Sélection globale de segments pour la reconnaissance d'entités nommées
Résumé
Named Entity Recognition is an important task in Natural Language Processing with applications in many domains. In this paper, we describe a novel approach to named entity recognition, in which we output a set of spans (i.e., segmentations) by maximizing a global score. During training, we optimize our model by maximizing the probability of the gold segmentation. During inference, we use dynamic programming to select the best segmentation under a linear time complexity. We prove that our approach outperforms CRF and semi-CRF models for Named Entity Recognition
La reconnaissance d'entités nommées est une tâche importante en traitement automatique du langage naturel avec des applications dans de nombreux domaines. Dans cet article, nous décrivons une nouvelle approche pour la reconnaissance d'entités nommées, dans laquelle nous produisons un ensemble de segmentations en maximisant un score global. Pendant l'entraînement, nous optimisons notre modèle en maximisant la probabilité de la segmentation correcte. Pendant l'inférence, nous utilisons la programmation dynamique pour sélectionner la meilleure segmentation avec une complexité linéaire. Nous prouvons que notre approche est supérieure aux modèles champs de Markov conditionnels et semi-CMC pour la reconnaissance d'entités nommées.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|