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This work presents a novel observer design methodology for general hybrid systems with known jump times. We propose to combine a high-gain flow-based observer estimating the part of the state that is instantaneously observable from the flow output, with a jump-based observer estimating the rest of the state from the knowledge of the jump output as well as some additional fictitious outputs, describing how the instantaneously observable part of the state impacts the non-observable one at jumps. We give general Lyapunov-based sufficient conditions for coupling such observers and propose an observer design for a large class of hybrid systems with nonlinear maps covering mechanical systems with uncertain impact models. Application to a bouncing ball with an unknown restitution coefficient illustrates the proposed approach.

INTRODUCTION

Observer design for hybrid systems, namely systems combining both continuous and discrete behavior, is widely investigated in the literature [START_REF] Bernard | Observer Design for Hybrid Dynamical Systems with Approximately Known Jump Times[END_REF]. When the times of the discrete events in the solutions, i.e., the jump times, are known or detected, the observer jumps can be triggered at the same time as those of the system, making their solutions have the same (hybrid) time domain. This allows us to compare them at the same hybrid time and thus facilitates the convergence analysis of the observer estimate to the system state. Such hybrid systems with known jump times include in particular impulsive (possibly switched) systems (Medina andLawrence, 2008, 2009;[START_REF] Tanwani | Observability for Switched Linear Systems: Characterization and Observer Design[END_REF] and continuous-time systems with sampled measurements [START_REF] Raff | Observers with Impulsive Dynamical Behavior for Linear and Nonlinear Continuous-Time Systems[END_REF][START_REF] Ferrante | State Estimation of Linear Systems in the Presence of Sporadic Measurements[END_REF]. As surveyed in [START_REF] Bernard | Observer Design for Hybrid Dynamical Systems with Approximately Known Jump Times[END_REF], most observer designs for those hybrid systems assume either: 1) Observability of the flow or jump dynamics and output, and Lyapunov/LMI-based sufficient conditions; or 2) Observability of the full state during flows from the flow output only, leading to (highgain) flow-based observers, relying on high-gain continuous observers [START_REF] Gauthier | A Simple Observer for Nonlinear Systems Applications to Bioreactors[END_REF] and persistent flowing; or 3) Observability of the full state from the jump output only, leading to jump-based observers, relying on persistent jumping and discrete observers designed for an equivalent discrete system modeling the flow-jump combination.

However, state components may exhibit different kinds of observability properties, associated with the flow and/or jump output(s), or hidden inside the flow-jump coupling. In output regulation, [START_REF] Cox | Isolating Invisible Dynamics in the Design of Robust Hybrid Internal Models[END_REF] exploits these ideas for hybrid systems with linear maps, periodic jumps, and flow output only, where part of the dynamics is instan-taneously observable during flows from the flow output, while part of the non-observable dynamics becomes visible in the observable part at jumps. A similar phenomenon is exploited in [START_REF] Tanwani | Observability for Switched Linear Systems: Characterization and Observer Design[END_REF][START_REF] Shim | Hybrid-type Observer Design based on a Sufficient Condition for Observability in Switched Nonlinear Systems[END_REF] for (non)linear switched systems where observability is brought by switching among different non-observable modes; and in [START_REF] Tran | Observer Design based on Observability Decomposition for Hybrid Systems with Linear Maps and Known Jump Times[END_REF] for hybrid systems with linear maps by the interaction of non-observable flows and jumps. Observer design then relies on a state decomposition, where state components with different observability properties are separated. It typically couples a high-gain flow-based observer estimating the instantaneously observable states during flows, with back-and-forth algorithms or jump-based observers, estimating the rest of the states from the jump output and fictitious outputs describing how those states impact the instantaneously observable ones at jumps.

In this paper, we generalize the approach in [START_REF] Tran | Observer Design based on Observability Decomposition for Hybrid Systems with Linear Maps and Known Jump Times[END_REF] to hybrid systems with nonlinear maps. Assuming (after a change of coordinates) that a part of the state is instantaneously observable during flows, we propose to combine a nonlinear high-gain observer during flows with a jump-based one estimating the rest of the state and implicitly exploiting observability conditions from an extended output at jumps made of the system's jump output as well as some additional fictitious measurements. We provide general Lyapunov-based sufficient conditions to perform this coupling, including observability, dwelltime, and decoupling conditions in the dynamics. For that, we rely on Input-to-State Stability (ISS) properties in each observer with respect to the errors coming from the other observer, similar to [START_REF] Liberzon | Lyapunovbased Small-gain Theorems for Hybrid Systems[END_REF]. Then, we propose a constructive observer design achieving this coupling for a class of hybrid systems with nonlinear maps, including mechanical systems with uncertain impact models. Illustrations are provided considering state and restitution coefficient estimation in a bouncing ball. Our method differs from [START_REF] Shim | Hybrid-type Observer Design based on a Sufficient Condition for Observability in Switched Nonlinear Systems[END_REF] mainly in the way the fictitious output is treated and in the resulting jump-based observer: instead of estimating the fictitious output through back-and-forth high-gain observers and resetting the estimate via asynchronous parallel computations, we design a synchronized observer with correction terms implicitly exploiting this hidden information.

