUS offers the 
opportunity, starting from any conventional experiment with typical acquisition parameters, to 
reduce the experimental time, or to improve the resolution in the indirect dimension without 
any penalty on the experiment time.  Several studies have shown that NUS levels of about 
20–30% per dimension can yield appreciable time savings in metabolomics without 
compromising on spectra quality.  

In 2014, Le Guennec and co-workers investigated the potential of using NUS as a way to 

accelerate 2D NMR for untargeted metabolomics.61 The study aimed to identify biomarkers of 

colorectal cancer to help diagnose and control such disease. Synthetic model samples 

containing 30 metabolites were used to mimic the composition of serum of patients affected 

by colorectal cancer. Half of them were prepared as control samples and the rest mimicked 

the serum of cancer patients. Various 2D NMR methods were used and compared in this work: 

NUS HSQC and NUS DQF (Double Quantum Filtered) COSY, and multi-scan UF COSY. The 

latter approach is discussed in more detail in section 13.3.3.1. Here, we focus on results 

obtained from NUS. NUS DQF COSY spectra were recorded with 30% NUS, leading to an 

experiment time of ca. 35 min versus the original experiment which lasted almost 2 hours. 

NUS HSQC spectra were recorded with 50% NUS leading to an experimental time of ca. 29 

min versus 1 hour for the conventional version. Spectra were then bucketed and submitted to 

supervised statistical analysis (OPLS-DA). Since the composition of model samples was 

completely known, results could be compared to an OPLS-DA calculated from metabolite 

concentrations, used as a ground truth. Authors observed that NUS-accelerated 2D NMR 

provided the same group separation as conventional 2D NMR for the metabolomics study of 

biofluids, but in a shorter time. Most importantly, the authors demonstrated that the loading 

plots obtained from 2D NMR data were closer to the ground truth than those obtained from 

1D NMR data, thanks to the reduced peak overlap, and that buckets from specific biomarkers 

were more uniquely identified from 2D datasets. 

In a subsequent study, the same authors further investigated the performance of NUS to 

record very high-resolution HSQC and TOCSY spectra on a mixture of standards.88 They 

showed that both HSQC and TOCSY spectra could be recorded with a very high resolution 

and no penalty in terms of sensitivity, highlighting the fact that NUS can either be used to 



 

 
 

reduce the experiment time or to improve the resolution, providing a highly needed flexibility 

in the analysis of complex mixtures. 

In 2018, Marchand and co-workers developed an untargeted lipidomic fingerprinting workflow 
applied to a chemical food safety issue.89 Lipidomics is a part of metabolomics that focuses 
on the lipid fraction of the metabolome. The study aimed at detecting the forbidden use of a 
growth promoter in livestock. Ractopamine diet-fed pig samples were investigated versus 
control samples to highlight specific lipidomic patterns. The authors used two fast NMR 
approaches: 1H NUS ZQF-TOCSY and 1H UF COSY. NUS results are discussed here, 
whereas UF COSY results are discussed in section 13.3.3.1. 50% NUS was used to record 
the NUS ZQF-TOCSY spectra, leading to a total experimental time of 1 h 47 min. The NUS 
proportion was selected to ensure a sufficient number of signals recorded without 
reconstruction artefacts. The choice of the ZQF-TOCSY was driven by the clean in-phase 
resulting line shapes and the high number of observable correlations. Both correlation and 
diagonal peaks were integrated. PCA was then performed from 2D buckets as shown in Figure 
13.6. 2D bucketing was facilitated and more reliable, compared to 1D bucketing, thanks to the 
better separation provided by the 2D spectrum. As in the previously mentioned study, the 
authors showed that the group separation obtained on the PCA score plot was similar with 2D 
NMR compared to 1D NMR, but they demonstrated that the loading plot obtained from 2D 
NMR data provided a less ambiguous identification of relevant biomarkers, compared to 1D 
NMR data. 

 

Figure 13.6 NMR lipidomics from pig serum lipid extracts, comparing ractopamine diet-fed 
pigs (green) with control pigs (red). (a, b) Zooms on specific bucketing regions in spectra from 
pig serum lipid extracts. (a) Bucketing from a 1D spectrum. The bucket n°15 contains the –
CH2–CH=CH signal from fatty acyls (FA); the bucket n°14 contains both the –CH2–CH=CH 
signal from FA and CH (C12) from cholesterol and esterified cholesterols (Chol/CholE); the 
bucket n°13 contains the CH (C7) from Chol/CholE. (b) Bucketing from a ZQF-TOCSY 
spectrum. The bucket n°27 contains the –CH2–CH=CH signal from FA whereas the bucket 
n°26 contains the CH (C12) and CH (C7) from Chol/CholE. (c, d) PLS-DA score plot of the 
lipidomics study of ractopamine in pigs from: (c) 1D data and (d) 2D NUS ZQF-TOCSY data. 



 

 
 

Associated R2 and Q2 values are specified within each box. Each dot represents an individual 
(i.e. a sample) and is labeled as PXX/D_YY corresponding to the pig number (P) and the 
sampling day (D). Green dots correspond to the Treated group whereas red dots correspond 
to the control group. Adapted from Ref. 89 with permission from Springer, Copyright 2018. 
 

In 2020, Féraud et al., reported an untargeted metabolomics study on biofluids with the use of 
NUS applied to a 1H COSY pulse sequence.90 Samples from three different urine donors were 
taken on four successive days, with each time two dilution levels. Eight measures were 
performed for each donor sample which led to a total of 72 spectra collected with three 
experimental conditions: conventional COSY with either 4 or 1 scans, and COSY with 1 scan 
and 50% NUS. Corresponding experiment times were 50, 13 and 8 min, respectively. Several 
NUS levels were initially tested and 50% NUS appeared to provide the best time/sensitivity 
compromise. Data obtained were then statistically analysed through PCA combined with two 
different data analysis workflows.91 Fast COSY provided very similar results compared to the 
initial COSY, but in a reduced time. Also, donor samples were differentiated thanks to PCA 
and accelerated 2D approaches showed efficient group discrimination, as good as 
conventional COSY but in a shorter time.  

Hadamard spectroscopy exploits an alternative sampling strategy to reduce the experimental 
time of 2D NMR92,93 It relies on polychromatic selective inversion or excitation pulses, to select 
multiple signals and impart them with a specific phase. Between sub spectra, the phase of the 
individual signals is changed to obtain Hadamard-encoded spectra which can be 
unambiguously reconstructed using a Hadamard transformation to obtain sub spectra for 
individual compounds. Hadamard TOCSY was used by Ludwig and co-workers, who reported 
consequent time savings: less than 20 min for Hadamard TOCSY versus 18 h for conventional 
TOCSY, without any loss of sensitivity.93 They studied 38 colorectal cancer cells extract and 
8 adenoma cells samples, to attest the potential of the method in metabolomics. The analytical 
performance of the method was investigated on 19 control samples. All results were submitted 
to unsupervised multivariate analysis (PCA) to highlight specific statistical groups. The results 
allowed to find relevant metabolic signatures that could discriminate one cancer type from 
another and to map the associated metabolomic pathways. However, Hadamard 
spectroscopy is not as straightforward as NUS to implement, since it requires setting selective 
pulses based on a priori knowledge of the spectral patterns. This probably explains why the 
application of Hadamard spectroscopy to metabolomics remains scarce in the literature.  

13.3.2.2. Targeted metabolomics 

For targeted metabolomics, several papers were published that relied on conventional 2D 
NMR approaches, but with a clever optimization of the indirect spectral width and number of 
increments to reduce the experiment time. In 2007, Lewis and co-workers published one of 
the very first papers reporting the potential of 2D NMR for targeted quantitative analysis.66 
Their fast metabolite quantification (FMQ) strategy combined 1H-13C NMR HSQC and aliasing 
to quantify targeted metabolites. Aliasing is an efficient method to reduce the number of points 
needed to sample the indirect dimension, by deliberately violating the Nyquist condition.94 In 
the FMQ approach, quantitative HSQC spectra were collected in 128 increments using a 70 
ppm spectral width in the indirect dimension (versus 140 ppm for a conventional HSQC). 
Aliasing was optimized to avoid overlap between 2D peaks. By using a calibration approach, 
the authors were able to quantify 40 metabolites in biological samples such as plant extracts 
from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. The method 
showed 2.7% of accuracy on absolute concentrations in only 12 minutes per spectrum. 
 
