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Abstract

We consider reinforcement learning control problems under the expected reward criterion in which non-zero rewards are
both sparse and rare, that is, they occur in very few states and have a very small stationary probability under all policies. In
this context, usual discovery techniques including importance sampling are inapplicable because no policy exists that increases
the visit frequency of the rare states. Using renewal theory and Fleming-Viot particle systems, we propose a novel approach
that exploits prior knowledge on the sparse structure of the reward landscape to boost exploration of the rare non-zero rewards
and achieve an accurate estimation of their stationary probability. We also demonstrate how to combine the methodology with
policy gradient learning to construct the FVRL algorithm that efficiently solves control problems under these scenarios. We
provide theoretical guarantees of the convergence of both the stationary probability estimator and the policy gradient learner, and
illustrate the method on two optimisation problems to maximize the expected reward: a simple M/M/1/K queue system where
the blocking threshold K is optimised, and a two-job-class loss network where a threshold-type rejection policy is optimised. Our
results show that FVRL learns the optimum thresholds much more efficiently than vanilla Monte-Carlo reinforcement learning.

Keywords: semi-Markov decision process, parameterised policy, policy gradient, queues, loss network

1 Introduction
Reinforcement learning methods, by being able to take advan-
tage of large amounts of computational resources, have been
very successful at solving very complex problems with large
state dimensions and sparse rewards, obtaining super-human
performance particularly in games [23]. Many of these suc-
cesses have been obtained in an episodic setting in which, even
under sparse rewards conditions, there is certainty that the
episode will eventually finish, at which moment a reward will
be observed.

In several application domains, in particular in networking
or robotics, the environment is not episodic (i.e. there is no
notion of progression as in games) and non-zero rewards are
received only in a handful of states which are visited very rarely.
We refer to these as environments with sparse and rare rewards.
For example in networking, a fundamental problem is how to
dimension the system in order to optimise the performance,
bearing in mind that the blocking probability (i.e. the proba-
bility that the system cannot accept a new data packet, call, or
computation task) can be extremely small. As pointed out in
[11], efficiently managing the exploration task when non-zero

rewards are very rarely observed remains a challenge, and this
provides the main motivation for the present work. Our starting
point is the structural knowledge on the underlying Markov
Decision Process (MDP) with which the system is modelled,
that in many cases can be leveraged to drastically improve
exploration.

In this paper, we focus on model-free approaches (i.e. with-
out previous learning of a specific model), and take as perfor-
mance criterion the expected reward (or expected cost, when
more natural for the problem at hand). We assume that we
have access to a simulator or emulator of the system, or in
its absence, to a large amount of data to construct experience
replay of the system. Our approach relies on the identification
of sets A of states with zero reward, which can be obtained
through previous knowledge on the underlying MDP, or from
information gained from exploration already performed.

We first show that the expected reward of the original prob-
lem can be expressed in terms of modified trajectories that
are absorbed in A. We then show that the expected reward of
trajectories outside A can be efficiently estimated via the so-
called Fleming-Viot particle system (FV). We finally introduce
FVRL, a reinforcement learning algorithm that uses Fleming-
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Viot to solve control problems with sparse and rare rewards and
gradients.

To illustrate the main ideas, we shall consider an
M/M/1/K queue, where the objective is to minimize a con-
vex expected cost on blocking events. This is a fundamental
model in queueing theory and an interesting archetype of dy-
namics where the rewards (here seen as costs) can only be
observed during unlikely excursions for system loads smaller
than 1. More concretely, the stationary probability of being in
state K decreases exponentially with K at rate ρK , where ρ is
the load of the system, assumed smaller than 1. The rewards
are thus sparse, since blocking only occurs when the system is
full, and rare since this happens with very low probability for a
wide range of values of K and ρ that are common in practice.

Using this example, the intuition behind our proposal relies
on the fact that the probability of visiting state K conditioned
on not having visited state 0, which decays as

√
KρK/2 when

K increases [10], is considerably larger than the stationary
probability of visiting K. For example, for K = 40 and
ρ = 0.7, the conditioned probability is about 8 thousand times
larger than the unconditioned one, and about 6 million times
larger when ρ = 0.5. Hence, by shifting the estimation to-
ward a conditioned dynamics, which we propose to achieve
using Fleming-Viot particle systems, we expect a lower sample
complexity, both for estimation and for control. Our numer-
ical results show that the Fleming-Viot approach overcomes
the difficulty of vanilla Monte-Carlo to properly estimate key
quantities for reinforcement learning algorithms, such as value
functions and gradients.

In summary, we propose a methodology that can be used to
boost reinforcement learning in environments with the follow-
ing characteristics: (i) they present sparse non-zero rewards and
sparse gradients of parameterised policies occurring very rarely
at unknown states; (ii) thanks to prior knowledge, it is possible
to define a set of states presenting zero rewards. The learning
goal considered here is to maximize the expected reward under
stationary regime operation but this could be easily generalised
to contexts with discounts. In environments where the occur-
rence of non-zero rewards has an extremely low probability,
this methodology enables learning at admissible learning times,
whereas vanilla Monte-Carlo methods fail.

In our main contribution, we develop FVRL, a method that
combines FV and RL in problems with sparse and rare rewards
that are ubiquitous in the control of stochastic networks. In
our main theoretical contributions for FVRL, we establish con-
vergence of the estimator as the number of particles tends to
infinity, and convergence to the optimal policy. Our numerical
results on a simple queueing model and a multi-class loss net-
work illustrate the potential benefits of the approach, and we
will investigate in further research its applicability to a wider
variety of examples, including classical RL environments.

We would also like to note that, to the best of our knowl-
edge, there is no adequate solution to this problem in the state
of the art. Even though we do not focus here on deep learning
tools, our proposal could definitely be used in combination with
them. This is left for future work. Initially, one might think that
the problem of estimating rare events could be tackled using
Importance Sampling (IS), an area in which there exists a large
literature. However, it is important to observe that the problem

at hand impedes the application of IS methods. Firstly, we here
look at scenarios where there is no policy allowing to explore
rare states. In other words, states with non-zero rewards are
very rarely explored under all policies, so IS is not an option,
as it is designed to change the exploration policy. Secondly,
it is also not possible to invoke the original IS principle when
looking purely at the evaluation task for a fixed policy, as this
requires a change of measure for Monte-Carlo, which is not
possible in our case as the transition rates of the Markov process
are unknown.

On the other hand, the problem of sparse rewards has been
of central interest for a long time and the most intuitive solution
to sparse (but not necessarily rare) reward problems is reward
shaping. Mataric formulated the idea back in 1994 [17]. How-
ever, these methods have a few drawbacks: expertise is needed
to shape the rewards, and only very few and quite arbitrary
policies might be reached as a consequence of shaping. Our
proposal fits more into the idea of curiosity-driven methods
as explained for instance in [18]. The idea is basically to en-
courage the exploration of unvisited states in the environment.
While existing mechanisms are based on including a bonus
term in the loss function to favour exploration ([18, 6]), we
define a new (more radical) curiosity mechanism adapted to
sparse and rare reward environments that forces exploration
outside a set of states that have already been explored or are
known to be uninformative.

The rest of the paper is organized as follows. Section 2
describes the mathematical setting of the problem, Section 3
the general methodology, in Section 4 we show its applicabil-
ity in the cases of an M/M/1/K queue system and of a loss
network serving two classes of jobs.

2 Problem description

We consider a continuous-time MDP (S, A, q,R) with a finite
state space S, action space A, jump rates q, and rewards R,
under the expected reward criterion. Throughout the paper we
assume that for each policy π the continuous-time Markov pro-
cess Xπ

t obtained by following the policy π is irreducible. We
denote by pπ the stationary distribution of Xπ

t , and by Eπ(η)
the expectation with respect to pπ of a function of interest,
η : S → R, such as the occupation measure or the reward.

We will be interested in computing Eπ(η) under the as-
sumption that the function η is zero outside of a small set
of states C ⊂ S. For example, if the rewards are assumed
to be sparse, the reward function r : S × A → R is zero
outside a small set C ×A, from which we can define the func-
tion η as η(x) =

∑
a r(x, a)π(a|x), whose expected value

can be reduced to a calculation over the states in set C as
Eπ(η) =

∑
x∈C p

π(x)η(x).

The objective of computing Eπ(η) will be achieved as fol-
lows: we will first choose a set A ⊂ S, such that C ∩ A = ∅.
Then, we will use Fleming-Viot particle systems to compute
the expectation truncated to Ac,

∑
x∈Ac p

π(x)η(x), which is
equal to Eπ(η) given that η is zero in A.

Efficient reinforcement learning with Fleming-Viot particle systems 2
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3 Methodology
In this section we present a new method to estimate Eπ(η)
tailored to Markov decision processes with sparse and rare re-
wards. We then discuss how to use this algorithm to improve
the estimation of gradients in the context of the policy gradient
methodology to solve optimal control problems with sparse and
rare rewards. For simplicity of exposition, we assume that we
have direct access to the function η. We also assume throughout
this section that the policy π and the chosen set A ⊂ S , whose
intersection with C is empty, are fixed.

3.1 Definitions
The following definitions will be instrumental in our discussion.
We denote by ~∂A the entrance boundary of A, i.e. the set of
states x ∈ A for which there exists at least a state y ∈ Ac
with positive jump rate to x, i.e. q(y, x) > 0. The entrance
boundary of Ac, ~∂Ac, is defined analogously. We define the
first time of entry into A as

TA,0
.
= inf{t > 0 : Xπ

t ∈ A and Xπ
t− /∈ A},

and we denote the entrance state distribution into A under
stationarity as:

pπ~∂A(x)
.
= P(Xπ

TA,0 = x|Xπ
0 ∼ pπ), ∀x ∈ ~∂A.

Using Figure 1 as a visual aid, we further define the first
time of entry intoAc following TA,0 as TAc

.
= inf{t > TA,0 :

Xπ
t ∈ Ac}, the first time of entry into A following TAc as

TA
.
= inf{t > TAc : Xπ

t ∈ A}, and their difference as
TK

.
= TA − TAc , also referred to as the killing time. The stop-

ping time TA will be regarded in the sequel as a cycle return
time to A.

Finally, for any measurable subsetB, we define P~∂A(B)
.
=

P(B|Xπ
0 ∼ pπ~∂A). For the complement set Ac, we define the

entrance state distribution into Ac under stationarity as:

pπ~∂Ac(x)
.
= P~∂A(Xπ

TAc = x), ∀x ∈ ~∂Ac

.
The two state probability distributions defined above,

pπ~∂A(x) and pπ~∂Ac(x), will be thoroughly used in the devel-
opment of our proposed methodology to condition the start
state of the Markov decision process Xπ

t .

Figure 1: Stopping times defined in Section 3.1.

3.2 Estimation with Fleming-Viot particle
systems

We now introduce the Fleming-Viot method as a way to tackle
the problem of sparse and rare rewards and estimate Eπ(η)
efficiently. Our approach penalizes trajectories that enter A in
order to boost exploration of the subset C of the state space
that is relevant for the estimation of the expectation, which
is in Ac. The penalisation consists in immediately replacing
trajectories that enter A by trajectories outside A. To this end,
we use the dynamics of a particle system known as Fleming-
Viot (FV) [7] which has been used in the literature to simulate
quasi-stationary distributions [7, 2].