Notations. Let R (resp. N) be the set of real numbers (resp. natural numbers, i.e., {0, 1, 2, . . .}). For a given input t → u(t) to ẋ = f (x, u), Ψ f (•,u) (x 0 , t, τ ) is the associated flow operator from initial value x 0 at initial time t evaluated after τ time unit(s). Let sat be a Lipschitz element-wise saturation function with levels to be picked depending on the context. For a hybrid arc (t, j) → x(t, j) (see [START_REF] Goebel | Hybrid dynamical systems: Modeling, stability, and robustness[END_REF])), we denote dom x its domain, dom t x (resp. dom j x) the domain's projection on R ≥0 (resp. N), and for j ∈ N, t j (x) the unique time such that (t j (x), j) ∈ dom x and (t j (x), j -1) ∈ dom x (for hybrid systems with inputs, see [START_REF] Sanfelice | Hybrid Feedback Control[END_REF]) A solution x to a hybrid system is complete if dom x is unbounded. The notions of class-K and class-KL functions used are from (Khalil, 1996, Definitions 4.2 and 4.3). For a function V : R nη → R and a hybrid system with state η ∈ R nη and input u, we denote V (η, u) the derivative of V along the flows and V + (η, u) the value of V after a jump.

PROBLEM FORMULATION

Consider a hybrid system ẋ = f (x, u c ) (x, u c ) ∈ C y c = h c (x, u c ) x + = g(x, u d ) (x, u d ) ∈ D y d = h d (x, u d ) (1)
where x ∈ R nx is the state; y c ∈ R ny,c (resp.

y d ∈ R n y,d )
is the output known during the flow intervals (resp. at the jump times); u c ∈ R nu,c and u d ∈ R n u,d are known exogenous signals; the maps f and g are the flow and jump maps; h c and h d are the flow and jump output maps; C and D are the flow and jump sets, respectively. The jump times of each solution are assumed to be exactly detected.

Remark 1. The model (1) covers: 1) Time-varying systems, by including the times t, j in the inputs or the state; and 2) Impulsive and switched systems with state jumps as in [START_REF] Shim | Hybrid-type Observer Design based on a Sufficient Condition for Observability in Switched Nonlinear Systems[END_REF], by treating the switching signal as a known input; and 3) Continuous-time systems with sampled sporadic outputs, by treating the sampling events as jumps triggering the availability of y d . Definition 1. For a closed subset I of R ≥0 , we say that a hybrid arc (t, j) → x(t, j) has flow lengths within I if:

• 0 ≤ t -t j (x) ≤ sup I for all (t, j) ∈ dom x;

• t j+1 (x) -t j (x) ∈ I holds for all j ∈ N >0 if sup dom j x = +∞, and for all j ∈ {1, 2, . . . , sup dom j x-1} otherwise. Assumption 1. There exist compact sets X ⊂ R nx and I ⊂ R >0 such that each maximal solution x to (1) initialized in X 0 ⊂ R nx with inputs (u c , u d ) ∈ U c × U d is complete, remains in X , and has flow lengths within I.

As the jump times of the system are known, it is natural to strive for a synchronized asymptotic observer of the form

     ζ = F( ζ, y c , u c ) when (1) flows ζ+ = G( ζ, y d , u d ) when (1) jumps x = T ( ζ, y c , y d , u c , u d ) (2)
where ζ ∈ R n ζ is the observer state; F, G, and T are the observer dynamics and output maps designed such that each maximal solution (x, ζ) to the cascade ( 1

)-(2) initialized in X 0 × R n ζ and with inputs (u c , u d ) ∈ U c × U d is complete and verifies lim t+j→+∞ |x(t, j) -x(t, j)| = 0. ( 3 
)
To that end, we assume that there exist integers n o and n no and a uniformly left-invertible transformation T : R nx × [0, +∞) × N → R no × R nno of the form T (x, t, j) = (T o (x, t, j), T no (x, t, j)) such that, along each solution x of (1) initialized in X 0 with inputs (u c , u d ) ∈ U c × U d , (t, j) → z(t, j) defined by the image of T along x, i.e., for each (t, j) ∈ dom x,

z(t, j) = z o (t, j) z no (t, j) = T o (x(t, j), t, j) T no (x(t, j), t, j) ∈ R nz , (4) 
with

n z = n o + n no , is a solution to        żo = f o (z o , u c ) żno = f no (z o , z no , u c ) (z, u c ) ∈ C z z + o = g o (z o , z no , u d ) z + no = g no (z o , z no , u d ) (z, u d ) ∈ D z (5a)
for some maps (f o , f no , g o , g no ), sets C z and D z obtained from C and D via T , with the outputs

y c = h o (z o , u c ), y d = h no (z o , z no , u d ), (5b) 
and the given inputs, such that Assumption 2 below holds. Assumption 2. The flow pair (f o , h o ) is independent of z no and is instantaneously observable on C z for any input u c ∈ U c , namely, the knowledge of t → h o (z o (t), u c (t)) for an arbitrarily short time determines the solution t → z o (t) to żo = f o (z o , u c ) uniquely as long as (z o , u c ) ∈ C z .

This observability condition allows us to consider a highgain observer of the pair (f o , h o ) during flows, which estimates z o arbitrarily fast from the knowledge of y c , and is ISS with respect to errors in z no affecting the estimate of z o at jumps. Then, we propose to estimate z no via a jump-based observer from the knowledge of y d as well as the estimate of z o . More precisely, our observer is

                     żo = fo (ẑ o , p, τ, y c , u c ) żno = fno (ẑ o , ẑno , p, τ, y c , u c ) ṗ = φ c (ẑ o , ẑno , p, τ, y c , u c ) τ = 1        when (5) flows ẑ+ o = ĝo (ẑ o , ẑno , p, τ, y d , u d ) ẑ+ no = ĝno (ẑ o , ẑno , p, τ, y d , u d ) p + = φ d (ẑ o , ẑno , p, τ, y d , u d ) τ + = 0      when (5) jumps (6)
where p ∈ R np might contain additional observer states (see Example 1) and τ is a timer keeping track of the time elapsed since the previous jump. This timer evolves in [0, max I] during flows and is in I at jumps according to Assumption 1. The maps fo , fno , φ c , ĝo , ĝno , and φ d are to be designed such that ( 6) is an asymptotically stable observer for (5), namely, given X from Assumption 1, (z-AS) There exist a class-KL function β z and P 0 ⊆ R np such that for any solution (z, ẑ, p, τ ) of the cascade