While spectra aliasing is well suited to relatively sparse heteronuclear 2D spectra, it is a less 
adapted solution to shorten the duration of homonuclear 2D experiments since aliasing would 
result in significant peak overlap. However, the duration of homonuclear 2D experiments can 
also be shortened by careful optimization of the number of increments in the indirect 
dimension, and some pulse sequences are particularly well adapted to such optimization. In 



 

 
 

2011 Martineau et al. attempted to reduce as much as possible the number of t1 increments 
in the case of 2D 1H INADEQUATE (incredible natural abundance double quantum transfer 
experiment) or Double Quantum Spectroscopy (DQS) for targeted metabolomics.71 DQS is 
particularly relevant for the analysis of complex metabolic mixtures since strong diagonal 
signals are removed, thus limiting both peak overlap and dynamic range issues. This also 
makes it possible to drastically reduce the number of indirect acquisition points, leading to 
significant time savings. Martineau et al. showed that DQS spectra could be obtained on 
breast cancer cell extracts in 7 min with 64 t1 increments. A repeatability better than 2% was 
achieved for metabolite concentrations as small as 100 µM, together with a great linearity. 
Interestingly, the authors reported a significant improvement in repeatability when reducing 
the experiment time, as a result of a lower impact of hardware instabilities. Following these 
results, E. Martineau et al. showed the application of DQS to the absolute quantification of a 
series of breast cancer cell extracts thanks to a standard addition procedure.95 2D NMR 
quantification results on extracts made it possible to highlight quantitative biomarkers of breast 
cancer cell line types. 

As for untargeted metabolomics relying on alternative sampling schemes, NUS is one of the 

most popular methods to accelerate targeted metabolomics workflows. In 2018, von 

Schlippenbach et al. performed a detailed optimization and evaluation of NUS parameters for 

the targeted analysis of urinary metabolites by homonuclear 2D NMR.96 NUS 1H-1H-TOCSY 

and NUS 1H-1H-COSY with a 45° coherence transfer pulse were combined to standard 

addition experiments. Different NUS sampling schemes and reconstruction algorithms were 

evaluated, leading to acceptable repeatability (CV – coefficient of variation - around 10%). In 

2020, Jiang et al. reported a similar strategy combining NUS with a TOCSY pulse sequence 

to analyse plant extracts.97 

 

NUS has also been efficiently employed to shorten the duration of heteronuclear quantitative 
2D NMR experiments. In 2020, Zhang et al. investigated the analytical performance of NUS 
HSQC combined with calibration for quantification purposes. They determined the 
concentration linearity and limits of detection and quantification (LOD and LOQ) of several 
common metabolites.98 LOQ of these common metabolites were obtained in the low µmol/L 
range. Almost all investigated metabolites displayed a correlation coefficient better than 0.9 
which indicated an excellent linearity. However, the repeatability was quite disappointing in 
some cases (with CV up to 35% on less concentrated samples). An alternative approach to 
obtain absolute quantification by combining HSQC with NUS was presented by Rai and Sinha 
in 2012.99 Authors reported an almost 22-fold reduction time for the acquisition of 2D HSQC 
spectra in comparison with classic 2D NMR and without any compromise in the quantification 
capability of low concentration metabolites. Here, absolute quantification was achieved by 
calculating a correction factor for each 2D peak of interest, based on relaxation times and J-
couplings, to retrieve the correct concentration of the corresponding metabolites, an approach 
previously described by the same group.100 With this strategy, authors successfully quantified 
metabolites in native and lyophilized human urine samples.  

13.3.2.3. Fluxomics 

In fluxomics, one of the main strengths of NMR is to be able to measure multiple position-
specific isotope enrichments in a single experiment.101 A common approach relies on the 
integration of 13C satellites in 1H NMR, but it is significantly limited by peak overlap. One way 
to improve signal discrimination at a reasonable time cost is the 2D heteronuclear J-resolved 
(J-RES) pulse sequence. As explained by Cahoreau and co-workers, the spectral complexity 
is reduced thanks to J-RES by dispersing heteronuclear scalar couplings in the second 
dimension while preserving the 1H NMR sensitivity.102 Since only scalar couplings are sampled 
in the indirect dimension, it leads to significantly reduced experiment durations. Cahoreau et 
al. used heteronuclear J-RES to measure isotopic patterns from 13C-enriched metabolite 



 

 
 

mixtures and non-labelled model mixtures, and biomass extracts from bacterial cultures. 
Experiment times were comprised between 15 to 30 minutes.  

In 2017, Lee et al. investigated the potential of NUS HSQC to perform carbon isotopomer 

analysis on cell extracts and living cells.103 25% NUS led to an approximate experimental time 

of 2 h, versus 8 h for conventional HSQC. Carbon multiplet patterns of aspartate were 

analysed to get insights into the metabolic usage of acetate by L210 cells, thanks to the high 

resolution provided with the NUS HSQC pulse sequence.  

 

Accessing position-specific isotope information can also be relevant at natural isotopic 

abundance, a field where the high precision of NMR is absolutely crucial. Indeed, 0.1% 

repeatability is required to accurately sample the variations of natural isotopic abundance. 

While SNIF (Site-specific Natural Isotopic Fractionation)-NMR  was used for decades to 

authenticate the origin of pure molecules104, its application to complex samples is much more 

recent. In 2016, Merchak et al., opened a new field called “metabisotopomics” in 2D NMR, at 

the border between metabolomics and isotopomics.105 This one relies on studying both 

insights provided by metabolomics, such as relevant biomarkers, and by isotopomics, the 

latter being defined as the determination of multiple isotopic parameters at natural abundance. 

Exploited together, these data can bring complementary information on sample origins. 

However, 2D NMR methods are required to face the sample complexity, since peak overlap 

would considerably impact the precision. In 2013, Martineau et al. showed that 1H-13C HSQC 

spectra recorded with spectral aliasing and processed with linear prediction could yield a 

repeatability of 0.2%.106 In 2016, Merchak et al. went a step further by simultaneously 

investigating the metabolomic and isotopic profiles of triacylglycerol matrices using a fast 1H-
13C HSQC 2D NMR method.105 Spectral aliasing was used in combination with NUS to 

decrease the long experimental time and improve the resolution, respectively. Investigations 

were done on 32 commercial vegetable oils to classify them according to their botanical and 

geographical origins. An excellent precision (a few per mil) was reached in only 22 min. A few 

years after, Haddad and co-workers applied a similar strategy to analyse small quantities of 

cholesterol at natural abundance in cheese.107 A 1H-13C HSQC method combining NUS, linear 

prediction (LP) and VRT, was used to reduce the acquisition time, while the use of adiabatic 

pulses improved both sensitivity and precision. The method allowed to record a 2D HSQC 

map in 31 minutes with long-term repeatability of 2 per mil and relative standard deviation 

always below 0.5%. 

13.3.2.4 Discussion 

Contrary to the pulse and delays strategies described in the previous section, fast sampling 
strategies are more general, easy to implement and can be applied to most 2D pulse 
sequences. As described before, aliasing allows the reduction of the overall experimental time, 
but the time-saving is limited by the factor by which one can reduce the indirect spectral width 
to still have a decent and exploitable spectrum with no 2D peak overlaps. A careful 
optimization of the number of t1 increments is also possible without aliasing, but the reduction 
of the experiment time is limited by the truncation of the free induction decay (FID), even if 
linear prediction can help. NUS is probably the most efficient alternative sampling method to 
reduce the number of t1 increments in the indirect domain. However, the performance of NUS 
is limited by the efficiency of the reconstruction algorithms87 which can lead to a loss of 
repeatability, which can be detrimental to metabolomics analyses. The above-mentioned 
examples particularly highlight this limitation in the case of heteronuclear experiments at 
natural 13C abundance. Still, the combination of NUS and aliasing, when carefully 
implemented, can lead to appreciable time savings that can be crucial in high-throughput 
metabolomics and fluxomics.   
 



