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Abstract

The L-curve is a popular heuristic to tune Tikhonov regularization in linear inverse problems.

This paper shows how it naturally arises when the problem is solved from a Bayesian perspective.

Specifically, it establishes that the L-curve is a graphical way of searching for the maximum a

posteriori solution after marginalization over the priors. The framework is general enough to enclose

the classical (linear, logarithmic and square-root) L-curves as particular cases and to allow the

design of new L-curves. It also explicitly accounts for the dimensions of the inverse problem (number

of observations versus number of unknowns) in regularization. Elaborating on this framework, new

criteria for locating the corner of the L-curve are discovered, such as the “minimum speed on the

curve” and the “maximum angular speed”, and conditions are established for their equivalence with

the maximum curvature and the marginalized maximum a posteriori. All results are supported by

numerical experiments. Experiments also show that the Bayesian L-curve rooted on appropriate

priors can succeed in inverse problems where the classical L-curve is prone to fail.

1 Introduction

Inverse problems, as being devoted to discovering the origins of observed phenomena, are ubiquitous

in science and engineering. This paper is concerned with discrete linear inverse problems, where the

mapping between the causes and the observations is expressed by a matrix. In many instances, inverse

problems are difficult to solve since the observations are only partially available, and ad hoc strategies

such as regularization are required to enforce a unique solution. More specifically, of concern is the

solution X to the set of linear equations

Y = AX + N, (1)

where Y = [y1, · · · ,yP ] ∈ RM×P is as matrix of P independent observations yi of dimension M ,

X = [x1, · · · ,xP ] ∈ RK×P is a matrix of P explanatory variables xi of dimension K, N ∈ RM×P is a

matrix that collects errors, and A ∈ RM×K is a discrete operator. The problem is said ill-posed when

a solution does not exist (e.g. M > K), the solution is not unique (e.g. M < K), or the operator

A is badly-conditioned, i.e. the matrix A>A (with A> the transpose of A) has a large condition

number, so that the presence of even small errors N cannot be neglected when attempting to recover

an estimate of X from the observations Y. The standard approach is to replace an ill-posed problem
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by one less sensitive to errors, such as the Tikhonov-regularized problem [52, 14]:

P1: min
X

(T (X) + λ · U(X)) , 0 ≤ λ <∞ (2)

where

T (X) = ||Y −AX||2F and U(X) = ||X||2F (3)

stand for the squared Frobenius norms of the residuals Y −AX and of the solution X, respectively,

T and U are two scalar “potential” functions of X from RK×P to R+, and λ ∈ R+ stands for the

regularization parameter 1. The regularized solution then takes the form

X(λ) = (A>A + λI)−1A>Y, (4)

where the notation X(λ) makes it explicit that it is a function of the regularization parameter λ. A

difficult question is then how to properly choose the value of the latter. Several strategies have been

proposed to do so [14, 7], based either on prior knowledge of the norm of the errors N, if available

(e.g. the discrepancy principle [41]), or solely on the observations Y (e.g. cross-validation [50, 16]).

The L-curve pertains to the latter category. It is a simple and elegant heuristic, initially introduced

by Lawson and Hanson [33], thoroughly studied by Hansen (see e.g. [19, 22]), and widely used in

practical applications [21].

The L-curve is a plot of the norm of the residuals with respect to the norm of the solution as a

function of the regularization parameter. Specifically, upon introducing some monotonically increasing

scale function f , it is the curve γ defined by the parametric equation

γ : R+ → R2;λ 7→ γ =

{
ζ(λ) = f(T (X(λ)))

η(λ) = f(U(X(λ))).
(5)

with X(λ) as defined in Eq. (4).

It can be shown that γ is a decreasing curve and that any matrix X is mapped to a point

(f(T (X)); f(U(X))) in the region delimited above or on the curve [11]. In addition, the branch

ζ(λ) of the curve increases with λ, while the branch η(λ) decreases. This tends to convey an L-shape

to the curve, where the horizontal branch of the “L” corresponds to a regime where the fitting error

T dominates for large values of λ and where the vertical branch corresponds to a regime where the

solution tends to become unstable – i.e. large values of its norm U – for small values of λ. As a

consequence, the vertex of the “L” materializes a point of equilibrium between two antagonist regimes

and a natural principle is to select the corner of the “L” as the location of the optimal value of the

regularization parameter.

At this stage, two choices are left to the user when constructing and analyzing the L-curve: first,

the selection of the scaling function f and, second, the criterion to locate the corner of the curve.

It transpires from the literature that the choice of the scaling function is often made arbitrarily,

even though Reginska early warned that such a choice strongly influences the tendency of the L-

curve to bend around a corner (section 3 will introduce a principled way to choose f). Three typical

examples of scale functions are f = id, f =
√

and f = ln, which produce the linear, square-root

and logarithmic L-curves (the last two are hereafter denoted γln and γ√) [33, 45]. The logarithmic

1A more general form of problem P1 is X̂ = Arg
(
minX T (X) + λ‖LX‖2F

)
, with L some well-conditioned matrix [19].

One can often recast the problem by a suitable change of variable so that L = I.
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scaling is strongly advocated in Ref. [22] and is indeed most often encountered in the literature; it

provides scale-invariance of the L-curve, meaning that the shape of the latter does not depend on the

system of units of the measurements Y and of the variables X. For this reason, it will be referred to

from now on as the “reference L-curve”. Strategies for the location of the corner of the L-curve have

been discussed in the literature much more than the scaling function (see e.g. [14, 10, 29, 11, 13] and

references therein). The reference algorithm is to search for the point of maximum curvature of γ [22],

as measured by

κ =
ζ ′η′′ − ζ ′′η′

(ζ ′2 + η′2)3/2
. (6)

Various implementations and variants have been proposed based on this idea [10, 13, 11, 36, 12].

One rationale beyond the maximum curvature criterion is its invariance with respect to re-scaling

of the regularization parameter λ. Interestingly, Ref. [2] proves that a criterion for selecting the

regularization parameter is invariant under i) scale transformation of the data and ii) re-scaling of the

regularization parameter if and only if it is a function of κ and ζ ′/η′ only, with f = ln. However, the

scale invariance of λ (ii) is a questionable property that will be reappraised in section 3 of this paper.

Although theoretical studies have provided insightful justifications of the L-curve in terms of its

properties (e.g. [19, 22]), it fundamentally remains a heuristic criterion. Reginska attempted an

algebraic explanation of the L-curve by recasting it into an optimization problem [45], where from the

onset the optimal regularization parameter is searched as the minimum of the cost function

Ψ(λ) = T (X(λ))U(X(λ))µ, 0 < µ <∞. (7)

Reginska then proved that the minimum of Ψ(λ) is attained where the L-curve is tangent with the

line of slope −1/µ. Figuring out a perfect L-shape curve γ(λ) and an inclined straight line with

(non-zero and finite), negative slope, the point of tangency must happen at the corner of the “L”.

Reginska’s principle has been rediscovered several times in the literature, most often in the special case

µ = 1, the reason why it is referred to under different names such as the minimum product criterion

[9, 29], the zero-crossing method [28, 27], the modified L-curve [34, 44], or multiplicative regularization

[48, 15, 1, 49, 4, 5, 6]. Interestingly, with µ = 1, the minimization of cost function (7) is equivalent

to searching for the minimum of the L-curve rotated by π/2 (counterclockwise) in the (ζ, η) plane, as

proved in [17].

The L-curve is an ad hoc strategy to tune Tikhonov regularization that proceeds from a purely

deterministic approach. At first glance, it seems disconnected from other authoritative approaches

used for regularization, such as the Bayesian framework. The aim of this paper is to bridge this gap

and to provide a Bayesian interpretation of the L-curve. For this purpose, section 2 first establishes

that the marginalized maximum a posteriori (MMAP) estimate of X leads to a Tikhonov-regularized

solution. Section 3 then shows that the corresponding optimization problem is solved graphically by

searching for the corner of a “Bayesian” L-curve. The conditions for the existence of the corner and the

equivalence with the maximum curvature criterion are investigated in details. Based on these findings,

section 3 proceeds with the introduction of new criteria for locating the corner of the L-curve. Next,

section 4 investigates several particular cases of the L-curve induced by different priors used in the

MMAP solution, thus offering an answer to the choice of the scaling function f . In particular, the

gamma prior is found an important case, which produces the logarithmic scaling f = ln and provides

a geometrical definition of the reference L-curve γln in terms of the Legendre transform of the MMAP
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cost function. Finally, section 5 discusses some possible extensions of the L-curve offered by the

Bayesian framework, and section 6 illustrates many of the ideas by means of numerical experiments.

2 Bayesian interpretations of Tikhonov regularization

Probabilistic approaches, and in particular the Bayesian one, provide a different but nonetheless

valuable treatment of regularization. Bayesian regularization has been the object of several seminal

research works, such as [39, 35, 40, 47, 23], yet as far the authors know, no direct connection has ever

been drawn with the L-curve. In this regard, the present section starts by resuming the Bayesian

set-up, which naturally leads to Tikhonov regularization. The link with the L-curve will be further

developed in section 3.

In the Bayesian setting, the explanatory variables xi and the errors ni are both seen as random

vectors. Let us take them mutually independent and identically distributed, with zero-mean and diag-

onal covariance matrices τ−1
X I and τ−1

N I (this can always be forced by a suitable change of variables),

where τX and τN stand for the precisions (the inverses of variances) of xi and ni. In general, the

precisions τN and τX are unknown, thus themselves considered as random variables, with prior prob-

ability densities φN and φX . Let p(X, τX , τN |Y) denote the joint probability density of (X, τX , τN )

given the observations Y and take the Gaussians

p(Y|X, τN ) =
(τN

2π

)MP
2

exp (−τNT (X)/2) and p(X|τX) =
(τX

2π

)KP
2

exp (−τXU(X)/2) (8)

for the probability density of Y|X and the prior probability density of X (with a slight abuse of

notation since T (X) must also be a function of Y in the above equation). Strategies can now be

worked out that lead to Tikhonov regularized solutions, i.e. solutions that pertain to the manifold

Rλ = {X : X(λ) = (A>A + λI)−1A>Y);λ ∈ R+} (9)

introduced by Eq. (4). Two of them are discussed in the next section. The first one is rooted on the

joint maximum a posteriori (JMAP), p(X, τX , τN |Y), and, as already proved in the literature [24],

establishes a connection between the Bayesian framework and Reginska’s minimum product principle

in a very special case. The second solution elaborates a new idea, which is the core of the present

paper. It provides a geometrical interpretation of the L-curve as a graphical way to construct the

Tikhonov-regularized solution that maximizes the marginalized posterior density p(X|Y).