More specifically, the Fleming-ViotN -particle system with
driving process Xπ

t and absorption set A is a continuous-time
Markov process (ξνt )t≥0 defined on the state space (Ac)N
as follows: given a probability distribution ν on Ac, an N -
dimensional vector ξν0 (k)k=1,...N defines the initial state of the
particles in the system and is obtained as i.i.d. samples from
ν. Each particle ξνt (k) then evolves independently according
to the dynamics of Xπ

t , but whenever it hits a state in A, it
immediately jumps to the position of one of the other particles
chosen uniformly at random. This mechanism allows us to only
explore trajectories outside A, which is where the informative
rewards are located.

In order to exploit the Fleming-Viot particle system for the
estimation of Eπ(η), we leverage the renewal theory character-
ization of the stationary probability of a state in terms of return
cycles [1, chapter 6, Theorem 1.2], as follows: if we use the
entrance to A as the event defining the beginning and end of a
cycle, the stationary expectation of an arbitrary function η can
be written in terms of the cycle time TA as

Eπ(η) =
E~∂A

( ∫ TA
0

η(Xπ
t )dt

)
E~∂ATA

. (1)

Note that, if we used Monte-Carlo to estimate this expecta-
tion by simulating the Markov process Xπ

t starting at ~∂A and
observing cycle times TA, it might take a very long time before
observing a non-zero contribution from η, as this function is
assumed to be sparse with non-zero values rarely observed.
The following proposition is key to define the Fleming-Viot
estimation method.

Proposition 1. Given a set A ⊂ S and a function η : S → R
that is zero on A, the following holds:

Eπ(η) =

∫∞
0

E~∂Ac
(
η(Xπ

t )1TK>t
)
dt

E~∂ATA
, (2)

which, for estimation purposes, can be further simplified as:

Eπ(η) =

∫ ∞
0

fη(t)g(t)dt, (3)

where

fη(t)
.
=
∑
x∈Ac

η(x)φ
~∂Ac
t (x); g(t)

.
=

P~∂Ac(TK > t)

E~∂ATA
,

and φ~∂A
c

t (x)
.
= P~∂Ac(X

π
t = x|TK > t) is the probability

that the process Xπ
t , started at a state in ~∂Ac chosen with

probability pπ~∂Ac , is in x provided it has not been absorbed.

Efficient reinforcement learning with Fleming-Viot particle systems 3
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Proof. Since at the beginning of a cycle the process starts at a
state in ~∂A, in order to reach a state in the set of interest C ∈ Ac
(the set of states with non-zero values of η), the process needs
to go through ~∂Ac.

Thus, using the definition of the sojourn times TAc and TA
and recalling that TA > TAc , expression (1) can be written as

Eπ(η) =
E~∂A

( ∫ TAc
0

η(Xπ
t )dt+

∫∞
TAc

η(Xπ
t )1TA>tdt

)
E~∂ATA

.

Since by assumption η is zero in A, the first integral is
zero. After changing the integration variable to u = t− TAc
in the second integral and using the notation of the killing time
TK = TA − TAc , we get

Eπ(η) =
E~∂A

( ∫∞
0
η(Xπ

u+TAc )1TK>udu
)

E~∂ATA
.

At u = 0, the Markov process is at Xπ
TAc which, as

stated in Section 3.1, is distributed according to pπ~∂Ac when
Xπ

0 ∼ pπ~∂A, as is the case above. This allows us to redefine the
time origin of the Markov process at u = 0 and replace E~∂A
with E~∂Ac to obtain

Eπ(η) =
E~∂Ac

( ∫∞
0
η(Xπ

u )1TK>udu
)

E~∂ATA
.

Expression (2) follows from replacing u → t and inter-
changing the order of the integral and the expectation, and
expression (3) is directly obtained from (2) by conditioning on
the event 1TK>t.

An estimator Êπ(η) of (3) is constructed by estimating each
function inside the integral, as follows: the denominator of g(t),
E~∂A(TA), is estimated using regular Monte-Carlo from obser-
vations of the stopping time TA coming from the simulation
of Xπ

t , fη(t) and the numerator of g(t), P~∂Ac(TK > t), are
estimated from the simulation of the FV N -particle system
driven by Xπ

t with absorption setA. The estimation details are
given in Appendix A.

3.3 Bound on the estimation error
It has been proved that for finite state spaces [8, 9], uni-
form in time propagation of chaos holds for Fleming-Viot
particle systems. We let m(·, ξ) : Ac → [0, 1] denote the
empirical distribution of the N particles with positions de-
scribed by vector ξ, defined as the empirical mean m(x, ξ)

.
=

1
N

∑N
i=1 1ξ(i)=x, ∀x ∈ A

c. It then follows that if ν is a prob-
ability measure on S, then, under assumption of proper initial-
ization, [8, Theorem 1.4] shows the following bound on the
speed of convergence w.r.t. the number of particles N of the
empirical mean m(., ξνt ) towards φνt :

sup
x∈S

sup
t≥0

E
∣∣∣[m(x, ξνt )]− φνt (x)

∣∣∣ ≤ CFV√
N
, (4)

where CFV is a positive constant depending on the characteris-
tics of the driving process.

Using this result, we can show the error bound stated in the
following theorem for the estimator Êπ(η) of (3) described at

the end of Section 3.2. The theorem is valid in an idealized case
where the simulation used to estimate the denominator of g(t),
E~∂A(TA), is started according to pπ~∂A, and the Fleming-Viot
simulation used to estimate fη(t) and the numerator of g(t),
P~∂Ac(TK > t), is started from i.i.d. samples of pπ~∂Ac .

Theorem 2. Assume that we start the simulation of Xπ
t for the

estimator of E~∂A(TA) according to the distribution pπ~∂A, that
M return cycles to A under stationarity are observed during
that simulation, and that we compute the estimator of fη in (3)
and of P~∂Ac(TK > t) using the FV particle system started at
the positions ofN i.i.d samples from pπ~∂Ac . Let η be a bounded
state function such that η(x) = 0 for x ∈ A. Then, there exists
a constant C > 0 such that

E
∣∣∣Êπ(η)− Eπ(η)

∣∣∣ ≤ C( 1√
M

+
1√
N

)
.

The proof is given in Appendix B.
Remark 1. Note that the estimator Êπ(η) is in general a biased
estimator of Eπ(η).
Remark 2. Theorem 2 ensures that the estimation error is of
the same order as Monte-Carlo, which gives minimal guaran-
tees for FV. However, the estimation error should not be our
only focus to evaluate the difference between FV and Monte-
Carlo, especially when the ultimate goal is the convergence of
a reinforcement learning algorithm. Indeed, in the control prob-
lem, a noisy but still informative signal might be very useful
compared to no signal at all. Our main idea when replacing
MC by FV is to trade the observation of a very rare event in
the original problem by the observation of a more common
event for FV particles. Although a fully rigorous analysis of
the probability to observe a non-zero reward is out of the scope
of this paper, we can give rough estimations using the results
of [8, 12]. The dynamics of a tagged particle of the FV process
converges whenN →∞ to a one-dimensional Markov process
having as stationary measure the quasi-stationary distribution
νQS of the original process (see [12]), where

νQS(B) = lim
t→∞

φ
~∂Ac
t (B),

for any set of statesB. If the state space is finite, this one dimen-
sional process in turn converges in distribution exponentially
fast to its stationary distribution, νQS . Hence, the probability
of finding a non-zero signal (by visiting states in set C) for the
FV process in a finite time interval is of the order of νQS(C),
which can be significantly larger than the original pπ(C) since
the dynamics of FV particles within the restricted state space
Ac are the same as those of the original process Xπ

t . Thus, FV
allows a shift of the estimation target, from Eπ(η) to EπνQS (η),
where the latter can be significantly larger than the former.

3.4 FVRL: Policy gradient learning with
Fleming-Viot particle systems

In this subsection we show how the Fleming-Viot estimation
introduced in Section 3.2 can be combined with the policy
gradient theorem to solve optimal control problems in environ-
ments with sparse and rare rewards under the expected reward
criterion. For example, there are many MDPs (see for instance
[22, 21, 14, 3, 15]) whose optimal policy is known to be of
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threshold-type (because of underlying monotonicity proper-
ties); when the rewards structure in these MDPs is sparse and
rare, learning the optimal thresholds with policy gradient algo-
rithms becomes very slow because the gradient is zero except
in very few and rarely observed states. We provide here a gen-
eral description of the FVRL method we propose to speed up
learning in those types of scenarios, which we will later apply
to two network optimisation problems described in Section 4:
an M/M/1/K queue and a loss network system serving two
classes of jobs.

Let us consider the case in which an agent interacts with an
environment (available in practice either through a simulator,
an emulator, or through experience replay of historical data),
with the aim of maximizing the expected reward. As customary
in the literature, we let Sn, Rn and An denote the state, reward
and action at the n-th discrete time step, respectively. We de-
note by πθ the policy function parameterised by θ. We recall
that we assume that a non-zero reward is accrued only in states
in C.

It follows from classical MDP theory [20] that the
optimal policy for the expected reward criterion is also
optimal for the state value (bias) function defined as
vπθ (x)

.
= Eπθ

[∑∞
n=0

(
Rn −R

πθ
)
| S0 = x

]
, where

R
πθ .

= limT→∞
1
T
Eπθ

∑T
n=0Rn is the expected reward. We

also define the corresponding state-action value function by

Qπθ (x, a) = Eπθ
[
∞∑
n=0

(
Rn −R

πθ
)
| S0 = x,A0 = a

]
.

(5)
It thus follows that vπθ (x) =

∑
a πθ(a|x)Qπθ (x, a).

We seek to find the policy πθ that maximizes the
average state value, vπθ =

∑
x p

πθ (x)vπθ (x) =∑
x p

πθ (x)
∑
a πθ(a|x)Qπθ (x, a)1.

We propose to use a gradient-based algorithm to learn the
parameter θ that maximizes vπθ . Denoting by X the random
variable associated to the stationary distribution under π, it fol-
lows from the Policy Gradient Theorem [24] that the gradient
of vπθ can be written as

∇θvπθ = Eπθ [Qπθ (X, a)∇θπθ(a|X)]

=
∑
x∈S

pπθ (x)
∑
a

Qπθ (x, a)∇θπθ(a|x) (6)

We note that the gradient to learn θ is a linear combination
of the policy gradients weighted by the stationary probability
pπθ . Considering the assumed sparse and rare structure of the
rewards in the environment to control, it is critical to observe
the rare states sufficiently often in order to obtain a non-zero
estimation of the stationary probability at those states. Other-
wise, any non-zero policy gradient ∇θπθ(a|x) coming from
these rarely observed states (which are the most informative for
learning θ in the context of the threshold-type policies being
discussed) will not contribute to the gradient of the average
state value, thus making learning difficult.

