
HAL Id: hal-04130096
https://hal.science/hal-04130096

Submitted on 15 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid P4/NFV Architecture for Cloud Gaming
Traffic Detection with Unsupervised ML

Joël Roman Ky, Philippe Graff, Bertrand Mathieu, Thibault Cholez

To cite this version:
Joël Roman Ky, Philippe Graff, Bertrand Mathieu, Thibault Cholez. A Hybrid P4/NFV Archi-
tecture for Cloud Gaming Traffic Detection with Unsupervised ML. 28th IEEE Symposium on
Computers and Communications (ISCC 2023), IEEE, Jul 2023, Gammarth, Tunisia. pp.733-738,
�10.1109/ISCC58397.2023.10217863�. �hal-04130096�

https://hal.science/hal-04130096
https://hal.archives-ouvertes.fr


A Hybrid P4/NFV Architecture for Cloud Gaming
Traffic Detection with Unsupervised ML

Joël Roman Ky∗, Philippe Graff†, Bertrand Mathieu∗, Thibault Cholez†
∗Orange Innovation, Lannion, France, {joelroman.ky, bertrand2.mathieu}@orange.com
†Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France, {first.last}@loria.fr

Abstract—Low-latency (LL) applications, such as the increas-
ingly popular cloud gaming (CG) services, have stringent latency
requirements. Recent network technologies such as L4S (Low
Latency Low Loss Scalable throughput) propose to optimize the
transport of LL traffic and require efficient ways to identify it.
A previous work proposed a supervised machine learning model
to identify CG traffic but it suffers from limited processing rate
due to a pure software approach and a lack of generalization.
In this paper, we propose a hybrid P4/NFV architecture, where
a hardware Tofino based P4 implementation of the feature
extraction functionality is deployed in the data plane and a
unsupervised model is used to improve classification results.
Our solution has a better processing rate while maintaining an
excellent identification accuracy thanks to model adaptations to
cope with P4 limitations and can be deployed at ISP level to
reliably identify the CG traffic at line rate.

Keywords—P4, Traffic Detection, Cloud Gaming, Machine
Learning, Virtualized Network Function

I. INTRODUCTION

Cloud Gaming (CG) traffic generated by platforms such as
GeForceNow, Microsoft Xbox Cloud Gaming, Sony PlaySta-
tion or Amazon Luna is foreseen to take an increasing and
significant part of traffic shares in the upcoming years. How-
ever, CG traffic is particularly demanding because it requires
at the same time a high downstream bandwidth to transmit
the high-quality multimedia flow and a very low latency with
no jitter to ensure a reactive response to the players’ inputs.
Previous studies [1] have shown that end-to-end mechanisms
are not always sufficient to maintain a satisfactory QoS in
some difficult network conditions.

Meanwhile, the recent network technology of Active Queue
Management (AQM) L4S (Low Latency Low Loss Scalable
throughput) has been introduced and prioritizes the transport
of low-latency (LL) traffic using a dedicated queue. However,
identifying which flows should benefit from the LL queue
remains a challenge. Addressing this issue, our previous work
[2] proposed an initial set of VNF (Virtualized Network
Functions) able to identify CG traffic at the network edge
through a supervised Machine Learning (ML) model based
on Decision Trees (DT) using statistical flow features.

In this paper, we propose to extend this work in two
important directions that make it even closer to a realistic
deployment:

• We propose a new model based on unsupervised ML that
shows a far better capacity to recognize traffic from CG
platforms that are missing in the learning dataset;

• We translated the VNF facing the traffic to extract the fea-
tures in P4 (Programming Protocol-independent Packet
Processors) and deployed the module on a hardware
Tofino based switch.

In addition to those two contributions, we provide an
extensive feedback on the adaptations needed to cope with the
inherent limitations of P4 programming for hardware switches
that enable its guaranteed high bitrate processing.

The rest of this paper is organized as follows. Section II
presents the related work on traffic detection and classification
using P4. Then, Section III describes our dataset, our previ-
ous supervised ML model and the new unsupervised model
we propose. Section IV presents our hybrid classification
architecture mixing pure software network functions with a
new P4 module for feature extraction at line rate, with a
particular focus on the limitations imposed by the latter and
the required adaptations. Finally, we evaluate the performance
of our architecture in Section V before concluding this study
in Section VI.

