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ABSTRACT

Software engineers are acutely aware that the build of software is an
essential but resource-intensive step in any software development
process. This is especially true when building large systems or
highly configurable systems whose vast number of configuration
options results in a space explosion in the number of versions that
should ideally be built and evaluated.

Linux is precisely one such large and highly configurable sys-
tem with thousands of options that can be combined. Previous
study showed the benefit of incremental build, however, only on
small-sized configurable software systems, unlike Linux. Although
incremental compilation for post-commit is used in Linux, we show
in this paper that the build of large numbers of random Linux
configurations does not benefit from incremental build.

Thus, we introduce and detail PYROBUILDS, our new approach
to efficiently explore, with incremental builds, the very large con-
figuration space of Linux. Very much like fireworks, PYROBUILDS
starts from several base configurations ("rockets") and generates
mutated configurations ("sparks") derived from each of the base
ones. This enables exploring the configuration space with an ef-
ficient incremental build of the mutants, while keeping a good
amount of diversity. We show on a total of 2520 builds that our
PYROBUILDS approach does trigger synergies with the caching ca-
pabilities of MAKE, hence significantly decreasing builds time with
gains up to 85%, while having a diversity of 33% of options and 15
out of 17 subsystems. Overall, individual contributors and contin-
uous integration services can leverage PYROBUILDS to efficiently
augment their configuration builds, or reduce the cost of building
numerous configurations.

1 INTRODUCTION

Building software is a crucial activity for developers and maintain-
ers of projects. Various artefacts are assembled, compiled, tested,
and then deployed, presumably successfully. The emergence of
continuous integration (CI) has accelerated this trend with the in-
tegration of build services into major code platforms (e.g., GitHub,
GitLab). The goal is to continuously ensure some quality assur-
ance of software products, whether in terms of functionality or
non-functional properties (e.g., security, execution time).

Djamel Eddine Khelladi
djamel-eddine.khelladi@irisa.fr
Univ Rennes, CNRS, Inria, IRISA - UMR 6074
F-35000 Rennes, France

Mathieu Acher
mathieu.acher@irisa.fr
Univ Rennes, CNRS, Inria, IRISA - UMR 6074,
Institut Universitaire de France (IUF)
F-35000 Rennes, France

Software configurations add further complexity to the problem
of building software. Different variants of the artefacts can be as-
sembled e.g., due to conditional compilation directives #ifdef-s in
the source code. Different external libraries can be compiled and
integrated as well. The way the build is realized can also change e.g.,
with the use of different compiler flags. Developers and maintainers
of a project want to ensure that, throughout the evolution, all or
at least a subset of software configurations build well. As most of
today’s software is configurable in order to fit constraints, func-
tional and performance requirements of users, it is not surprising
to observe that many organizations build different software config-
urations of their projects. For instance, initiatives like KernelCI or
0-day build thousands of default or random Linux configurations
each day [2, 3, 48, 63]. Another example is JHipster, a popular Web
generator, that builds dozens of configurations at each commit,
involving different technologies (Docker, Maven, grunt, etc.) [25].

Highly configurable systems like the Linux Kernel need inten-
sive testing —especially for Linux which is used in critical systems.
Linux 6.1 has over 20, 000 configuration options, each of which can
be either enabled, enabled as module or disabled by the user, thus
shaping the generated executables. Considering that each of these
20, 000 options can take only two values, enabled or disabled, leads
to 220900 possible configurations. The actual number is lower, due
to constraints among features, but remains huge. It is thus practi-
cally infeasible to test all the possible configurations. However, part
of the configuration space can be tested through uniform random
sampling of the configuration space. Getting a uniform random
sampling of such a huge configuration space still is an open ques-
tion [28, 47], but the Linux kernel developer have written a widely
used tool to generate random configurations.

Kernel builds are important for the Linux community for veri-
fying that kernels compile well regarding different architectures
and configuration options - builds are also a prerequisite to check
whether kernels boot, pass test suite. Hence, multiple initiatives
exist that intensively build Linux kernel configurations, such as
KernelCI [3], Intel 0-day [2, 36], Tuxmake [59, 63] or TuxML for
instance [5, 47]. However, building software is increasingly com-
plex and costly in terms of time and resources, such as energy [11,
17, 29, 43]. For instance, the TuxML project took more than 15K
hours of computation time to build 90K+ random configurations,
and derive an accurate prediction model for size prediction [47].



KernelCI builds about 400 configurations per-day, with reports
on the Linux Kernel Mailing List (LKML) when errors occur. Ker-
nelCI mostly tests default configurations that must build and also
considers additional, random configurations if the computational
resources allow it. The kernel needs to test more esoteric configura-
tions to further explore the configuration space in diverse settings
and ensure quality assurance throughout the evolution.