In this context, the FV particle system can be leveraged to
obtain informative gradients of the average state value through

an accurate estimation of the stationary probability pπθ , in par-
ticular at the rarely observed states. The combination of FV
and RL leads to the FVRL algorithm, which is used to estimate
the gradient of the average state value and learn the optimum θ.

The FVRL algorithm is derived from the following two-step
estimation of the gradient of the average state value:

1. For each x where the policy gradient is non-zero, esti-
mate the function of interest η introduced in Section 2,
here defined as η(x) =

∑
aQ

πθ (x, a)∇θπθ(a|x).

2. Given an estimate η̂ of η, use the FV procedure to esti-
mate its expectation:

∑
x∈S p

πθ (x)η̂(x).

This means that, besides estimating pπθ with Fleming-Viot,
we need to estimate η for every x where the policy gradient
is not zero for at least one possible action a. Thus, an es-
timate of η is constructed from estimates of Q(x, a) for all
actions a whose policy gradient at x is not zero. Although
these Q(x, a) values can be estimated by simulating separate
Markov processes Xπ

t independently –each starting at one
of the different (x, a) contributing to η– here we propose a
method based on coupled trajectories that leverages the sum-
to-one property of the policy over all actions at state x. More
precisely, the estimation method is as follows: if we let Ax
be the set of possible actions when the system is at state x,
we run |Ax| copies of the Markov process on the extended
state-action space, each starting at (x, ai)i=1,...,|Ax|. When
two such chains meet at the same state-action, they continue
evolving together forever. Thus, after all chains meet, the con-
tribution to

∑
a Q̂

πθ (x, a)∇θπθ(a|x) is zero, because at that
point all values contributing to Q̂πθ (x, a) are the same, and the
partial derivatives of the policy sum up to zero for any given θ.
Therefore, chains need to be run only until they all meet. Also,
because of the sum-to-one property of the policy, the contri-
bution to η̂ from the term R

πθ in (5) is zero and therefore its
value does not need to be computed, only the observed rewards
Rn need to be recorded.

The following proposition states that the FVRL algorithm
converges with probability 1 to the optimum parameter θ∗.

Proposition 3. Given a continuously differentiable parame-
terisation of the average state value vπθ , the policy gradient
FVRL algorithm converges with probability 1 to the optimum
parameter θ∗.

The proof is a consequence of [13, Section 5.2, Theorem
2.1] and [4], that consider the convergence of stochastic ap-
proximation algorithms with bias, as is the case with the FV
estimator used in the estimation of the gradient of the average
state value.

4 Application to stochastic net-
works with blocking

In this section we apply the methodologies outlined in Sections
3.2 and 3.4 to two different systems:

1With the same arguments presented in [20], it can easily be proven that the optimal policy for the expected reward criterion is optimal, not only for the state
value (bias) function, but also for the average state value (i.e. its expectation over all states).
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1. an M/M/1/K queue, which is a unidimensional state
system that will help us illustrate the basic concepts;

2. a loss network system with R servers receiving two
classes of jobs at exponentially distributed inter-arrival
times served with exponentially distributed service times,
which we will use to illustrate the application to a multi-
dimensional state system.

In both cases, we assume there exists a small subset C of the
state space where costs may be generated due to the rejection
of an incoming job (blocking), and that there is no reward for
job acceptance. For each system we will consider two goals:

a) the accurate estimation of the expected cost, Eπ(η), de-
fined in Section 2;

b) the efficient learning of the blocking sizes that minimize
the expected cost.

To simplify the exposition and to be able to do theoretical
computations against which results are compared, we fix the
parameters of the underlying Markov process. Nevertheless,
the method is designed to be applied in practice to systems with
possibly unknown parameters, the only condition being that the
system can be simulated or emulated.

In all the simulations run to present the results of the
method, either to estimate the expected cost or to learn the
optimum blocking sizes, a burn-in period of 10 system transi-
tions is considered before assuming that the stationary regime
has been reached for the computation of estimators. In addi-
tion, the stationary probability estimate pπ(x) –appearing in
the calculation of the expected cost and of the policy gradient–
is computed only when the number of observed return cycles to
the absorption set A, used in the estimation of E~∂A(TA), is at
least 5 once the burn-in period has been completed2. If this con-
dition is not satisfied the estimate of the stationary probability
pπ(x) is set to 0, except for the M/M/1/K case where it is
left undefined, reducing the number of successful estimations.

The algorithms for the estimation and for the optimisation
problems in both the M/M/1/K queue system and the loss
network are presented in Algorithms 1 and 2 in Appendix D,
respectively.

In each application problem, the method’s performance
is compared with vanilla Monte-Carlo (MC) which is used
as benchmark. In order to assure a fair comparison, the MC
estimation is based on the same number of events as the FV
estimation, and the MC learning is based on the same number
of events per learning step as the average number of events per
learning step observed in FVRL. The details of the estimation
and learning processes by MC are described in each subsection
below.

4.1 M/M/1/K system
We start by defining the Markov process Xπ

t that, under policy
π, describes the dynamics of the M/M/1/K system, namely
the queue size that measures the number x of jobs waiting to
be served in the buffer at a given time including the job be-
ing served. Jobs arrive following a Poisson process and their

service times are assumed exponentially and independently
distributed. We consider that the policy π belongs to the family
of deterministic accept/reject policies that reject an incoming
job at just one state, when Xπ

t = K, in which case a unitary
rejection cost is accrued.

The process is thus a continuous-time discrete-state stochas-
tic process living in {0, 1, . . . ,K} with upward jump rate λ
from any state x to x + 1 (except at x = K), and downward
jump rate µ from x to x − 1 (except at x = 0). We denote
by ρ .

= λ/µ the load of the system which is typically smaller
than 1 in real applications. Thus, the system can be represented
by an MDP (S = {x : 0 ≤ x ≤ K}, A = {0, 1}, q =
{λ, µ},R = r(x, a) = 1{x=K,a=0}) where actions 0 and 1
represent "reject" and "accept" an incoming job, respectively.

All presented results correspond to an M/M/1/K system
that serves, at rate µ = 1, jobs arriving at rate λ = 0.7.

4.1.1 Estimation of the expected cost

We apply the methodology outlined in Section 3.2 to efficiently
estimate the expected cost when blocking is a rare event.

Since the rejection cost is 1, estimating the expected cost is
tantamount to estimating the rejection probability, which can be
quite small depending on the system parameters. For example
with ρ = 0.5 andK = 20, the rejection probability becomes of
the order of 10−6, a result obtained from the PASTA property
of Poisson arrivals and the calculation of the stationary probabil-
ity where rejection occurs, which is P(Xπ

t = K) = (1−ρ)ρK

1−ρK+1

whenever ρ < 1.
In order to estimate the blocking probability using Fleming-

Viot, we define the function η introduced in Section 2 as
η(x) = 1{x=K}, which is sparse and non-zero in the single-
state set C = {K}. As a consequence, the expectation Eπ(η)
in (3) becomes the blocking probability, which can be written
as

Eπ(η) = pπ(K) =

∫∞
0
φJt (K)PJ(TK > t)dt

EJ−1TA
, (7)

where we have used that any set A = {0, 1, . . . , J − 1} with
J ≤ K is a valid absorption set, making ~∂A and ~∂Ac two
single-state entrance boundary sets equal to {J − 1} and {J},
respectively, which makes it possible to simplify (3) into (7).

According to Theorem 2, the estimator of Eπ(η) converges
to its true value as both the number N of particles of the FV
system, and the number M of return cycles to A increase. For
simulation purposes, and since the number M of return cycles
to A is random, we will refer to the number of arrival events
T (which directly impacts M ) when defining the hyperparam-
eters of experiments. The three quantities in (7) contributing
to the blocking probability are estimated following the steps
described in Algorithm 1 in Appendix D, which implements
the estimation methodology described in Appendix A.

Remark 3. There is a trade-off between choosing a small or a
large value of J , the state that defines the size of the absorption
set A: for smaller J , the return times to A will be smaller,

2The return cycles toA are measured from the first time the system entersA after the burn-in period has been overcome.
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requiring fewer arrival events T for an accurate estimation of
the denominator in (7), but at the same time visiting the rare
blocking state K will be rarer, requiring a larger number of
particles N for an accurate estimation of the numerator in (7).
The opposite is true for larger values of J . A detailed analysis
on this trade-off in terms of appropriately choosing N and T
for accurate estimations of the numerator and the denominator
in (7) is presented in Appendix C.

We now study the convergence of the FV estimator as ei-
ther N or T increases, and compare it with the benchmark MC
estimator, obtained from a direct application of expression (1),
i.e. as the fraction of the time spent at state K and the total

time of return cycles to the initial state x = J − 1 observed
during the simulation. To guarantee a fair comparison between
the two methods, we start the simulation at x = J − 1, so that
both methods start at the same "distance" from the blocking
state K, and let the simulation run until the same number of
events observed in the FV estimator is reached.

Figure 2 compares the convergence of the FV estimator
with the MC estimator both as N increases and as T increases.
We considered the cases K = 20 and K = 40, which are re-
garded to represent moderate and large capacities based on their
blocking probabilities at the considered value for ρ = 0.7 of or-
der 10−4 and 10−7, respectively. The size J of the absorption
set A is held fixed at J = 12.

(a) K = 20, P r(K) = 2.4× 10−5 : T = 4157 (b) K = 20, P r(K) = 2.4× 10−5 : N = 30

(c) K = 40, P r(K) = 1.9× 10−7 : T = 4157 (d) K = 40, P r(K) = 1.9× 10−7 : N = 1356

Figure 2: Violin plots showing the convergence properties of the Fleming-Viot (green) and Monte-Carlo (red) estimators of the blocking
probability for an M/M/1/K queue system with λ = ρ = 0.7. Left plots (a) and (c): convergence as the number of particles N increases
with T fixed. Right plots (b) and (d): convergence as the number of arrival events T increases with N fixed. The absorption set size is J = 12
in all cases. For the left set of plots (a) and (c), the number of particles considered for the convergence analysis are N = 264, 1055, 4220
for K = 20, and N = 763, 1356, 3051 for K = 40. For the right set of plots (b) and (d), the number of arrival events considered for the
convergence analysis are T = 462, 1040, for both K = 20 and K = 40. For more details on these choices, see Appendix C. The middle
horizontal line in each violin plot represents the median. In the corresponding MC experiments, the average number of observed return cycles
to the initial state J − 1 is used on the horizontal axis while the top horizontal axes show the average number of events observed in the
experiments run in each set, which by design coincide between each paired FV-MC execution, as described in the text.
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We observe the following in terms of convergence of the
FV and MC estimators to the true blocking probability, which
in the plots is represented by a horizontal gray line:

1. Both the FV and the MC estimators converge to the true
blocking probability when K = 20 (Figures 2(a,b)). MC
presents a smaller variability than FV in the convergence
analysis with N (Figure 2(a)) but a larger variability than
FV in the convergence analysis with T (Figure 2(b)).
This is due to the fact that Figure 2(a) is obtained from
simulations whose events largely outnumber the events
in Figure 2(b) by as much as 10 times (∼ 20, 000 vs.
∼ 2, 000), which allows MC to observe the blocking
event at x = K frequently enough for an accurate esti-
mation of the blocking probability. On the other hand,
Figure 2(b) tells us that a much smaller number of events
(∼ 2, 000) is sufficient for FV to estimate the blocking
probability accurately enough, but is not sufficient for
MC. This demonstrates the higher efficiency of FV than
MC in discovering the rare event at K.