 

 
 

13. 3. 3. Spatial parallelization (UF 2D NMR) 

Spatial parallelisation consists of acquiring different sub-experiments simultaneously, from 

different slices of the sample.108 Among spatial parallelisation methods, UF NMR is an efficient 

way to speed up the acquisition of multi-dimensional experiments.108–110 Most popular UF 2D 

NMR pulse sequences rely on a continuous encoding scheme combining frequency-swept 

pulses with magnetic field gradient pulses, followed by an echo-planar spectroscopic imaging 

(EPSI) acquisition block derived from magnetic resonance imaging (MRI). This strategy allows 

to record a 2D map in a single-scan fashion and in less than 1 second. Considering the high 

throughput demand of metabolomics, spatial parallelisation appears to be a good candidate 

to overcome conventional and fast 2D NMR approaches acquisition time limits. Despite this, 

the application of UF 2D NMR to complex mixture analysis, and in particular to metabolomics 

and fluxomics, needs to account for specific limitations.111 First, UF 2D experiments are overall 

less sensitive than their conventional 2D experiment counterparts. A typical limit of detection 

for single-scan UF COSY can be estimated at 1 mmol/L at 600 MHz, which only allows the 

detection of major metabolites. This lower sensitivity can be mainly imputed to the large 

bandwidth filter used to cover the high dispersion induced by magnetic-field gradient pulses 

during acquisition. Other parameters such as spectral widths and resolution are 

interdependent and also limited by hardware demands. Therefore, multi-scan variants of UF 

2D NMR have been suggested and appear to be better suited to metabolomics. They consist 

in simple scan accumulations to improve the signal to noise ratio (SNR), and/or interleaving 

several EPSI acquisition trajectories to increase the available spectral width.112 In 

metabolomics, such approaches have been mainly reported for the COSY pulse sequence, 

one of the most sensitive 2D experiments, as described below. 

13.3.3.1. Untargeted metabolomics 

In 2014, Le Guennec and co-workers evaluated for the first time, the potential of the multi-

scan UF strategy for untargeted metabolomics61 relying on the method described in the first 

place by Pathan et al.113 As discussed in section 13.3.2.1, in which NUS results were 

presented, authors designed a set of model metabolite samples mimicking the composition of 

serum from patients affected by colorectal cancer, in order to provide a ground truth for the 

evaluation of fast 2D methods in metabolomics. Here, we focus on results obtained with the 

UF approach. Multi-scan UF COSY spectra were recorded with signal averaging on a ca. 4x4 

ppm spectral width (interleaved acquisition methods to improve the spectral width were not 

sufficiently controlled in 2014). OPLS-DA obtained from the bucketing of UF 2D spectra 

provided the expected group separation, as for the other 2D methods. Analysis of the loading 

plots showed that UF COSY provided a better identification of expected biomarkers than 1D 

NMR, but it was not as efficient as the one obtained with NUS HSQC. This result is consistent 

with the longer experiment time (35 vs 15 min) of NUS HSQC compared to UF COSY, and 

also with the better separation capabilities of HSQC.  

In 2018, as previously described in section 13.3.2.1, Marchand and co-workers, compared 
different fast 2D NMR techniques for the untargeted lipidomic fingerprinting on pig serum 
lipidic extracts, involving two sample groups (ractopamine-fed versus control).89 In this part we 
will focus on results obtained with UF COSY approach. Since the authors worked at a relatively 
high field (700 MHz), interleaved acquisitions (combined with signal averaging) were used to 
record full UF COSY spectra in 26 min. PLS-DA score plots obtained with UF COSY showed 
comparable group separation to NUS TOCSY, which was also comparable to 1D NMR in that 
case. In terms of biomarker identification, UF COSY provided intermediate efficiency between 
1D NMR and NUS-accelerated ZQF-TOCSY spectra that lasted 1 h and 47 min for 50% NUS. 
This is consistent with the fact that UF COSY better separates overlapping peaks than 1D 
NMR, but is less sensitive than NUS TOCSY. This example highlights that in the case of 
homonuclear spectroscopy, UF 2D NMR provides an intermediate tool between 1D and NUS-



 

 
 

accelerated 2D experiments, both in terms of efficiency and experiment duration, UF being 
more high-throughput but also less sensitive than NUS. 

 
In 2018, Gouilleux et al. used the same UF strategy to authenticate edible oils with a benchtop 
NMR spectrometer.73 The aim was to provide a discrimination of the botanical origin of the oils 
with a high throughput approach. The authors used a multi-scan strategy to overcome the 
sensitivity issues related to the use of UF NMR at a medium magnetic field (43 MHz). 
Interleaving was not required since limited spectral width needed to be sampled at this field. 
Edible oils of different botanical origins were investigated with multi-scan UF COSY 
experiments recorded with 72 scans in 2.4 min (see Figure 13.7 (a)). The resulting data were 
submitted to unsupervised PCA and compared to those obtained from 1D spectra recorded at 
the same time. A much better group separation was obtained with UF 2D NMR than with 1D 
NMR as shown in Figures 13.7 (b) and 13.7 (c). This performance was attributed to the 
ubiquitous peak overlap that characterized benchtop 1D NMR spectra of edible oils at low 
field. The authors also showed that UF COSY spectra could be used to build a supervised 
PLS model capable of efficiently detecting the adulteration of olive oil with hazelnut oil. Of 
course, the use of UF 2D NMR on a benchtop spectrometer would not be suitable for diluted 
samples, but it can provide an efficient tool for the NMR profiling of complex concentrated 
samples, such as those encountered in food analysis. 



 

 
 

 
Figure 13.7 Illustration of the potential of 2D experiments for the profiling of food samples with 
benchtop NMR spectroscopy. (a) Ultrafast 2D COSY spectrum recorded in 2.4 min on a 
sunflower oil sample in non-deuterated chloroform. PCA analysis on 23 edible oil samples 
from different botanical origins. (b) PCA score plot from data obtained with the UF 2D NMR 
experiments and (c) PCA score plot obtained with standard 1D experiments and a variable 
bucketing approach (5 wide integration regions). Adapted from Ref. 73 with permission from 
Elsevier, Copyright 2017. 
 

 

13.3.3.2. Targeted metabolomics 

Multi-scan UF COSY experiments were also evaluated for targeted metabolomics by Le 
Guennec and co-workers.114 The study aimed at performing a fast determination of absolute 
metabolite concentrations of 14 major metabolites in model mixtures and then in three breast 
cancer line extracts from cell cultures. For the model mixture, multiscan UF COSY 



 

 
 

experiments were acquired in 10 minutes by averaging 128 scans to obtain convenient 
sensitivity and to reach the desired limit of quantification for the metabolites studied (at 500 
MHz with a cryoprobe). Then, for breast cancer line extract, multiscan UF COSY experiments 
were recorded in 20 min (256 scans) to detect the lower concentration metabolites. A standard 
addition procedure was used for quantification, consisting in spiking each sample with a 
mixture of the 14 targeted analytes. Interestingly, the UF method was able to reach much 
better repeatability (1 to 4 %) compared to conventional 2D COSY (5.5% to 18.3%). This 
difference was attributed to spectrometer instabilities that induced t1 noise in the indirect 
dimension of conventional experiments, while UF spectra were devoid of such t1 noise as 
demonstrated by Pathan et al. in 2011 113. Concentrations determined for metabolites in cell 
extracts ranged from 10 to 20 mM for lactate to 0.3 mM for less abundant metabolites. This 
study highlighted that for concentrations as low as a few hundreds of µM, UF COSY can 
provide an efficient tool for targeted metabolomics owing to its high repeatability. 

Still with the same UF strategy and on targeted metabolomics, Jezequel et al. developed a 
workflow associating multi-scan UF COSY with an external calibration procedure.74 The goal 
was to determine the absolute concentration of major metabolites in tomato pericarp extracts. 
This time, a less time-consuming external calibration method was chosen over standard 
additions for quantification. A single series of calibration samples containing all the targeted 
metabolites was designed containing 8 metabolites, with concentrations ranging from 0.1 
mmol/L to 150 mmol/L. For the sake of comparison, experiments were performed on 500 and 
700 MHz spectrometers equipped with cryoprobes. On the one hand, at 500 MHz, no 
interleaving scans were needed but more scans needed to be accumulated to provide 
sufficient SNR (64 scans). On the other hand, 4 interleaved scans were needed at 700 MHz, 
because the spectral width was even shorter at this field, but less scans were necessary 
overall to achieve a good sensitivity (16 scans). Therefore, all spectra were recorded in 5 min 
(see Figure 13.8). The concentration of eight major metabolites was determined with a 
trueness better than 10 % and a technical repeatability of a few percent. The experiments 
performed at two magnetic fields led to similar quantitative results, in coherence with the 
metabolism of tomato fruit. However, two metabolites were not quantified at 500 MHz as their 
signals were below the limit of quantification. Authors were able to propose biological insights 
based on the variation of metabolite concentrations at different fruit development stages, 
suggesting that fast 2D NMR methods formed a promising tool for fast targeted metabolomics 
of plant samples.  



 

 
 

 

Figure 13.8 Fast multi-scan UF COSY spectra of a tomato fruit pericarp extract recorded in 5 
min at 298 K on 500 (a, b) and 700 (c, d) MHz Bruker NMR spectrometers equipped with 
cryogenically cooled probes. Spectra (b) and (d) were obtained after symmetrizing spectra (a) 
and (c), respectively. For each major metabolite (glucose, fructose, sucrose, malate, citrate, 
GABA, glutamine, choline), the peak chosen for quantitative analysis is indicated. Reproduced 
from Ref. 74 with permission from Springer, Copyright 2015. 