(5)-(6) initialized in Z 0 × R nz × P 0 × {0} where Z 0 := T (X , 0, 0), with inputs (u c , u d ) ∈ U c × U d , |z(t, j) -ẑ(t, j)| ≤ β z (|z(0, 0) -ẑ(0, 0)|, t + j), ∀(t, j) ∈ dom z. (7)
This asymptotic stability can be brought back to the xcoordinates if x → T (x, 0, 0) is continuous on X and T is injective with respect to x in X , uniformly in (t, j) (achieved at least after a certain time). In Section 3, we start by deriving general Lyapunov conditions to combine a high-gain flow-based observer (estimating z o during flows from y c ) with a jump-based observer (estimating z no from y d and the estimate of z o ). Then, in Section 4, we propose a constructive observer design for a certain class of hybrid systems. Since z o is estimated arbitrarily fast during flows, the key idea of this design is to exploit the detectability of z no from an extended output at jumps, made of y d , but also a fictitious output characterizing the way z no impacts z o at jumps, namely g o (z o , z no , u d ) in (5a).

GENERAL LYAPUNOV-BASED SUFFICIENT CONDITIONS FOR COUPLING OBSERVERS

In this section, we present intermediary technical results, namely sufficient Lyapunov-based conditions for coupling an arbitrarily fast high-gain flow-based observer with a jump-based one. These are general conditions that will later be applied for, but not limited to, a certain system class in Section 4. We typically require some ISS properties from each observer with respect to the error coming from the other one. Note that Assumption 2 is required throughout, to satisfy the high-gain flow-based conditions.

Conditions for Exponential Stability

Theorem 1. Suppose Assumption 1 holds and define τ M := max I. Consider the cascade ( 5)-( 6) and sets P c , P d ⊆ R np such that each solution (z, ẑ, p, τ ) initialized in Z 0 × R nz × P 0 × {0} with inputs (u c , u d ) ∈ U c × U d is such that p(t, j) ∈ P c during flows and p(t, j) ∈ P d at jumps. Assume that there exist a function

V no : R nno ×R nno ×R np ×R → R, scalars ℓ 0 > 0, b no > 0, b no > 0, λ c > 0, a c , c noo ≥ 0, d ono ≥ 0, a d and rational functions b o > 0, b o > 0, d o ≥ 0, d noo ≥ 0 such that a c τ M + a d < 0 and, for all ℓ > ℓ 0 , there exists function V o,ℓ : R no × R no × R np × R → R such that: (1) (Uniform boundedness) For all (u c , u d ) ∈ U c × U d , z = (z o , z no ) ∈ R nz such that (z, u c ) ∈ C z or (z, u d ) ∈ D z , ẑ = (ẑ o , ẑno ) ∈ R nz , p ∈ P c ∪ P d , and τ ∈ [0, τ M ], b o (ℓ)|z o -ẑo | 2 ≤ V o,ℓ (z o , ẑo , p, τ ) ≤ b o (ℓ)|z o -ẑo | 2 , b no |z no -ẑno | 2 ≤ V no (z no , ẑno , p, τ ) ≤ b no |z no -ẑno | 2 ; (2) (Flow-based conditions) For all u c ∈ U c , z ∈ R nz such that (z, u c ) ∈ C z , ẑ ∈ R nz , p ∈ P c , and τ ∈ [0, τ M ], Vo,ℓ (z, ẑ, p, τ, u c ) ≤ -ℓλ c V o,ℓ (z o , ẑo , p, τ ), Vno (z, ẑ, p, τ, u c ) ≤ a c V no (z no , ẑno , p, τ ) + c noo V o,ℓ (z o , ẑo , p, τ ); (3) (Jump-based conditions) For all u d ∈ U d , z ∈ R nz such that (z, u d ) ∈ D z , ẑ ∈ R nz , p ∈ P d , and τ ∈ I, V + o,ℓ (z, ẑ, p, τ, u d ) ≤ d o (ℓ)V o,ℓ (z o , ẑo , p, τ ) + d ono |z no -ẑno | 2 , V + no (z, ẑ, p, τ, u d ) ≤ e a d V no (z no , ẑno , p, τ ) + d noo (ℓ)V o,ℓ (z o , ẑo , p, τ ).
Then, there exists ℓ ⋆ ≥ ℓ 0 such that if ℓ > ℓ ⋆ , (z-AS) holds with β z (δ, s) = ρδe -λs for some ρ > 0 and λ > 0.

Notice that fo , ĝo , φ c , and φ d can be chosen first to guarantee the existence of V o,ℓ satisfying the inequalities involving it in Theorem 1 for some

ℓ 0 > 0, b o > 0, b o > 0, λ c > 0, d o > 0,
and d ono ≥ 0, independently of fno , ĝno , and V no , which can be designed in a second step.

Proof. Consider the Lyapunov function

W ℓ : R nz ×R nz × R np × R → R defined as W ℓ (z, ẑ, p, τ ) = e λc ℓτ 2 V o,ℓ (z o , ẑo , p, τ ) + re -ετ e -ac(τ -τ M )
V no (z no , ẑno , p, τ ), where r > 0 and ε > 0 are analysis parameters. The role of e λc ℓτ 2 is to bring convergence from flows to jumps, while that of e -ετ is indeed to bring contraction from jumps to flows; r is tuned to ensure negativity at jumps despite the interactions between these components. First, we have for all