II. RELATED WORK

The Software Defined Networking (SDN) paradigm [3]
enables to decouple the control plane from the forwarding
plane of network devices. This separation allows their dynamic
configuration using interfaces such as OpenFlow [4]. A recent
development, based on P4 [5], offers to go further and enables
program deployment into the devices in addition to configu-
ration. Several studies investigate the use of P4 for detection
of heavy network flows (which may interfere with smaller
flows sharing the same path and thus impact the QoS) or
for traffic detection. [6] addresses the detection of large flows
with an algorithm consisting of a hash table pipeline, which
identifies 95% of the heaviest flows on an ISP trace. Other
works show threshold-based techniques, either by distributing
thresholding across all the switches [7] or by focusing on their
size and duration [8]. Some works focus on flow classification
using ML models on P4 switches. Inter-arrival times (IATs)
histograms are used by [9] to determine which TCP flavour
(Cubic or BBR) controls each flow and to classify each flow
on P4 hardware using a ML model on the control plane. [10],
[11] directly implement ML models on the programmable
switches to handle traffic classification. [10] maps four trained



ML models (DT, K-means, SVM, and Naı̈ve Bayes) to match-
action pipelines and achieve full-line rate classification. [11]
proposes SMASH-D1 (resp. SMASH-D2) to reduce the DT
model complexity for flow classification by performing the
classification decision one (resp. two) level(s) above the DT
leaf nodes.

However, many research papers implement their solution
with the P4 Linux software switch (BMv2), and very few
on a real P4 hardware switch. This is a crucial point since
the software implementation is largely less restrictive than
the hardware one. Indeed, a hardware switch must process
packets at line rate and has less computational facilities (e.g.
no floating-point operations and limited memory-accesses.)
than a Linux system. [10] outlines that by adapting their
approach to run on hardware-based prototypes, classifiers can
use fewer features and classes. [12] investigated to what extent
a P4 hardware solution for AQM can be achievable and faced
limitations imposed by the P4 hardware. They then split the
processing between the P4 data plane for simple operations
and control plane for complex computations.

Our proposal differs from the related work in several ways:
(i) unlike [6], [8], [11], we perform the traffic detection using a
P4 hardware implementation instead of a software one; (ii) we
split the CG traffic detection task by performing the features
extraction in the data plane with P4 switches and the CG traffic
detection in the control plane with a NFV node; (iii) unlike
the previous works [2], we use unsupervised learning for CG
traffic detection to cope with the generalization problem we
may face with supervised learning [13].

III. DATASETS AND ML MODELS

A. Datasets collection

We build our CG dataset by collecting network packets
with Wireshark (v3.6.2). In a first campaign conducted in
2022, we considered the four main CG platforms available in
Europe at that time: Nvidia GeForce Now (GFN), PlayStation
Now (PSN), Google Stadia (STD) and Microsoft Xbox Cloud
Gaming (XC). In a second dataset built in 2023, we collected
data on GFN, PSN and XC in addition to Moonlight and Steam
Remote Play (STD was shut down by Google in January 2023
but we keep STD data for comparison). The captures result in
pcap files, all made available for the sake of reproducilibity1,
from which we extract features.

Marchal et al. [1] showed that most CG platforms adapt their
traffic to network conditions. Typically, during congestion, CG
platforms reduce their bitrate by increasing packet inter-arrival
times (IATs) and/or decreasing packet sizes. To take these traf-
fic variations into account, we also captured CG traffic under
network constraints. We add a router between the gateway and
the CG client to alter the network conditions thanks to iproute
tc commands, and Wondershaper for bandwidth limitation
(Fig. 1). The generated network perturbations are applied in
turn: (i) 20ms of additional delays; (ii) 5 ms of additional jitter;

1https://cloud-gaming-traces.lhs.loria.fr/data.html

Fig. 1: Testbed for live network packets capture

(iii) 5% of packet loss; (iv) 10Mbps of available bandwidth.
The host running the CG client performs the network capture.