2. When K = 40 (Figures 2(c,d)) the MC estimator basi-
cally fails as it almost never observes the blocking state
K.

3. Increasing N has a larger impact in increasing the FV
estimator’s computational complexity than increasing T .
This conclusion is obtained by observing that the num-
ber of events at the leftmost violin plot in Figure 2(a)
(∼ 20, 000 events), where N ∼ 4, 000 and T ∼ 100, is
about 10 times larger than the number of events at the
rightmost violin plot in Figure 2(b) (∼ 3, 000 events),
where N ∼ 100 and T ∼ 4, 000 (i.e. the N and T
values are switched w.r.t. the previous case).

4.1.2 Learning the optimum blocking size using
FVRL

We illustrate the FVRL learning algorithm by defining a cost
function of rejecting an incoming job that is exponentially in-
creasing with the queue size at the time of the job arrival. Note
that the blocking cost needs to be exponentially increasing with
the queue size in order to obtain an optimisation problem with
a non-trivial solution (i.e. where the optimum K is finite). This
is due to the fact that the stationary probability is exponentially
decreasing with the queue size, as mentioned at the end of
Section 4.1, and such exponentially increasing cost function
guarantees that the expected cost to minimize is a convex func-
tion of K. More precisely, given the queue size x, the cost
function is defined as r(x, a) = B(1 + bx−xref )1{a=0}, where
B, b and xref are positive constants which, for a given load ρ,
are carefully chosen to make the expected cost to minimize a
convex function. From [14] we know that the policy optimising
such convex cost functions is of threshold type, that is, there
exists a state 0 < K < ∞ such that a = 1 is optimal for all
x < K, and a = 0 is optimal for x = K. The value of xref

is the reference queue size that is instrumental in defining the
optimum threshold, K∗, which is the closest integer to xref.

We now use the policy gradient methodology presented in
Section 3.4 to learn the optimum threshold K∗. Following [16]
and using the framework of Semi-Markov Decision Processes
(SMDP) to describe the continuous-time Markov process Xπ

t

by a discrete-time process Xπ
n [19, 16], we propose a param-

eterised acceptance policy π(a = 1|x) that is a linear step
function of the state x, which is deterministic for x outside the
interval (θ, θ+ 1) and decreases linearly from 1 to 0 within the
interval. That is, the acceptance policy parameterised by the
positive real-valued θ, is defined as:

πθ(a = 1|x) =


1 if x ≤ θ,
x− θ + 1 if θ < x < θ + 1,

0 if x ≥ θ + 1.

(8)

Note that the policy is deterministic for integer-valued θ, in
which case the blocking size is K = θ + 1. Otherwise, K is
defined as dθe+ 1.

We use a gradient descent algorithm to learn the optimum
parameter θ that minimizes the average state value vπθ , where
"value" here is thought of as cost. Using expression (6), the
gradient of vπθ becomes

∂vπθ

∂θ
= pπθ (K − 1) [Qπθ (K − 1, 1)−Qπθ (K − 1, 0)] ,

(9)
where K − 1 is the smallest integer that is larger than or equal
to θ. We observe that this parameterisation leads, as expected,
to gradients being 0 for x 6= K − 1, that is, the policy gradient
is sparse. We note also that the gradient is discontinuous at θ
and θ + 1, making the assumptions of Proposition 3 not fully
satisfied. However, these two points have measure zero and
therefore, with probability 1, no discontinuity is observed3.

Details of the learning algorithm are given in Algorithm 2
in Appendix D.

To illustrate the FVRL algorithm, we consider an MDP
with the following characteristics: the system load is ρ = 0.7,
the blocking cost function r(x, a) is defined with the parame-
ters b = 3 (> 1/ρ so that the expected cost function is convex),
B = 5, and xref = 18, giving K∗ = 18.

The setup of the learning experiments is as follows: we
choose the value (xref + 10) for the initial blocking size guess,
so that, already at the onset, blocking occurs rarely. Since the
value of K is no longer fixed (as was the case when estimating
the blocking probability) but is now learned by the algorithm,
it is not possible to choose a fixed value J for the size of the
absorption set A. Instead, we consider a fixed J/K fraction
that adapts J to each value of K at the start of each learning
step. In order to experiment with different sizes of the absorp-
tion set A, we consider two different scenarios: J = d0.3Ke
and J = d0.5Ke. Following the conclusions of the choice
of J , N and T and their impact in the FV estimator accuracy
outlined in Appendix C, for each value of J , we adjust N and
T at each learning step to obtain approximate expected rela-
tive errors of εφ ∼ 100% and εET ∼ 20%, respectively for

3A special case occurs when θ is integer, in which case the discontinuities would be observed with non-zero probability in the gradient descent algorithm
under the following scenario: an integer value is chosen for the initial guess of θ, and integer-valued clipping (e.g. to ±1) is used for the next θ estimated by the
algorithm. This problem is solved by simply not choosing an integer-valued initial guess of θ.
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the estimations of φJt (K − 1) and EJ−1(TA), i.e. we set the
approximate expected error for φ̂Jt (K − 1) much larger than
the approximate expected error for ÊJ−1(TA). For compari-
son purposes and to further check the conclusions of the error
analysis in Appendix C, we also considered a scenario where
the pre-defined relative errors are inverted, namely εφ ∼ 20%
and εET ∼ 100%.

For each setup we ran the FVRL policy learner on 100 learn-
ing steps. At each learning step, as long as a positive estimate
of the stationary probability pπθ (K−1) has been obtained, we
also estimate the sparse η(x) function defined in Section 3.4
–which in this case is simply the difference between two Q val-
ues as seen in (9)– using the coupling procedure described in
Section 3.4 and allowing up to 250 arrival events until mixing
is observed in each of 100 replications. The value of η̂(x) is
finally computed as the average Q-difference over these repli-
cations4 and multiplied with the stationary probability estimate
p̂πθ (K − 1). Parameter θ is then updated by gradient descent
using a constant learning rate of α = 10, and the number of ob-
served events at each learning step is recorded. The estimated
optimum threshold is set to K̂∗ = round(θ̂∗) + 1, where θ̂∗

is the value of the θ parameter obtained after the last learning
step.5.

The benchmark MC learning algorithm uses the same pol-
icy gradient approach as FVRL with the only difference that it
estimates the probability pπθ (K − 1) in expression (9) using
Monte-Carlo instead of Fleming-Viot, i.e. based on a single
trajectory of Xπ

t as the ratio between the continuous time that
the system spends at K − 1 and the total return cycle time to
J − 1 under stationarity6, where J is defined as a function of
K as in FVRL. Each replication of the MC learner is started
at J − 1 and is stopped when the average number of observed
events over all learning steps in the respective FVRL replica-
tion is observed. These two conditions allow a fair comparison

between the two methods.

The results of the above procedure run on 20 replications
are shown in Figure 3. We see that FVRL clearly outperforms
the benchmark MC learning in three out of the four scenar-
ios considered, depicted in Figures 3(a), 3(b) and 3(d). In the
scenario depicted in Figure 3(c), learning by the two methods
is similar because the average number of events is about 10
times larger than the one observed in the other three scenarios
(∼ 40, 000 vs. ∼ 5, 000), which allows MC to also observe the
rare blocking state and thus learn almost as fast as FVRL. This
is the same situation previously observed about the probability
estimation results presented in Figure 2.

Of the two setups, εφ ∼ 100% and εET ∼ 20% used for
Figures 3(a) and 3(b), and εφ ∼ 20% and εET ∼ 100% used
for Figures 3(c) and 3(d), the setup that is both the safest and
the least computationally intensive is the former. This is consis-
tent with the conclusions of the analysis of the choice of J , N
and T in FV presented in Appendix C, namely that, for an accu-
rate estimation of the stationary probability, more importance
should be given to achieve an accurate estimation of EJ−1(TA)
than an accurate estimation of φJt (K). In terms of safety we
note that, for the least convenient setup of εφ = 20% and
εET = 100% of Figure 3(d), in one replication the θ param-
eter suddenly increases from 28 to 140 (not shown but made
apparent by the mean learning curve being significantly above
the median learning curve). This overshoot impedes further
learning because the blocking probability becomes extremely
small at K = 140. This clearly illustrates the risks of choosing
a too small T value (associated to the large error εET = 100%)
which may considerably overestimate the blocking probability
(due to an underestimation of EJ−1(TA)) and generate such
out-of-control excursion coming from a noisy estimation of the
Q-difference contributing to the gradient expression.

4.2 Loss network system

Consider now a loss network that processes jobs of I different
classes which, as in the M/M/1/K system, arrive following
independent Poisson processes and are served with indepen-
dently exponentially distributed times by one of R available
servers. We are interested in analyzing the number of jobs
of each class being served by the system at a given time t,
Xπ
t = (Xπ

t,1, ..., X
π
t,I), whose dynamics is governed by the

system characteristics and the policy π being applied. As be-
fore, we also consider a policy π that belongs to the family of
deterministic accept/reject policies that reject an incoming job
of a given class when the system is already serving a predefined
number of jobs of that class, in which case a class-dependent
rejection cost is accrued.

Let us denote by λi, µi, Ci, Ki the job arrival rate,
the service rate, the rejection cost, and the blocking size
of each job class i = 1, . . . , I . Thus, the system

can be represented by an MDP (S = {X ∈ RI :
0 ≤ Xi ≤ Ki, i = 1, . . . , I s.t. XT1 ≤ R, }, A =
{0, 1}, q = {λ1, . . . , λI ;µ1, . . . , µI},R = r(x, a) =∑I
i=1 Ci1{x∈Si,Li,a=0}), where Si is the set of states where

blocking occurs following an i-class job arrival, an event that
is denoted by Li.

For the purposes of simplifying illustration, in our experi-
ments we consider the smallest multi-class loss network, one
that serves just two classes of job.

4.2.1 Estimation of the expected cost

Contrary to the M/M/1/K case, estimating the expected cost
in the loss network system is not equivalent to estimating the
blocking probability, because blocking occurs at more than one
state whose cost in general depends on the class of the arriving
job being rejected.