(u c , u d ) ∈ U c × U d , z ∈ R nz such that (z, u c ) ∈ C z or (z, u d ) ∈ D z , ẑ ∈ R nz , p ∈ P c ∪ P d , and τ ∈ [0, τ M ], ρ o (ℓ)|z o -ẑo | 2 + ρ no |z no -ẑno | 2 ≤ W ℓ (z, ẑ, τ ) ≤ ρ o (ℓ)|z o -ẑo | 2 + ρ no |z no -ẑno | 2 , (8) where ρ o (ℓ) = b o (ℓ), ρ no = b no re -ετ M , ρ o (ℓ) = b o (ℓ)e λc ℓτ M 2
, and

ρ no = b no re acτ M . During flows, for all u c ∈ U c , z ∈ R nz such that (z, u c ) ∈ C z , ẑ ∈ R nz , p ∈ P c , and τ ∈ [0, τ M ], Ẇℓ (z, ẑ, p, τ, u c ) ≤ -min λ c ℓ 2 -rc noo , ε W ℓ (z, ẑ, p, τ ).
At jumps, for all

u d ∈ U d , z ∈ R nz such that (z, u d ) ∈ D z , ẑ ∈ R nz , p ∈ P d , and τ ∈ I, W + ℓ (z, ẑ, p, τ, u d ) -W ℓ (z, ẑ, p, τ ) ≤ -e λc ℓτm 2 b o (ℓ) -d o (ℓ)b o (ℓ) -rd noo (ℓ)b o (ℓ) |z o -ẑo | 2
-rb no (e -ετ M -e acτ M +a d ) -d ono |z no -ẑno | 2 where τ m := min I > 0. Then, we choose successively

0 < ε < - a c τ M + a d τ M , r > d ono b no (e -ετ M -e acτ M +a d ) ,
and finally ℓ sufficiently large to have both

e λc ℓτm 2 b o (ℓ) > d o (ℓ)b o (ℓ) + rd noo (ℓ)b o (ℓ), λ c ℓ 2 > rc noo ,
which is possible because exponential growth wins over a rational one. Then, (z-AS), with β z (δ, s) = ρδe -λs for some ρ > 0 and λ > 0, directly follows from [START_REF] Sanfelice | Hybrid Feedback Control[END_REF]. ■ Remark 2. Note that while similar results might be obtained via a small-gain methodology as in [START_REF] Liberzon | Lyapunovbased Small-gain Theorems for Hybrid Systems[END_REF], we choose here to follow an explicit Lyapunov proof. Example 1. Assume that (5) is such that f o and h o take the following triangular form decoupled from z no : żo

= Az o + Φ(z o , u c ), y c = z o,1 = Hz o , (9) 
with

A =       0 1 0 . . . 0 0 0 1 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . 1 0 0 0 . . . 0       , Φ(z o , u c ) =    Φ 1 (z o,1 , u c ) Φ 2 (z o,1 , z o,2 , u c ) . . . Φ no (z o , u c )   ,
and H = (1 0 . . . 0), where Φ and g o are Lipschitz with respect to z, uniformly in their respective input. The instantaneous observability of the pair (f o , h o ) in Assumption 2 is then automatically guaranteed by (9). When f and h c in (1) are both autonomous, such a form can be obtained using the autonomous transformation

T o (x) = (h c (x), L f h c (x), . . . , L no-1 f h c (x)), (10) 
but here we additionally require the decoupling of żo from z no . A high-gain flow-based observer [START_REF] Gauthier | A Simple Observer for Nonlinear Systems Applications to Bioreactors[END_REF] defines ( fo , ĝo ) as

żo = Aẑ o + sat(Φ(ẑ o , u c )) + ℓL(ℓ)K(y c -H ẑo ) ẑ+ o = sat(g o (ẑ o , ẑno , u d )), (11) 
where ℓ > 0, L(ℓ) = diag(1, ℓ, . . . , ℓ no-1 ), and 12) where the constant matrix P = P ⊤ > 0 is a solution to

K = (k 1 , k 2 , . . . , k no ) chosen independently of ℓ such that A - KH is Hurwitz. It can then be checked that the Lyapunov function V o (z o , ẑo ) = (z o -ẑo ) ⊤ L -1 (ℓ)P L -1 (ℓ)(z o -ẑo ), (
P (A -KH) + (A -KH) ⊤ P ≤ -aP, (13) 
for some a > 0, verifies the assumptions of Theorem 1. In another case, if

f o and h o are such that żo = A(u c , y c )z o + Φ(z o , u c ), y c = H(u c )z o , (14 
) still with A, H, Φ of the same shape as (9) (but varying in u c , y c ) and Φ, g o Lipschitz, a Kalman-like high-gain flowbased observer [START_REF] Besancon | Further Results on High Gain Observers for Nonlinear Systems[END_REF] 

defines ( fo , φ c , ĝo , φ d ) as                żo = A(u c , y c )ẑ o + sat(Φ(ẑ o , u c )) + ℓL(ℓ)P -1 H ⊤ (u c )(y c -H(u c )ẑ o ) Ṗ = -ℓ(µP -A ⊤ (u c , y c )P -P A(u c , y c ) + H ⊤ (u c )H(u c )) ẑ+ o = sat(g o (ẑ o , ẑno , u d )) P + = P 0 , (15) 
initialized with P 0 > 0, for µ large enough. In this case, the extra observer state in ( 6) is p = P . The observability in Assumption 2 is linked to the existence of ℓ ⋆ > 0 and α > 0 such that for all ℓ > ℓ ⋆ and for all t > 1 ℓ ,

t t-1 ℓ ⋆ ⊤ H(u c (s))ψ A(uc,yc) (s, t) ⋆ ds ≥ α ℓ (L -1 (ℓ)) 2 ,
where ψ A(uc,yc) (s, t) is the transition matrix of the linear continuous dynamics v = A(u c , y c )v from time t to time s. It can then be checked that the Lyapunov function 16) with the varying gain P admitting a strictly positive uniform lower bound thanks to observability, verifies the assumptions of Theorem 1.