We also collect Non-Cloud Gaming (NCG) traffic by con-
sidering the following high-bandwidth traffic types over UDP;
video streaming (VS), live video streaming (LV), video con-
ferencing (VC), and Facebook navigation (FB) over QUIC.

We can then extract features from packet captures. Due to
the asymmetry of CG traffic, we differentiate downlink and
uplink features. For each direction, we extract six features per
time window (we set its duration to 33 ms according to [2]):
(1) the total number of packets, (2) the sum, (3) the mean and
(4) the standard deviation of packet size, (5) the mean and
(6) the standard deviation of packet inter-packet-arrival times
(IAT).

B. ML Models

We formalize the CG traffic identification problem as a
binary classification problem as follows. Given a dataset of
traffic features xT = {x1, x2, ..., xn}, we train a model M
which must assign for each new window of features observed
x̃i, a label among two classes within the set {CG; NCG}.

1) DT Model limitations: In our previous works [2], we
performed the identification of CG traffic using a Decision
Tree (DT) model which is a supervised machine learning
approach. The goal of supervised learning is to learn the
underlying mapping between a new observed instance x̃i

and its respective label ỹi, given a set of training examples
{(x1, y1), ...(xn, yn)}, where xi and yi denote the feature
vector and its label respectively. We trained the DT model
using an equal proportion of CG and NCG instances. The
resulting DT model showed good performance for identifying
CG traffic even when it was collected under downgraded
network conditions. The DT model also classified efficiently
NCG traffic types that were present in the training set. To
assess the reliability of this model in an open world, we made
a new dataset of unseen games executed on previously trained
platforms as well as unseen CG platforms. Unfortunately, we
realized that, when considering CG traffic not seen during
training, the model performance declines (see Fig. 2, blue
columns) to unacceptable proportions in the case of new
platforms.

2) USAD Model: To bypass the lack of generalization of
our supervised model, we propose to identify CG traffic in an
unsupervised manner. We use the USAD model (UnSupervised
Anomaly Detection) [14], specifically designed for anomaly
detection, which employs a neural network architecture con-
sisting of two auto-encoders: the model learns, based only on
CG traffic features (without the label information), how to



Fig. 2: Performance of DT and USAD models

reconstruct the input data and compute a score s measuring
how efficient the model is in the reconstruction task. Since the
model has learnt how to reconstruct only CG traffic features,
it cannot perform an equivalent reconstruction of the NCG
traffic. Hence, the NCG traffic will have a high reconstruction
score while CG traffic will have a low reconstruction score.
Then, given the reconstruction score s computed by the model
considering the features extracted from a given window x̃i,
and a carefully chosen threshold δ, the window is classified
as follows:

ỹt =

{
CG, if s(x̃t) ≤ δ

NCG, otherwise.
(1)

The rationale behind this strategy is to discriminate the CG
traffic from the NCG traffic by relying not on a ground truth to
learn discriminating rules or relations but by using the latent
characteristics of the dataset [15]. Therefore, the model should
be more robust and more generalizable to unseen types of CG
traffic.

We split our CG dataset into a train and a test set as follows:
the former is composed of normal CG instances from the 4
main CG platforms at our disposal (STD, XC, GFN and PSN).
The test sets are made of previous traces from [2]: (i) normal
CG instances collected on the same 4 CG platforms, (ii)
network constrained CG instances, (iii) NCG instances; and
of new collected traces: (iv) CG instances composed of new
games captured on XC, GFN and PSN and (v) CG instances
collected on new platforms (Moonlight and Steam). The model
is then trained on the normal CG dataset only and is evaluated
separately on the 5 different types of test set.

The USAD model is used with its default hyper-parameters
and is trained with the Adam optimizer with a learning rate
of 10−3 and a batch size of 128 during 100 epochs. We apply
early stopping to avoid overfitting. We compare the accuracy
of the two models in Fig. 2, which highlights the superior
performance of the USAD model to identify the unknown.
More performance evaluation of the model is reported using
Accuracy and F1-score in Section V, for each test set. Our
results are not biased because each of the 5 types of test data
contains only one of the two classes (CG or NCG).