13.3.3.3. Fluxomics 

Since fluxomics requires high-throughput measurements with a high accuracy, UF NMR could 
be of interest to the field. In this context, in 2011, Giraudeau and co-workers, evaluated the 
relevance of UF 2D NMR to measure specific 13C-enrichments in complex mixtures of 13C-
labeled metabolites.115 Model mixtures of 13C-labeled alanine and glucose samples were first 
used to evaluate the analytical performance of the method, and then a bacterial extract from 
E. Coli was investigated to highlight the potential of the approach in a real case. UF COSY 
and UF zTOCSY were compared to conventional zTOCSY which was used as a reference 
method. UF COSY and UF zTOCSY spectra were collected in only 3 minutes each versus 2.5 
hours for the conventional zTOCSY. Both UF methods showed an accuracy between 1 to 2 
% on the determination of position-specific 13C enrichments, with an average precision of 3% 
and an excellent linearity. As expected, the sensitivity was lower compared to conventional 



 

 
 

zTOCSY spectra recorded in a much longer time, but the relatively high metabolite 
concentrations were sufficient to measure isotopic enrichments for ca 80% of the NMR-
detected metabolites. Although potentially providing access to more peaks of interest, UF 
zTOCSY was found less sensitive than UF COSY due to diffusion effects that occurred during 
the mixing period, making the spatially encoded procedure less efficient.  

To improve the signal discrimination further, this approach was further extended to a 3D 
experiment called UFJCOSY combining conventional COSY and UF 1H-13C J-RES.116 This 
approach was tested on isotopically enriched complex samples, a model mixture of alanine 
and a biomass sample of E. Coli. Thanks to the spatial encoding of one dimension, the overall 
acquisition time to obtain the full 3D map was 11 min, instead of 12 hours if the experiment 
would have been collected conventionally. This approach was less affected by peak 
overlapping thanks to the third dimension. Although the analytical performance was not 
evaluated in this paper, this method could pave the way toward the development of further 
accelerated 3D methods for the analysis of complex metabolite mixtures. 

13.3.3.4 Discussion 
As discussed in this section, UF 2D NMR offers an impressive time saving for metabolomics, 

particularly when considering the need for high throughput methods to deal with sample 

cohorts in limited time. Since the experiment duration mainly depends on the number of scans 

(and slightly on the number of interleaved acquisitions), the experiment duration can be tuned 

to the desired limit of quantification, provided that the overall experiment duration does not 

exceed 20-30 min. Indeed, longer experiment durations can affect the gradient coil. This 

limitation, together with the sensitivity limitation of UF 2D NMR, makes it best suited for 

homonuclear 2D NMR metabolomics, with typical limits of detection in the 0.1 mM – 1 mM 

range at high field.61 Heteronuclear UF 2D experiments are not suitable for metabolomics at 

natural abundance, unless they are combined with hyperpolarization methods as described in 

section 13.4.2. 

13.4 Challenges, limitations and perspectives 

 

13.4.1. Comparison and summary of fast 2D methods 

 

The previous sections illustrate the great variety of metabolomics and fluxomics applications 

that fast 2D NMR methods have found in the last decade. These examples show both the 

diversity of fast 2D approaches -and their combination- and the number of biological questions 

they can address. This literature survey also highlights that each approach has its advantages 

and drawbacks for metabolomics and fluxomics, as summarized in Table 13.1. The choice of 

the optimum method for a given research question is not simple, but general tendencies 

emerge when carefully looking at the literature. Alternative sampling methods such as NUS 

and aliasing seem the most appropriate methods for heteronuclear 2D NMR metabolomics, 

while UF 2D NMR is best suited for homonuclear experiments. Therefore, the choice of the 

optimum approach will depend on the complexity of both the samples being analysed and the 

biological question being tackled. Tutorial papers have been recently published to help users 

choosing and optimizing the most appropriate method for both untargeted and targeted 

metabolomics.117,118 Hopefully, these will facilitate the use of fast 2D NMR methods in omics 

workflows by non-expert users. 

 

  



 

 
 

Table 13.1 Main features of fast 2D NMR methods and their pro and cons for metabolomics and fluxomics 

 
  Pros Cons 
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SOFAST 
 
 

ALSOFAST and 
ASAP 

 
VRT 

 

Reduced recovery delay without compromise on 
spectral quality. 

 
Efficient time saving when dipolar cross-relaxation is 

efficient.  
 

Encouraging compatibility with NUS and no need for 
selective pulses contrary to SOFAST. 

 
Compatible with other time-saving approaches. 

 

 
 
 

Selective approach, not generally applicable to mixtures of 
small molecules. Limited to heteronuclear spectroscopy. 

 
Limited to heteronuclear correlation spectroscopy and strong 

demand on the RF coils due to very short repetition time. 
 

Tailored optimization needed. 
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Reduced number 
of t1 increments 

 
 

Aliasing 
 
 
 

NUS 
 
 
 

Hadamard 

General approaches applicable to most pulse 
sequences, easy to setup. Can also be used to record 

highly resolved spectra. 
 

Once conventional 2D is known, easy to setup. 
Compatible with other time-saving strategies. 

 
Easy to setup in commercial software. Compatible with 

other time-saving strategies. 
 
 
 

Relevant for targeted analysis. 

 
 
 
 

Need a priori knowledge of the peak positions. Less adapted to 
homonuclear 2D NMR (overlap). 

 
Sampling scheme and parameters and processing algorithm 
may require optimization. Less adapted to homonuclear 2D 
NMR. Repeatability can be disappointing for signals with low 

SNR. 
 

Need a priori knowledge of peak position. Not very easy to set 
up in practice, optimization needed. Not easily compatible with 

other time-saving approaches. 
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Ultrafast 

 

 
Excellent repeatability of UF homonuclear pulse 

sequences. Very high-throughput. 

 
Modest sensitivity, limited to homonuclear experiments. Not 

easy to set up and associated hardware limitations. 



 

 
 

13.4.3. Combination of fast 2D NMR and hyperpolarization 

As described above, the sensitivity of fast 2D NMR methods in metabolomics remains limited 
to typical metabolite concentrations above 100 µM for 1H-1H homonuclear experiments. 
Practical applications require relatively high sample amounts and detection by 2D NMR is 
often limited to most concentrated metabolites. Combination of hyperpolarization technique 
with fast 2D approach could be potentially the most efficient solution to circumvent such 
challenges. Hyperpolarization is an ensemble of techniques that can considerably improve (by 
several orders of magnitude) the sensitivity of NMR signals. In hyperpolarization methods, 
non-equilibrium spin population distributions are generated to increase the nuclear spin 
polarization far beyond thermal equilibrium values, which results in tremendous sensitivity 
gains.  

13.4.3.1. Brief description of hyperpolarization techniques 

Among all the hyperpolarization techniques, dynamic nuclear polarization (DNP)119–122, 

parahydrogen induced hyperpolarization technique (PHIP)123–125, and its reversible version, 

named signal amplification by reversible exchange (SABRE)126 have shown potential for 

coupling with fast 2D pulse sequences.  

 

DNP relies on transferring the polarization from the electron spins of a paramagnetic species 

to the nuclear spins of the sample of interest, a process most efficient when the sample is 

frozen as a glass in the solid state, at cryogenic temperatures. In order to observe a liquid-

state hyperpolarized signal, a dissolution DNP (d-DNP) experiment was suggested in 2003 by 

Ardenkjaer-Larsen and co-workers127, where nuclear spins are polarized in the solid state at 

cryogenic temperatures (typically 1-2 K), in a high magnetic field (3-7 T), followed by rapid 

dissolution, transfer of the sample to a liquid-state NMR spectrometer and signal acquisition 

at room temperature.128,129 Recently, several d-DNP hyperpolarized NMR metabolomics 

studies showed a huge potential for a wide range of “omics” applications such as targeted and 

untargeted metabolomics and fluxomics studies.130–134 The repeatability and robustness of this 

method enable such applications in biological samples even at sub-millimolar concentrations.  