In this paper, we thus aim at tackling the issue of speeding up
builds of configurable software: It can help to diversify and aug-
ment the number of tested configurations, or it can help to reduce
the cost (e.g., computational time) of a build campaign. We propose
PYROBUILDS, an automatic approach relying on incremental builds
of configurations. The principle is to reuse the result of an existing
build for other configurations. In contrast to traditional build that
would clean and restart from scratch, some artefacts do not have
to be re-built. The key ingredient of PYROBUILDS is to select con-
figurations that are close to each other — otherwise, the distance
between configurations is too important and compiled artefacts
cannot be shared across builds. Hence, PYROBUILDS synthesizes
numerous configurations out of a configuration base through an
innovative mutation mechanism. Very much like fireworks, and to
give an image, we produce many sparks (hence the term "pyro")
around a base configuration that allow for diversification of options,
without deviating too much to keep the incremental build efficient.

We target the Linux configurable software as it is highly con-
figurable and complex software. In [56, 57], Randrianaina et al.
explored the idea of incremental build of software configurations,
but on much smaller configurable software with fewer options and
possible configurations. Furthermore, empirical results show some
limitations (e.g., incremental build of configurations is not always
correct) and potential benefits (e.g., the reduction of build time
can be achieved under the conditions that a specific ordering is
found). The exploratory study raised the open challenge of finding
a strategy that is both correct and effective, especially at the scale of
the Linux kernel configuration space. Thus, we first replicate their
hypothesis on a Linux, which is far larger than subject systems
considered in [56, 57] w.r.t. number of options (15K+ options vs less
than one hundred), configurations, and lines of code. We empirically
show that there is no benefit for incremental build with randomly
selected Linux configurations — worse, the computational time is
much more important. We then used PYROBUILDS to incrementally
build Linux configurations with a succession of mutations. This
later case showed significant benefits in comparison to a traditional
clean build. On a total of 2520 builds, we observed a systematic
gain going up to 85%, while reaching on average 90.6% correctness,
33% diversity of options and 15 out of 17 subsystems that a random
Linux configuration would explore in terms of activated options
and subsystems.

Overall, our contributions are as follows:

o PYROBUILDS’s approach that offers (1) automated mutation
of configurations; (2) progressive exploration of configura-
tion space with incremental builds.

e Empirical results that show the inefficiency of incremental
build between random configurations of Linux;
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o An assessment of PYROBUILDS showing the significant gain
when a base Linux configuration (e.g., default configura-
tion or random configuration) is mutated and incrementally
built. PYROBUILDS also provides a good diversity, while re-
sulting incremental builds are strictly similar to traditional
builds in a vast majority of cases.

This paper is organised as follows. Section 2 provides background
material on MAKE, incremental build, and on the Linux kernel build
system. Section 3 outlines the motivation for our work, and Section
4 explains our approach for PYROBUILDS. Section 5 presents the
experimental setting, evaluation and results of our work. Section
6 discusses our work, results and threats to validity. Related work
in analysed in Section 7. Section 8 concludes and outlines future
work directions.

2 BACKGROUND

This section provides some background on the MAKE build system
and incremental build, then on the Linux kernel build system.

2.1 Make and Incremental Build

A build system specifies how to translate source code into a deliv-
erable. The developer declares rules on how to compile a source
code, which libraries to include and how to link them all together in
order to obtain an executable. MAKE [19] is one of the most popular
build systems [52].

MAKE. Build specifications are declared in Makefiles that are
spread out in the subdirectories of a project. Makefiles contain rules
that are either a filename to generate a library or object/executable
file, with its "recipe" depending on source files; or rules that are not
filename-based but rather rules to trigger other rules. Make starts
by reading the Makefile at the root of the project then recursively
goes into subdirectories. On its way, Make builds a dependency
graph of the relations between rules and spawns a build process to
satisfy each rule.

On its first invocation, Make checks if rules are satisfied. If the
target file does not exist, Make produces it according to the speci-
fication. Otherwise, it checks the timestamps of its dependencies:
if the target file is older than one of its dependencies, it must be
recompiled. This process is propagated on the whole dependency
graph. For a first build of a project, Make does a full build because
none of the target files exist yet.

Incremental build. After a full rebuild all rules are satisfied. A
second invocation of Make does nothing if no modification was
done. However, if a modification is done on a source file, a call to
Make checks timestamps and updates the rules impacted by the last
modification. This process does not rebuild the whole project every
time, if the specifications are correctly written[13], thus saving
resources. This process of rebuilding only the minimum necessary
parts of the build is called an Incremental build.

2.2 The Linux Kernel Build System

The Linux kernel build system is based on Make, and is separated
in two parts: Kconfig which lets the user configure the system and
Kbuild that translates this configuration into build specification
and runs the build process to generate the deliverable.
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Figure 1: Configuration options per subsystem in Linux 5.13
(log scale).

Kconfig. Configuration options are specified in Kconfig files in
the kernel source tree. They contain the name of the option, its type
(boolean/tristate/hex/string/int), its dependencies, a help description
if necessary or an import of other Kconfig files. Usually, one or
more Kconfig file(s) describe options implemented in a directory
and imports the Kconfig files of its subdirectory recursively. Hence,
the Kconlfig file at the top level of the source tree just contains a set
of imports to the other subdirectories of Linux. Figure 1 shows the
repatition of configuration options inthe Linux Kernel.