Fig. 3: The 2-level programmable architecture

IV. ARCHITECTURE AND IMPLEMENTATION

Our previous work [2], all software based, can not be
deployed elsewhere than at the edge because of its limited
capacity to manage more than 30Gb/s on the fly, which pre-
vents for instance a more convenient regional deployment. To
overcome this limitation, we propose to split our system into a
2-level hybrid architecture: a data-plane programmable module
to cope with high speed line-rate traffic to extract flows’
features and a control-plane programmable module to perform
the complex computational classification functions. For the
data plane, we select P42 [5], which seems to be the most
promising solution for data plane network programmability,
and for the control plane, we rely on the NFV architecture.

Fig. 3 depicts our architecture, with a P4-module deployed
in the chipset of a hardware switch, connected to a local
controller running in the Linux OS of the switch, and 3
computational modules for the detection of CG traffic.

A. The NFV computational modules

Although the hardware P4 module is the primary emphasis
of this paper, computational VNFs are introduced below for
comprehension. The complex operational tasks, mainly related
to the ML processing, as described in Section III are developed
in Python3 and run in a Linux environment in user space with
all the necessary libraries (pandas, numpy, pytorch, etc.). Since
the processing time is long in this environment (at least too
long for line-rate processing of high speed networks), we send
to them not every packet, but reports, every 33 ms, that include
traffic features about the flows transiting via the P4 module
during this time window. Furthermore, as presented in Section
III, we choose a Deep Learning model USAD, which has very
low inference time compared to other solutions.

In this NFV node, 3 types of VNFs are deployed: (i) one
for receiving reports, extracting features values and forwarding
them to the ML node, (ii) one performing the classification
task, for analysing the features and giving a score indicating

2the P4 consortium: p4.org



whether this session is cloud gaming or not, (iii) one aggre-
gating the results from the ML nodes per flow and giving a
final decision based on several time windows. In this paper,
the 3 VNFs are located on the same NFV node, connected to
each other via local sockets, but they can easily be deployed
on different nodes if required.

B. The P4 extracting module

To achieve a high speed line-rate processing module, we
rely on the P4 approach. Since our goal is to have a realistic
solution, being potentially deployed in an ISP network, we
opt for a P4 hardware switch, and not the Linux-based BMv2
solution. For our testbed, we used a Edgecore Wedge 100BF-
32X switch3, which is equipped with an Intel Tofino P4
chipset. This choice was primarly driven by our performance
requirement of several Tb/s but has heavy implications on
our work. Indeed, the P4 Tofino architecture differs from
the BMv2 one and developing programs for real hardware
switches presents many limitations and constraints not present
in a Linux-based system (see Section IV-C). This is a crucial
factor to consider when compared to previous studies imple-
menting P4 solutions using BMv2.

The Edgecore switch can be schematised with 2 levels:
the low-level with the chipset responsible for line-rate packet
processing and the high-level, the Linux Switch OS, in charge
of the deployment, management, configuration of the chipset.
In our implementation, both levels are used. Specifically, the
P4 module deployed within the chipset, extracts and computes
the basic packet features such as packet size and IAT. Con-
currently, the Python-based controller module which runs in
the Switch OS, is responsible for configuring the P4 program,
receiving the reports from the P4 module (sent using the
Digest function provided by the P4 Tofino.) and transmitting
the reports to the NFV node in the expected format.

C. Limitations of the P4 Tofino hardware solution

In this section, we highlight the main limitations encoun-
tered when programming for a Tofino hardware switch.

1) Computational limitations: The number of operations
that the P4 module in the switch can handle is limited in order
to ensure a high-speed packet processing and minimize packet
forwarding delays. Specifically, the Tofino 1 chipset permits a
maximum number of 12 match action stages per pipeline.

Additionally, metadata in P4 are valid only for the current
packet processing which requires the use of registers to save
contextual information. In the hardware switch, we can have
registers, but during one packet processing, only a single
access to a given register is permitted. Consequently, updating
a register can be done in only one step (reading the old value
and writing the new one), but it is not possible to read the
register, perform several other computations using the read
value, and subsequently update the new computed value to
the given register. This restricts and complicates the use of
registers.