 

PHIP is generated through the catalytic homogeneous hydrogenation reaction of an 

unsaturated molecule with hydrogen gas enriched in its para form (p-H2) resulting in a 

significant increase in sensitivity. After hydrogenation of an unsaturated and asymmetric 

molecule, the singlet order of p-H2 turns into observable magnetization. In contrast to PHIP, 

the SABRE approach uses a catalyst such that p-H2 reversibly adds to the catalyst, and the 

substrate reversibly binds to the catalyst as a ligand. As a result, it offers a rapid and reversible 

hyperpolarization due to the reversibility of exchange reaction. Introduction of PHIP in NMR 

metabolomic study has been shown to extend the concentration limit in the nanomolar region 

for the identification of metabolites present in biological samples.135 

 

It is important to highlight that the limited lifetime of hyperpolarization imposes challenges for 

coupling with conventional 2D NMR which requires a sufficiently long experimental time to 

sample the indirect dimension with a sufficient resolution. Such challenges are more critical in 

the case of d-DNP which involves an irreversible process, while SABRE permits renewal of 

hyperpolarization in between the scans. Indeed, Tessari et al. reported SABRE hyperpolarized 

conventionally acquired homonuclear 2D correlation spectra to analyze biofluid extracts at 

sub-M concentration.136 This is probably the first study which showcases the potential of 

quantitative analysis using hyperpolarized 2D correlation spectroscopy. 

13.4.3.2. Relevant studies combining fast 2D and hyperpolarization techniques  

The combination of fast 2D approaches with hyperpolarization in full metabolomic studies is 
yet to be reported. However, a number of NMR and analytical developments have recently 



 

 
 

shown the efficient coupling of fast 2D NMR with hyperpolarization to analyze complex 
samples, thus paving the way toward further applications in metabolomics. For instance, 
PHIP-boosted fast 2D techniques such as UF TOCSY spectra of a low concentrated 
biologically active peptide were acquired within 10 s of experimental time and the sensitivity 
improved by hyperpolarization reduced the limit of detection by a factor of two. Ultrafast 2D 
NMR was efficiently coupled with SABRE to obtain 2D COSY spectra of a mixture of analytes 
at sub-millimolar concentrations.137 d-DNP combined with fast 2D approaches have also been 
involved in several analytical applications. Fast 2D experimental strategies have been 
suggested to sequentially acquire transients with incremented t1 evolution and phase to obtain 
d-DNP enhanced 2D spectra from a single hyperpolarized sample.138 A similar strategy using 
a small flip angle readout pulse was implemented to record 13C-1H heteronuclear correlations 
(long-range HSQC and HMQC) in order to detect a range of common metabolites in blood 
serum. This study reported d-DNP enhanced fast 13C-1H 2D long-range HSQC spectra of 13CO 
acetylated blood serum with a total signal acquisition time of 9 s.139 d-DNP boosted Hadamard 
reconstructed SOFAST-HMQC was also implemented to monitor protein-ligand 
interactions.140  

UF methods have also been coupled to d-DNP to explore the potential of UF 1H-13C 
heteronuclear 2D pulse sequences for analyzing samples at sub-millimolar concentrations.141 
Indeed, although d-DNP provides a huge sensitivity boost to the liquid state NMR signal, such 
polarization decays exponentially (about 90% 1H hyperpolarization loss in a few seconds) in 
an irreversible manner. UF 2D NMR is then well suited to exploit such huge polarization gain 
from d-DNP hyperpolarization before it decays, which, in turn, could solve the general 
sensitivity issue of UF 2D NMR and even enable the acquisition of 1H-13C 2D correlation 
spectra at 13C natural abundance in metabolomics. However, rapid sample injection from the 
polarizer induces turbulent motion of the sample during signal acquisition, which imposes 
serious practical challenges to gradient-based spatial encoding strategies in UF experiments. 
Frydman et. al. reported optimizations to overcome such issues (such as the choice of 
dissolution solvent, settling delay before acquisition etc.) and highlighted the possibility to 
acquire d-DNP enhanced UF 2D 15N-1H and 13C-1H heteronuclear correlation spectra.142 
Further developments reported the sequential acquisition of two UF heteronuclear spectra in 
a single scan following d-DNP: a short-range 1H-13C spectrum and a long-range 1H-13C 
correlation spectrum.143 The same study introduced an elegant solution to incorporate the out-
of-the-range 13C resonances into an arbitrary position within the limited spectral range of UF 
spectra by imparting a tailor-made spatial/spectral encoding scheme. Besides UF 
heteronuclear 2D pulse sequences, several d-DNP boosted UF 1H-1H homonuclear pulse 
sequences such as UF COSY, UF TOCSY, and single-quantum/multiple-quantum (SQ-MQ) 
experiments were reported to analyze complex hyperpolarized mixtures.144,145 Such 
developments were made possible thanks to a short transfer time (ca. 3 s) between the 
dissolution of hyperpolarized sample to the collection of the sample in the NMR tube, relying 
on customized dissolution systems. While metabolomics applications have not been reported 
yet, recently, a proof-of-concept study identified metabolites from partially enriched and 
natural abundance extracts of breast cancer cells using d-DNP enhanced UF 1H-13C 
heteronuclear correlation spectra.146 As reflected in Figure 13.9 (a) and Figure 13.9 (b) a 
similar isotopic pattern was reported between a conventional 1H-13C HMBC (heteronuclear 
multiple bond correlation) spectrum (figure 1a) at thermal equilibrium (ca. 14 h of experiment 
time) and its hyperpolarized counterpart (Figure 13.9 (b)) (ca. 30 min of experiment time) 
recorded on two identical extracts. Figure 13.9 (c) showcases the potential of d-DNP 
enhanced HMBC experiment at natural abundance in a single scan. However, signals were 
missing on hyperpolarized UF spectra due to the long transfer time employed in this study. 
Future improvements relying on fast transfer approaches, combined with this UF 2D NMR 
strategy, could significantly enhance the potential of this approach for metabolomics.  



 

 
 

 

 

Figure 13.9 1H→13C HMBC-type spectra of extracts of SKBR3 human breast cancer cell lines. 

(a) Conventional HMBC spectrum, recorded in 13 h 42 min at 500 MHz with a cryogenic probe, 

on a partially enriched extract (ca. 57 million extracted cells) dissolved in 700 µL D2O. (b) 

Hyperpolarized single scan spectrum. The cell extract was dissolved in 200 µL of a mixture of 

H2O/D2O/glycerol-d8 (2:3:5) with 25 mM TEMPOL and polarized for 30 min at 1.2 K and 6.7 

T, and finally dissolved with 5 mL D2O. A fraction of 700 µL of the hyperpolarized sample was 

injected into a 500 MHz spectrometer equipped with a cryogenic probe where the spectrum 

was recorded in a single scan. (c) Same as (b), but with a natural abundance extract (ca. 113 

million cells) obtained from the same SKBR3 cell line. Ace: acetate; Ala: alanine; GABA: γ-

aminobutyrate; Gln: glutamine; Glu: glutamate; Gly: glycine; Lac: lactate. Reproduced from 

Ref. 146 with permission from The Royal Society of Chemistry, Copyright 2015. 

Overall, the future of hyperpolarization coupled with fast 2D NMR techniques is extremely 

promising as it shows the potential to circumvent the sensitivity and resolution issues of fast 

2D NMR techniques. The above-mentioned examples recorded on complex mixtures support 

such a perspective. Moreover, several recent developments in hyperpolarized 1D NMR 

metabolomics (targeted and untargeted) and fluxomics demonstrated that hyperpolarization 

has the necessary robustness and repeatability for metabolomics studies.130,131 From these 

studies, one can anticipate that hyperpolarized fast 2D approaches could considerably 

strengthen the analysis of hyperpolarized biological samples.      

 

  



 

 
 

ACKNOWLEDGEMENTS 

This work has received funding from the European Research Council (ERC) under the 
European Union’s Horizon 2020 research and innovation program (grant agreements no 
801774/DINAMIX and 814747/SUMMIT) and the Region Pays de la Loire (Connect Talent / 
HPNMR). The authors also acknowledge the French National Infrastructure for Metabolomics 
and Fluxomics MetaboHUB-ANR-11-INBS-0010 (www.metabohub.fr) and the Corsaire 
metabolomics core facility (Biogenouest). 
 