Kconfig assists the user in the configuration of the kernel via
command line or with a GUL It has also a set of default configu-
rations such as tinyconfig (few options, small binary size, suited
for embedded systems), defconfig (default configuration for a given
architecture), randconfig (random option choices) and allyesconfig
(a maximum of enabled options) among others. This configuration
phase produces a configuration .config that can be built.

Kbuild. MAKE is used by the Linux kernel to produce the deliv-
erable. Linux subdirectories contain Makefiles that set variables
such as compiler flags or version, or environment variables that
set the architecture. They also specify build rules with condition-
als depending on the options specified in the configuration file. In
addition, Kbuild generates a file for each of the enabled features
of the configuration file. Then, it has the rules impacted by the en-
abled option depend on this newly generated file. Hence, when the
user modifies a specific option, only the rules that depend on this
option are re-executed. This is intended to have incremental build
actionable for the kernel build. In fact, most projects that use MAKE
keep their configuration in one file (usually named autoconf.h or
config.h) and all the rules of the project depend on this file. When
the user modifies the value of an option for instance, the whole
project is built every time since this dependency is newer than the
other rules.

3 MOTIVATION

As explained in section 1, building a large number of varied con-
figurations of the Linux kernel is an important but expensive task.
Although a number of works and techniques exist to optimize the
compilation (i.e., build) of systems after commits [1, 14, 18, 20, 27, 39,
50, 54, 60, 65], resulting in deployments such as the one of ccache!l,
a much lower number of works pertain to optimising (ie. decreas-
ing the cost of) massive builds of Linux kernel configurations. The

Thttps://ccache.dev/

most commonly deployed solution is quite costly, since it consists
in parallelizing the builds, thus saving wall time but not decreasing
resources usage at all.

The current practice when building Linux kernels is to perform
clean builds (see section 2.2). Usually, CI infrastructures build de-
fault configurations as mentioned in Section 2.2 for various ar-
chitectures of the kernel, and for all patches or new releases of
Linux these default configurations must at least build. Some pre-
vious works such as [56] have made first inroads in the direction
of incremental builds for Linux. However, although the authors
reported good results for small x264 systems, their attempts with
incremental builds of the much larger Linux kernel did not bring
any significant decrease in resource consumption.

In the work we report in current paper, we tried to explore and
understand how and under which conditions could incremental
builds be used with benefits for the Linux kernel too.

Our initial intuition is better explained with an example. Typ-
ically, when configuring the Linux kernel, a user or a developer
starts with a base configuration and applies some changes until the
kernel matches the required usage. The default configuration on
the considered hardware architecture — x86_64 for example — can
be taken as a starting point. First, this base configuration is built
— which takes 92s in our example. Then, to find the configuration
that satisfies a specific need, options can be disabled or enabled;
for instance we disable support for Network FileSystems, enable
Hardware Monitoring Chip debugging messages. Then we build
the modified configuration. However, instead of performing a clean
build, the previous build of the default configuration can be reused
— thus instead of waiting for an extra 92s again to build the new
configuration, the incremental build took 7s only

Our approach is thus based on this observation. We seek in
which extent such configuration mutations can be beneficial to
incremental explore the configuration space at lower cost, while
retaining a significant diversity of the built configurations.

In the next section, we thus present our PYRoBUILDS approach,
that progressively mutates configurations in order to inject diversity
while relying on incremental build to rebuild only parts that are
necessarily added by the last mutation.

4 APPROACH

This section first discusses the naive approach of incremental build,
before introducing our approach of PyrRoBuILDS with mutation-
based incremental build and its implementation.

4.1 Naive incremental approaches don’t work

Based on the observations of the previous Section, a first naive
approach can be to keep diversity by successively building random
configurations, while trying at the same time to reap the fruits
of incremental builds by not doing any make clean between the
builds. This way each build could benefit from the caching of the
artefacts created by the previous build(s).

Figure 2 shows the results of incremental builds of 50 random
configurations using MAKE.
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Figure 2: Overhead of incremental build on random configu-
rations.

We can observe that incremental build does not bring any time
benefit; on the contrary, incremental build can even double build
time of some configurations.

This can be explained by the immensity of the configuration
space of Linux, as explained in Section 1, and by the fact that
random configurations built are very diverse, with up to more than
a thousand of option differences. Hence, configurations that are
completely different can be obtained, which implies completely
rebuilding the new configuration. During an incremental build,
MAKE checks whether some dependencies have already been built,
but because of the huge difference between configurations, no rule
can be reused. In such a case, a full (re)build is necessary, so no time
is saved. Even worse, all the checks performed by MAKE on the
already build artefacts (from previous configurations) are additional
overhead.

This first experiment shows that just adding plain, naive incre-
mental building is not producing any synergies, because of the
sheer size of Linux configuration space.

It is thus necessary to actively increase the locality of successive
incremental builds to actually reap benefits. This is precisely what
our new PYROBUILDS approach and tool are designed for.