3https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&
id=335

Fig. 4: Performance of the ML model with the standard
deviation with P4-extracted features

The Tofino P4 provides a mathematical extern unit, called
MathUnit, for complex functions like SQR and SQRT. How-
ever, a given register can have only a single MathUnit extern,
and RegisterActions sharing a register can only use one Math-
Unit between them. Consequently, it is not possible to compute
SQR and SQRT for the same value during the processing of
one packet, thereby making the computation of the standard
deviation impossible.

2) Computation limited to the current packet: The com-
putation of the standard deviation feature poses another chal-
lenge. Since its computation is based on the mean value, we
need to store in the memory all the packets within a time
window and compute the mean and standard deviation at the
end of the time window. However, the P4 Tofino hardware
switch lacks a packet buffering/copying capability. To address
this limitation, we explored the Welford’s algorithm to com-
pute the standard deviation online but the P4 Tofino hardware
switch does not support variable multiplication and division.
Consequently, we attempted to approximate the standard devi-
ation through a simple computation. However, as depicted in
Fig. 4, this approximation adversely affected the classification
performance compared to the accurate computation of the
standard deviation.

In light of these challenges, we decided to train the ML
model without the two standard deviation features. Surpris-
ingly, the simplified model exhibited strong performance and
achieved results similar to the model with standard deviation,
as illustrated in Fig.5. Removing the standard deviation fea-
tures in the P4 extracting module then greatly simplifies the
program and its P4 processing (only 6 stages are now neces-
sary to process the packet). Moreover, the notable efficiency
of this approach prompts us to retain this novel approach.

3) Size of Digest message: As mentioned in the beginning
of this section, we use the Digest mechanism to send reports
from the P4 module to the controller. However, the Tofino
hardware restrics the size of the Digest message to 48 bytes.
In our previous version with the standard deviation, we reached
this maximum value when sending all the 12 features and had
no space left to send the couple of IP addresses identifying
the flow. Without the four standard deviation features (for the
packet size and the IAT in both directions), we have now



Fig. 5: Performance of the ML model with and without the
standard deviation

enough space to include the IP addresses and port numbers.
4) Limited time-based processing: In the design of our ML

model, we use time windows of 33 ms to split the session data
in order to compute the features. This can be easily done with
an application programming language such as Python or C++
using time handler, but not with P4. Indeed, a P4 program
can trigger actions upon the reception of one packet, but not
at a given time. Even if the Tofino offers the possibility to
generate packets at a periodic interval, it is not suitable for
our case. Indeed, the payload of the generated packet is set up
by the configuration plane and even if modifying this payload
is possible in the P4 program, we can not make it for all
the sessions passing through the switch. Therefore, we opt
for the Digest approach and manage this timing inside the P4
program by using one register to store the time when a first
packet arrives and at each packet arrival, we check whether
the time exceeds the required time window of 33 ms. If so, we
send the report to the controller. It means that for regular and
high bitrate sessions, for which we can expect very frequent
packet arrivals, this way of computing the time window can
be close to the 33 ms time, but for low-rate traffic, sporadic
or bursty traffic, this approach is not appropriate because
of possible long time intervals between packet arrivals. For
NCG traffic, this limitation greatly degrades the performance
of our solution since very few reports are sent over long
periods, being non representative of the application traffic
behavior. To circumvent it, we include a time handler in our
controller module which generate empty reports and send them
to the NFV compute node if the time interval between the
reception of two reports is longer than two time windows of
33 ms. As such, the ML module can have reports, close to
what it expects (i.e. a regular 33 ms basis). Despite being a
major improvement, this solution is still not perfect since for
example, if one packet arrives at t+31 ms and the next one at
t+46 ms, the report sent by the P4 module will be related to
a 46ms time window and not a 33ms one. Consequently, the
ML model will not be aware that there was no traffic during
the missing 13ms.

In conclusion, we have learned several lessons based on our
experience with P4 implementation on a real hardware switch.
Firstly, the P4 program cannot not perform many processing

tasks for a single packet, cannot handle complex computational
tasks and is not really suitable for programs with time based
events. Therefore, careful consideration and optimization are
required when developing a P4 code.