References 

1. J. K. Nicholson and J. C. Lindon, Nature, 2008, 455, 1054. 
2. F. J. Bruggeman and H. V. Westerhoff, Trends Microbiol., 2007, 15, 45. 
3. O. Fiehn, Plant Mol. Biol., 2002, 48, 155. 
4. C. H. Johnson, J. Ivanisevic and G. Siuzdak, Nat. Rev. Mol. Cell Biol., 2016, 17, 451. 
5. U. Sauer, Mol. Syst. Biol., 2006, 52, 1. 
6. M. A. Kamleh, K. Spagou and E. J. Want, Curr. Pharm. Biotechnol., 12, 976. 
7. N. Koen, I. Du Preez and D. T. Loots, in Advances in Protein Chemistry and Structural 

Biology, ed. R. Donev, Academic Press, Cambridge, 1rst edn, 2016. 
8. B. Li, X. He, W. Jia and H. Li, Molecules, 2017, 22, 1173. 
9. M. Jacob, A. L. Lopata, M. Dasouki and A. M. Abdel Rahman, Mass Spec. Rev., 2019, 38, 

221. 
10. M. P. M. Letertre, P. Giraudeau and P. de Tullio, Frontiers in Molecular Biosciences, 2021, 

8, 698337. 
11. D. S. Wishart, Nat. Rev. Drug Discov., 2016, 15, 473. 
12. D. K. Trivedi, K. A. Hollywood and R. Goodacre, New Horiz. Transl. Med., 2017, 3, 294. 
13. A. Moayyeri, C. J. Hammond, A. M. Valdes and T. D. Spector, Int. J. Epidemiol., 2013, 42, 

76. 
14. Q. Chan, R. L. Loo, T. M. D. Ebbels, L. Van Horn, M. L. Daviglus, J. Stamler, J. K. 

Nicholson, E. Holmes and P. Elliott, Hypertens. Res., 2017, 40, 336. 
15. B. Yu, K. A. Zanetti, M. Temprosa, D. Albanes, N. Appel, C. B. Barrera, Y. Ben-Shlomo, 

E. Boerwinkle, J. P. Casas, C. Clish, C. Dale, A. Dehghan, A. Derkach, A. H. Eliassen, P. 
Elliott, E. Fahy, C. Gieger, M. J. Gunter, S. Harada, T. Harris, D. R. Herr, D. Herrington, 
J. N. Hirschhorn, E. Hoover, A. W. Hsing, M. Johansson, R. S. Kelly, C. M. Khoo, M. 
Kivimäki, B. S. Kristal, C. Langenberg, J. Lasky-Su, D. A. Lawlor, L. A. Lotta, M. Mangino, 
L. Le Marchand, E. Mathé, C. E. Matthews, C. Menni, L. A. Mucci, R. Murphy, M. Oresic, 
E. Orwoll, J. Ose, A. C. Pereira, M. C. Playdon, L. Poston, J. Price, Q. Qi, K. Rexrode, A. 
Risch, J. Sampson, W. J. Seow, H. D. Sesso, S. H. Shah, X.-O. Shu, G. C. S. Smith, U. 
Sovio, V. L. Stevens, R. Stolzenberg-Solomon, T. Takebayashi, T. Tillin, R. Travis, I. 
Tzoulaki, C. M. Ulrich, R. S. Vasan, M. Verma, Y. Wang, N. J. Wareham, A. Wong, N. 
Younes, H. Zhao, W. Zheng and S. C. Moore, Am. J. Epidemiol., 2019, 188, 991. 

16. D. B. Kell and R. Goodacre, Drug Discov. Today, 2014, 19, 171. 
17. V. Tolstikov, Metabolites, 2016, 6, 20. 
18. M. Ufer, P.-E. Juif, M.-L. Boof, C. Muehlan and J. Dingemanse, Expert Opin. Drug Metab. 

Toxicol., 2017, 13, 803. 
19. R. Powers, J. Med. Chem., 2014, 57, 5860. 
20. M. Cuperlovic-Culf and A. S. Culf, Expert Opin. Drug Discov., 2016, 11, 759. 
21. M. Li, B. Wang, M. Zhang, M. Rantalainen, S. Wang, H. Zhou, Y. Zhang, J. Shen, X. Pang, 

M. Zhang, H. Wei, Y. Chen, H. Lu, J. Zuo, M. Su, Y. Qiu, W. Jia, C. Xiao, L. M. Smith, S. 
Yang, E. Holmes, H. Tang, G. Zhao, J. K. Nicholson, L. Li and L. Zhao, PNAS, 2008, 105, 
2117. 

22. C. Noecker, H.-C. Chiu, C. P. MacNally and E. Borenstein, mSystems, 2019, 4, e00579-
19. 

23. A. Koulman and D. A. Volmer, Nutr. Bull., 2008, 33, 324. 



 

 
 

24. J.-L. Sébédio, in Advances in Food and Nutrition Research, ed. F. Toldrá, Academic 
Press, Cambridge, 1rst edn, 2017. 

25. I. Garcia-Perez, J. M. Posma, R. Gibson, E. S. Chambers, T. H. Hansen, H. Vestergaard, 
T. Hansen, M. Beckmann, O. Pedersen, P. Elliott, J. Stamler, J. K. Nicholson, J. Draper, 
J. C. Mathers, E. Holmes and G. Frost, Lancet Diabetes Endocrinol., 2017, 5, 184. 

26. A. Tebani and S. Bekri, Front. Nutr., 2019, 6, 41. 
27. R. A. Dixon, D. R. Gang, A. J. Charlton, O. Fiehn, H. A. Kuiper, T. L. Reynolds, R. S. 

Tjeerdema, E. H. Jeffery, J. B. German, W. P. Ridley and J. N. Seiber, J. Agric. Food 
Chem., 2006, 54, 8984. 

28. R. M. do Prado, C. Porto, E. Nunes, C. L. de Aguiar and E. J. Pilau, mSystems, 2018, 3, 
e00156-17. 

29. C. Motti, J. Marine Sci. Res. Dev., 2012, 2, e110.  
30. E. M. Sogin, E. Puskás, N. Dubilier and M. Liebeke, mSystems, 2019, 4, e00638-19. 
31. M. R. Viant, Metabolomics, 2009, 5, 1. 
32. C. Bedia, P. Cardoso, N. Dalmau, E. Garreta-Lara, C. Gómez-Canela, E. Gorrochategui, 

M. Navarro-Reig, E. Ortiz-Villanueva, F. Puig-Castellví and R. Tauler, in Comprehensive 
Analytical Chemistry, eds. J. Jaumot, C. Bedia and R. Tauler, in Data Analysis for Omic 
Sciences: Methods and Applications, ed. J. Jaumot, C. Bedia and R. Tauler, Elsevier, 
Amsterdam, 1rst edn, 2018. 

33. R. Kumar, A. Bohra, A. K. Pandey, M. K. Pandey and A. Kumar, Front. Plant Sci., 2017, 
8, 1302. 

34. C. S. Bloszies and O. Fiehn, Curr. Opin. Toxicol., 2018, 8, 87. 
35. D. I. Walker, D. Valvi, N. Rothman, Q. Lan, G. W. Miller and D. P. Jones, Curr. Epidemiol. 

Rep., 2019, 6, 93. 
36. L. M. Labine and M. J. Simpson, Curr. Opin. Environ. Sci. Health, 2020, 15, 7. 
37. S. Li, Y. Tian, P. Jiang, Y. Lin, X. Liu and H. Yang, Crit. Rev. Food Sci. Nutr., 2021, 61, 

1448. 
38. C. Lima, H. Muhamadali and R. Goodacre, Annu. Rev. Anal. Chem., 2021, 14, 323. 
39. J. Martens, G. Berden, R. E. van Outersterp, L. A. J. Kluijtmans, U. F. Engelke, C. D. M. 

van Karnebeek, R. A. Wevers and J. Oomens, Sci. Rep., 2017, 7, 3363. 
40. M. P. M. Letertre, G. Dervilly and P. Giraudeau, Anal. Chem., 2021, 93, 500. 
41. J. L. Ward, J. M. Baker, S. J. Miller, C. Deborde, M. Maucourt, B. Biais, D. Rolin, A. Moing, 

S. Moco, J. Vervoort, A. Lommen, H. Schäfer, E. Humpfer and M. H. Beale, Metabolomics, 
2010, 6, 263. 

42. E. Zelena, W. B. Dunn, D. Broadhurst, S. Francis-McIntyre, K. M. Carroll, P. Begley, S. 
O’Hagan, J. D. Knowles, A. Halsall, I. D. Wilson and D. B. Kell, Anal. Chem., 2009, 81, 
1357. 

43. W. B. Dunn, D. Broadhurst, P. Begley, E. Zelena, S. Francis-McIntyre, N. Anderson, M. 
Brown, J. D. Knowles, A. Halsall, J. N. Haselden, A. W. Nicholls, I. D. Wilson, D. B. Kell 
and R. Goodacre, Nat. Protoc., 2011, 6, 1060. 