4.2 PyYROBUILDS overview

Aiming at taking full advantage of incremental builds when building
the Linux kernel, our PYROBUILDS features exploration strategies
designed to harness MAKE’s incremental build capabilities 2. This
is done by relying on the locality, in the configuration space, of
the explored build configurations, to maximize the effectiveness
of the technical mechanisms that compose the build system. The
rationale is that the locality of the mutations in the configuration
space increases the probability of reusing previously built artifacts,
hence decreasing average and thus amortised build time. A proper
amount of diversity must however be kept, because one of the
raisons d’étre of building various configurations is to verify that
they do build, hence that the code is correct.

PYROBUILDS thus integrates a configuration mutator, whose
strategies will guide the way it explores the configuration space.
Our mutator is less aggressive than a full configuration change
like randconfig, since it progressively mutates a configuration, thus
benefiting from MAKE’s incremental build caching.

PyrRoBUILDS first builds an initial valid configuration, called base
configuration. Then it randomly picks an option and computes
its options dependencies. The resulting mutation that is actually

2QOther forms of caching, e.g. CCACHE, can also benefit from the synergies created by
our PYROBUILDS incremental build approach, but due to space constraints these are
outside the scope of this paper.
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(b) Snake Mode

Figure 3: Exploration strategies.

applied to the configuration is the addition of the chosen option
mutation and all the implied mutation on its option dependencies.
The resulting mutated configuration is then built. This build is an
incremental one, using the build directory of the base configuration.
Applying this process multiple times according to some exploration
strategy varies the configurations and progressively explores the
configuration space.

PYrROBUILDS exploration can follow two strategies, radial ex-
ploration and snake exploration, depicted in Figure 3. The radial
exploration always mutates the base configuration. Its goal is to ex-
plore the configuration space with slight modifications from a base
(see Figure 3a). The snake exploration starts by mutating the base
configuration, then after each build, mutates the last mutant. It thus
accumulates the mutations and the configurations built through
iterations (see Figure 3b).

Both radial exploration and snake exploration can be seen as
fireworks, where a rocket (base configuration) is shot, and explodes
in sparks (mutations) that are either spread radially around the
rocket (radial exploration) or create a snake-like trail of sparks
(snake exploration). Hence the name PYROBUILDS, based on the
Greek word pyr meaning fire.

4.3 PyYRroBuUILDS implementation

The base configuration is usually one of the default configurations
of the Linux kernel: tinyconfig, defconfig, allyesconfig. It is also
possible to start with a randconfig with options’ values set randomly.
The randconfig tool is widely used in the Linux community to test
the kernel in different settings [4, 5, 47, 53].

PyrOBUILDS’s implementation is depicted in Figure 4. First, an
option is randomly picked over all Kconfig options supported by
the chosen architecture (I). PYRoBUILDS mutates over booleans and
tristates only, randomly picking a value for the chosen options (2):
either yes or no for a boolean, and yes or no or mod for a tristate.
If the chosen option is already set in the current configuration, a
value different from its current one is chosen. The configuration and
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mutation are then fed to the mutator that generates the resulting
mutated configuration.

Note that a modification on a configuration option can impact
other options, so dependencies and possible conflicts with the newly
added option have to be solved. This is done using CONFIGFIxX [22]
(3, which relies on a SAT formula to represent the constraints of
Kconfig, and finds a logically valid solution (i.e., a new configu-
ration) for a mutation over the current configuration. When the
picked option cannot be not solved by CoNFIGFIx [22], we iterate
over the mutator until finding an option that is solved by ConFiG-
Fix. Eventually, the mutation is applied with its dependencies and
a new configuration is generated (@.

Kconric
value change
Yy -/
Option selection @ ConriGgFix
® ©) @

.config

Figure 4: PYRoBUILDS mutation procedure.

5 EVALUATION

In this section, we first present and detail the insights of our research
questions, then we explain our experimental settings.

5.1 Research questions

RQ1 (Correctness and consistency) Are PYROBUILDS incremental

builds correct and consistent with clean builds?
We must ensure that the output of an incremental build
is the same as the output of a clean build. We verify cor-
rectness by comparing the name and size of each symbol
in the binary using the bloat-o-meter Linux kernel tool.
Since the kernel introduces metadata like build date or
build version in the binary, a bit-by-bit comparison always
fails. We consider the build correct if bloat-o-meter does
not detect any changes between two binaries of the same
configuration with clean and incremental build.

RQ2 (Cost reduction) Are PYROBUILDS incremental builds faster

than clean builds?
Our main goal is to accelerate the build of configurations
with incremental builds. Here, we measure the build time
of an incremental build, then we compare it to the clean
build time.

RQs3 Does PyrRoBuUILDS diversify configuration space exploration?
The mutation of configurations is intended to be beneficial
for the build property, which is build time coupled with
incremental build. However, the main goal of CI infrastruc-
tures is to test many configurations to cover the configu-
ration space as much as possible. This research question
evaluates the mutations of PYROBUILDS in terms of option
diversification.

5.2 Experimental settings

We conducted three major experiments. First, we evaluate the ex-
ploration strategies described in Section 4 using only random con-
figurations as configurations, i.e., without any mutation. Second,
we evaluate the PYROBUILDS approach on both its configuration
mutation and its impact on incremental build with two kinds of
bases, randconfig and defconfig, that we mutate in radial and snake
modes.