2.1 JMAP estimate

One possibility is to search for the JMAP estimate of the set of variables (X, τX , τN ). This was for

instance explored in references [25, 26, 55, 24] and is briefly resumed here for the sake of completeness.

The joint MAP estimate reads

(X̂, τ̂N , τ̂X) = Arg max
X,τN ,τX

p(X, τX , τN |Y)

= Arg max
X,τN ,τX

p(Y|X, τN )φN (τN )p(X|τX)φX(τX)

= Arg min
X,τN ,τX

(τNT (X) + τXU(X)−MP ln τN −KP ln τX − 2 lnφN (τN )− 2 lnφX(τX)) ,
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where the second line results from application of Bayes rule. Assuming that the prior probability

densities φN and φX are differentiable, the stationary point of the above minimization problem readily

gives X̂ ∈ Rλ in the form of a Tikhonov-regularized solution, with regularization parameter

λ =
τ̂X
τ̂N
, (10)

where τ̂X and τ̂N are solutions of{
T (X(λ)) = MP/τ̂N + 2φ′N (τ̂N )/φN (τ̂N )

U(X(λ)) = KP/τ̂X + 2φ′X(τ̂X)/φX(τ̂X).
(11)

To see where the JMAP solution is located on an L-curve, let us arbitrarily define the latter by Eq. (5)

with the logarithmic scaling f = ln, i.e. with ζ(λ) = lnT (X(λ)) and η(λ) = lnU(X(λ)). As a general

property, it holds that the potential functions follow the differential equation T ′ = −λU ′ where the

prime denotes the derivative with respect to λ (see property (ii) of Proposition A.2). Therefore, one

has η′/ζ ′ = (U ′/U)/(T ′/T ) = −(T/U)/λ. Next, replacing T and U by their expressions given by Eq.

(11), the regularization parameter λ(τ̂X , τ̂N ) = τ̂X/τ̂N is found where the L-curve has the tangent

η′(λ(τ̂X , τ̂N ))

ζ ′(λ(τ̂X , τ̂N ))
= −

MP + 2τ̂Nφ
′
N (τ̂N )/φN (τ̂N )

KP + 2τ̂Xφ′X(τ̂X)/φX(τ̂X)
. (12)

In general, this is an implicit equation in τ̂X and τ̂N . A particularly simple case is when the right-hand

side is a constant, such that the equation depends on the ratio λ = τ̂X/τ̂N only. This happens when

φX(t) ∝ t−αX and φN (t) ∝ t−αN , with αX , αN ≥ 0, which are recognized as “improper priors”2, thus

yielding
η′(λ)

ζ ′(λ)
= −MP − 2αN

KP − 2αX
(13)

(Ito et al. further made the choice αX = 0 in Ref. [24]). Therefore, the JMAP solution ultimately

corresponds to the point in the plane (ζ, η) where the L-curve γln is tangent with the straight line of

slope −(MP − 2αN )/(KP − 2αX). From an algebraic point of view, Eq. (13) is also recognized as

the optimality condition Ψ′ = 0 of Reginska’s criterion (7) with µ = (KP − 2αX)/(MP − 2αN ). In

conclusion, for a particular choice of the scaling function and with improper priors on the precisions,

the JMAP estimate of X is equivalent to Tikhonov regularization, with the regularization parameter

selected on the L-curve from the minimum product principle. This provides an indirect connection

between the Bayesian framework and the L-curve, yet in the limits of a very special case.

Another strategy that yields a more direct and general, yet unexplored connection, is now inves-

tigated.

2.2 MMAP estimate

The idea is to treat the unknown precisions τX and τN as nuisance parameters and to marginalize

them, i.e. to integrate them out of p(X, τX , τN |Y). Hence, the optimization problem of interest

2In the Bayesian framework, improper priors are non-integrable probability densities, yet accepted as long as they
return valid posterior probability densities [46].
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becomes

P2: X̂ = Arg max
X

p(X|Y) = Arg max
X

p(Y|X)p(X)

= Arg max
X

∫
R+

p(Y|X, τ)φN (τ)dτ

∫
R+

p(X|τ)φX(τ)dτ.

(14)

There is in general no closed-form solution to problem P23. However, several analytical results can

be obtained when X and N are distributed according to a generalized Gaussian. From now on, the

Gaussian case will be considered only, as it contains the essence of the idea (the generalized Gaussian

case will be briefly addressed in subsection 5.1). In this regard, a few preliminary results must first

be introduced. Let us define the Φ-transform of a function φ:

Φ(s;n) =

∫
R+

e−sττnφ(τ)dτ, n ≥ 0, s ∈ R+. (15)

Note that Φ(0;n) reduces to the Mellin transform of φ(t), while Φ(s; 0) is the Laplace transform of

φ(t) on the real positive line; for n an integer, Φ(s;n) is (−1)n times the n-th derivative of the Laplace

transform evaluated on the real positive line. The domain of definition of the Φ-transform considered

in this work is s ∈]0;∞[, which holds for all causal probability density functions φ ∈ L1(R+) and also

for improper probability density functions that decrease no faster than τ−n, for instance φ(τ) ∝ τ−α

with α ≤ n. The Φ-transform has properties that will turn out useful in what follows:

Proposition 2.1.

1.
(
− d
ds

)k
Φ(s;n) = Φ(s;n+ k), n ≥ 0, k ∈ N,

2. If φ(τ) ≥ 0, then Φ(s;n) ≥ 0.

Let us now denote ΦN (s;n) and ΦX(s;n) the Φ-transforms of the prior densities of the precisions,

φN (t) and φX(t), respectively. The following result then holds.

Proposition 2.2. The solution to problem P2 is returned by

X̂ = Arg max
X

ΦN (T (X)/2;MP/2)ΦX(U(X)/2;KP/2) (16a)

=
(
A>A + λ(X̂)I

)−1
A>Y (16b)

where

λ(X̂) =
ΦN (T (X̂)/2;MP/2 + 1)

ΦN (T (X̂)/2;MP/2)

ΦX(U(X̂)/2;KP/2)

ΦX(U(X̂)/2;KP/2 + 1)
∈ R+. (17)

This last quantity is to be interpreted as the ratio of the conditional means of the precision τX and τN

given X̂ (actually a “noise-to-signal‘” ratio), i.e.

λ(X̂) =
E{τX |U(X̂)}
E{τN |T (X̂)}

. (18)

3It is noteworthy that an approximation to problem P2 is given by the “empirical” Bayesian method. It consists of ex-
pressing p(X|Y) =

∫∫
p(X|Y, τX , τN )p(τX , τN |Y)dτXdτN , where the approximation p(τX , τN |Y) ' δ(τX−τ◦X)δ(τN−τ◦N )

is made, with τ◦X and τ◦N the MAP estimates in p(τX , τN |Y). Therefore, p(X|Y) ' p(X|Y, τ◦X , τ◦N ) ∝ p(Y|X, τ◦N )p(X|τ◦X),
which yields a solution X(λ) ∈ Rλ with λ = τ◦X/τ

◦
N . This was for instance investigated in Refs. [3, 43].
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It is emphasized that Eq. (16b) is an implicit equation in X̂, yet the important finding is that its

solution once again takes the form of Tikhonov regularization. Therefore, the solution to problem P2

is the same as that of problem

P3:

{
minλ (− ln ΦN (T (X(λ))/2;MP/2)− ln ΦX(U(X(λ))/2;KP/2))

s.t. X(λ) ∈ Rλ.
(19)

Similarly, Eq. (18) is an implicit equation in λ, so that the same solution also solves

P3’:

{
λ = E{τX |U(X(λ))}/E{τN |T (X(λ))}
s.t. X(λ) ∈ Rλ.

(20)

This last equation is particularly insightful: similar to the JMAP estimate discussed in section

2.1 (see Eq. (10)), it highlights the interpretation of the regularization parameter as a noise-to-signal

ratio, here defined as the ratio of the expected values of the precisions τX and τN conditional to the

potentials U and T . From now on, the next section will analyze in details how problem P3 is related

to the L-curve.

3 Equivalence with the L-curve

It is proved in this section that the L-curve defined by Eq. (5) with the general setting f = − ln Φ

offers a graphical way to find the MMAP solution.

3.1 L-curve associated with MMAP

3.1.1 Construction of a Bayesian L-curve

For reasons to become clear later, a reparamatrization of the problem is first made. The regularization

parameter λ is seen as a bijective, positive, monotonically increasing and differentiable function

λ : R→ R+; t 7→ λ(t), λ′ ≥ 0 (21)

of a curve parameter t. The inverse function, t(λ) : λ 7→ t, will be referred to as the regularization

scale. For instance, it is often found convenient to vary λ on a logarithmic scale, which means that

λ(t) = et. Coming back to Eq. (19), the optimal regularization parameter is then returned for that

value of λ∗ = λ(t∗) where t∗ minimizes the cost function

J1(t) = ζ(t) + η(t) (22)

with {
ζ(t) = − ln ΦN (T (X(λ(t)))/2;MP/2)

η(t) = − ln ΦX(U(X(λ(t)))/2;KP/2), X(λ) ∈ Rλ.
(23)

Let us now introduce a candidate for the L-curve. Consider the plane P parameterized by the

set of coordinates (ζ; η)
.
= (− ln ΦN (T/2;MP/2);− ln ΦX(U/2;KP/2)) and spanned by all possible

7



values of the potential functions U and T . Thus, the parametric equation

γ : R+ → R2; t 7→ γ(t) =

(
ζ(t)

η(t)

)
, (24)

with ζ(t) and η(t) as given in (23), defines a smooth curve in P with curve parameter t.