V o (z o , ẑo , P ) = (z o -ẑo ) ⊤ L -1 (ℓ)P L -1 (ℓ)(z o -ẑo ), (
While the flow-based part of the observer characterized by V o,ℓ is standard via well-known high-gain constructions as shown in Example 1, the choice of the jump-based part related to V no is more intricate. A constructive design is presented in Section 4 for a certain class of hybrid systems. Remark 3. With the high-gain designs in Example 1, an error z o -ẑo appearing in fno would typically make c noo in Theorem 1 depend on ℓ, which is not allowed. Therefore, we may need to require f no and fno to be independent of z o and ẑo . This can always be done by taking z no = x or any left-invertible function of x, meaning that z o is somehow estimated twice, through both z o and z no . This obstruction to handle coupling during flows with a highgain design was similarly noticed in the linear output regulation context (Cox et al., 2016, Proposition 6). Note also that with the existing high-gain designs in Example 1, b o does not depend on ℓ (and the same for Theorem 2 below).

Conditions for Arbitrarily Fast Exponential Stability

Under certain conditions, as shown in Theorem 2 below, the coupling of an arbitrarily fast high-gain flow-based observer and an arbitrarily fast jump-based one that has an ISS property can actually result in arbitrarily fast exponential stability of the error (in the z-coordinates). Theorem 2. Suppose Assumption 1 holds and define τ M := max I. Consider the cascade ( 5)-( 6) and sets P c , P d ⊆ R np such that each solution (z, ẑ, p, τ ) initialized in Z 0 × R nz × P 0 × {0} with inputs (u c , u d ) ∈ U c × U d is such that p(t, j) ∈ P c during flows and p(t, j) ∈ P d at jumps. Assume there exist scalars ℓ 0 > 0, γ 0 > 0, λ c > 0, c no ≥ 0, and λ d ≥ 0, rational functions b o > 0 and b o > 0, functions b no > 0 and b no > 0, functions c noo ≥ 0 and d ono ≥ 0, and functions d o ≥ 0 and d noo ≥ 0 rational in their first argument such that, for all ℓ > ℓ 0 and 0 < γ < γ 0 , there exist functions

V o,ℓ : R no × R no × R np × R → R and V no,γ : R nno × R nno × R np × R → R such that: (1) (Uniform boundedness) For all (u c , u d ) ∈ U c × U d , z = (z o , z no ) ∈ R nz such that (z, u c ) ∈ C z or (z, u d ) ∈ D z , ẑ = (ẑ o , ẑno ) ∈ R nz , p ∈ P c ∪ P d , and τ ∈ [0, τ M ], b o (ℓ)|z o -ẑo | 2 ≤ V o,ℓ (z o , ẑo , p, τ ) ≤ b o (ℓ)|z o -ẑo | 2 , b no (γ)|z no -ẑno | 2 ≤ V no,γ (z no , ẑno , p, τ ) ≤ b no (γ)|z no -ẑno | 2 ; (2) (Flow-based conditions) For all u c ∈ U c , z ∈ R nz such that (z, u c ) ∈ C z , ẑ ∈ R nz , p ∈ P c , and τ ∈ [0, τ M ], Vo,ℓ (z, ẑ, p, τ, u c ) ≤ -ℓλ c V o,ℓ (z o , ẑo , p, τ ), Vno,γ (z, ẑ, p, τ, u c ) ≤ c no V no,γ (z no , ẑno , p, τ ) + c noo (γ)V o,ℓ (z o , ẑo , p, τ ); (3) (Jump-based conditions) For all u d ∈ U d , z ∈ R nz such that (z, u d ) ∈ D z , ẑ ∈ R nz , p ∈ P d , and τ ∈ I, V + o,ℓ (z, ẑ, p, τ, u d ) ≤ d o (ℓ, γ)V o,ℓ (z o , ẑo , p, τ ) + d ono (γ)|z no -ẑno | 2 , V + no,γ (z, ẑ, p, τ, u d ) ≤ γe -λ d V no,γ (z no , ẑno , p, τ ) + d noo (ℓ, γ)V o,ℓ (z o , ẑo , p, τ ).
Then, for any λ > 0, there exists 0 < γ ⋆ ≤ γ 0 such that there exists ℓ ⋆ ≥ ℓ 0 such that if 0 < γ < γ ⋆ and ℓ > ℓ ⋆ , (z-AS) holds with β z (δ, s) = ρδe -λs for some ρ > 0.

Note that the dependence of the functions on γ is arbitrary.

Proof. Consider the following Lyapunov function W ℓ,γ :

R nz × R nz × R np × R → R (with r > 0 and ε > 0): W ℓ,γ (z, ẑ, p, τ ) = e λc ℓτ 2 V o,ℓ (z o , ẑo , p, τ ) + re -ετ V no,γ (z no , ẑno , p, τ ). First, we have for all (u c , u d ) ∈ U c × U d , z ∈ R nz such that (z, u c ) ∈ C z or (z, u d ) ∈ D z , ẑ ∈ R nz , p ∈ P c ∪ P d , and τ ∈ [0, τ M ], ρ o (ℓ)|z o -ẑo | 2 + ρ no (γ)|z no -ẑno | 2 ≤ W ℓ,γ (z, ẑ, p, τ ) ≤ ρ o (ℓ)|z o -ẑo | 2 + ρ no (γ)|z no -ẑno | 2 , (17) where ρ o (ℓ) = b o (ℓ), ρ no (γ) = b no (γ)re -ετ M , ρ o (ℓ) = b o (ℓ)e λc ℓτ M 2
, and ρ no (γ) = b no (γ)r.