When we generate a random configuration, we preset some val-
ues in the configuration. The architecture (Intel x86 and 64 bits) is

predefined, and we disable a compiler option GCC_PLUGIN_CYC_COMPLEXITY

that is a demonstrative option to show how to write a GCC plugin
and does not have any effect on the binary?.

The experiment starts with a base configuration that we clean
build. Then we use our mutation operator to mutate this configu-
ration to get a new mutant. For our experiment using randconfigs
only, this mutation phase is replaced by a generation of a new
randconfig. In a radial exploration, we incrementally build the new
configuration from a directory on which a clean build of the base
has been performed. For a snake exploration, we chain up the builds
such that each incremental build is performed in the directory in
which the build of the previous configuration had been performed.

In order to track some differences and keep the intermediate files
and final binaries of our experiment, we store everything inside a
local git repository. We initialize this local git repository from the
source code of the Linux kernel which represents the main branch.
Then, we derive a new branch from it, in which the configuration
to build is copied. Finally, we build the configuration and force
the staging of all our modifications and commit it in order to do a
snapshot of the experiment. Hence, a clean build is a build made in
a new branch that has the main branch - which is the clean source
code- as parent and an incremental build is a build made in a new
branch that has another build branch as parent.

In order to answer our research questions, we also perform a
clean build of all of the configurations we previously built incre-
mentally to compare some metrics.

For the experiments, we start by generating a fixed set of 20
configurations. Then, for each exploration strategy we mutate each
one of these 20 bases to 10 mutants that are built incrementally
according to the chosen strategy. For one exploration strategy, we
do 20 clean builds of the base, then 20 X 10 incremental builds.
In addition, we do 20 X 10 clean builds for each of the explored
configurations to compare them afterward. Since we evaluate 2
exploration strategy in 3 ways, we perform 2520 builds in total.

Using the presented build approach, we conduct the experiment
with the Linux kernel as a subject system.

We run our experiments on two servers with respectively 2xAMD
EPYC 7H12 64-Core, 503 Go of RAM and 2xAMD Epyc 7532 CPU
and 512 Go of RAM. Our experiments run inside a container from a
Docker image based on Tuxmake’s* on which we added some extra
tools for our measurements.

5.3 Results

We now answer our research questions.

3https://cateee.net/lkddb/web-1kddb/GCC_PLUGIN_CYC_COMPLEXITY.html
“https://hub.docker.com/r/tuxmake/x86_64_gcc-11/
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5.3.1 RQj: (Correctness and consistency) Are PyroBuILDS incremen-
tal builds correct and consistent with clean builds? We compare the
binaries obtained by a clean build and by an incremental build
of the same configuration. Building the Linux kernel in order to
get reproducible binaries is not trivial if we refer to the official
documentation®. Indeed, metadata such as the date of the build,
the host username and others are embedded in the binary. These
kinds of metadata render the build not reproducible and bit by
bit comparison too restrictive. Though we set some environment
variables related to the build system during our builds, namely

KBUILD_BUILD_TIMESTAMP,KBUILD_BUILD_USER,KBUILD_BUILD_HOST,

KBUILD_BUILD_VERSION, we do not handle modules signing keys
and structure randomization.

We base our comparison criteria on the symbols contained in
binaries. First, the binaries of the same configuration are compared,
then their symbols and sizes are compared. To do that, we use the
Linux kernel utility bloat-o-meter®. We consider the binary from
an incremental build to be correct if bloat-o-meter does not detect
any differences with the binary from a clean build.

We also consider, as the consistency criterion, that when the
clean build fails, the incremental build should fail too. Otherwise,
the incremental build is considered inconsistent.

Table 1 shows the correctness percentages of incremental builds
compared to their respective clean builds. With defconfig, incremen-
tal builds always provide correct binaries. However, some binaries
that are not correct are obtained when using random configurations
as base. First, with PYROBUILDS  mutations, the binaries obtained in
the radial exploration are correct at 80%. For the snake exploration,
binaries are 94.5% correct. With the exploration where, instead of
applying PYROBUILDS’ mutations, new randconfigs are generated,
the correctness rate is around 85%.

We found out that this was due to the value of a string that
depends on the state of the source git repository. In fact, the content
of string VERMAGIC_STRING is marked as "-dirty" if the repository
has some unstaged changes. Since the repository has some unstaged
changes right after a build, the product of an incremental build has
this additional tag in this string. This issue is documented in the
documentation on Linux reproducible build mentioned earlier.

Regarding consistency, PYROBUILDS always ends with consistent
incremental builds. However, the case when only random configu-
rations are chained results in builds that fail in incremental build
but do not fail in clean build. This happens in 97% of the cases for
the full-random method with snake and 98% for radial.

RQ1 insights: Incremental build using progressive mutations
of PYROBUILDS are correct at 100% with a defconfig base, 80%
with a random configuration as base for radial and 94.5% for
snake. All builds are consistent compared to full randconfigs.

5.3.2  RQs: Are incremental builds fast? To answer this research
question, we first experiment incremental build with random con-
figurations, then with random mutations to the base configuration.

Shttps://www.kernel.org/doc/html/latest/kbuild/reproducible-builds.html
Ohttps://git kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/bloat-
o-meter?h=v5.13
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Table 1: Correctness and consistency.