That γ actually defines an L-curve is proved by the following proposition.

Proposition 3.1. The branches ζ and η are monotonically increasing and decreasing functions of t,

respectively, i.e. ζ ′(t) ≥ 0 and η′(t) ≤ 0. Therefore, γ is a monotonically decreasing curve in the plane

P.

Proof. According to property (i) of Proposition A.1, ln ΦN (T/2;MP/2) and ln ΦX(U/2;KP/2) are

differentiable functions of T and U with negative slopes. Besides, it was assumed that λ′ ≥ 0. Using

the law of composition of functions and property (i) of Proposition A.2 then proves that ζ ′ ≥ 0 and

η′ ≤ 0. Therefore, dη/dζ ≤ 0, and γ is monotonically decreasing.

It is remarked in light of definition (5) that Eqs. (23) and (24) offspring a large family of L-curves

rooted on the Φ-transform and, at the same time, offer a principled way to choose the scaling function

f = − ln Φ through the selection of the prior distribution of the precisions. This differs from the

JMAP solution of section 2.1, which was limited to the arbitrary choice f = ln. How particular cases,

such as f = id, f =
√

and f = ln, can be recovered from − ln Φ, will be discussed in section 4.

3.1.2 Recovery of the reference L-curve

At this stage, there are at least two ways to recover the reference L-curve γln from the Bayesian

framework.

One is to search for the limit of the Bayesian L-curve when the amount of data P grows to infinity.

As n→∞, the Φ-transform behave as Φ(s;n)→ n!φ(n/s)/sn+1 (see Appendix C). According to Eq.

(23), this defines the L-curve with branches

γP→∞ : t 7→

{
ζ(t) = − lnT (X(λ(t))) + cN

η(t) = − lnU(X(λ(t))) + cX ,
(25)

where cN = lnφX(MP/T )+ ln(MP/2)! and cX = φX(KP/U)+ ln(KP/2)! are two additive constants

that can be ignored as they correspond to an inconsequential translation of the curve in plane P –

or equivalently to an arbitrary choice of the origin of the reference frame (ζ, η). This comes with the

regularization parameter

λ(X) =
T (X)

U(X)

KP + 2

MP + 2
, (26)

which involves the ratio of T (X)/(MP + 2) and U(X)/(KP + 2), two asymptotically consistent

estimators of the variance of N and of X, respectively.

It is expected that all Bayesian L-curves will tend to these asymptotic results when the quantity

of data becomes large, provided that the probability densities φN and φX are continuous and do not

depend on P . Clearly, the same results hold when the prior probability densities vanish – i.e. they

tend to flat functions – given a fixed value of P .

Another way to recover the reference L-curve γln is from the Bayesian L-curve designed with

a Jeffrey’s prior on the precisions, φ(τ) ∝ τ−1. As discussed in the Bayesian literature, this is a
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non-informative and improper prior, yet its Φ-transform exists. According to Eq. (15), Φ(s;n) ∝
(n− 1)!s−n, and thus − ln Φ(s;n) = n ln s− ln(n− 1)!; the L-curve defined by Eqs. (5) and (23) then

becomes

γJeffrey : t 7→

{
ζ(t) = (MP/2) lnT (X(λ(t))) + CN

η(t) = (KP/2) lnU(X(λ(t))) + CX ,
(27)

with CN = − ln(MP/2 − 1)! and CX = − ln(KP/2 − 1)! two additive constants. When M = P ,

the scale factor MP/2 = KP/2 corresponds to an homothety of the L-curve, which can be removed

together with the constants to recover the reference L-curve γln. (The justification for the presence of

two different scaling factors MP/2 and KP/2 on the branches ζ and η when M 6= P will be discussed

in section 4.)

The associated optimal regularization parameter is

λ(X) =
T (X)

U(X)

KP

MP
, (28)

which is asymptotically consistent with Eq. (26) when P →∞.

3.1.3 Corner of the Bayesian L-curve

If the connection between the cost function J1 and the curve γ is obvious, there still remains to prove

that the minimum of J1 is found at the corner of γ. The rest of the section progressively establishes

this property by answering the related questions:

• where is the minimum of J1 located on γ?

• what is the condition for the existence of a minimum of J1?

• what is the condition for the minimum of J1 to coincide with a point of maximum curvature of

γ?

The answer to the first question is provided by the following result.

Proposition 3.2. The optimal regularization parameter λ∗ = λ(t∗) – with t∗ which minimizes J1(t)

– is located where the curve γ(t) is tangent with the straight line of slope -1.

Proof. The optimality condition on J1 reads dJ1(t)/dt = 0⇔ dη(t)/dζ(t) = −1.

The above Proposition 3.2 generalizes Reginska’s result (Theorem 1 in [45]) to the family of scale

functions f = − ln Φ defined in Eq. (23). It is a necessary condition for the minimum of the cost

function J1 to coincide with the corner of the curve γ, because if the latter has a marked L-shape,

then its vertex must be the point of tangency with the line inclined at −π/4. This is schematically

illustrated in Fig. 1.

The condition for λ∗ to exist is now discussed.

Proposition 3.3. The second derivative of the cost function J1 at the optimum t∗ is

J ′′1 (t∗) = −ζ ′(t∗)2

(
CVN (λ(t∗)) + CVX(λ(t∗))− λ′(t∗)

λ(t∗)ζ ′(t∗)

)
(29a)

= −η′(t∗)2

(
CVN (λ(t∗)) + CVX(λ(t∗)) +

λ′(t∗)

λ(t∗)η′(t∗)

)
(29b)
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ln
F X

min J1

1
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l* increasing l(t)

0 

Figure 1: Construction of a Bayesian L-curve γ : t 7→ {ζ(λ(t)); η(λ(t))}. The point of tangency with
the line of slope −1 corresponds to the optimal regularization parameter λ∗ returned by the minimum
of J1. The minimum value of J1 is given by the intercept of the tangent with axis η. Also shown is the
bisector axis (perpendicular to the tangent at λ∗) mentioned in Proposition 3.6: having the L-curve
locally symmetric – on the third order in t – around it will guaranty that the minimizer of J1 coincides
with the maximizer of the curvature.

where CVN (λ) = V{τN |X(λ)}/E{τN |X(λ)}2 and CVX(λ) = V{τX |X(λ)}/E{τX |X(λ)}2 are the squared

coefficients of variation of the precisions τN and τX , respectively.

The two terms CVN and CVX are non-negative by definition, whereas ζ ′ ≥ 0 and η′ ≤ 0 accord-

ing to Proposition A.2. Therefore, a sufficient condition for the second derivative to be positive (a

minimum of J1) is

ζ ′∗
λ∗

λ′∗
≤ 1

CV∗N + CV∗X
(30)

or, equivalently,

−η′∗ λ
∗

λ′∗
≤ 1

CV∗N + CV∗X
, (31)

where, for simplicity, the superscript ∗ means that a quantity is evaluated at t∗. Since the regularization

scale t 7→ λ is arbitrary, the choice λ = et (thus implying λ′ = λ) is now made as it leads to an insightful

result:

Proposition 3.4. The cost function J1(t) is minimum at t∗ if the rate of change of the branches ζ

and −η with respect to a logarithmic variation of the regularization parameter λ is upper bounded by

ζ ′∗ = −η′∗ ≤ 1

CV∗N + CV∗X
, (32)

a quantity that reflects the well-posedness of the inverse problem.

The fact that the upper bound in the above proposition can be interpreted as a measure of well-

posedness of the inverse problem is because it is inversely proportional to CVN +CVX , the uncertainty

induced by the ignorance of the precisions τN and τX . This implies that a well-posed problem, i.e. with

CVN +CVX small, will more likely fulfill inequality (32). Alternatively, it results from Proposition 3.4

that ζ ′ may be interpreted as a measure of the sensitivity of the solution to a deficit of the information

required to solve the inverse problem.
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It now remains to establish under which conditions the minimum of the cost function J1 coincides

with the corner of the L-curve, as defined by its maximum curvature. Let us introduce the curvature

κ(t) of the L-curve, as defined in Eq. (6), as a function of the curve parameter t (note that, by

construction, the curvature is a metric independent of the choice of the curve parameter) [22]:

Proposition 3.5. At t∗, the second derivative of the cost function J1 is related to the curvature κ of

the L-curve as

J ′′1 (t∗) = 2
√

2ζ ′(t∗)2κ(t∗). (33)

Proof. From Proposition 3.2, η = −ζ. Substituting this equality for η into (6) directly yields (33).

Proposition 3.5 states that J ′′1 (t∗) and κ(t∗) have the same signs. Therefore, to a minimum of J1

(J ′′1 ≥ 0) corresponds a region where the L-curve is locally convex (κ ≥ 0). Together with Proposition

3.2, it establishes a one-to-one correspondence between the minima of the cost function J1 and the

corners of the L-curve, as defined by the loci where the curve is tangent to the line of slope -1 without

crossing it.

However, in general, the minimum of the cost function J1 will not necessarily coincide with a

stationary point of the curvature κ. For this to happen, a simple sufficient condition is found.

Proposition 3.6. A sufficient condition for the minimum of J1 to correspond to a stationary point

of κ at t∗ is 
ζ ′(t∗) = −η′(t∗) (34a)

ζ ′′(t∗) = η′′(t∗) ≥ 0 (34b)

ζ ′′′(t∗) = −η′′′(t∗) (34c)

or, equivalently, that the curve γ is locally symmetric around the axis of slope +1 passing through the

point with curve parameter t∗.