During flows, for all u

c ∈ U c , z ∈ R nz such that (z, u c ) ∈ C z , ẑ ∈ R nz , p ∈ P c , and τ ∈ [0, τ M ], Ẇℓ,γ (z, ẑ, p, τ, u c ) ≤ -min λ c ℓ 2 -rc noo (γ), ε -c no W ℓ,γ (z, ẑ, p, τ ).
At jumps, for all

u d ∈ U d , z ∈ R nz such that (z, u d ) ∈ D z , ẑ ∈ R nz , p ∈ P d , and τ ∈ I, W + ℓ,γ (z, ẑ, p, τ, u d ) -W ℓ,γ (z, ẑ, p, τ ) ≤ -e λc ℓτm 2 b o (ℓ) -d o (ℓ, γ)b o (ℓ) -rd noo (ℓ, γ)b o (ℓ) |z o -ẑo | 2 -rb no (γ)(e -ετ M -γe -λ d ) -d ono (γ) |z no -ẑno | 2
, with τ m := min I > 0. Then, given any λ > 0, we choose successively

ε > c no + 2λ 1 τ m + 1 , 0 < γ < e λ d -ετm , r > d ono (γ) b no (γ)(e -ετ M -γe -λ d ) ,
and finally ℓ sufficiently large to have both

e λc ℓτm 2 b o (ℓ) > d o (ℓ, γ)b o (ℓ) + rd noo (ℓ, γ)b o (ℓ), λ c ℓ 2 > rc noo (γ) + 2λ 1 τ m + 1 ,
which is possible because exponential growth wins over a rational one. We then obtain during flows and at jumps respectively, Ẇℓ,γ (z, ẑ, p, τ ) ≤ -2λ

1 τ m + 1 W ℓ,γ (z, ẑ, p, τ ), W + ℓ,γ (z, ẑ, p, τ ) -W ℓ,γ (z, ẑ, p, τ ) ≤ -a d,o |z o -ẑo | 2 -a d,no |z no -ẑno | 2
, for some a d,o > 0 and a d,no > 0. That implies that W ℓ,γ (z(t, j), ẑ(t, j), p(t, j), τ (t, j)) ≤ e -2λ( 1 τm +1)t W ℓ,γ (z(0, 0), ẑ(0, 0), p(0, 0), τ (0, 0)), for all (t, j) ∈ dom z = dom ẑ. From Assumption 1, we have j ≤ t τm +1 or t ≥ t+j-1 1 τm +1 for all (t, j) ∈ dom z = dom ẑ. Therefore, we have W ℓ,γ (z(t, j), ẑ(t, j), p(t, j), τ (t, j)) ≤ e 2λ e -2λ(t+j) W ℓ,γ (z(0, 0), ẑ(0, 0), p(0, 0), τ (0, 0)), for all (t, j) ∈ dom z = dom ẑ. Then (z-AS), with β z (δ, s) = ρδe -λs for some ρ > 0, directly follows from [START_REF] Sanfelice | Hybrid Feedback Control[END_REF]. ■ Remark 4. It is seen that ρ in β z increases as λ increases, characterizing the peaking phenomenon typically encountered in high-gain designs when we push convergence arbitrarily fast. Discrete observers satisfying the conditions in Theorem 2 include (T ¸iclea and [START_REF] Besançon | Exponential Forgetting Factor Observer in Discrete Time[END_REF] and [START_REF] Tran | Arbitrarily Fast Robust KKL Observer for Nonlinear Time-varying Discrete Systems[END_REF], where the former requires linearity in the dynamics and output. Note that we can only recover, under the uniform injectivity of T , asymptotic stability in the x-coordinates. To recover arbitrarily fast exponential stability, we must require a stronger injectivity from T .

OBSERVER DESIGN FOR A CLASS OF SYSTEMS

In this section, we use Theorem 1 to design a full observer for the class of hybrid systems (1) that can be put, via some uniformly left-invertible transformation, into the form

       żo = f o (z o , u c ) ξno = A no ξ no + B no (z o , ξ no , u c ) ∈ C z,ξ z + o = J o (z o , u d ) + J ono (z o , u d )ξ no ξ + no = J no (z o , u d )ξ no + J noo (z o , u d ) (z o , ξ no , u d ) ∈ D z,ξ (18a) 
with the outputs

y c = h o (z o , u c ), y d = H d,noo (z o , u d )+H d,no (z o , u d )ξ no .
(18b) The model ( 18) covers a wide class of hybrid systems, including the case of (mechanical) systems with uncertain impacts, where we need to estimate the state z o observable during flows and some impact parameters contained in ξ no , which affect z o at jumps in an affine way but not during flows. These parameters then typically become detectable from y c through the way they affect z o at jumps, namely from the fictitious output J ono (z o , u d )ξ no . Examples of hybrid systems that fit into the form (18) range from a bouncing ball (Example 2) to walking robots [START_REF] Short | A Hybrid Predictive Control Approach to Trajectory Tracking for a Fully Actuated Biped[END_REF] and spiking neurons [START_REF] Goebel | Hybrid dynamical systems: Modeling, stability, and robustness[END_REF]. Remark 5. The results in this section can be seen as the nonlinear version of those in [START_REF] Tran | Observer Design based on Observability Decomposition for Hybrid Systems with Linear Maps and Known Jump Times[END_REF] for hybrid systems with linear maps, where we have f o = 0, A no = 0, and B no = 0 thanks to an appropriate time-varying linear transformation. Note that for the case of nonlinear maps treated in this paper, n z can be larger than n x .