Base Mode Correctness (%) | Consistency (%)

Default radial 100% 100%

snake 100% 100%

radial 80.5% 100%

ki 94.5% 100%
Random snaxe

snake (Random) | 85.2% 97.0%

radial (Random) | 85.4% 98%

Batches

-80% -60% -40% -20% 0%
Gain

Figure 5: Build time gain with full randconfigs in radial ex-
ploration.

Figures 5 and 6 depict the build time box plot for the incremental
build of random configurations. We observe on average a systematic
loss for incremental build time compared to the clean build of the
random configurations, both in radial and snake strategies. The
loss can go up to —79% for radial and —288% for snake exploration.

Figures 7 and Figure 8 show the time performance gains of the
incremental build with random mutations from the default con-
figuration x86_64 as a base. We observe on average a systematic
overall gain for incremental build time compared to the clean build
of random configurations, both in radial and snake strategies. The
gain can go up to beyond 80% for both cases, with loss going down
to —20% for the snake exploration especially.

Figures 9 and Figures 10 show the time gains of incremental
build with random mutations from a random configuration as a
base. We also observe on average a systematic overall gain for
incremental build time compared to the clean build of the random
configurations, both in radial and snake explorations. In both case,
the loss can be near —20% while the gain can go above 80%.
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Figure 6: Build time gain with full randconfigs in snake ex-
ploration.
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Figure 7: Build time gain for PyroBuildS with radial explo-
ration with x86_64 default configuration as base.

While the gains are observed for both the default configuration
x86_64 and a random configuration when used as a base, the gains
are more prominent and significant in the former.

Finally, Figure 11 aggregates overall time performance when
incremental build is applied with mutations.
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Figure 8: Build time gain for PyroBuildS with snake explo-
ration with x86_64 default configuration as base.
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Figure 9: Build time gain for PyroBuildS with radial explo-
ration with random configurations as base.

RQ; insights: With random configurations in radial and
snake explorations, incremental build looses respectively up
to —79% and —288%. However, with PYROBUILDS mutations,
both with random and default configurations, the loss is con-
tained to less and only —20% with a gain up to and beyond
80%.
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Figure 10: Build time gain for PyroBuildS with snake explo-
ration with random configurations as base.
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Figure 11: Total gain snake exploration vs radial exploration.

5.3.3 RQs3: Does PyroBuiLDS diversify configuration space explo-
ration? To answer the questions centered on the diversity of build
configuration, we compare the diversity produced by PyrRoBuiLpS
to the one produced by random configurations. In particular, we
look at the number of options that are impacted by our changes
and the number of targeted subsystems.

In Figure 12, we present the number of all options impacted
by our changes in the presented explorations. An impact over an
option is anything that can have an effect on its value: value change
(e.g., from yes to module), disabling or enabling it.

As baseline, we consider the diversity of randconfigs. In fact,
randconfigs chose options randomly, thus having configurations
spread out in the configuration space. Even though there is no
particular gain in time, randconfigs cover well the configuration
space.

For each mutant of PYRoBuILDS, whatever the exploration strat-
egy, we compare them with the base by keeping the options that
were modified. Then, we check in which subsystem they occur. We
also include the base configuration in our data since it serves to
explore the configuration too.

#options

Randrianaina et al.
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B PyroBuildS randconfig
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Figure 12: Diversity of options (log scale) per subsyetm.

From Figure 12, we observe that PYROBUILDS is able to reach 15
out of 17 subsystems that are covered by randconfigs. Moreover, Py-
ROBUILDS was also able to cover 33% of the options that are covered
by randconfigs. Thus, the idea of combining random configurations
and mutation ("sparks") as part of PYROBUILDS is validated, offering
local and global diversity for exploring the configuration space.

RQs insights: Diversity of the PYROBUILDS covers 15 out of
17 subsystems and 33% of the options that both are covered
by randconfigs. Overall, mutation-based builds (1) provide
a tradeoff between diversity, build time, and correctness; (2)
are an interesting complement to random configurations.

6 DISCUSSION AND THREATS TO VALIDITY

We now discuss the impact of our approach and observed results,
then the threats to validity.

6.1 Impact and Open Directions

Recommendations for practitioners. Owing to our empirical
results, we can synthesize the following actionable recommenda-
tions:

e Random configurations of Linux should not be built incre-
mentally — due to the huge configuration space, the distance
between configurations is simply too important, and can
even lead to a (significant) increase in time;

Contributors, testers, and janitors of the Linux kernel can
use PYROBUILDS when using the defconfig configuration,
which is widely considered for testing the non-regression
of patches. Once it has been built and tested, an oppor-
tunity exists to build numerous mutated configurations
out of defconfig, hence diversifying the number of tested
configurations at a lower computational cost. Continuous
integration (CI) initiatives like KernelCI or 0-day can also
leverage PYROBUILDS to diversify their set of tested config-
urations once defconfig has been built;

CIservices in the Linux ecosystem can leverage PYROBUILDS
to further explore and test the configuration space. The rec-
ommended usage is to select some random configurations,
and then systematically mutates them with PYRoBUILDS.
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The different mutations ("sparks") can be done indepen-
dently and parallelized using different machines.