The expression of the expected cost Eπ(R) under the
4The number of replications on which the Q-difference is averaged may be less than 100 because a replication is excluded from the average when mixing

does not occur, but this occurs very rarely.
5Note that the estimated optimum threshold is not set to dθ̂∗e+ 1, as in the definition of the parameterised policy, so that K̂∗ is more naturally chosen to be

e.g. 5 when θ̂∗ = 4.01 rather than 6.
6Stationary is assumed after the burn-in period whose value is defined in Section 4.
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(a) φ̂ ∼ 100%, Ê(TA) ∼ 20%, J/K = 0.3
(average number of events per replication is 4,000)

(b) φ̂ ∼ 100%, Ê(TA) ∼ 20%, J/K = 0.5
(average number of events per replication is 5,000)

(c) φ̂ ∼ 20%, Ê(TA) ∼ 100%, J/K = 0.3
(average number of events per replication is 40,000)

(d) φ̂ ∼ 20%, Ê(TA) ∼ 100%, J/K = 0.5
(average number of events per replication is 5,000)

Figure 3: Comparison of FVRL learning (left subplot in green) with Monte-Carlo learning (right subplot in red) of the optimum parameter
θ∗ = 17 (horizontal dashed gray line) of the parameterised acceptance policy πθ of incoming jobs to the M/M/1/K queue system with
λ = ρ = 0.7. Each plot caption indicates the following learning settings for the FVRL approach: the approximate expected relative error
wished for the estimation of φt(K) (which defines the number of particles N at each learning step), the approximate expected relative error
wished for the estimation of E(TA) (which defines the number of arrival events T at each learning step), and the fraction J/K defining the
size of the absorption set. In all cases the learning parameter is kept constant at α = 10, and the initial θ guess is 28.1, which defines a "large"
blocking size of K = 30 whose small stationary probability (∼ 10−6) makes blocking a rare event already at the onset of learning.

threshold policy π and rewards R is obtained from the total
probability theorem applied on all possible job arrival classes
and all possible accept/reject actions on those arrivals, as:

Eπ(R) =
∑
x∈S

pπ(x)c(x), (10)

where pπ(x)
.
= Pr(Xπ

n = x) is the sta-
tionary probability that the SMDP Xπ

n (defined
in Section 4.1.2) is at state x, and c(x) =∑I
i=1 Ciλi/Λ

[
1{∑I

j=1 xj=R}
+ 1{∑I

j=1 xj<R}
1{xi=Ki}

]
is the expected cost of rejection at x over all possible arriving
job classes, where Λ

.
=
∑I
i=1 λi is the total job arrival rate.

The true expected cost is computed from (10) using the
stationary probability of the stochastic knapsack as pπ(x) [21,
Chapter 4] , against which the estimated expected cost is com-

pared.

The convergence of the estimated expected cost to its true
value is analyzed via the violin plots shown in Figure 4, where,
following the conclusions about the choice of J , N and T
for the M/M/1/K queue system described in Appendix C,
is analyzed in terms of increasing T (as opposed to increas-
ing N ), since a large value of T is more crucial than a large
value of N for an accurate estimation. In order to analyze the
impact on the estimation accuracy of the distribution of the
start states, two scenarios are considered in this analysis: (a)
one where the N initial states for the FV simulation used to
estimate P~∂Ac(TK > t) and φ~∂A

c

t are chosen uniformly at
random out of the states in ~∂Ac, and (b) one where the initial
states are chosen according to the stationary distribution of the
states in ~∂Ac, which is known for the loss network considered.
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The latter is still not the correct distribution to use for the initial
states, but is a better approximation than the uniform to the
actual distribution that should be used according to Theorem 2,
namely the entrance stationary distributions of the states in
~∂Ac. In practice, when the stationary distribution of the states
in ~∂Ac is unknown, one should use the entrance stationary
distribution of the states in ~∂Ac, estimated using the procedure
described in Appendix A and implemented by Algorithm 1,
which is based on the single simulation of the Markov process
that estimates E~∂A(TA). Note that, as stated in Appendix A,
the initial state for the estimation of E~∂A(TA) is always chosen
uniformly at random among the states in ~∂A, and after that the
burn-in period is used so that the system is closer to stationarity
before collecting the data for the estimation process.

Finally, to guarantee a fair comparison with the benchmark,
the simulation for the MC estimator is started at a uniformly
randomly chosen state in ~∂A –so that both methods start at a
similar "distance" from the set of blocking states– and is let run

until the number of events of the FV simulation is observed.
A loss network with the following characteristics was con-

sidered for the estimation of the expected cost: capacity R = 6
servers, λ = [1, 5], µ = [3.33, 50.0], hence ρ = [0.3, 0.1],
C = [2.5 × 103, 4.9 × 106], K = [4, 6]. The choice of the
rejection costs allows us to illustrate the benefits of the FV
approach over MC as it makes a few of the smaller probability
cost-generating states as important as those with larger prob-
ability in terms of their contribution to the system’s expected
cost. These contributions are listed in Table 1, together with
their respective stationary probabilities which have been com-
puted following the product form of the stationary probability
of the stochastic knapsack described in [21, chapter 4]. We
observe that the top three states in terms of probability con-
tribute to about 65% of the expected cost, while the bottom
four, with probability smaller than 10−6, contribute to as much
as 35%, therefore obtaining accurate estimates of the probabil-
ity of a few of those smaller probability states is important for
an accurate estimation of the expected cost.

State x Prob. pπ(x) Expected cost c(x) pπ(x)c(x) % Exp. cost Eπ(R)
[4, 0] 2.2× 10−4 0.416× 103 0.094 1.3%
[4, 1] 2.3× 10−5 0.416× 103 0.009 0.2%
[4, 2] 1.1× 10−6 4084× 103 4.525 62.7%
[3, 3] 5.0× 10−7 4084× 103 2.011 27.8%
[2, 4] 1.3× 10−7 4084× 103 0.503 7.0%
[1, 5] 1.7× 10−8 4084× 103 0.067 0.9%
[0, 6] 9.3× 10−10 4084× 103 0.004 0.1%
Total 7.214 100.0%

Table 1: Contribution to the expected cost Eπ(R) by each blocking state in the loss network system with R = 6, λ = [1, 5], µ = [3.33, 50.0]
(ρ = [0.3, 0.1]), C = [2.5× 103, 4.9× 106], blocking sizes K = [4, 6] defining policy π, sorted by decreasing probability pπ(x).

Figure 4 compares the convergence of the FV estimator
with the MC estimator of the expected cost of the system as the
number of arrival events T increases, while keeping a fixed N
set to 500 and an absorption set A with size J = [1, 2] in each
job class dimension. We observe:

• a consistently smaller variance of the FV estimator com-
pared to the MC estimator.

• a higher accuracy of the FV estimator (although with

larger variance) when the start state of the FV simulation
is chosen following the stationary distribution of states
in ~∂Ac compared to the uniformly random choice case.
In the latter case (Figure 4(a)) the FV estimates tend to
underestimate the expected cost, as made apparent by the
median value represented by the horizontal line in the
middle of each violin plot.

• a tendency of the MC estimator to overestimate the ex-
pected cost.

4.2.2 Learning the optimum blocking sizes using
FVRL

The FVRL algorithm of the optimum blocking sizes K∗ ∈ NI
of a loss network serving I jobs classes learns the optimum θi
of I parameterised acceptance policies, each of the form (8).
For each θi observed during learning, the deterministic block-
ing size Ki of each policy is defined as Ki = dθie + 1, but,
as in the M/M/1/K case, the estimated optimum blocking
size obtained at the end of the learning process is defined as
K̂∗i = round(θ̂∗i ) + 1.

Upon arrival of a job of class i, the respective πθi accep-
tance policy is applied, making the system’s acceptance policy
equal to πθ(a = 1|x) =

∑I
i=1 πθi(a = 1|xi)1Li , where Li

denotes the arrival event of a class-i job. Its derivative w.r.t. θi
is non-zero only at states x for which xi = Ki − 1 as long as
they satisfy the R-server constraint for a possible job accep-
tance, xT1 < R. At those states the derivative is equal to +1
for action a = 1 (accept) and −1 for action a = 0 (reject).

Efficient reinforcement learning with Fleming-Viot particle systems 11
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(a) The start state of each FV particle is chosen uniformly at random in
the boundary setAc

(b) The start state of each FV particle is chosen following the stationary
distribution of the states in the boundary setAc

Figure 4: Violin plots showing the convergence properties of the Fleming-Viot (left) and Monte-Carlo (right) estimators of the expected cost in
a two-class loss network with R = 6 servers, λ = [1, 5], ρ = [0.3, 0.1], blocking at K = [4, 6] with costs C = [2.5× 103, 4.9× 106], as the
number of arrival events T increases. The absorption set sizes by job class are J = [1, 2] and the number of particles is N = 500. The middle
horizontal line in each violin plot is the median estimated value among 10 replications. In the corresponding MC experiments, the average
number of observed return cycles to the absorption set is used on the horizontal axis. Finally, the top horizontal axes show the average number
of events observed in the experiments run in each set, which by design coincide between each paired FV-MC execution, as mentioned in the
text.

Hence, the partial derivative of vπθ w.r.t. θi becomes:

∂vπθ

∂θi
=
∑
x∈Si

pπθ (x) [Qπθ (x, 1)−Qπθ (x, 0)] , for i = 1, . . . , I, (11)

where Si is the set of states x where xi = Ki − 1 and
xT1 < R.

To illustrate the FVRL algorithm, we consider a two-job-
class loss network with the following characteristics: R = 6
servers, job arrival rate by class λ = [1, 5], service rate by class
µ = [2.0, 16.67] (resulting in a load by class ρ = [0.5, 0.3]),
and a blocking cost by class C = [2 × 103, 2 × 104]. For
this choice of parameters, the optimum blocking sizes of the
threshold policy are equal to K∗ = [4, 6] (i.e. θ∗ = [3, 5]),
which will be estimated with FVRL.

The setup of the learning experiments is as follows: we
set the initial blocking size guess to K = [0.1, 0.1], and the
following simulation parameters for the estimation of the sta-
tionary probabilities pπθ (x) for each x ∈ Si: J/K = 0.5 for
both classes, the number of FV particles N = 100, and the
number of arrival events T = 500. The start state of each FV
particle is chosen following the known stationary distribution
of the states in ~∂Ac(7). The estimation of the gradient in (11) is
completed by estimating the Q-difference at each x following
the same coupling procedure used for the M/M/1/K case.
The learning rate α is set initially to 1.0 and is then decreased
inversely proportional to the learning step.

The results of the above procedure run on 20 replications
are shown in Figure 5 and described in the caption. We see that
FVRL outperforms MC learning in terms of median learning

speed of parameter θ1 with non-trivial optimum, and presents a
smaller path variability as well. On the other hand, the FVRL
and MC average learning speeds are similar and are a little
larger than the ideal learning scenario depicted in blue on the
left, where the learning process uses the true stationary proba-
bilities in the gradient expression, i.e. only the Q-differences
are estimated for the computation of the gradient. The FVRL
algorithm is closer than MC to such scenario.

We also observe that the non-trivial θ1 parameter goes
through large variations in all learning scenarios –see Fig-
ure 5(a)– which tend to happen when the value of θ1 goes
below its optimum of 3. This is due to the fact that the non-
deterministic probability at K1 − 1 of the acceptance policy
suddenly changes from being close to 0 to being close to 1,
which makes the learning agent suddenly receive a signal that
it should reject incoming jobs at a larger threshold value.