Proof. A stationary point of criterion (6) is found where κ′ = 0, which gives

2(ζ ′′′ + η′′′)ζ ′ = 3(ζ ′′2 − η′′2). (35)

A solution to this equation is obtained when the two branches ζ and η are related by conditions (34a)-

(34c). The first condition is the same as in Proposition 3.2 and the second condition one guaranties

that J ′′1 (t) ≥ 0, thus proving that an extremum of κ coincide with a minimum of J1. The set of Eqs.

(34a)-(34c) yields {
ζ(t∗ + ∆t) = ζ(t∗) + b∆t+ c∆t2 + d∆t3 +O(∆t4)

η(t∗ + ∆t) = η(t∗)− b∆t+ c∆t2 − d∆t3 +O(∆t4),
(36)

for some parameters b ∈ R+ (so that ζ ′∗ ≥ 0 and η′∗ ≤ 0 as requested by Proposition 3.1), c ∈ R+ (so

that ζ ′′∗ ≥ 0), and d ∈ R. Therefore,{
ζ(t∗ + ∆t)− ζ(t∗) = η(t∗ −∆t)− η(t∗) +O(∆t4)

η(t∗ + ∆t)− η(t∗) = ζ(t∗ −∆t)− ζ(t∗) +O(∆t4),
(37)

which expresses the local symmetry of the curve γ around its bisector axis, i.e. the straight line of

slope +1 passing through the point (ζ(t∗), η(t∗)). This is illustrated in Fig. 1.
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Two remarks come with Proposition 3.6. First, conditions (34a)-(34c) depend on the existence

of a regularization scale t(λ) where these equations hold true. For instance, this might be the case

for t = lnλ, but not for t = λ, which illustrates the importance of properly selecting the curve

parameter associated with a given L-curve. Second, conditions (34a)-(34c) alone do not guarantee

that a minimum of J1 actually corresponds to a maximum of κ (it may be a minimum), although it

always locates a “convex corner” since κ(t∗) ≥ 0 in virtue of Proposition 3.5. Instances where κ(t∗)

is a minimum would probably reflect situations where the use of the maximum curvature criterion is

anyway troublesome for finding the optimal regularization parameter.

3.2 Link with the EM algorithm

The implicit nature of the solution given in Proposition 2.2 suggests an iterative resolution, where

Eq. (16b) at the j-th iteration is evaluated with the estimate of the regularization parameter in Eq.

(18) given at iteration j − 1. When compared to a basic-search method, such an algorithm may be

beneficial if the evaluation of the inverse operator (16b) is costly.

This is actually recognized as the maximization (M) and expectation (E) steps of the EM algorithm:

M step: X(j) =Arg max
X

∫∫
R2+

ln (p(Y|X, τ)p(X|u)) p(τ, u|Y,X(j−1))dτdu

=

(
A>A +

E{τX |U(X(j−1))}
E{τN |T (X(j−1))}

I

)−1

A>Y

E step: E{τN |T (X(j))} =

∫∫
R+

up(τ, u|Y,X(j))dτdu = − d

ds
ln ΦN (s;MP/2)

∣∣∣∣
s=T (X(j))/2

E{τX |U(X(j))} =

∫∫
R+

τp(τ, u|Y,X(j))dτdu = − d

ds
ln ΦX(s;KP/2)

∣∣∣∣
s=U(X(j))/2

(38)

(39)

(40)

(41)

(42)

where X(j) denotes the estimate of X at the j-th iteration, p(τN , τX |Y,X(j−1)) is the probability

density of (τN , τX) conditioned on (Y,X(j−1)), and E{τX |U(X(j−1))} and E{τN |T (X(j−1))} are the

expected values of τX and τN conditional to (X(j−1),Y) as defined in Proposition 2.2 (see also Eq.

(75)).

The above algorithm is very similar in its principle to the fixed point algorithm introduced in Refs.

[8, 55, 24], yet it fundamentally differs in the way the current value of λ is computed at each iteration

(the E step), since the latter references do not follow the MMAP paradigm. In addition, being an EM

algorithm, the convergence is guaranteed by the general results established in Ref. [53].

An important quantity coming with the EM algorithm is the “missing information” matrix, which

measures the loss of information – specifically, the deficit in the Fisher information matrix – in es-

timating X without knowing the regularization parameter as compared to the ideal case when it is

known. As such, it also controls the rate of convergence of the EM algorithm [37]. In the present case,

the missing information matrix related to the estimation of a column xi of X is

Im =
∂λ

∂xi

∂λ

∂x>i

(
ζ ′∗

λ′∗

)2

(CV ∗N + CV ∗X) , (43)

where ∂λ/∂xi stands for the gradient of λ with respect to xi, CV
∗
N and CV ∗X are the squared coefficients

of variation introduced in Proposition 3.2, and all quantities are evaluated at the optimum λ = λ∗ (see

12



proof in Appendix G). This result involves the same critical factors (ζ ′∗)2, and (CV ∗N + CV ∗X) as the

second derivative of the cost function J1 given by Eq. (29a). Clearly, the smaller ζ ′2, CVN and CVX ,

the faster the rate of convergence of the EM algorithm and the higher the precision of the estimate of

λ returned by the minimum of J1.

3.3 On variant criteria

The previous sections have evidenced that the use of the L-curve is intimately bounded up with a

criterion to locate its corner. This section opens the discussion to other criteria than those already

introduced and attempts to connect them.

3.3.1 The minimum speed of the L-curve

The maximum curvature criteria is a heuristic, which does not proceed from an optimality principle.

It accounts for the shape of the curve from a geometrical point of view, independently of its parameter-

ization. This means it is not affected by how fast a point moves along the curve. Although this is the

property originally sought by the concept, it may miss relevant characteristics of the problem at hand.

Experimental results often show that for a particular regularization scale – typically a logarithmic

scale t = lnλ – the speed of the curve tends to be minimum in the region of the corner, as reflected by

a higher density of evaluation points (see for instance Fig. 1 of Ref. [12], Figs. 5 and 6 of Ref. [42],

Figs. 1, 3 and 13 of Ref. [31] and Fig. 2 of this paper). The corresponding cost function – the square

of the speed of the L-curve – reads

J2(t) = ζ ′(t)2 + η′(t)2. (44)

That searching for the minimum of J2(t) is a sensible criteria should not come with too much

surprise, as Property 3.3 and Eq. (43) have already shown the importance of keeping the magnitude

of both ζ ′2 and η′2 small in order for J1 to be minimum4. A more formal justification is as follows.

Let us introduce the (squared) Euclidian distance, d2(P2, P1) = (ζ2 − ζ1)2 + (η2 − η1)2, between two

points P1(ζ1; η1) and P2(ζ2; η2) in plane P. Substituting expressions (23) for ζ and η, this is also

the (squared) Riemannian distance, ln2(ΦN (T2/2)/ΦN (T1/2)) + ln2(ΦX(U2/2)/ΦX(U1/2)), between

the positive forms (ΦN (T2/2); ΦX(U2/2)) and (ΦN (T1/2); ΦX(U1/2)) [38] – a scale invariant distance

that depends only on the shape of ΦN and ΦX . Now let Tt = T (X(λ(t))) and Ut = U(X(λ(t))) for

notational simplicity. One would expect an “optimal” value of λ(t) to lie in a region where a small

perturbation ∆t implies a minimal modification of the positive form (ΦN (Tt/2); ΦX(Ut/2)), that is a

minimum of

d2(Pt+∆t, Pt) = (ζ(t+ ∆t)− ζ(t))2 + (η(t+ ∆t)− η(t))2 '
(
η′(t)2 + ζ ′(t)2

)
∆t2 = J2(t)∆t2, (45)

which is proportional to J2(t).

The following proposition holds.

4Incidentally, Ref. [54] introduced a “f-slope” criterion, which exactly amounts to minimizing η′2 with respect to
t = lnλ in a predefined interval in the case − ln Φτ (s) =

√
s . The criterion is shown to have remarkable performance,

although it does not depend at all on the branch ζ; the reason of the latter observation might be that the f-slope method
preselects a stable region where ζ′2 ' η′2. It is noteworthy that the f-slope criterion can be recovered as a particular
case of the present Bayesian framework by setting a flat prior on τN (for instance βN/αN →∞ in Eq. (51)) so that ζ′2

will vanish in comparison to η′2
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Proposition 3.7. Under the conditions (34a)-(34c) of Proposition 3.6,

Arg min
t
J2(t) = Arg min

t
J1(t). (46)

This validates the relevance of criterion J2, as under certain circumstances it will spot the same

optimal regularization parameter as the cost function J1 and, in turn according to Proposition 3.6, as

the curvature criterion (6).

Interestingly, the curvature κ and the squared speed J2 are related to the acceleration of a point

moving on the curve γ. Let T(t) denote the unitary tangent vector on γ(t) in plane P and N(t) the

unitary normal vector, i.e. the vector in plane P orthogonal to T(t) and pointing inside the curve

({T,N} forms the so-called Frenet frame). The acceleration on γ(t) is then expressed as

Γ(t) =
d

dt

√
J2(t)T(t) + J2(t)κ(t)N(t). (47)

At point t• where the speed
√
J2 is minimum, the acceleration Γ(t•) = J2(t•)κ(t•)N(t•) is then purely

centripetal (i.e. oriented along N, towards the centre of the circle around which the curve is rolled

up). Under the conditions of Propositions 3.6 and 3.7, the norm ‖Γ(t)‖ of the acceleration then finds

a stationary point at t∗ = t•. These ideas are illustrated in Fig. 2.

Propositions 3.6 and 3.7 together open the way to the definition of many other plausible criteria

for finding the corner of the L-curve. Indeed, if t∗ is a stationary point of κ(t), J1(t), J2(t), then

it is also a stationary point for any combination of the form g0(κ(t))g1(J1(t)) + g2(J1(t))g3(J2(t)) +

g4(κ(t))g5(J2(t)), with gi, i = 0, ..., 5 some continuous and monotonous functions. The next subsection

gives one such example.