Following Assumption 1, solutions to (18) of interest, initialized in some set Z 0 , are complete. We also define a compact set Z o ×Ξ no where the solutions of (18) of interest remain. For simplicity, we take The observer we propose for (18) takes the form To estimate ξ no , we propose to design the gains K d and L d exploiting the detectability brought by an extended output made of H d,no (z o , u d )ξ no in y d as well as J ono (z o , u d )ξ no affecting z o at jumps. For this, we assume the following. Assumption 5. There exist a symmetric positive definite matrix

C z,ξ ⊆ Z o × Ξ no × U c and D z,ξ ⊆ Z o × Ξ no × U d . Denote D o := {z o ∈ R no : ∃ξ no ∈ R nno , u d ∈ R n u,d : (z o , ξ no , u d ) ∈ D z,ξ }. Assumption 3. The maps f o , J o , J ono , J no , J noo , H d,noo
                               żo = fo (ẑ o , p, τ, y c , u c ) ξno = A no ξno + B no + e Anoτ K d d dt Ψ fo,sat(•,uc) (ẑ o , t, -τ ) ṗ = φ c (p, τ, y c , u c ) τ = 1 ẑ+ o = J o (sat(ẑ o ), u d ) + J ono (sat(ẑ o ), u d ) ξno ξ+ no = J no (sat(ẑ o ), u d ) ξno + J noo (sat(ẑ o ), u d ) + L d (sat(ẑ o ), u d , τ )(y d -H d,noo (sat(ẑ o ), u d ) -H d,no (sat(ẑ o ), u d ) ξno ) p + = φ d (p, τ, y d , u d ) τ + = 0, ( 19 
Q ∈ R nno×nno , gains K d ∈ R nno×no and (z o , u d , τ ) → L d (z o , u d , τ ) ∈ R nno×n y,d bounded on Z o × U d × I such that for all z o ∈ Z o ∩ D o , u d ∈ U d , and τ ∈ I: Φ ⊤ (z o , u d , τ )QΦ(z o , u d , τ ) -Q < 0, (20) where 
Φ(z o , u d , τ ) = J no (z o , u d ) -(K d L d (z o , u d , τ )) J ono (z o , u d ) H d,no (z o , u d ) e Anoτ .
Contrary to L d , which may depend on z o , u d , and the timer τ , K d is required to be constant to perform the analysis (in the proof of Theorem 3). This extra requirement is similar to the one we made in [START_REF] Tran | Observer Design based on Observability Decomposition for Hybrid Systems with Linear Maps and Known Jump Times[END_REF] for hybrid systems with linear maps. Assumption 5 is thus a nonlinear version of the LMI-based one in [START_REF] Tran | Observer Design based on Observability Decomposition for Hybrid Systems with Linear Maps and Known Jump Times[END_REF], which is stronger than quadratic detectability [START_REF] Wu | Control of Linear Parameter Varying Systems[END_REF] by the constant nature of K d . To solve (20), we can use gridding (grid-based solving) assuming a particular structure of L d , possibly with checking of the obtained gains using a much denser grid [START_REF] Wu | Control of Linear Parameter Varying Systems[END_REF]. If the form of Φ allows it, we may also solve (20) using the polytopic method thanks to residue matrix expansion as in [START_REF] Ferrante | State Estimation of Linear Systems in the Presence of Sporadic Measurements[END_REF], or still gridding but with a theoretical proof of stability extended from [START_REF] Sferlazza | Time-Varying Sampled-Data Observer With Asynchronous Measurements[END_REF]. Theorem 3. Under Assumptions 1, 3, 4, and 5, the cascade ( 18)-( 19) verifies (z-AS) (with (ξ no , ξno ) replacing (z no , ẑno )).

Proof. By Assumption 3 and (McShane, 1934, Corollary 1), there exists an extension f o,sat of f o that is defined and globally Lipschitz on R no × R nu c . To use the fictitious output, we use the transformation (z o , ξ no , ẑo , ξno , p, τ, t, j) → (z o , z no , ẑo , ẑno , p, τ ), with

z no = e -Anoτ ξ no -K d Ψ fo,sat(•,uc) (z o , t, -τ ) + -τ 0 e Ano(-τ -s) B no ds, ẑno = e -Anoτ ξno -K d Ψ fo,sat(•,uc) (ẑ o , t, -τ ) + -τ 0 
e Ano(-τ -s) B no ds. This change of coordinates is well-defined by the global Lipschitzness of f o,sat and there exists a compact set Z no such that for any (z o , ξ no , ẑo , ξno , p, τ, t, j)

∈ Z o × Ξ no × R no × R nno × R np × [0, τ M ] × R ≥0 × N, we have z no ∈ Z no .
In the new coordinates, the dynamics of (z o , ẑo , p, τ ) are obtained by replacing ξ no and ξno with and ẑno , we start by showing that Ψ fo,sat(•,uc) (z o , t, -τ )) is constant along solutions. To do that, pick a solution resulting from the interconnection ( 18)-( 19) initialized in Z 0 ×R nz ×P 0 ×{0}. Since the solution component z o flows according to f o with input u c , for each j ∈ dom j z o , and each s ∈ [0, t -t j ], we have Ψ fo(•,uc) (z o (t, j), t, -s) = z o (t -s, j), and since the trajectory t → z o (t, j) remains in Z o and τ is initialized as τ (0, 0) = 0, we have for all (t, j) ∈ dom z o , Ψ fo,sat(•,uc) (z o (t, j), t, -τ (t, j)) = Ψ fo(•,uc) (z o (t, j), t, -τ (t, j)). Besides, by definition of the dynamics, τ initialized as τ (0, 0) = 0 is the time elapsed since the previous jump, namely τ (t, j) = t -t j for all j ∈ dom j z o . Therefore, exploiting again that z o evolves according to f o with input u c , we have Ψ fo,sat(•,uc) (z o (t, j), t, -τ (t, j)) = Ψ fo(•,uc) (z o (t, j), t, -(t -t j )) = z o (t j , j) for all j ∈ dom j z o and t ∈ [t j , t j+1 ], so that t → Ψ fo,sat(•,uc) (z o (t, j), t, -τ (t, j)) is constant. Therefore, solutions of the interconnection ( 18)-( 19) that are initialized in Z 0 × R nz × P 0 × {0} are such that the variable z no takes the dynamics żno 