Secondly, a trade-off must be made between the high speed
line-rate packet processing and the ease of programming,
as well as the complexity of the computational tasks. Our
proposed 2-level programmable architecture appears to be
a promising approach to meet both factors, the developers
splitting the processing adequately.

V. EVALUATION

In this section, we present the findings of our experiments
using the whole chain. The observed traffic passes through
our P4 hardware switch, which extracts the features (excluding
the four based on standard deviation) and then fed them to our
unsupervised ML model trained without the standard deviation
features.

Tab.I shows our evaluation results and compares them with
the results obtained with an application-level computation in
Python of all the features, including the standard deviations.
The two classification scores are very close and remains
excellent. In conclusion, having the feature extraction in a
P4 module does not alter the performance of the ML model,
although having simplified processing tasks and limitations as
presented in the previous section.

This paper does not focus on the performance evaluation
of the hardware switch because its line-rate processing perfor-
mance is guaranteed in silico as long as the P4 code can be
compiled and deployed. The hardware we use is a commercial
switch4 used in operational networks that can manage up to
6.4 Tbit/s (32x100G ports) enabling thousands of simultaneous
sessions (being cloud gaming or not). Furthermore, Edgecore
has recently launched a 12.8 Tb/s P4-programmable open
switch, the DCS810, hosting an Intel Tofino 2 chipset.

Our evaluation proves that our P4 hardware module per-
forms very well and can be considered as a candidate for
possible ISP-level deployment.

VI. CONCLUSION

The main motivation behind this work was to classify CG
traffic in a faster and more reliable way to enable latency
sensitive network processing such as L4S. We first designed
and evaluated an unsupervised model based on USAD which
outperforms a supervised approach when dealing with new
games, and above all, new CG platforms.

Then we proposed a hybrid architecture leveraging a P4
hardware implementation5 on a Tofino chipset of the feature
extraction module that must be executed in the data plane
while keeping the ML model execution as VNFs in the control
plane. This implementation was very challenging because of
the very restrictive limitations engraved in a real P4 switch.
Yet, we proposed several adaptations to circumvent the latter,

4https://www.edge-core.com/ upload/images/2022-051-DCS800
Wedge100BF-32X-R10-20220705.pdf

5https://github.com/mosaico-anr/P4 NFV CG Detector



TABLE I: Comparison of the P4-based solution performance with application-level solution

Performance with P4 Performance with application Difference (%)

Traffic Type Accuracy F1-score Accuracy F1-score Accuracy F1-score

N
or

m
al

C
G STD 0.965 0.983 0.984 0.992 -1.90 -0.97

GFN 0.990 0.995 0.979 0.989 1.16 0.58
XC 0.903 0.942 0.966 0.981 -6.35 -3.85
PSN 0.981 0.990 0.966 0.983 1.46 0.76

Overall 0.958±0.054 0.979±0.03 0.973±0.021 0.986±0.011 -1.44 -0.74

C
G

w
ith

ne
tw

or
k

co
ns

tr
ai

nt
s STD 0.999 0.999 1.000 1.000 -0.01 -0.01

XC 0.954 0.977 0.992 0.996 3.33 1.55
PSN 0.995 0.998 0.961 0.983 -3.73 -1.91

Overall 0.983±0.035 0.993±0.019 0.984±0.019 0.992±0.010 -0.14 0.05

N
on

C
G

VC 0.938 0.971 0.867 0.941 7.18 3.00
LV 0.980 0.990 0.978 0.989 0.17 0.10
VS 0.993 0.996 0.991 0.996 0.14 0.01
FB 0.988 0.994 0.989 0.995 -0.10 -0.04

Overall 0.959±0.056 0.983±0.031 0.918±0.114 0.970±0.066 4.13 1.30

N
ew

ga
m

es
C

G
le

ar
ne

d
pl

at
fo

rm
s

GFN 0.973 0.986 0.995 0.997 -2.15 -1.10
XC 0.969 0.984 0.979 0.989 -0.97 -0.50
PSN 0.980 0.990 0.999 1.000 -1.97 -1.00

Overall 0.974±0.010 0.987±0.005 0.991±0.011 0.996±0.006 -1.70 -0.84

N
ew

C
G

pl
at

fo
rm

s MoonLight 0.999 0.999 1.00 1.00 -0.01 -0.01
Steam 0.999 0.999 1.00 1.00 -0.01 -0.01

Overall 0.999±0.00 0.999±0.00 1.00±0.00 1.00±0.00 -0.01 -0.01

that constitute in itself a valuable feedback for the community,
and that allowed the execution on hardware while maintaining
an excellent identification accuracy equivalent to the software
implementation.