3.3.2 The maximum angular speed

Inspection of Fig. 2 shows that the corner of the L-curve is also the locus where the normal vector

N experiences the fastest rate of rotation. For a perfect L-shaped curve, the rotation would be

counterclockwise from θ = 0 to θ = π/2, where θ denotes the angle between N and the horizontal axis

of the frame (ζ, η). Therefore, a sensible criterion is to look for the maximum of the angular speed

J3(t) =
dθ(t)

dt
=
ζ ′(t)η′′(t)− ζ ′′(t)η′(t)

ζ ′(t)2 + η′(t)2
. (48)

It is recognized that J3(t) = κ(t)
√
J2(t) (g0 = g1 = g2 = g3 = 0, g4 = id and g5 =

√
), which

means that J3 has the same stationary point as κ and J2 under the conditions of Propositions 3.6 and

3.7. The relationship between J3 and the curvature κ is insightful: the maximum curvature criterion

searches for the fastest rate of rotation of the normal vector N when the curve is travelled at constant

speed, i.e. when the derivative of θ is taken with respect to the arc-length s(t) =
∫ t
u0

√
J2(u)du instead

of the curve parameter t. If the speed on the curve matters, then J3 should be preferred to κ.

4 Particular cases

This section investigates the particular forms taken by the Bayesian L-curve and the issuing properties

when it is assigned some specific priors φN and φX . Known particular cases are recovered and new

formulations are elicited.
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Figure 2: Example of an acceleration vector field, Γ(t), on the L-curve. The arrow feet (black points)
are equispaced on the regularization scale t = lnλ; the arrow lengths are proportional to ‖Γ(t)‖. The
minima of the cost functions J1(t) and J2(t) are marked by the red and blue bullets, respectively, and
the maximum of the curvature κ by the black star. It is noteworthy that the acceleration is normal
to the curve (minimum of J2(t)) in the neighborhood of the maximum curvature. (The curve was
simulated with M = 15, K = 13, P = 50, τX = 1, τN = 106, and η = 0.1 according to the method
described in Appendix H.)

4.1 L-curve with gamma priors

The case with gamma priors plays a special role because it provides a generalization of the reference

L-curve defined with logarithmic scales.

4.1.1 Basic derivation

Let first note that the Φ-transform of the gamma probability density

φ(τ) =
βα

Γ(α)
τα−1e−βτ (49)

with shape and rate parameters α > 0, β > 0 is

Φ(s;n) =
βα

Γ(α)

Γ(α+ n)

(β + s)α+n
. (50)

Therefore, plugging gamma priors φN (τ) and φX(τ) with hyperparameters (αN , βN ) and (αX , βX) in

Eq. (23) produces the curve

γΓ : t 7→

{
ζ(t) = (αN +MP/2) ln(βN + T (X(λ(t)))/2)

η(t) = (αX +KP/2) ln(βX + U(X(λ(t)))/2)
(51)
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associated with the optimal regularization parameter

λ∗ =
E{τX |U∗}
E{τN |T ∗}

=

(
2αX +KP

2βX + U(X(λ∗))

)(
2βN + T (X(λ∗))

2αN +MP

)
. (52)

Remark: L-curve with Jeffrey’s priors

Jeffrey’s prior arrives as a particular case of the gamma prior when both the shape and the rate

parameters collapse (α → 0 and β → 0). One then finds the L-curve (27) already introduced in

section 3.

4.1.2 Comparison with the reference L-curve

When the rate parameters vanish (βN = βX → 0) and (αN + MP/2) = (αX + KP/2) = c, the

reference L-curve γln is then exactly recovered up to the global scale factor c. For arbitrary values of

αN +MP/2 and αX +KP/2 (but still vanishing rate parameters), this L-curve is implicitly the one

used in Reginska’s criterion. To see this, let us introduce the change of variables{
ζG(t) = ζ(t)/(αN +MP/2)− ln 2 = ln(2βN + T (X(λ(t))))

ηG(t) = η(t)/(αX +KP/2))− ln 2 = ln(2βX + U(X(λ(t))))
(53)

and the corresponding curve γΓ : t 7→ (ζG(t); ηG(t)). This change of variable requires Proposition 3.2

to be reformulated:

Corollary 4.1. The optimal regularization parameter λ∗ that minimizes the cost function J1 is located

where the curve γΓ is tangent with the straight line of slope −(αN +MP/2)/(αX +KP/2).

The above result turns out identical to Reginska’s criterion with µ = (αX +KP/2)/(αN +MP/2)

in Eq. (7) and βN = βN → 0 in Eq. (53); it is also identical to the JMAP estimate discussed in

subsection 2.1 (see Eq. (13)).

It is important to emphasize that, in general, the L-curve γΓ defined by Eq. (51) and the reference

L-curve γln do not share the same shape and the same corner. First, the reference L-curve allows

the branches lnU and lnT to diverge to −∞ when λ → ∞ and λ → 0, respectively, which tends to

destroy global convexity by bending the tip of the vertical branch of the “L” towards the left and

the end of its horizontal branch downwards (thus producing two inverted “L”s). By adding non-

zero constants βN and βX into the logarithms, the branches ln(βN + T/2) and ln(βX + U/2) can no

longer diverge when T → 0 or U → 0 (see Fig. 4). Second, the introduction of weights αN + MP/2

and αX + KP/2 balances the relative importance of the branches ln(βN + T/2) and ln(βX + U/2)

depending on the dimensions of the problem. Specifically, more weight is given to ln(βN + T/2) when

the dimension of the measurements M is large as compared to the number of unknowns K, which tends

to move the corner eastward in plane P, thus favoring smaller values of λ∗ than with the reference

L-curve; in other words, less regularization is required when the inverse problem becomes well-posed.

Alternatively, more weight is given to ln(βX +U/2) when the number of unknowns K becomes large as

compared to the measurements M , which tends to move the corner upward, thus favoring larger values

of λ∗ than with the reference L-curve when the problem becomes ill-posed. The dependence of the

regularization parameter on the problem dimensions does not exist with the reference L-curve, neither

with Reginska’s cost function, where the slope −1/µ is arbitrarily set to a constant value (most often

µ = 1 in the literature). As far as the authors know, that the location of the corner of the L-curve

should depend on the problem dimensions has never been recognized before.
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quantile log10 λSE log10 λ
BL
κ log10 λ

BL
J1

log10 λκ

M/K = 1 Q25 -8.06 -7.90 -8.55 -7.90
Q50 -8.00 -7.86 -8.51 -7.86
Q75 -7.95 -7.74 -8.40 -7.74

M/K = 10 Q25 -8.05 -8.05 -8.00 -7.08
Q50 -8.00 -8.02 -7.98 -7.06
Q75 -7.94 -8.00 -7.96 -7.03

M/K = 50 Q25 -8.05 -8.01 -7.96 -6.34
Q50 -8.00 -7.99 -7.95 -6.31
Q75 -7.95 -7.97 -7.93 -6.29

M/K = 100 Q25 -8.05 -8.01 -7.96 -6.00
Q50 -8.00 -7.99 -7.94 -5.98
Q75 -7.94 -7.97 -7.93 -5.95

Table 1: Quantiles of estimates of the regularization parameter: λSE stands the reference that mini-
mizes the square error ‖X−X(λ)‖2F , λBLκ for the maximum curvature estimate of the Bayesian L-curve,
λBLJ1 for the minimum of J1, and λκ for the maximum curvature estimate of the reference L-curve.

Example

These observations are briefly illustrated by means of a numerical example. A discrete inverse problem

is simulated according to the method of Appendix H with K = 10, τX = 1, τN = 104, P = 100, η = 10,

and M = rK with r = 1, 10, 50, 100. In this particular case, the normalized mean-square error (NMSE)

reads

E‖X−X(λ)‖2F
E‖X‖2F

=
1

K

K∑
k=1

(τX/τN )s2
k + λ2

(s2
k + λ2)2

, (54)

where {sk; k = 1, ...,K} are the singular values of matrix A (see Appendix H). It is remarked that

the NMSE is theoretically independent of M , thus implying that the optimal regularization parameter

should also be independent of M in this case. For each value of the ratio r, the reference L-curve is

computed together with the “Bayesian L-curve” (51) rooted on gamma priors with non-informative

hyperparameters αN = αX = 0.1 and βN = βX = 10−16. The optimal regularization parameter is

estimated from the maximum curvature for the two L-curves and also from the minimum of the cost

function J1 for the gamma L-curve. This is repeated for 104 independent random draws of X, A

and N. Table 1 reports the quantiles of the estimated regularization parameters and Fig. 3 displays

the boxplots of the normalized square error (NSE) ‖X − X(λ)‖2F /‖X‖2F . It is seen that both the

maximum curvature estimate and the minimizer of J1 are statistically very close to the reference

λSE that minimizes the NSE on the gamma L-curve, whatever the value of M ; on the contrary, the

maximum curvature estimate of the reference L-curve significantly over-regularizes the problem when

M increases, thus inflating the normalized mean-square error (see Fig. 3).

4.1.3 Sufficient condition for the existence of a minimum of J1

The condition of existence of a minimum of the cost function J1 in the case of gamma priors is given

by Proposition 3.4. Using Proposition A.1, it is readily found that CVN = 1/(αN +MP/2) and

CVX = 1/(αX +KP/2). Hence, condition (32) becomes

d

dt
ln(βN + T (X(λ(t)))/2)

∣∣∣∣
t=t∗
≤ 1(

1 + αN+MP/2
αX+KP/2

) (55)
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Figure 3: Boxplots (marking the lower, middle, and upper quartiles and whiskers set to four times
the interquartile range) of the normalized square error (estimated on 104 runs) for increasing values
of the ratio M/K: λMSE , λBLκ , λBLJ1 , and λκ are as defined in Table 1.

or, equivalently,

− d

dt
ln(βX + U(X(λ(t)))/2)

∣∣∣∣
t=t∗
≤ 1(

1 + αX+KP/2
αN+MP/2

) . (56)

This indicates that the rate of variation of the branches ζ(t) and −η(t) should be upper bounded.