Further applications. Building kernel configurations is a key
activity in Linux development, mainly for quality assurance. Through-
out the configuration space exploration, a possible application is to
report failures (and hopefully fix configuration-related bugs). As
future work, we plan to investigate whether configuration diver-
sity (as synthesized by PYROBUILDS and random configurations)
correlates to bug-finding ability. Though we have not designed
PYRoOBUILDS specifically for finding configuration-related failures,
it is possible to control the exploration strategy through mutation.
Hence, we envision to prioritize some options prone to failures or
considered as more important w.r.t. testing. A possible usage of
PYROBUILDS is to incrementally build mutated configurations out
of a build that already fails, aiming at isolating the combination of
options that cause the failure. In this paper, we focus on the main
case of mutating over a correct configuration build.

Another possible application is to leverage PYROBUILDS to syn-
thesize training sets for prediction models of configurable systems.
Specifically, prior works show that machine learning models can
predict quantitative properties of Linux configurations, but these
models require lots of observations and measurements over config-
uration builds (e.g., 10K+ random configuration builds [47]). Hence,
PYROBUILDS can provide a way to obtain larger training sets (with
more configurations) with the same computational cost (e.g., time),
or to obtain training sets with the same number of configurations
but with less computational cost. In particular, PYROBUILDS can be
seen as a way to augment data in a cost-effective way. An open ques-
tion is to what extent would the diversity of mutated configurations
benefit to learning methods.

Further possible improvements. PYRoOBUILDS could be ex-
tended with a compiler cache like CcACHE, in order to further
increase the reusability of already build artefacts. This is left for
future work, as we primarily focused on the effect of incremental
build itself. Another research direction is to construct a deny list
that would prevent some configuration options from being mutated
as part of PYROBUILDS. Intuitively, some options are cross-cutting
many artefacts and changing their values boils down to recompil-
ing everything. Hence, PYROBUILDS should avoid such ineffective
situations. Two challenges arise, however. The first is to find a com-
prehensive and effective deny list, either with domain knowledge,
static analysis, or patterns extracted out of PYROBUILDS observa-
tions. A second challenge is to retain diversity. As an extreme case,
all options could be part of the deny list except independent options
(mostly drivers); this would likely be effective but yield a very low
diversity.

Comparison with prior studies. We now discuss some of the
results of Randrianaina et al. [56, 57] compared to our observations
and insights. First, in terms of correctness (RQ1), Randrianaina et al.
report that 57.80% of incremental builds give the same binaries. In
the case of Linux, we obtained much better correctness results. An
explanation is that the Linux build system (with KBUILD) is aware
of configurations specifics and is effective to support incremental
build. It is not necessarily the case for other subjects considered
in [57]. In addition, we use a stronger procedure to compare bina-
ries in PYROBUILDS: instead of looking at binary size and symbol

tables as in their original studies, we use the Linux integrated tool
bloat-o-meter that is stricter. In terms of effectiveness and cost
reduction (RQ2), Randrianaina et al. showed that the reduction of
build time can be achieved under the condition that a specific a
posteriori ordering of configurations builds is found. We did not
follow this approach for two reasons. First, finding a priori such an
optimal order remains an open challenge. Second, random Linux
configurations seem simply too distant to pay off, whatever the
ordering.

6.2 Threats to validity

We now discuss internal and external threats to validity [67].

Internal validity. We first measured the time performance of
clean and incremental builds. The main risk lies in the interference
of measurements with other running software. To counter this risk,
we used a dedicated server where only our experiment was executed.
We further isolated the build environment docker image with only
the required build tools and dependencies. Moreover, we only ran
our experiment once due to the high cost and execution time. Indeed,
rather than reducing the experiment to randconfig or defconfig
only, and repeat the experiment twice or more, we chose to rather
diversify the data set with both defconfig and various randconfig
configurations, with and without the mutations. Therefore, we
mitigate the risk of over-fitting the overall observed results in Figure
11 by diversifying our data set and built configurations. Nonetheless,
before the experiment, we used the HyperFine tool” to benchmark
the machine with a defconfig. Hyperfine showed that the variance
of the defconfig build is lower or equal to 3%, which gives what we
consider an acceptable standard deviation in our experimentation.

Moreover, we reflected on diversity by looking at the number of
options and subsystems that are activated during the build. Other
metrics could also be considered, such as the impacted source code.
However, the options and subsystems are good indicators for the
diversity of a given configuration.

External validity. We experimented on the Linux kernel as
a subject, which is a C-based highly complex and highly config-
urable software system with the MAKE build system. We purposely
focused on it in order to replicate the previous work of Randri-
anaina et al. [56, 57] on a different scale of complex configurable
software system, namely Linux. Further results of PYRoBUILDS with
mutation-based incremental build on Linux cannot be generalized
to other small-sized configurable software system, more experimen-
tation remaining necessary in this area. Although we think that
incremental build with PYRoBuUILDS should be applicable in other
build systems and software technologies, further experiments are
necessary before generalizing the observed results.