Our future work will integrate our classifier with a L4S
architecture and evaluate the gain for CG platforms to re-
spect their latency requirements under challenging network
conditions. Also, we will evaluate our architecture with real
traffic from an ISP to further assess the performance and
classification results in real conditions.

ACKNOWLEDGMENTS

This work is partially funded by the French ANR MO-
SAICO project, No ANR-19-CE25-0012.

REFERENCES

[1] X. Marchal, P. Graff, J. R. Ky, T. Cholez, S. Tuffin, B. Mathieu, and
O. Festor, “An analysis of cloud gaming platforms behaviour under
synthetic network constraints and real cellular networks conditions,”
Journal of Network and Systems Management, vol. 31, 2023.

[2] P. Graff, X. Marchal, T. Cholez, B. Mathieu, and O. Festor,
“Efficient Identification of Cloud Gaming Traffic at the Edge,” in
NOMS 2023 - 36th IEEE/IFIP Network Operations and Management
Symposium, Miami, United States, May 2023, p. 10. [Online].
Available: https://hal.inria.fr/hal-04056607

[3] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” IEEE Communications Surveys &
Tutorials, vol. 16, pp. 1617–1634, 2014.

[4] N. McKeown, T. E. Anderson, H. Balakrishnan, G. M. Parulkar, L. L.
Peterson, J. Rexford, S. Shenker, and J. S. Turner, “Openflow: enabling
innovation in campus networks,” Comput. Commun. Rev., vol. 38, pp.
69–74, 2008.

[5] P. W. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. E. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: programming protocol-independent packet processors,” Comput.
Commun. Rev., vol. 44, pp. 87–95, 2013.

[6] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” Proceed-
ings of the Symposium on SDN Research, 2016.

[7] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-wide heavy
hitter detection with commodity switches,” Proceedings of the Sympo-
sium on SDN Research, 2018.

[8] M. V. B. da Silva, A. S. Jacobs, R. J. Pfitscher, and L. Z. Granville,
“Ideafix: Identifying elephant flows in p4-based ixp networks,” in IEEE
Global Communications Conference (GLOBECOM 18), 2018, pp. 1–6.

[9] K. A. Simpson, R. Cziva, and D. P. Pezaros, “Seiðr: Dataplane assisted
flow classification using ml,” in GLOBECOM 2020 - 2020 IEEE Global
Communications Conference, 2020, pp. 1–6.

[10] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?:
Toward in-network classification,” Proceedings of the 18th ACM Work-
shop on Hot Topics in Networks, 2019.

[11] R. Kamath and K. M. Sivalingam, “Machine learning based flow clas-
sification in dcns using p4 switches,” in 2021 International Conference
on Computer Communications and Networks (ICCCN), 2021, pp. 1–10.

[12] G. Gombos, M. Mouw, S. Laki, C. Papagianni, and K. De Schepper,
“Active queue management on the tofino programmable switch: The
(dual)pi2 case,” in ICC 2022 - IEEE International Conference on
Communications, 2022, pp. 1685–1691.

[13] W. Zheng, C. Gou, L. Yan, and S. Mo, “Learning to classify: A flow-
based relation network for encrypted traffic classification,” Proceedings
of The Web Conference 2020, 2020.

[14] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“Usad: Unsupervised anomaly detection on multivariate time series,”
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020.

[15] S. S. Johari, N. Shahriar, M. Tornatore, R. Boutaba, and A. Saleh,
“Anomaly detection and localization in nfv systems: an unsupervised
learning approach,” NOMS 2022-2022 IEEE/IFIP Network Operations
and Management Symposium, pp. 1–9, 2022.