Equation (55) is relevant for high values of λ∗ (towards the horizontal branch of the L) where ln(βN +

T/2) is likely to grow fast, while at the same time ln(βX + U/2) is likely to reach an asymptote.

Inversely, Eq. (56) is relevant for small values of λ∗ (towards the vertical branch of the L), where the

behaviors of ln(βN+T/2) and ln(βX+U/2) are reversed. The two equations elicit the importance of the

hyperparameters βN and βX to control the variations of ln(βN +T (X(λ))/2) and ln(βX +U(X(λ))/2)

– it always holds that d lnT/dt ≥ d ln(βN + T/2)/dt and −d lnU/dt ≥ −d ln(βX + U/2)/dt – and of

αN and αX to control the upper-bounds, and therefore to meet the condition of convexity of the cost

function J1. This is illustrated in Fig. 4.

4.1.4 A geometrical interpretation

As explained in this section, the gamma priors with vanishing rate parameters provide a geometrical

interpretation to the reference L-curve as well as a justification to the cost function J3 introduced in

subsection 3.3.2. To start with, consider the reparametrization (53) and denote as M the point in

plane P whose position is given by the coordinates (lnT (X(λ∗)); lnU(X(λ∗))), with λ∗ the optimal

regularization parameter that minimizes the cost function J1 for a particular pair of hyperparameters

(αN , αX). According to Corollary 4.1, the position of M is where the curve γ intersects the straight

line of slope p = −(αN + MP/2)/(αX + KP/2). Specifically, one has η = g(p) + p · ζ, where g(p) is

the Legendre transform of the function ζ 7→ η. When the hyperparameters (αN , αX) are continuously

varied, the trajectory of point M then follows the curve γΓ, which is interpreted as the envelope of

the family of straight lines parametrized by different values of p. This is illustrated in Fig. 5.

Based on this interpretation, a natural idea is to select, among all optimal solutions parametrized
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Figure 4: Example of “Bayesian L-curves” λ 7→ {ζ(λ) = (αN + MP/2) ln(βN + T (X(λ))/2); η(λ) =
(αX +KP/2) ln(βX + U(X(λ))/2)} and associated tangents at λ∗ in the gamma family of priors, for
different values of the ratio βN/αN = βX/αX . The L-shape becomes more and more pronounced and
its corner acute as the ratio increases, i.e. as the prior distributions become informative. (The curve
was simulated with M = 20, K = 61, P = 5, τX = 1, τN = 100, and η = 0.5 according to the method
described in Appendix H.)

by p, the regularization parameter that is the least sensitive to a change in the hyperparameters.

This amounts to searching for the minimum of the variation of t due to a perturbation in the angle

θ = arctan(p) along the trajectory γΓ, i.e.

Arg min
t

dt

dθ
= Arg max

t

dθ

dt
= Arg max

t
J3(t), (57)

thus recovering the maximum angular speed criterion (48).
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Figure 5: Interpretation of the convex part of the reference L-curve λ 7→ {ζ(λ) = ln(T (X(λ))); η(λ) =

ln(U(X(λ)))} as the envelope of the straight lines parameterized by slope p = −(αN +MP/2)/(αX +

KP/2) in the family of gamma priors and ordinate given by the Legendre transform of function ζ 7→ η.

The corner of the curve is where the position of the regularization parameter least depends on the

hyperparametrization of the gamma priors: this corresponds to the smallest step-size between points

of tangency – marked by black bullets – with the straight lines whose slopes are incremented by regular

angles ∆θ = ∆ arctan(p). (The curve was simulated as in Fig. 4.)

4.2 L-curve with inverse gamma priors

The Φ-transform of the inverse gamma density

φ(τ) =
βα

Γ(α)
τ−(α+1)e−β/τ (58)

with shape and rate parameters α > 0, β > 0 is

Φ(s;n) =
2β(α + n)/2

πnΓ(α)
s(a−n)/2Kn−a(2

√
bs), (59)

with Kn−a the modified Bessel function of the second-kind and order n − a. Taking inverse gamma

priors for the precisions τN and τX with hyperparameters (αN , βN ) and (αX , βN ), Eq. (23) then yields

the curve

γΓ−1 : t 7→

{
ζ(t) = (MP/2−αN )

2 ln(T (X(λ(t)))/2)− lnKMP/2−αN (
√

2βNU(X(λ(t))))

η(t) = (KP/2−αX)
2 ln(U(X(λ(t)))/2)− lnKKP/2−αX (

√
2βXT (X(λ(t)))).

(60)
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The associated optimal regularization parameter is λ∗ = E{τX |U∗}/E{τN |T ∗}, where
E{τN |T} = − d

ds ln ΦN (s;MP/2)|s=T/2 = (MP/2−αN )
T −

√
βN√
T

K′
MP/2−αN

(
√

2βNT )

KMP/2−αN (
√

2βNT )

E{τX |U} = − d
ds ln ΦX(s;KP/2)|s=U/2 = (KP/2−αX)

U −
√
βX√
U

K′
KP/2−αX

(
√

2βXU)

KKP/2−αX (
√

2βXU)
.

(61)

The asymptotic forms of the above equations provide some insight. SinceK ′n−a(2
√
bs)/Kn−a(2

√
bs)→

−(n−a)/(2
√
bs) as s→∞, it comes that E{τN |T} →MP/T and E{τX |U} → KP/U as P →∞ pro-

vided that αN , αX , βN and βX do not depend on P . This correctly returns the asymptotic expressions

of the regularization parameter established in Eqs. (26) and (27).

One consequence of the inverse gamma priors is to provide a Bayesian interpretation to the L-curve

with square root scaling. To see this, let αN = (MP + 1)/2, βN = (MP )2/2T0, αX = (KP + 1)/2,

βX = (KP )2/2U0, where T0 and U0 stand for guess values of U∗ and T ∗. This way, the prior expected

value of τN (resp. τX) is E{τN} ∼ MP/T0 (resp. E{τX} ∼ KP/U0). Then, using the property

K1/2(z) = exp(−z)
√
π/2z, it can be shown that

γ√ : t 7→

{
ζ(t) = MP

√
T (X(λ(t)))/T0

η(t) = KP
√
U(X(λ(t)))/U0.

(62)

This is recognized equal to the square-root L-curve defined with scaling function f =
√

in Eq.

(5). The associated optimal regularization parameter is

λ∗ =
E{τX |U∗}
E{τN |T ∗}

=

(
KP√
U0U∗

)(√
T0T ∗

MP

)
(63)

and is located where the curve γ√ is tangent with the straight line of slope −(M
√
U0)/(K

√
T0).

It is remarked that this construction actually requires the initial knowledge of the signal-to-noise

ratio U0/T0. If not available, one could still use the square root L-curve (62), yet with a criterion that

does not depend on the prior hyperparameters, such as κ, J2, or J3. Another strategy is to replace

the ratio (T0/MP )/(U0/KP ) in Eq. (63) by a current estimated of λ, thus leading to the iterations

λk+1 =

√
λk
T (X(λk))/MP

U(X(λk))/KP
. (64)

It is readily checked that this algorithm converges to λ∗ = (T (X(λ∗))/MP )/(U(X(λ∗))/KP )

provided that it is initialized sufficiently close to λ∗. The regularization parameter thus estimated

corresponds to a non-informative prior, as (T0/MP )/(U0/KP ) is no longer fixed but is free to evolve.

4.3 Minimum conditional-variance priors

The question naturally arises as whether there exist priors for the precisions τN and τX that maximize

the sharpness of the J1 cost function or, equivalently, the ability to locate the corner of the L-curve.

Referring back to condition (30), this amounts to minimizing the squared coefficients of variation

CVN and CVX , that is to select priors as narrow as possible. The extreme case is obtained when

the conditional variances V{τN |T} and V{τX |U} are null, which according to Proposition A.1 is

(ln Φ)′′ = 0. The solution to this differential equation is Φ(s;n) = C1e
−C2s for some constants

C1 ∈ R+ and C2 ∈ R. One sees that this is the Φ-transform of φ(τ) = δ(τ − C2). Therefore, without
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surprise, this is recognized as the ideal case where τN and τX are known beforehand, in which case

λ∗ = τX/τN . The corresponding L-curve is γlin : t 7→ {ζ = τNT ; η = τXU}, recognized as a scaled

version of the linear L-curve (the construction of an L-curve is still possible, although futile since the

value of λ is now known!).

4.4 Other curves?

A last question to address is whether other types of L-curves can be similarly interpreted within the

present Bayesian framework. This question is equivalent to as whether a given scaling function f in

Eq. (5) is a Φ-transform.

Proposition 4.1. Let f(s) : R+ → R denote a scaling function and Φ(s;n) the Φ-transform of

some probability density φ(τ) defined on R+. A sufficient and necessary condition for having f(s) =

− ln Φ(s;n)+C, with C a constant, is that (−d/ds)k exp(−f(s)) ≥ 0, k ∈ N and E{τn} =
∫
R+ τ

nφ(τ)dτ <

∞.

Proof. The necessary condition readily follows from differentiating Eq. (15) wherein φ(τ) ≥ 0. The

sufficient condition is a consequence of Bernstein’s theorem, which states that a function F (s) has the

property (−d/ds)kF (s)) ≥ 0, k ∈ N, if and only if F (s) =
∫
R+ e

−sτdα(τ) where α(τ) is bounded and

non-increasing (see Ref. [51][chap. 12]). Here dα(τ) = τnφ(τ)dτ .

Proposition 4.1 clearly applies to f(s) = ln(s), f(s) =
√
s, and f(s) = s, the three particular cases

already recovered above. It applies, more generally, to any monomial function f(s) = Bs1/n, with

n > 0 and B a positive constant. An important conclusion is that f(s) must be a crescent function

that does not grow faster than s. The proposition is also useful for excluding some other cases. For

instance, the so-called U-curve [31, 32], which consists in finding λ that minimizes the cost function

JU (λ) =
1

U(X(λ))
+

1

T (X(λ))
, (65)

corresponds to f(s) = exp(−1/s); this expression does not satisfy the necessary condition of the

proposition.