44. W. B. Dunn, W. Lin, D. Broadhurst, P. Begley, M. Brown, E. Zelena, A. A. Vaughan, A. 
Halsall, N. Harding, J. D. Knowles, S. Francis-McIntyre, A. Tseng, D. I. Ellis, S. O’Hagan, 
G. Aarons, B. Benjamin, S. Chew-Graham, C. Moseley, P. Potter, C. L. Winder, C. Potts, 
P. Thornton, C. McWhirter, M. Zubair, M. Pan, A. Burns, J. K. Cruickshank, G. C. Jayson, 
N. Purandare, F. C. W. Wu, J. D. Finn, J. N. Haselden, A. W. Nicholls, I. D. Wilson, R. 
Goodacre and D. B. Kell, Metabolomics, 2015, 11, 9. 

45. U. Holzgrabe, R. Deubner, C. Schollmayer and B. Waibel, J. Pharm. Biomed. Anal., 2005, 
38, 806. 

46. P. Giraudeau, V. Silvestre and S. Akoka, Metabolomics, 2015, 11, 1041. 
47. A. A. Crook and R. Powers, Molecules, 2020, 25, 5128. 
48. A.-H. Emwas, R. Roy, R. T. McKay, L. Tenori, E. Saccenti, G. A. N. Gowda, D. Raftery, F. 

Alahmari, L. Jaremko, M. Jaremko and D. S. Wishart, Metabolites, 2019, 9, 123. 
49 J. Hao, M. Liebeke, W. Astle, M. De Iorio, J. G. Bundy and T. M. D. Ebbels, Nat. Protoc., 

2014, 9, 1416. 



 

 
 

50. S. Ravanbakhsh, P. Liu, T. C. Bjordahl, R. Mandal, J. R. Grant, M. Wilson, R. Eisner, I. 
Sinelnikov, X. Hu, C. Luchinat, R. Greiner and D. S. Wishart, PLoS ONE, 2015, 10, 
e0132873. 

51. P. Lacy, R. T. McKay, M. Finkel, A. Karnovsky, S. Woehler, M. J. Lewis, D. Chang and K. 
A. Stringer, PLoS ONE, 2014, 9, e102929. 

52. C. S. Clendinen, B. Lee-McMullen, C. M. Williams, G. S. Stupp, K. Vandenborne, D. A. 
Hahn, G. A. Walter and A. S. Edison, Anal. Chem., 2014, 86, 9242. 

53. K. Zangger, Prog. Nucl. Magn. Reson. Spectrosc., 2015, 86–87, 1. 
54. J. M. Lopez, R. Cabrera and H. Maruenda, Sci. Rep., 2019, 9, 6900. 
55. Y. Bo, J. Feng, J. Xu, Y. Huang, H. Cai, X. Cui, J. Dong, S. Ding and Z. Chen, Int. Food 

Res. J., 2019, 125, 108574. 
56. J. Marchand, E. Martineau, Y. Guitton, G. Dervilly-Pinel and P. Giraudeau, Curr. Opin. 

Biotechnol., 2017, 43, 49. 
57. E. A. Mahrous and M. A. Farag, J. Adv. Res., 2015, 6, 3. 
58. K. Bingol, L. Bruschweiler-Li, D.-W. Li and R. Brüschweiler, Anal. Chem., 2014, 86, 5494. 
59. K. Bingol and R. Brüschweiler, Anal. Chem., 2014, 86, 47. 
60. Q. N. Van, H. J. Issaq, Q. Jiang, Q. Li, G. M. Muschik, T. J. Waybright, H. Lou, M. Dean, 

J. Uitto and T. D. Veenstra, J. Proteome Res., 2008, 7, 630. 
61. A. L. Guennec, P. Giraudeau and S. Caldarelli, Anal. Chem., 2014, 86, 5946. 
62. B. Féraud, B. Govaerts, M. Verleysen and P. de Tullio, Metabolomics, 2015, 11, 1756. 
63. S. L. Robinette, R. Ajredini, H. Rasheed, A. Zeinomar, F. C. Schroeder, A. T. Dossey and 

A. S. Edison, Anal. Chem., 2011, 83, 1649. 
64. C. Pungaliya, J. Srinivasan, B. W. Fox, R. U. Malik, A. H. Ludewig, P. W. Sternberg and 

F. C. Schroeder, PNAS, 2009, 106, 7708. 
65. J. Alonso, C. Arus, W. M. Westler and J. L. Markley, Magn. Reson. Med., 1989, 11, 316. 
66. I. A. Lewis, S. C. Schommer, B. Hodis, K. A. Robb, M. Tonelli, W. M. Westler, M. R. 

Sussman and J. L. Markley, Anal. Chem., 2007, 79, 9385. 
67. W. Gronwald, M. S. Klein, H. Kaspar, S. R. Fagerer, N. Nurnberger, K. Dettmer, T. Bertsch 

and P. J. Oefner, Anal. Chem., 2008, 80, 9288. 
68. P. Giraudeau, Magn. Reson. Chem., 2014, 52, 259. 
69. S. Massou, C. Nicolas, F. Letisse and J.-C. Portais, Phytochemistry, 2007, 68, 2330. 
70. S. Massou, C. Nicolas, F. Letisse and J.-C. Portais, Metab. Eng., 2007, 9, 252. 
71. E. Martineau, P. Giraudeau, I. Tea and S. Akoka, J. Pharm. Biomed. Anal., 2011, 54, 252. 
72. P. Giraudeau, N. Guignard, E. Hillion, E. Baguet and S. Akoka, J. Pharm. Biomed. Anal., 

2007, 43, 1243. 
73. B. Gouilleux, J. Marchand, B. Charrier, G. S. Remaud and P. Giraudeau, Food Chem., 

2018, 244, 153. 
74. T. Jézéquel, C. Deborde, M. Maucourt, V. Zhendre, A. Moing and P. Giraudeau, 

Metabolomics, 2015, 11, 1231. 
75. A. Motta, D. Paris and D. Melck, Anal. Chem., 2010, 82, 2405. 
76. S. Ghosh, A. Sengupta and K. Chandra, Anal. Bioanal. Chem., 2017, 409, 6731. 
77. P. Schanda, Ē. Kupče and B. Brutscher, J. Biomol. NMR, 2005, 33, 199. 
78. E. Kupče and R. Freeman, Magn. Reson. Chem., 2007, 45, 2. 
79. D. Schulze-Su, J. Becker and B. Luy, J. Am. Chem. Soc., 2014, 136, 1242. 
80. S. Watermann, C. Schmitt, T. Schneider and T. Hackl, Metabolites, 2021, 11, 39. 
81. J. Farjon, C. Milande, E. Martineau, S. Akoka and P. Giraudeau, Anal. Chem., 2018, 90, 

1845. 
82. C. Mauve, S. Khlifi, F. Gilard, G. Mouille and J. Farjon, Chem. Commun., 2016, 52, 6142. 
83. S. Macura, J. Am. Chem. Soc., 2009, 131, 9606. 
84. P. M. Le, C. Milande, E. Martineau, P. Giraudeau and J. Farjon, J. Pharm. Biomed. Anal., 

2019, 165, 155. 
85. M. P. Schätzlein, J. Becker, D. Schulze-Sünninghausen, A. Pineda-Lucena, J. R. Herance 

and B. Luy, Anal. Bioanal. Chem., 2018, 410, 2793. 
86. L. Mueller, J. Biomol. NMR, 2008, 42, 129. 



 

 
 

87. K. Kazimierczuk, J. Stanek, A. Zawadzka-Kazimierczuk and W. Koźmiński, Prog. Nucl. 
Magn. Reson. Spectrosc., 2010, 57, 420. 

88. A. Le Guennec, J.-N. Dumez, P. Giraudeau and S. Caldarelli, Magn. Reson. Chem., 2015, 
53, 913. 

89. J. Marchand, E. Martineau, Y. Guitton, B. Le Bizec, G. Dervilly-Pinel and P. Giraudeau, 
Metabolomics, 2018, 14, 60. 

90. B. Féraud, E. Martineau, J. Leenders, B. Govaerts, P. de Tullio and P. Giraudeau, 
Metabolomics, 2020, 16, 42. 

91. B. Féraud, J. Leenders, E. Martineau, P. Giraudeau, B. Govaerts and P. de Tullio, 
Metabolomics, 2019, 15, 63. 

92. J. C. J. Barna, E. D. Laue, M. R. Mayger, J. Skilling and S. J. P. Worrall, J. Magn. Reson. 
(1969), 1987, 73, 69. 

93. C. Ludwig, D. G. Ward, A. Martin, M. R. Viant, T. Ismail, P. J. Johnson, M. J. O. Wakelam 
and U. L. Günther, Magn. Reson. Chem., 2009, 47, S68. 