7When the stationary distribution of the states in ~∂Ac is unknown, one should use the same procedure described in Subsection 4.2.1 for the selection of the
start state.
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(a) Learning paths of 20 replications

(b) Distribution of learning paths of 20 replications

Figure 5: Comparison of FVRL learning (middle) with Monte-Carlo learning (right) and learning using the true stationary probabilities (left),
which gives the scenario closest to the true learning process, where only the difference in the Q values is estimated. The plots show the
results over 20 experiments run over 30 learning steps on a loss network with R = 6 servers, λ = [1, 5], ρ = [0.5, 0.3], with blocking costs
C = [2× 103, 2× 104]. At each learning step, the FVRL setup sets the absorption set size by job class at Ji/Ki = [0.3, 0.5], the number of
particles at N = 300 and the number of arrival steps at T = 500. In the MC learning case, each experiment uses as many number of events per
learning step as the average number of events observed in FVRL by learning step. In all cases the initial guess is θ = [0.1, 0.1] (K = [2, 2]),
the learning parameter starts at α = 1.0 and is then decreased inversely proportional to the learning step. The top row shows each of the 20
realized paths. The bottom row shows the distribution of the visited θ values by learning step, where the darker band includes 50% of the paths
around their median and the lighter band includes 100% of the paths. The interesting learning paths to compare are those associated to θ1, as
θ2 is learned equally well as 4.9 by all methods (which is shown as dotted lines in (a)).

5 Conclusions and future work

The Fleming-Viot particle system was presented as an efficient
alternative to Monte-Carlo for the exploration of environments
where rewards are sparse and their occurrence is rare. Its ap-
plication to the estimation of the blocking probability in an
M/M/1/K queueing system and of the expected rejection

cost in a loss network serving different job classes served as
test benches. In the M/M/1/K system, the method proved to
be much more efficient than Monte-Carlo for large capacities
K, where the latter completely fails, and in the loss network
system it was able to estimate the expected cost more accurately
and more precisely than Monte-Carlo.

Results on optimal control of the above systems using pol-

Efficient reinforcement learning with Fleming-Viot particle systems 13
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icy gradient were also presented. The proposed FVRL algo-
rithm tends to find the optimum parameters significantly faster
than Monte-Carlo learning. In this case, we note that the ac-
curacy of the stationary probability estimator is not as crucial
as in the estimation problem, because the algorithm is able to
learn as long as it receives a signal from the rare states.

In future work, we intend to extend the FV and the FVRL
algorithms to environments other than queues and networks,
to more traditional RL environments such as labyrinths or the
mountain car, where it will be crucial to define the absorption
set A adaptively, i.e. based on the discovery of the states that
give no rewards during exploration of the environment.
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A ESTIMATION OF Eπ(η) USING FLEMING-VIOT PARTICLE SYSTEMS

A Estimation of Eπ(η) using Fleming-Viot particle systems
An estimator of Eπ(η) using (3) is constructed from estimators f̂η, ĝ of functions fη, g as

Êπ(η) =

∫ ∞
0

f̂η(t)ĝ(t)dt. (12)

Firstly, we explain the construction of the estimator of g, which is a ratio of the quantities P~∂Ac(TK > t) and E~∂A(TA),
each of which is estimated from two separate simulations, as follows: (i) a simulation of the Markov process starting at an
arbitrary state x ∈ ~∂A, and (ii) a simulation of a predefined number of N independent copies of the Markov process starting at a
randomly selected state x ∈ ~∂Ac following the entrance state distribution into Ac under stationarity, estimated from the first
simulation. As explained below, simulations (i) and (ii) contribute to the estimation of E~∂A(TA) while simulation (ii) contributes
to the estimation of P~∂Ac(TK > t).

The details are as follows: we set τA,0
.
= 0 and define a sequence of stopping times τAc,i, τA,i, associated to the events of

entry, in the i-th cycle, into Ac and into A, respectively, as follows:

τAc,i = inf
t>τA,i−1

{Xπ
t ∈ Ac},

τA,i = inf
t>τAc,i

{Xπ
t ∈ A},

for i ≥ 1. We also define TE,i = τAc,i − τA,i−1, the entry time intoAc within cycle i, and TK,i = τA,i − τAc,i, the killing
time within cycle i. We note that TA,i = TE,i + TK,i, which will be used below to construct the estimator of the denominator of
g, E~∂A(TA).

The first simulation consists of running the process Xπ
t until a predefined number M0 +M entry times {TE,i}M0+M

i=1 are
observed, where we consider the first M0 observations to be burn-in in order to assume stationarity of the process thereafter.
From this simulation we compute the empirical entrance state distribution into Ac, which can be considered as an estimator of
pπ~∂Ac , as p̂π~∂Ac = 1

M

∑M0+M
i=M0+1 1XπτAc,i

.

The second simulation of the N independent copies of Xπ
t is started at states xi ∈ ~∂Ac randomly chosen according to the

estimated stationary distribution p̂π~∂Ac (this is trivial when ~∂Ac has a single state), yielding N killing times {TK,i}Ni=1.
From the last M entry times and the N killing times, we define a Monte-Carlo estimator of g as the ratio

ĝ(t) =
1
N

∑N
i=1 1TK,i>t

1
M

∑M0+M
i=M0+1 TE,i + 1

N

∑N
i=1 TK,i

. (13)

Next, we explain the construction of the estimator of f , which is a η-weighted sum of φ~∂A
c

t over all states in Ac, using the
Fleming-Viot N -particle system driven by Xπ

t . The Fleming-Viot system, denoted by (ξνt )t≥0, is simulated as described in
Section 3.2, using A as the absorption set and starting each particle i at xi a randomly chosen state according to the distribution
ν(x) = pπ~∂Ac(x)1x∈~∂Ac . That is, all particles start at the boundary of Ac, as required by the quantity to estimate φ~∂A

c

t . We let
m(·, ξ) : Ac → [0, 1] denote the empirical distribution of the N particles with positions described by vector ξ, defined as the
empirical mean m(x, ξ)

.
= 1

N

∑N
i=1 1ξ(i)=x, ∀x ∈ A

c. Since m(·, ξνt ) is an estimator of φ~∂A
c

t (because ν is restricted to the
boundary of Ac where it is equal to the entrance state distribution into Ac under stationarity), f can be estimated by

f̂η(t) =
∑
x∈Ac

η(x)m(x, ξνt ). (14)

We note that, by construction, ĝ(t) = 0 for t > TK,max = max {TK,i : 1 ≤ i ≤ N}. Therefore, since we wish to compute
Êπ(η) =

∫∞
0
f̂η(t)ĝ(t)dt, we only need to simulate the Fleming-Viot process until time TK,max is reached. Also, since both

f̂η(t) and ĝ(t) are almost surely piecewise constant functions and ĝ(t) = 0 for t > TK,max, the integral
∫∞
0
f̂η(t)ĝ(t)dt is a

finite sum that can be easily computed.
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B PROOF OF THEOREM ??: ERROR OF THE FLEMING-VIOT ESTIMATOR

B Proof of Theorem 2: Error of the Fleming-Viot estimator
Using the notation fη, g, f̂η, ĝ introduced in (3) and (14), (13), we have Eπ(η) =

∫∞
0
fη(t)g(t)dt and Êπ(η) =

∫∞
0
f̂η(t)ĝ(t)dt.

We are thus interested in bounding:

E
∣∣∣∣∫ ∞

0

f̂η ĝdt−
∫ ∞
0

fηgdt

∣∣∣∣
We start by decomposing the problem of upper bounding the above quantity into two subproblems in the following way:

E
∣∣∣∣∫ ∞

0

f̂η ĝdt−
∫ ∞
0

fηgdt

∣∣∣∣ ≤ E
∣∣∣∣∫ ∞

0

(fη − f̂η)gdt

∣∣∣∣+ E
∣∣∣∣∫ ∞

0

f̂η(ĝ − g)dt

∣∣∣∣ (15)

We start by bounding the first term on the right hand side. For this purpose we will need the uniform propagation of chaos
bound presented in (4), that is:

sup
‖φ‖∞≤1

sup
t≥0

E
∣∣∣[m(·, ξνt )(φ)]− φνt (φ)

∣∣∣ ≤ CFV√
N
,

from which it follows that:
sup
t≥0

E
∣∣∣[f̂η(t)− fη(t)

∣∣∣ ≤ CFV√
N
. (16)

As was mentioned in subsection 3.3, this bound follows directly from [8, Theorem 1.4]. The assumptions of [8, Theorem 1.4]
have a very general form, but it is easy to check that they are trivially satisfied in our simple case. The assumption (I) on
initialization is satisfied by our assumption that the FV particle system is started at the position of N i.i.d samples from pπ~∂Ac .
Assumption (C1) has several parts: the uniform bound on selection rates (which are, in our case, the rates of jumps out of Ac),
follows from the fact that the state space is finite); the rest of assumption (C1) is trivially satisfied when we take V dµ (x) to be the
rate of jump out of Ac from the state x ∈ Ac for any µ, and set function V bµ (y), V sµ (x, y) equal to zero. Finally, assumption
(C2) follows from the fact that we are working with an irreducible Markov chain on a finite state space. Therefore, using the
triangle inequality and the inequality (16), we obtain:

E
∣∣∣∣∫ ∞

0

(fη − f̂η)gdt

∣∣∣∣ ≤ E
∫ ∞
0

∣∣∣(fη − f̂η)
∣∣∣ gdt

≤
∫ ∞
0

E
∣∣∣(fη − f̂η)

∣∣∣ gdt
≤ CFV√

N

∫ ∞
0

gdt =
E~∂AcTK
E~∂A(TA)

CFV√
N
,

where in the last line we also use the ’wedding cake decomposition’,
∫∞
0

P~∂Ac(TK > t)dt = E~∂AcTK.

Since η(x) is bounded, without loss of generality we can consider that supx∈Ac |η(x)| ≤ 1, and use that
∣∣∣f̂η(t)

∣∣∣ ≤ 1 for t ≥ 0
to get: ∣∣∣∣∫ ∞

0

f̂η(ĝ − g)dt

∣∣∣∣ ≤ ∫ ∞
0

|ĝ − g| dt.

We thus wish to estimate E
∫∞
0
|ĝ − g| dt. For convenience, we define a random variable TA with the distribution of TA when

Xπ
t is started with distribution pπ~∂A, and a random variable TK with the distribution of TK when Xπ

t is started with distribution
pπ~∂Ac . Since we start the simulation of Xπ

t for the purpose of estimating g with distribution pπ~∂A, we do not need any burn-in.
We therefore take M0 = 0. We also note that since we start the simulation at the distribution pπ~∂A, it follows from renewal theory
[1] that the inter-arrival times TA,i used to construct the estimator ĝ are i.i.d. with distribution TA.