5 Extensions

This section addresses two possible extensions of the Bayesian L-curve beyond the Gaussian assump-

tions introduced so far for the priors of Y|X and X. The first one considers the case of generalized

Gaussians priors and the second one the case of complex Gaussians.

5.1 The generalized Gaussian case

So far, the paper has considered that both Y|X and X are Gaussian distributed, undoubtedly address-

ing a working assumption of practical importance. As mentioned in section 2.2, the same methodology

applies to other distributions, and in particular when Y|X and/or X are distributed according to gen-

eralized Gaussians. The case is now briefly investigated where X a priori follows the generalized

Gaussian GG(X; aX , bX) with shape and rate parameters aX > 0 and bX > 0, that is

p(X) =
P∏
i=1

K∏
k=1

bX
2aXΓ(1/bX)

e
−
(
|xki|
aX

)bX
=

(
bX

2Γ(1/bX)

)KP e−a−bXX

∑P
i=1

∑K
k=1 |xki|bX

aKPX
. (66)
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Setting τX = bXa
−bX
X and s =

∑P
i=1

∑K
k=1 |xki|b

.
= ||X||bXbX and assigning it an arbitrary prior proba-

bility density φX(τ), one has the Φ-transform∫
R+

p(X|τ)φX(τ)dτ = ΦX(‖X‖bXbX/bX ;KP/b). (67)

The solution to problem P2 is then the solution X̂ of the equation

A>AX + λ(X)∇X‖X‖bXbX = A>Y, (68)

where matrix ∇X = [∂/∂x1, . . . , ∂/∂xP ] contains in its i-th column the gradient with respect to xi,

the i-th column of X, with regularization parameter

λ(X) =
E{τN |T (X)}
E{τX |‖X‖bXbX}

with E{τX |‖X‖bXbX} =
ΦX(‖X(λ(t))‖bXbX/bX ;KP/bX + 1)

ΦX(‖X(λ(t))‖bXbX/bX ;KP/bX)
. (69)

Apart from the resolution of Eq. (68), which no longer has a closed-form solution (e.g. as Eq.

(16b)), all results remain unchanged, yet with the potential functions substituted by the norm ‖X‖bXbX
and KP reduced by the factor bX . For instance, with a gamma prior on τX , the corresponding branch

of the L-curve is

η(t) = (αX +KP/b) ln(βX + ‖X(λ(t))‖bXbX/bX). (70)

The use of such norms in regularization was for instance explored in Ref. [6].

5.2 Complex-valued data

The introduced framework is also readily extended to complex valued-data Y ∈ CM×P , X ∈ CK×P ,

A ∈ CM×K . In this case, the probability density of Y|X and the prior probability densities of X are

taken as the complex Gaussians

p(Y|X, τN ) =
(τN
π

)MP
exp (−τNT (X)) and p(X|τX) =

(τX
π

)KP
exp (−τXU(X)) (71)

(with a slight abuse of notation since T (X) must also be a function of Y in the above equation). One

has the Φ-transforms
∫
R+ p(N|τ)φN (τ)dτ = ΦN (T (X);MP ) and

∫
R+ p(X|τ)φX(τ)dτ = ΦX(U(X);KP ),

so that all results remain unchanged, yet without the one-half factor on T , U , MP and KP . The

solution to Problem 2 is

X̂ =
(
AHA + λ(X̂)I

)−1
AHY (72)

where H stands for the transpose conjugate operator and with the regularization parameter returned

by

λ(X) =
ΦN (T (X);MP + 1)

ΦN (T (X);MP )

ΦX(U(X);KP )

ΦX(U(X);KP + 1)
. (73)

For instance, the L-curve with gamma priors is then defined as

γΓ : t 7→

{
ζ(t) = (αN +MP ) ln(βN + T (X(λ(t))))

η(t) = (αX +KP ) ln(βX + U(X(λ(t)))).
(74)
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6 Numerical experiments

This last section illustrates the ideas elaborated in the paper by means of numerical experiments.

The aim is to apply the Bayesian L-curve to some of the test problems collected in Ref. [20] and to

investigate the performance of the four cost functions κ, J1, J2, and J3. The so-called test problems

“baart”, “shaw”, and “ilaplace” are selected, as they are representative of the results also obtained

on other problems. For the three problems, a square matrix A is used with M = K = 20 and

one set of observations (P = 1). Undetermined configurations with (M = K/2 and M = K/3)

were also tested, yet the results are not reported here, as they happened to show very similar trends

as for the determined case. Additive white Gaussian noise was added with noise-to-signal ratios

(NSR) varying from -20dB to -2dB; this was repeated for 300 independent random draws in order

to conduct Monte Carlo analyses. Results for the gamma L-curve only are reported here, with non-

informative hyperparameters αN = αX = 0.1 and βN = βX = 10−16. Intensive experiments showed

that there were no major differences with the inverse-gamma and square-root (used with the update

rule (64)) L-curves, as long as the respective priors were taken flat enough. In all experiments, the

curve parameter t = exp(λ) was used. Finally, since the test problems come with the true data

X, the reference regularization parameter λopt was computed as the minimizer of the square error

JSE(λ) = ‖X(λ)−X‖2F .

Figures 6, 8, and 10 display the cost functions JSE , κ, J1 and J2 for the three test problems, and

Figs. 7, 9, and 11 display the corresponding boxplots for the estimated regularization parameters

(now including J3) and the normalized square errors ‖X(λ)−X‖2F /‖X‖2F . The following observations

are in order.

Overall, all criteria demonstrate very similar trends. There seems to be a slight tendency of the

cost function J2 to return a regularization parameter with a larger variance than for the other cost

functions, yet it does not necessarily result in a higher or a more dispersed NMSE. While the cost

functions κ, J2 and J3 – which all involve derivatives – have a tendency to fluctuate with respect to

λ, the cost function J1 evidences a smoother evolution, close to a convex curve. The similarity of the

curve J1 with the square error JSE is striking.

Two regimes of noise are to be distinguished. For a significant amount of noise (say NSR above

-10dB), all cost functions return estimates of the regularization parameters that are statistically very

similar, and actually very close to the reference λopt (their boxplots most often overlap). Inspection of

the L-curves actually reveals that in noisy cases the “L” shape is generally well-marked, with a clear

corner. These are instances where Propositions 3.6 and 3.7 apply (the L-curve is locally symmetric

around its bisector axis), thus implying that all estimates are equal.

For a low amount of noise (say NSR below -10dB), the test problems can be classified according to

two behaviors. In a first category, all estimates of the regularization parameters decrease proportionally

with the NSR together with λopt (see Figs. 7 and 9) and the NMSE also decreases with the noise level.

A second category is where the reference λopt is lower-bounded, but the estimates of the regularization

parameters keep on decreasing below it (see Fig. 11). As a consequence, the NSME no longer decreases

monotonically when the noise level goes to zero. This behavior has been described in Ref. [18] as an

instance where the L-curve may fail. Inspection of the latter actually reveals that its vertical branch

tends to shrink, and thus its corner to disappear.

The situation can be fixed by making the prior more informative. In order to avoid the regular-

ization parameter to collapse, one can increase the value of the hyperparameter βN to enforce smaller

values of the precision τN , compliant with a small NSR. This can also be understood as forcing the
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vertical branch of the L-curve to protrude. This is illustrated here for the test problem “ilaplace”.

The hyperparameter βN is set to 10−3 (this setting was found robust enough, in the sense that it could

be changed by at least two orders of magnitude without significantly altering the results). Figure 12

shows that the estimated regularization parameters now closely follows λopt for small noise levels, thus

considerably reducing the NMSE.
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Figure 6: Test problem baart for SNRs ranging from -20dB to -2dB. a) square error JSE , b) curvature
κ, c) cost function J1, and d) cost function J2 with respect to regularization parameter λ. Optima in
each case are marked by red circles.

7 Conclusion

The aim of the paper was to provide a Bayesian interpretation of the L-curve used to solve linear

inverse problems. When introducing prior distributions and treating their precisions (inverses of the

variances) as nuisance parameters, the MMAP solution naturally offsprings an L-curve together with

a criterion for locating its corner. The solution is in some respects similar to Reginska’s minimum

product criterion, but contrary to the latter it is not empirical, and it comes with a rich framework.

It is general, in the sense that different priors will generate different types of L-curves. The classical

linear, logarithmic and square-root L-curves are recovered as particular cases, and the reference (loga-

rithmic) L-curve is also the asymptote of the “Bayesian L-curve” when the effect of the priors vanishes.

Among other benefits of the framework, the Bayesian L-curve explicitly accounts for the dimensions
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Figure 7: Test problem baart. Boxplots of estimated regularization parameters (left) and of corre-
sponding normalized square error (right).
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Figure 8: Test problem shaw for SNRs ranging from -20dB to -2dB. a) square error JSE , b) curvature
κ, c) cost function J1, and d) cost function J2 with respect to regularization parameter λ. Optima in
each case are marked by red circles.
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Figure 9: Test problem shaw. Boxplots of estimated regularization parameters (left) and of corre-
sponding normalized square error (right).
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Figure 10: Test problem ilaplace for SNRs ranging from -20dB to -2dB. a) square error JSE , b)
curvature κ, c) cost function J1, and d) cost function J2 with respect to regularization parameter λ.
Optima in each case are marked by red circles.
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Figure 11: Test problem ilaplace. Boxplots of estimated regularization parameters (left) and of
corresponding normalized square error (right).
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Figure 12: Test problem ilaplace with βN = 10−3 (as opposed to βN = 10−6 in Fig. 11). Boxplots
of estimated regularization parameters (left) and of corresponding normalized square error (right).

of the inverse problem (i.e. number of observations versus number of unknowns) in its regularization.

