Stratégies d'apprentissage actif pour la reconnaissance d'entités nommées en français
Résumé
L'annotation manuelle de corpus est un processus coûteux et lent, notamment pour la tâche de re-connaissance d'entités nommées. L'apprentissage actif vise à rendre ce processus plus efficace, ensélectionnant les portions les plus pertinentes à annoter. Certaines stratégies visent à sélectionner lesportions les plus représentatives du corpus, d'autres, les plus informatives au modèle de langage.Malgré un intérêt grandissant pour l'apprentissage actif, rares sont les études qui comparent cesdifférentes stratégies dans un contexte de reconnaissance d'entités nommées médicales. Nous pro-posons une comparaison de ces stratégies en fonction des performances de chacune sur 3 corpus dedocuments cliniques en langue française : MERLOT, QuaeroFrenchMed et E3C. Nous comparonsles stratégies de sélection mais aussi les différentes façons de les évaluer. Enfin, nous identifions lesstratégies qui semblent les plus efficaces et mesurons l'amélioration qu'elles présentent, à différentesphases de l'apprentissage.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|