94. D. Jeannerat, in Encyclopedia of Magnetic Resonance, ed. R. K. Harris and R. E. 
Wasylishen, John Wiley & Sons, Ltd, Chichester, 1rst edn, 2011. 

95. E. Martineau, I. Tea, S. Akoka and P. Giraudeau, NMR Biomed., 2012, 25, 985. 
96. T. von Schlippenbach, P. J. Oefner and W. Gronwald, Sci. Rep., 2018, 8, 4249. 
97. L. Jiang, K. Howlett, K. Patterson and B. Wang, Anal. Biochem., 2020, 597, 113692. 
98. B. Zhang, R. Powers and E. M. O’Day, Metabolites, 2020, 10, 203. 
99. R. K. Rai and N. Sinha, Anal. Chem., 2012, 84, 10005. 
100. R. K. Rai, P. Tripathi and N. Sinha, Anal. Chem., 2009, 81, 10232. 
101. Y. Sekiyama and J. Kikuchi, Phytochemistry, 2007, 68, 2320. 
102. E. Cahoreau, L. Peyriga, J. Hubert, F. Bringaud, S. Massou and J.-C. Portais, Anal. 

Biochem., 2012, 427, 158. 
103 . S. Lee, H. Wen, Y. J. An, J. W. Cha, Y.-J. Ko, S. G. Hyberts and S. Park, Anal. Chem., 

2017, 89, 1078. 
104. T. Jézéquel, V. Joubert, P. Giraudeau, G. S. Remaud and S. Akoka, Magn. Reson. 

Chem., 2017, 55, 77. 
105 . N. Merchak, V. Silvestre, L. Rouger, P. Giraudeau, T. Rizk, J. Bejjani and S. Akoka, 

Talanta, 2016, 156–157, 239. 
106. E. Martineau, S. Akoka, R. Boisseau, B. Delanoue and P. Giraudeau, Anal. Chem., 2013, 

85, 4777. 
107 . L. Haddad, S. Renou, G. S. Remaud, T. Rizk, J. Bejjani and S. Akoka, Anal. Bioanal. 

Chem., 2021, 413, 1521. 
108 . J.-N. Dumez, Prog. Nucl. Magn. Reson. Spectrosc., 2018, 109, 101. 
109 . L. Frydman, T. Scherf and A. Lupulescu, PNAS, 2002, 99, 15858. 
110 . P. Giraudeau and L. Frydman, Annu. Rev. Anal. Chem., 2014, 7, 129. 
111. C. Lhoste, B. Lorandel, C. Praud, A. Marchand, R. Mishra, A. Dey, A. Bernard, J.-N. 

Dumez and P. Giraudeau, Prog. Nucl. Magn. Reson. Spectrosc., 2022, 130-131, 1. 
112. S. Akoka and P. Giraudeau, Magn. Reson. Chem., 2015, 53, 986. 
113 . M. Pathan, S. Akoka, I. Tea, B. Charrier and P. Giraudeau, Analyst, 2011, 136, 3157. 
114. A. Le Guennec, I. Tea, I. Antheaume, E. Martineau, B. Charrier, M. Pathan, S. Akoka 

and P. Giraudeau, Anal. Chem., 2012, 84, 10831. 
115. P. Giraudeau, S. Massou, Y. Robin, E. Cahoreau, J.-C. Portais and S. Akoka, Anal. 

Chem., 2011, 83, 3112. 
116. P. Giraudeau, E. Cahoreau, S. Massou, M. Pathan, J.-C. Portais and S. Akoka, 

ChemPhysChem, 2012, 13, 3098. 
117. E. Martineau, J.-N. Dumez and P. Giraudeau, Magn. Reson. Chem., 2020, 58, 390. 
118. E. Martineau, in NMR-Based Metabolomics: Methods and Protocols, ed G. A. Nagana 

Gowda and D. Raftery, Springer, New York, 2019, 20, 365. 
119. A. W. Overhauser, Phys. Rev., 1953, 92, 411. 
120. T. R. Carver and C. P. Slichter, Phys. Rev., 1953, 92, 212. 
121. A. S. Lilly Thankamony, J. J. Wittmann, M. Kaushik and B. Corzilius Prog. Nucl. Magn. 

Reson. Spectrosc., 2017, 102–103, 120. 



 

 
 

122 . M. Goldman, Appl. Magn. Reson., 2008, 34, 219. 
123 . M. G. Pravica and D. P. Weitekamp, Chem. Phys. Lett., 1988, 145, 255. 
124 . J. Natterer and J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc., 1997, 31, 293. 
125 . C. R. Bowers and D. P. Weitekamp, Phys. Rev. Lett., 1986, 57, 2645. 
126 . R. W. Adams, J. A. Aguilar, K. D. Atkinson, M. J. Cowley, P. I. P. Elliott, S. B. Duckett, 

G. G. R. Green, I. G. Khazal, J. López-Serrano and D. C. Williamson, Science, 2009, 323, 
1708. 

127 . J. H. Ardenkjær-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, 
R. Servin, M. Thaning and K. Golman, PNAS, 2003, 100, 10158.                         

128 . J. H. Ardenkjaer-Larsen, J. Magn. Reson., 2016, 264, 3. 
129 . S. Jannin, J.-N. Dumez, P. Giraudeau and D. Kurzbach, J. Magn. Reson., 2019, 305, 41. 
130. A. Bornet, M. Maucourt, C. Deborde, D. Jacob, J. Milani, B. Vuichoud, X. Ji, J.-N. Dumez, 

A. Moing, G. Bodenhausen, S. Jannin and P. Giraudeau, Anal. Chem., 2016, 88, 6179. 
131. A. Dey, B. Charrier, E. Martineau, C. Deborde, E. Gandriau, A. Moing, D. Jacob, D. 

Eshchenko, M. Schnell, R. Melzi, D. Kurzbach, M. Ceillier, Q. Chappuis, S. F. Cousin, J. 
G. Kempf, S. Jannin, J.-N. Dumez and P. Giraudeau, Anal. Chem., 2020, 92, 14867. 

132. M. H. Lerche, D. Yigit, A. B. Frahm, J. H. Ardenkjær-Larsen, R. M. Malinowski and P. R. 
Jensen, Anal. Chem., 2018, 90, 674. 

133 . A. B. Frahm, P. R. Jensen, J. H. Ardenkjær-Larsen, D. Yigit and M. H. Lerche, J. Magn. 
Reson., 2020, 316, 106750. 

134 . A. B. Frahm, D. Hill, S. Katsikis, T. Andreassen, J. H. Ardenkjær-Larsen, T. F. Bathen, 
S. A. Moestue, P. R. Jensen and M. H. Lerche, Talanta, 2021, 235, 122812. 

135 .  L. Sellies, I. Reile, R. L. E. G. Aspers, M. C. Feiters, F. P. J. T. Rutjes and M. Tessari, 
Chem. Commun., 2019, 55, 7235. 

136 .  I. Reile, N. Eshuis, N. K. J. Hermkens, B. J. A. van Weerdenburg, M. C. Feiters, F. P. 
J. T. Rutjes and M. Tessari, Analyst, 2016, 141, 4001. 

137 . V. Daniele, F.-X. Legrand, P. Berthault, J.-N. Dumez and G. Huber, ChemPhysChem, 
2015, 16, 3413. 

138. H. Zeng, S. Bowen and C. Hilty, J. Magn. Reson., 2009, 199, 159. 
139 . S. Katsikis, I. Marin-Montesinos, C. Ludwig and U. L. Günther, J. Magn. Reson., 2019, 

305, 175. 
140. Y. Wang, J. Kim and C. Hilty, Chem. Sci., 2020, 11, 5935. 
141. L. Frydman and D. Blazina, Nature Phys, 2007, 3, 415. 
142. M. Mishkovsky and L. Frydman, ChemPhysChem, 2008, 9, 2340. 
143 . P. Giraudeau, Y. Shrot and L. Frydman, J. Am. Chem. Soc., 2009, 131, 13902. 
144. R. Panek, J. Granwehr, J. Leggett and W. Köckenberger, Phys. Chem. Chem. Phys., 

2010, 12, 5771. 
145. K. Singh, C. Jacquemmoz, P. Giraudeau, L. Frydman and J.-N. Dumez, Chem. 

Commun., 2021, 57, 8035. 
146 . J.-N. Dumez, J. Milani, B. Vuichoud, A. Bornet, J. Lalande-Martin, I. Tea, M. Yon, M. 

Maucourt, C. Deborde, A. Moing, L. Frydman, G. Bodenhausen, S. Jannin and P. 
Giraudeau, Analyst, 2015, 140, 5860. 

 

 