Analysis of the L-curve properties have shown that several competing criteria may be devised to locate

its corner. To the authors’ knowledge, the “minimum speed on the curve” and the “maximum angular

speed” have been introduced here for the first time. Conditions have been established under which

the criteria – including the maximum curvature – all return the same solution. This was validated

by numerical experiments. The equivalence of the criteria happens to depend on the curve parameter

– a monotonic function of the regularization parameter – whose principled selection is a matter of

future research. Numerical experiments have also shown that a proper selection of the priors lead to

a Bayesian L-curve that can succeed where the reference L-curve is known to fail. Further research is

needed to provide guidelines in this direction.
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Appendices

A Preliminary results

One will need the following results.

Proposition A.1. Let Φτ (s;n) be the Φ-transform of the probability density φτ (t) of a random variable

τ . It then holds that

i) − d
ds ln Φτ (s;n) = E{τ |s}

ii) d2

ds2
ln Φτ (s;n) = V{τ |s} = − d

dsE{τ |s}

where E{τ |s} and V{τ |s} stands for the expected value and variance of τ conditioned on s.

Proof.
d

ds
ln Φτ (s;n) =

Φ′τ (s;n)

Φτ (s;n)
= −

∫
R+ τe

−sττnφτ (τ)dτ∫
R+ e−sττnφτ (τ)dτ

= −E{τ |s}. (75)

Similarly,

d2

ds2
ln Φτ (s;n) =

Φ′′τ (s;n)

Φτ (s;n)
−
(
φ′τ (s)

φτ (s)

)2

= E{τ2|s} − E{τ |s}2 = V{τ |s}. (76)

Proposition A.2.

i) The potentials T (X(λ)) and U(X(λ)) are monotonically increasing and decreasing functions of

the regularization parameter, i.e. d
dλT (X(λ)) ≥ 0 and d

dλU(X(λ)) ≤ 0.

ii) The rate of change of T (X(λ)) and −U(X(λ)) are in the proportion of the regularization param-

eter, i.e. dT (X(λ)) = −λ · dU(X(λ)).

iii) The second-order differentials of T (X(λ)) and U(X(λ)) are related as

d2T (X(λ)) + λ · d2U(X(λ)) = −dλ · dU(X(λ)) =
dλ

λ
dT (X(λ)). (77)

The proof of (i) and (ii) is for instance found in lemma 2 of Reginska [45]. Property (iii) immediately

follows from (ii).
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B Proof of Proposition 2.2

The maximum of ΦN (T (X);M)ΦX(U(X);K) is found by equating its gradient with respect to xi to

zero, for each i. This yields

∇xiΦN (T (X)/2;M/2)ΦX(U(X)/2;K/2) + ΦN (T (X)/2;M/2)∇xiΦX(U(X)/2;K/2) = 0. (78)

Next, differentiating under the integral sign,

ΦX(U(X)/2;K/2)

∫
A>(yi −Axi)τp(Y|X, τ)dτ − ΦN (T (X)/2;M/2)

∫
xiτp(X|τ)dτ = 0

⇔ A>(yi −Axi)ΦN (T (X)/2;M/2 + 1)ΦX(U(X)/2;K/2)− ΦN (T (X)/2;M/2)ΦX(U(X)/2;K/2 + 1) = 0,

from which (16b) immediately follows.

C An asymptotic result of the Φ-transform

Let s ∼ O(n). If φ(τ) is a continuous function independent of n, it holds that

lim
n→∞

∣∣∣Φ(s;n)− n!φ(n/s)s−(n+1)
∣∣∣ = 0. (79)

Proof. The sketch of the proof is as follows. As n→∞, the function exp(−sτ)τn becomes more and

more peaked around τ = n/s. Hence, in the integral (15), φ(τ) can be considered almost constant in

the neighborhood of τ = n/s, which gives

Φ(n; s) ' φ(n/s)

∫
R+

e−sττndτ = φ(n/s)
n!

sn+1
. (80)

D Proof of Proposition 3.3

The first derivative of the branch ζ is

ζ ′ = −dT
dt

d

dT
ln ΦN = T ′E{τN |T}. (81)

It is next noted that
d

dt
E{τN |T} =

dT

dt

d

dT
E{τN |T} = −T ′V{τN |T},

where the last equality results from (ii) of Proposition A.1. Therefore, the second derivative of the

branch ζ is ζ ′′ = T ′′E{τN |T} − T ′2V{τN |T}. It is similarly found that η′ = U ′E{τX |U} and η′′ =

U ′′E{τX |U} − U ′2V{τX |U}. Adding the two quantities,

J ′′1 = ζ ′′ + η′′ = T ′′E{τN |T}+ U ′′E{τX |U} − T ′2V{τN |T} − U ′2V{τX |U}. (82)
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The next step is to express J ′′1 in terms of T and its derivative only. Using the relationship E{τX |U} =

λE{τN |T} (Proposition 2.2) and properties (ii) and (iii) of Proposition A.2,

J ′′1 = E{τN |T}(T ′′ + λU ′′)− T ′2V{τN |T} − U ′2V{τX |U} (83)

= E{τN |T}T ′(λ/λ′)− T ′2V{τN |T} − (T ′2/λ2)V{τX |U} (84)

where E{τX |U} = λE{τN |T} (Eq. (18) Proposition 2.2) was used in the second line and properties

(ii) and (iii) Proposition A.2 in the third line. Taking (E{τN |T}T ′)2 as a factor and using Eq. (18)

one again, one arrives at

J ′′1 = (E{τN |T}T ′)2

(
λ′

λE{τN |T}T ′
− CVN − CVX

)
(85)

with CVN = V{τN |T}/E{τN |T}2 and CVX = V{τX |U}/E{τX |U}2. Setting E{τN |T}T ′ = ζ ′ as given

by Eq. (81) then yields Eq. (29a). Similarly, expressing J ′′1 in terms of U and its derivative only gives

Eq. (29b).

E Proof of Proposition 3.7

It is readily verified that, under the conditions (34a)-(34c), J ′2(t∗) = 0 and J ′′2 (t∗) = 4ζ ′′(t∗)2 ≥ 0.

F Condition for κ′′ ≥ 0

Straightforward calculation gives the condition

4ζ ′ζ ′′ζ ′′′ + 3ζ ′′3 ≥ ζ ′2(ζ ′′′′ + η′′′′) (86)

at t = t∗.

G Missing information matrix

For the sake of simplicity, the proof is given here as if only one column, say x, of matrix X was

to be recovered from the EM algorithm of section 3.2. The missing information matrix defined as

Im = Ic − Ii, where Ic = −EτX ,τN {∇2
x ln p(X|Y, τX , τN )} and Ii = ∇2

x ln p(X|Y) are the “complete-

data” and “incomplete-data” observed information matrices [37], ∇2
x = ∂2/∂x∂x> stands for the

second derivative of a function with respect to vectors x and x>, and EτX ,τN stands for the expected

value with respect to τX and τN conditioned on Y. Calculations give

Ic =− EτX ,τN {∇
2
x(ln p(Y|X, τN ) + ln p(X|τX))} = −EτX ,τN {∇

2
x(τNT (X) + τXU(X))}

= E{τN |T}∇2
xT (X) + E{τX |U}∇2

xU(X)

(87)

(88)

and

Ii =−∇2
x ln(ΦN (T (X))ΦX(U(X)))

=−∇2
xT (X) · d

dT
ln ΦN (T (X))−∇xT (X)∇X>T (X) · d

2

dT 2
ln ΦN (T (X))

−∇2
xU(X) · d

dU
ln ΦX(U(X))−∇xU(X)∇X>U(X) · d

2

dU2
ln ΦX(U(X)),

(89)

(90)

(91)
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where ∇x = ∂/∂x is the gradient of a function with respect to x. Using properties (i) and (ii) of

Proposition A.1, this is equal to

Ii = E{τX |T}∇2
xT (X)− V(τN |T )∇xT (X)∇x>T (X) + E{τN |U}∇2

xU(X)− V(τX |U)∇xU(X)∇x>U(X)

= Ic − V(τN |T )∇xT (X)∇x>T (X)− V(τX |U)∇xU(X)∇x>U(X).

(92)

(93)
Therefore,

Im = V(τN |T )∇xT (X)∇x>T (X) + V(τX |U)∇xU(X)∇x>U(X). (94)

Now, using the chain rule ∇x = ∂λ
∂x

∂t
∂λ

∂
∂t , the latter equation becomes

Im =
∂λ

∂x

∂λ

∂x>
1

λ′2

(
V(τN |T )

(
dT

dt

)2

+ V(τX |U)

(
dU

dt

)2
)
. (95)

Finally, let us observe that T ′ = ζ ′/E{τN |T} from Eq. (81). Therefore, in combination with T ′+λU ′ =

0 and λ = E{τX |U}/E{τN |T}, it also comes U ′ = −ζ ′/E{τX |U}. Substituting T ′ and U ′ for these

expressions then yields Eq. (43).

H Simulation of the L-curve

The L-curves illustrated in Figs. 4 and 5 were simulated based on model (1) with A expressed

by its singular value decomposition, A = WSV, where W ∈ CM×M and V ∈ CK×K are random

unitary matrices distributed according to a Bingham distribution [30] and S has non-zero elements

sk = exp(−η(k − 1)/(min(M,K) − 1)), k = 1, ...,min(M,K), η > 0 only on its main diagonal. The

elements of the additive errors N and of the dependent variable X were generated as independent and

identically distributed Gaussian variables with variances 1/τN and 1/τX , respectively.

Assuming M ≥ K, the Tikhonov solution reads

X(λ) = VS2(S2 + λI)−1V>X + VS(S2 + λI)−1W>N (96)

and the mean-square error is

E‖X−X(λ)‖2F = E‖Vλ(S2 + λI)−1V>X‖2F + E‖VS(S2 + λI)−1W>N‖2F
= λ2τ−1

X trace{(S2 + λI)−1}+ τ−1
N trace{S(S2 + λI)−1}

=
K∑
k=1

λ2τ−1
X + s2

kτ
−1
N

(s2
k + λ)2

. (97)
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