7 RELATED WORKS

This section discusses the related work about build systems and
software variability (configurations). To the best of our knowledge,
the incremental build of configurations has caught little attention,
especially at the scale of the Linux kernel.

Build systems. Many works exist on (incremental) build sys-
tems [1, 14, 18, 20, 27, 39, 50, 54, 60, 65] but they focus on code
changes through the evolution of software (e.g. commits) rather

"https://github.com/sharkdp/hyperfine
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than configurations. When considering configurations, the differ-
ences can be very important (i.e., much more important than across
commits), spanning numerous files, and thus challenging the ef-
fectiveness of incremental compilation and build in this context.
Cserep et al. [16] introduce how to detect only the necessary files to
build with incremental parsing of the codebase. In [39, 40], Konat
et al. provide a DSL to increase the effectiveness of writing build
scripts. With such an expressive language, analysis and error detec-
tion could be performed beforehand. Maudoux et al. [49] show that
incremental build could help speed up builds of continuous integra-
tion (CI). Gallaba et al. [23] proposed to accelerate the continuous
integration build. They infer data from which build acceleration de-
cisions can be made by caching the build environment and skipping
unaffected build steps. An open issue is to adapt these techniques
over distant software configurations that may have very different
impacts on the files to build.

Several empirical studies on build systems have been performed
(e.g., [30, 31, 41, 44, 50, 51, 68]). Beller et al. [12] performed an anal-
ysis of builds with Travis CI on top of GitHub. About 10% of builds
show different behaviour when different environments are used. In
our case, we are considering different software configurations rather
than environments. Lawall et al. [42] proposed JMake, a mutation-
based tool for signaling changed lines that are not subjected to the
compiler. They aim to find an appropriate Linux configuration that
can compile and thus covers the files in which changes have been
made. In contrast, we use mutation to diversify an existing base
configuration and synthesize several related configurations that
can then be incrementally build.

Software product line (SPL) and variability. The SPL com-
munity develops numerous methods and techniques to manage a
family of variants (or products). Configurations are used to build
or execute variants and are subject to intensive research. For in-
stance, building variants is a necessary step before deriving perfor-
mance prediction models [9, 24, 32, 33, 45]. Formal methods and
program analysis can identify some classes of configuration de-
fects [15, 64], leading to variability-aware testing approaches (e.g.,
[21, 34, 35, 37, 38, 46, 55, 58, 61, 66]). The general principle is to
exploit the commonalities among variants, mainly at code level. For
instance, variability-aware execution [10, 37, 55] instruments an
interpreter of the underlying programming language to execute the
tests only once on all the variants of a configurable system. Nguyen
et al. implemented Varex, a variability-aware PHP interpreter, to test
WordPress by running code common to several variants only once
[55]. Reisner et al. use a symbolic execution framework to evaluate
how the configuration options impact the coverage of the system
given a test suite [58]. Static analysis and notably type-checking
has been used to analyze some properties of configurations and can
scale to very large code bases such as the Linux Kernel [34, 35, 66].
Though variability-aware analysis is relevant in many engineering
contexts, our interest differs and consists in concretely building
a sample of (possibly distant and diverse) configurations with an
unexplored approach - incremental build. Al-Hajjaji et al. [6, 7]
focused on optimizing the order of a tested set of configurations,
by selecting the most dissimilar configuration to the previous one
to be built. However, while the authors incrementally select the
configurations based on a similarity prioritization criterion, they do
not perform incremental build. Sampling configurations is subject
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to intensive research [8, 28, 33, 62, 64]: incremental build brings
new challenges e.g., as empirically shown, random sampling is in-
effective since the distance and differences across configurations
are too important. Several empirical studies exist about the build of
SPLs and configurable systems. For instance, Halin et al. [26] report
on the endeavor to build all possible configurations of the JHipster
configurable software system.

8 CONCLUSION

In this paper, we first showed that the classical way of building a
large number of Linux kernel configurations does not take advan-
tage of the incremental capabilities of MAKE. We then described
PYROBUILDS, our new approach to incrementally explore the (very
large) configuration space of Linux, showing that appropriate explo-
ration strategies trigger synergies with these caching capabilities
of MAKE.

We evaluated the impact of these strategies on the diversity of
the built configurations, showing it was possible to keep a good
level of diversity as needed for proper testing while reaping the
fruits of incrementality. On a total of 2520 builds, we observed
a systematic gain going up to 85%, while reaching an average of
90.6% of correctness and 33% of diversity of options and 15 out of
17 subsystems that a random Linux configuration would explore in
terms of activated options and subsystems.

Our PYROBUILDS technique and tool thus enables building more
Linux configurations for a given time (or other resource, like en-
ergy) budget. Individual contributors, testers, or janitors and con-
tinuous integration services like KernelCI and 0-day can leverage
PyrROBUILDS to efficiently augment their configuration builds, or re-
duce the cost of building numerous configurations. As future work,
we plan to extend PYROBUILDS with CCACHE to further increase the
reusability of already build artefacts. We also plan to explore the
benefit of having a deny list that would prevent some configuration
options from being mutated as part of PYROBUILDS.
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