ξ no = e Anoτ (z no + K d Ψ fo,sat(•,uc) (z o , t, -τ )) + τ 0 e Ano(τ -s) B no ds, ξno = e Anoτ (ẑ no + K d Ψ fo,sat(•,uc) (ẑ o , t, -τ )) + τ 0 e Ano(τ -s) B no ds,
= -A no e -Anoτ ξ no + e -Anoτ ξno -e -Anoτ B no = -A no e -Anoτ ξ no + e -Anoτ (A no ξ no + B no ) -e -Anoτ B no = 0 z + no = ξ + no -K d z + o = J no (z o , u d )ξ no + J noo (z o , u d ) -K d (J o (z o , u d ) + J ono (z o , u d )ξ no ) = (J no (z o , u d ) -K d J ono (z o , u d ))ξ no + J noo (z o , u d ) -K d J o (z o , u d ) = ϕ(z o , u d , τ )(z no + K d Ψ fo,sat(•,uc) (z o , t, -τ ) + τ 0 e -Anos B no ds) + J noo (z o , u d ) -K d J o (z o , u d ), where ϕ(z o , u d , τ ) = (J no (z o , u d ) -K d J ono (z o , u d ))e Anoτ

CONCLUSION

This paper presents detectability necessary conditions and Lyapunov-based sufficient conditions for coupling flowand jump-based observers for hybrid systems with known jump times. We also apply these to design an observer for a wide class of hybrid systems, followed by an application to state and parameter estimation in a bouncing ball. Future work includes finding implementable approximations of the innovation term in ξno in (19) (which is possible since this term vanishes asymptotically) and building a nonlinear jump-based observer to estimate z no (or ξ no ) with a fully nonlinear jump map. A candidate for this is the nonlinear Luenberger observer [START_REF] Brivadis | Luenberger Observers for Discrete-time Nonlinear Systems[END_REF], which can have both an arbitrarily fast convergence rate and an ISS property, hence coherent with the results developed in Theorem 2.

  , and H d,no are Lipschitz with respect to z o on Z o , uniformly in (u c , u d ) ∈ U c × U d . The maps J no , J ono , and H d,no are bounded on Z o × U d .

  ) where f o,sat is globally Lipschitz with respect to z o , uniformly in u c ∈ U c , and equal to f o on Z o × U c ; sat(ẑ o ) = ẑo on Z o ; and K d and L d are the gains to design. Assumption 4. Under Assumption 2, assume that z o ∈ R no can be estimated with a high-gain flow-based observer. Thus, the maps fo , φ c , and φ d in (19) are such that there exist P 0 , P c , P d , V o,ℓ , ℓ 0 , b o , b o , λ c , d o , and d ono satisfying the conditions in Theorem 1 with ξ no replacing z no .

  considering the extended inputs u c,ext = (u c , t) ∈ U c,ext and u d,ext = (u d , t) ∈ U d,ext , with U c,ext = U c × R ≥0 and U d,ext = U d × R ≥0 . Concerning the dynamics of z no

  Fig. 1. State and parameter estimation in a bouncing ball.

Define the error zno := z no -ẑno . We then get

. Now add and subtract both the terms ϕ(sat

and use the expression of Υ. The error zno takes the dynamics żno = 0 20). By the global Lipschitzness of f o,sat with respect to z o , uniformly with respect to u c , Grönwall's inequality allows to show that

By subtracting both sides and using the triangle inequality,

Thanks to Assumptions 3 and 5 and Young's inequality on the cross terms, there exist c 1 ∈ [0, 1) and c 2 , c 3 , c 4 > 0 such that for any

Picking κ large enough so that c 1 + c2 κ ∈ [0, 1), V no satisfies the second item of each condition of Theorem 1. Besides,

and since τ remains in [0, τ M ] and Ψ fo,sat(•,uc) (•, t, -τ )) is Lipschitz, uniformly with respect to (t, τ ) ∈ R ≥0 × [0, τ M ], using Young's inequality, there exist c 5 > 0 and c 6 > 0 such that for all (z o , z no , ẑo , ẑno , τ, u c , t)

so that V o,ℓ satisfies the inequalities involving it in Theorem 1 in the new coordinates. Since φ c and φ d are independent of (ẑ o , ẑno ), solutions (z o , z no , ẑo , ẑno , p, τ ) to the cascade initialized in 

where ℓ → Γ(ℓ) ∈ R no×ny,c is an appropriate high-gain (see (Bernard and Sanfelice, 2022, Example 4.2)). This form is similar to [START_REF] Tran | Observer Design based on Observability Decomposition for Hybrid Systems with Linear Maps and Known Jump Times[END_REF] for linear maps. Example 2. Consider a bouncing ball with an unknown restitution coefficient, described by ẋ = (x 2 , -c f x 2 + u c , 0), when x 1 ≥ 0 x + = (x 1 , -x 2 x 3 + u d , x 3 ), when x 1 = 0 and x 2 ≤ 0 with flow output y c = x 1 and no jump output, where x 1 and x 2 are the ball's height and velocity, instantaneously observable through y c ; x 3 = 0.5 is the restitution coefficient at the impact that we also want to estimate using its interaction with x 2 at jumps; c f = 0.1 is the friction coefficient; u c = -9.8 is the gravitational acceleration; and u d = 5 is a pulse at the impact which serves to: 1) Uniformly bound (x 1 , x 2 ) in a compact set Z o not containing 0 (otherwise x 3 would not be uniformly detectable); and 2) Uniformly bound the flow lengths away from 0 and providing enough flowing to estimate z o . By choosing z o = (z o,1 , z o,2 ) = (x 1 , x 2 ) and ξ no = x 3 ,