We also introduce additional shorthand notation for the numerators and denominators of g(t) and ĝ(t). We denote Nt =
P~∂Ac(TK > t) and DA = E~∂ATA, DK = E~∂AcTK. We also denote by N̂t, D̂A the estimators of Nt, DA, that is N̂t =
1
N

∑N
i=1 1TK,i>t and D̂A = D̂E + D̂K, with

D̂E =
1

M

M∑
i=1

TE,i,

D̂K =
1

N

N∑
i=1

TK,i,

We thus have g(t) = Nt
D

and ĝt = N̂t
D̂A

.
We are interested in bounding:

E
∫ ∞
0

∣∣∣∣∣ N̂tD̂A
− Nt
DA

∣∣∣∣∣
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B PROOF OF THEOREM ??: ERROR OF THE FLEMING-VIOT ESTIMATOR

Using the triangle inequality
∣∣∣ N̂t
D̂A
− Nt

DA

∣∣∣ ≤ ∣∣∣ N̂t
D̂A
− N̂t

DA

∣∣∣+
∣∣∣ N̂tDA − Nt

DA

∣∣∣ we get:

E
∫ ∞
0

∣∣∣∣∣ N̂tD̂A
− Nt
DA

∣∣∣∣∣ dt ≤ E
∫ ∞
0

N̂t

∣∣∣∣ 1

D̂A
− 1

DA

∣∣∣∣ dt+ E
∫ ∞
0

1

DA

∣∣∣N̂t −Nt∣∣∣ dt,
Using the formula

∫∞
0
N̂tdt = 1

N

∑N
i=1 TK,i = D̂K, the first term on the right hand side of the above bound is equal to

E
∣∣∣ D̂K
D̂A
− D̂K

DA

∣∣∣. To bound this quantity, we introduce an event B = {D̂A < 1
2
DA}. We use the decomposition

E

∣∣∣∣∣ D̂KD̂A − D̂K
DA

∣∣∣∣∣ = E1B

∣∣∣∣∣ D̂KD̂A − D̂K
DA

∣∣∣∣∣+ E1Bc
∣∣∣∣∣ D̂KD̂A − D̂K

DA

∣∣∣∣∣ (17)

and bound each of the terms separately.
Since we always have 0 ≤ D̂K

D̂A
≤ 1 and on the set B we have 0 ≤ D̂K

DA ≤
1
2

, we have:

E1B

∣∣∣∣∣ D̂KD̂A − D̂K
DA

∣∣∣∣∣ ≤ P(B).

Since the Markov Process Xπ
t is irreducible and the state space S is finite, it is geometrically ergodic [5]. It follows then that

there exist constants C, λ > 0, such that P(TA > t) ≤ C exp(−λt). Therefore, by [25, Theorem 2.13], the random variable

TA is subexponential. Furthermore P(B) ≤ P~∂Ac
(∣∣∣D̂A −DA∣∣∣ ≥ 1

2
DA
)

. From the concentration bound for the standard
estimator of the mean of subexponential variables [25][Equation 2.18], it follows that there exists c > 0:

P(B) ≤ e−c
√

1/N+1/M .

To bound the second term in (17), we observe that the function h(x) = 1/x is Lipschitz continuous on [a,∞) for any a > 0,
with the Lipschitz constant La = supx∈[a,∞) |h′(x)| = 1

a2
. Using this fact with a = DA/2, we have:

E1BcD̂K
∣∣∣∣ 1

D̂A
− 1

DA

∣∣∣∣ ≤ 4

D2
A
ED̂K

∣∣∣D̂A −DA∣∣∣ .
Using the Cauchy-Schwartz inequality, we get:

ED̂K
∣∣∣D̂A −D∣∣∣ ≤ (ED̂2

K

)1/2(
E
∣∣∣D̂A −DA∣∣∣2)1/2

≤
((

ED̂K
)2

+ Var(D̂K)

)1/2 (
Var(D̂A)

)1/2
≤
[(Var~∂ATE

)1/2
√
M

+

(
Var~∂ATK

)1/2
√
N

](
(DK)2 +

1

M
Var~∂Ac(DK)

)1/2

We therefore obtain

E
∫ ∞
0

N̂t

∣∣∣∣ 1

D̂A
− 1

DA

∣∣∣∣ dt ≤ E~∂AcTK
[(Var~∂ATE

)1/2
√
M

+

(
Var~∂ATK

)1/2
√
N

]
+O(

1

M
).

We are left with bounding
1

DA
E
∫ ∞
0

∣∣∣N̂t −Nt∣∣∣ dt.
Since N̂t is an average of M Bernoulli random variables with mean Nt, we have:

1

DA
E
∫ ∞
0

∣∣∣N̂t −Nt∣∣∣ dt =
1

DA

∫ ∞
0

E
∣∣∣N̂t −Nt∣∣∣ dt

≤ 1

DA

∫ ∞
0

√
E
∣∣∣N̂t −Nt∣∣∣2dt

=
1√
NDA

E
∫ ∞
0

√
Nt(1−Nt),
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where in the first inequality we use EY ≤
√
EY 2 which follows from Cauchy-Schwartz inequality. We note, that Nt =

P~∂Ac(TK > t) = 1− P~∂Ac(TK ≤ t) = 1− FK(t). Thus we have

1

DA
E
∫ ∞
0

∣∣∣N̂t −Nt∣∣∣ dt ≤ 1√
NE~∂ATA

∫ ∞
0

√
FK(t)(1− FK(t))dt.

Combining all of the above inequalities in an obvious manner, we obtain the bound from the thesis.
It follows from exponential ergodicity ofXπ

t that TA, TK have exponential tails, that is, there exist constantsCA, λA, CK, λK
such that P~∂A(TA > t) ≤ CA exp(−λAt) and P~∂Ac(TK > t) ≤ CK exp(−λKt). Therefore all the moments and the integral
above are finite.
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C Heuristics for the choice of the simulation parameters of the Fleming-
Viot estimator
In this section we leverage theoretical results on the well-studied M/M/1/K queue system to provide insights about the
appropriate choice of parameter J –which in this unidimensional case fully defines the size of the absorption setA– and adapting
the values of the number of particles N and of the number of arrival events T (which directly impacts the number of cycles M
defined in Appendix B controlling, together with N , the convergence rate of the FV estimator) with the goal of obtaining an
accurate estimation of the blocking probability, i.e. of the stationary probability of stateK. The conclusions of this analysis could
be used as an initial guideline for the choice of these parameters in a more general setting such as multidimensional problems.

We focus the analysis on the two quantities (out of the three involved in expression (7)) whose estimation is highly affected
by the trade-off of the choice of J described in remark 3, φJt (K) and EJ−1(TA), since the third quantity, PJ(TK > t), does not
depend strongly on J (see Appendix B)(8). The trade-off described in the remark states that, for constant values of N and T ,
the error in the estimation of φJt (K) tends to decrease as J increases, while the error in the estimation of EJ−1(TA) tends to
increase. For the purpose of this impact analysis, we invert our reasoning: we fix J , and set the values of N and T required to
approximately satisfy predefined expected relative errors in the respective estimators. We then run simulations using each N -T
pair dictated by each relative error pair considered, and study statistics on the relative error obtained in the FV estimator of the
blocking probability as a function of the values of N and T .

The values ofN and T for each expected relative error pair are determined based on the following heuristics that approximately
express the two expected relative errors as a function of J , N , T , and the system’s characteristics:

1. Relative error of φ̂Jt (K): Considering that in anM/M/1/K queue system with ρ < 1, the conditioned blocking probabil-
ity φJ=1

t (K) converges as t→∞ towards
√
KρK/2 [10], i.e. ∼ O(ρK/2), similarly, the conditioned blocking probability

for any absorption set size J , φJt (K), increases to ∼ O(ρ(K−J+1)/2) as t→∞. As a very rough approximation and to
get order of magnitude relations, we could think of φJt (K) as the blocking probability q of a single-server queue system
with capacity equal to d (K−J+1)

2
e, namely q = (1−ρ)ρKJ

1−ρKJ+1 , where KJ = d(K − J + 1)/2e. Under this assumption, and

ignoring the interdependence among FV particles, the relative error of estimating φJt (K) with the empirical mean on N
samples is derived from the variance of a Binomial(q) random variable as εφ ∼

√
(1− q)/Nq. Thus, given q, the value of

N to approximately satisfy a desired expected relative error εφ for φ̂Jt (K) is obtained as N ∼ d 1−q
qε2
φ
e ≈ d 1

qε2
φ
e, if q � 1

which is usually the case.

2. Relative error of ÊJ−1(TA): In an M/M/1/K queue system with ρ < 1, the expected return time to the state J − 1,
when starting at J − 1, is equal to EJ−1(TJ−1) = 1

λp(1+ρ−1)
[5], where p is the stationary probability of the state

x = J − 1, i.e. p = (1−ρ)ρJ−1

1−ρK+1 . Given the absorption set A = {0, 1, ..., J − 1}, it can easily be shown that the expected
return time to A, when starting at J − 1, is equal to EJ−1(TA) = EJ−1(TJ−1)(1 + ρ−1). If we want to observe M
return cycles to A, we should simulate the queue system for as long as tS = MEJ−1(TA) = MEJ−1(TJ−1)(1 + ρ−1),
i.e. tS = M

λp
. Since λtS is the expected number of arrival events T observed in the time span tS , we should simulate the

system for as long as T ∼M/p arrival events. On the other hand, given M return cycles to A, the standard error of the
moment estimator of EJ−1(TA) is given by σ(TA)/

√
M . It is reasonable to assume (confirmed by experiments) that

σ(TA) ∼ EJ−1(TA), hence the relative error of the estimator of EJ−1(TA), εET , is of the order of 1/
√
M , which makes

M ∼ 1/ε2ET . Thus, given p, the value of T to approximately satisfy a desired expected relative error εET for ÊJ−1(TA)
is obtained as T ∼ d 1

pε2
ET
e.

From the above, the following common aspects are observed about the minimum values of N and T required to satisfy
predefined expected relative errors in the estimators of φJt (K) and EJ−1(TA):

1. N affects the relative error of φ̂Jt (K) and T affects the relative error of ÊJ−1(TA).

2. The relationship of N and T with their respective relative errors is of the same form, i.e. proportional to the inverse of a
stationary probability and to the inverse of the squared expected relative error.

On the other hand, the following difference is observed: for ρ < 1 and sufficiently large K9, the value of N as a function of
the stationary probability q is dominated by an increasing exponential function of (K−J)/2, i.e. ∼ O(ρ−(K−J)/2) whereas the
value of T as a function of the stationary probability p is dominated by an increasing exponential function of J , i.e. ∼ O(ρ−J)
which, importantly, does not depend on K. Thus, as mentioned in remark 3, the closer is J to 0, the smaller the required T and
the larger the required N for fixed expected relative errors, while the opposite is true when J gets closer to K.

8Although the error of the estimator of PJ (TK > t) depends on N , it is sensible to assume that its estimation error decreases as N increases similarly or
faster than the error of the estimator of φJt (K), so we can limit our analysis to the error of the estimator of the latter.

9K is considered sufficiently large in this context when ρK−J can be neglected w.r.t. 1.
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More importantly, experiments showed that the computational complexity –in terms of number of observed events– required
to satisfy a given εφ value (which impacts the number of observed events of the FV simulation) is much larger than the
computational complexity required to satisfy the same value in εET (which impacts the number of observed events in the
single simulation of the Xπ

t process). Concrete values of the respective computational complexities can be derived from the
results shown in Figure 2 and are complemented by the related observations presented within that Section 4.1.1. Thus, from the
computational perspective alone, it is more convenient to favour a smaller error in ÊJ−1(TA) than a smaller error in φ̂Jt (K).
Below we will see that this is also the case in terms of the estimation error of the FV estimator.

We completed the study of the appropriate choice of N and T by analyzing the impact of the errors of estimating φJt (K)
and EJ−1(TA) on the FV estimator of the blocking probability. To this end, we ran experiments on different combinations of
expected relative errors εφ and εET and measured the accuracy in the estimation of the blocking probability of an M/M/1/K
system with ρ = λ = 0.7,K = 20, using a constant absorption set size of J = 12. The results of these experiments are shown
in Figure 6 in terms of the estimation accuracy of the blocking probability p̂FV (K).

From this heatmap, we conclude that it is more important to control the relative error in ÊJ−1(TA) than the relative error in
φ̂Jt (K), as the contour lines are almost parallel to the axis where the relative error in φ̂Jt (K) is plotted, and their values indicate
that the estimated blocking probability is larger than 1.5 times the true blocking probability when the relative error in φ̂Jt (K) is
larger than 30%− 40%. Note that, for each experiment run, the FV estimator of the blocking probability was computed only
when a minimum of 5 return cycles to J − 1 were observed (these cycles are used to estimate the denominator EJ−1(TA)) after
the 10 initial transitions of the system. This 10 transitions were used as a burn-in period to allow the system to get closer to the
stationary regime. Therefore, if the number of arrival events T is not large enough, the sample size on which the plotted median
FV estimator is computed may be smaller than the 7 replications used for each N -T combination.

In Figure 2 we used these heuristics to choose the different values of N and T on which the convergence properties of the
FV estimator were analyzed: given J = 12, for the left plots (a) and (c), T was fixed at the value associated to an approximate
expected relative error in ÊJ−1(TA) equal to εET = 20%, whereas the values of N were chosen for approximate expected
relative errors in φ̂Jt (K) equal to εφ = 20%, 10%, 5% for K = 20, and equal to εφ = 80%, 60%, 40%10; for the right plots (b)
and (d), N was fixed at the value associated to an approximate expected relative error in φ̂Jt (K) equal to εφ = 60%, whereas the
values of T were chosen for approximate expected relative errors in ÊJ−1(TA) equal to εET = 40%, 20%11.

10The larger relative errors chosen for K = 40 compared to K = 20 have to do with obtaining the same orders of magnitude for N in each K scenario.
11The expected relative error εET depends onK only through 1− ρK+1, and this term can be safely approximated by 1 for large enough values ofK such as

20 and 40 when ρ = 0.7. Thus, doing this approximation, the value of T satisfying a given εET only depends on J and is thus the same for both K scenarios.
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Figure 6: Heatmap showing the impact of different combinations of the expected relative errors for φ̂Jt (K) and ÊJ−1(TA) (indicated
respectively on the vertical and horizontal axis) on the accuracy of the FV estimator of the blocking probability, p̂FV (K), in an M/M/1/K
queue system over up to 7 valid experiments carried out for each combination. The system characteristics are K = 20, λ = 0.7, µ = 1. The
accuracy is shown as the ratio between the median p̂FV (K) value and the true blocking probability p(K). Thus, a ratio of 1 (light blue)
implies 100% median accuracy, a ratio smaller than 1 (dark blue) implies underestimation, and a ratio larger than 1 (from cyan to red) implies
overestimation. Selected contour levels are overlaid. The gray diagonal represents the line of equal expected relative errors in the two analyzed
dimensions, and the gray points indicate the 5× 6 = 30 error combinations on which experiments were run, whose size is proportional to the
number of experiments (7 at the largest points, down to 2 at the smallest points). Smaller points are associated to a larger expected relative error
in the estimation of EJ−1(TA) which tend to preclude its estimation due to an insufficient number of observed return cycles to the absorption
set A, as described in the text. The color scale is chosen as the transformation log2(1 + z) where z is the ratio between the estimated and the
true blocking probability; note that this transformation maps 0 to 0 and 1 to 1.
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D FV and FVRL algorithms
This section presents the two algorithms used throughout this work to apply the Fleming-Viot methodology to network systems
in order to (i) estimate the expected rejection cost (FV algorithm) and (ii) learn the optimum blocking sizes (FVRL algorithm).
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FV algorithm
Data:

A. System characteristics: a loss network with R servers serving jobs of I different classes whose state is represented by the number of jobs
of each class in the system, x = (x1, ..., xI).

B. System dynamics: the job arrival rate λi and the service rate µi for each job class i = 1, . . . , I are known.

C. Job acceptance policy: an incoming job of class i is either accepted (a = 1) or rejected (a = 0). It is accepted whenever the system is not
operating at full capacity R and when the number of jobs of the arriving class being served by the system is less than a constant Ki,
i = 1, . . . , I . Otherwise, it is rejected, in which case a cost Ci is accrued. Thus, the job acceptance policy, when the system is at state x
and a job of class i arrives (Li), is π(a = 1|x,Li) = 1{∑I

j=1 xj<R}
1{xi<Ki}, and the set of blocking states is

C = {x :
∑I
j=1 xj = R or

∑I
j=1 xj < R, xi = Ki for some i = 1, . . . I}.

D. Ji, i = 1, . . . , I , 0 ≤ Ji ≤ Ki: size of the absorption set A in dimension i, that is whenever the state of an FV particle visits a state x
having xi = Ji − 1 for some i, the particle is considered absorbed.

E. N : number of FV particles used to estimate φ~∂A
c

t (K) and P~∂Ac(TK > t) in (3).

F. T : number of arrival events (incoming jobs), which has a direct impact on the number of cycles M used to estimate E~∂A(TA) in (3).

G. B: number of burn-in time steps to assure stationarity, typically 10-20.

H. M0: minimum number of return cycles to A to have a reliable estimate of E~∂A(TA), typically 5-10.

Result: An estimate of the expected rejection cost under stationarity.

Steps: The algorithm is divided into the following three steps:

1. Estimation of E~∂A(TA):

(a) Simulate the continuous-time Markov process Xπ
t starting at Xπ

0 chosen uniformly at random from the set
~∂A = {x : xi = Ji − 1 for some i = 1, . . . , I}.

(b) Record the observed values of the cycle time TA defined in Section 3.1, measured as return times to the set A after the first visit to
a state in ~∂A following the burn-in period given by parameter B.

(c) Record the states at which the process enters Ac.
(d) Stop the simulation when the number of arrival events is equal to T , and record the number M of observed complete return cycles

to A after the burn-in period.

(e) If M > M0, estimate E~∂A(TA) as 1
M

∑M
k=1 TA,k, o.w. conclude that the expected rejection cost cannot be reliably estimated,

and end the process here.

(f) Estimate the entrance distribution to Ac, p̂π~∂Ac(x) as 1

M

∑M
k=1 1x(k)=x, ∀x ∈ ~∂Ac, where M is the number of observed

entrances to Ac at states x(k).

2. Estimation of P~∂Ac(TK > t) and φ~∂A
c

t (xC), where xC is any state in the set of blocking states C:

(a) Simultaneously simulate N trajectories (FV particles) that independently follow the law of the Markov process Xπ
t , starting at Xπ

0

chosen in ~∂Ac following p̂π~∂Ac . Record the observed values of the first killing times TK at which each of the N particles enters A.

(b) Every time one of the particles is killed at A, reinitialize it to the state of one of the other N − 1 particles, selected uniformly at
random.

(c) Stop when all N particles have been killed at least once, as this is the maximum time t that will contribute to the integral in
expression (3).

(d) For each t in the set {TK,k}k=1...N , estimate P~∂Ac(TK > t) as 1
N

∑N
k=1 1TK,k>t.

(e) For each time t at which one of the particles changes state, estimate φ~∂A
c

t (xC) as the proportion of particles that are at state
Xπ
t = xC .

3. Estimation of the expected rejection cost:
Estimate the integral in (3) where η(x) is the expected cost accrued in state x ∈ C, namely

η(x) =
∑I
i=1 Ciλi/Λ

[
1{∑I

j=1 xj=R}
+ 1{∑I

j=1 xj<R}
1{xi=Ki}

]
, where Λ

.
=
∑I
i=1 λi is the total job arrival rate. The integral can

easily be computed as a finite sum of the piecewise constant function of time resulting from the product P̂~∂Ac(TK > t) φ̂
~∂Ac
t (·), which

is 0 for t > max({TK,k}k=1...N ).

Algorithm 1: FV algorithm for the estimation of the expected rejection cost in an M/M/I/R loss network serving I different
job classes with R servers, of which the M/M/1/K queue system is a particular case.
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FVRL algorithm
Data:

A. Characteristics of the loss network to optimise: arrival rate λi and service rate µi of each job class i = 1, . . . , I .

B. Cost of rejecting an arriving job class, Ci, i = 1, . . . , I .

C. πθi("accept"|xi): the job acceptance policy for an arriving job of class i parameterised by the positive real-valued θi, as defined in
expression (8).

D. θ = (θi)i=1,...,I : positive non-integral initial values of the parameter to optimise, from where Ki can be obtained as
Ki = ceiling(θi + 1).

E. Fi: the size of the absorption set A in dimension i as a fraction of Ki.

F. L: number of learning steps, i.e. the number of times an update of θ will be computed by the gradient-based algorithm.

G. N , T : respectively, number of FV particles and number of arrival events used to estimate the blocking probability with the FV estimator
described in Algorithm 1.

H. U , S: respectively, number of replications and maximum number of time steps allowed to estimate the function η(x) defined in
Section 3.4, whose expectation is the gradient of the average state value. Ex: R = 100, S = 250.

Result: An estimate of the optimum blocking sizes K̂∗i , i = 1, . . . , I .

Steps:

1. Compute the deterministic blocking sizes Ki = ceiling(θi + 1), i = 1, . . . , I . Set Ji, the size of the absorption set A in dimension i as
Ji = dFiKie.

2. Estimate the stationary probabilities pπθ (x) for each x such that xi = Ki − 1 and
∑I
j=1 xj < R using the FV algorithm described in

Algorithm 1.

3. Simulate U times two coupled systems, as described in Section 3.4, for as long as S time steps to estimate the Q differences
Qπθ (x, 1)−Qπθ (x, 0), for each x considered in the previous step, as the average of the difference observed on the replications where
mixing of the two systems occurs.

4. Estimate the gradient of the average state value ∂vπθ

∂θi
given in expression (11), using the estimates of steps (2) and (3).

5. Update θ following the classical gradient descent algorithm.

6. Repeat steps (1)-(5) until the number of learning steps L is reached.

7. Use the final value θL to compute the optimum blocking sizes estimated by the algorithm, K̂∗i , as round(θLi ) + 1, i = 1, . . . , I .

Algorithm 2: FVRL algorithm for finding the optimum blocking sizes Ki in an M/M/I/R loss network serving I different
job classes with R servers, of which the M/M/1/K queue system is a particular case.
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