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The paper discusses the behavior of the dynamical lattice thermal conductivity j(X) of bulk

semiconductor crystals. The calculation approach is based on solving Boltzmann-Peierls phonon

transport equation in the frequency domain after excitation by a dynamical temperature gradient,

within the framework of the single relaxation time approximation and using modified Debye-

Callaway model. Our model allows us to obtain a compact expression for j(X) that captures the

leading behavior of the dynamical thermal conduction by phonons. This expression fulfils the

causality requirement and leads to a convolution type relationship between the heat flux density

current and the temperature gradient in the real space-time domain in agreement with Gurtin-

Pipkin theory. The dynamical behavior of j(X) is studied by changing temperature as well as

different intrinsic and extrinsic parameters. Our calculations show the cut-off frequency of j(X) to

be sensitive to the changes of some of these parameters. The paper investigates also the

applicability of Shastry’s sum rule (SSR) in the frame work of Boltzmann theory. It is shown that

within the frame work of Callaway approximated form of the collision operator and time

independent Callaway parameter, the SSR breaks down and is only valid when resistive processes

dominate normal processes, for which case, we derive an alternative expression to the classical

limit of the expectation of the thermal operator introduced in Shastry’s formalism. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4759366]

I. INTRODUCTION

The thermal conductivity j of bulk dielectric and semi-

conductor (SC) crystals in which energy (heat) is mainly car-

ried by phonons, has been the object of many theoretical and

experimental studies.1–18 The steady-state behavior of which

has been understood for many decades. According to the pio-

neer work of Debye and Peierls1 and many experimental

works later,12–14,17,18 j has a universal behavior as a function

of temperature: j depends on the size and shape of the crys-

tal at low temperatures where the mean free path (MFP) of

the phonon becomes of the order of the dimensions of the

crystal. At this temperature regime, j mirrors the tempera-

ture behavior of the specific heat. j increases with tempera-

ture and reaches a maximum at about T� 0.05hD, where hD

is an average Debye temperature over all phonon polariza-

tion branches of the crystal. Above this maximum j is lim-

ited by scattering of phonons amongst themselves via

anharmonic scattering processes, more essentially Umklapp

processes (U-processes) and is characteristic of the material

crystal. The effect of impurities or imperfections in the crys-

tal to scatter phonons is particularly important near the maxi-

mum where both boundary scattering and anharmonic

scattering processes are present but weak.

At short time scales, a number of unfamiliar and intrigu-

ing phenomena have been predicted and few of them have

been observed. Energy transport at very short time scales

where local nonequilibrium regime appears is probably the

most interesting one.19,20 The question of energy and heat

transport mechanisms at short time and length scales is the

basis of numerous theoretical and experimental papers.19–27

The study of energy and heat transport at very short time

scales has even become crucial and more needed recently

due to the continuous increasing of clock speeds and

decreasing of feature sizes in microelectronic and optoelec-

tronic applications.28 Clock speeds of present microproces-

sors based on silicon technology are of few gigahertz, and

according to the International Technology Roadmap for

Semiconductors (ITRS), devices with clock speeds of few

tens of gigahertz will be available in the next decade.28

In the past, only few works addressed the question of

studying the time and dynamical behaviors of the thermal con-

ductivity of SC crystals. Most of the works were theoretical;

the most cited ones are Guyer and Krumhansl,29–31 Volz,32,33

Alvarez and Jou,25,26 H€uttner,34 and Shastry.35,36 Based on

these works, the expected cut-off frequency fC of the dynami-

cal thermal conductivity has usually been theorized to be on

the order of fC > 1=s where s is the relaxation time of the

dominant phonons during the heat transport phenomenon.

Volz33 showed that the thermal conductivity j of Si decreases

at frequencies f s > 1. The life time at room temperature of

dominant phonons in SC alloys is �100 ps, and then the

expected fC based on the former theoretical investigation is

fC > 10 GHz. For his prediction, Volz32,33 used two different

methods, (1) molecular dynamics and (2) the expression of j
based on Boltzmann-Peierls equation in the grey spectrum

approximation (GSA) (constant relaxation time). A constant

relaxation time, however, seems to be a very poor approxima-

tion, especially when considering the dynamical behavior of

energy transport. At the top of this short list of theoretical

works, is the remarkable and interesting work of Shastry,35,36
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in which he introduced a new formalism to study the dynami-

cal behavior of not only thermal conductivity but also other

thermoelectric properties (electrical conductivity, Seebeck

coefficient, and Lorentz number) for different condensed mat-

ter models. Even though Shastry did not discuss the behavior

of the cut-off frequency of the dynamical thermal conductiv-

ity, he introduced a new sum rule of the real part of the latter,

in analogy to the well established f-sum rule of the real part of

the electrical conductivity.36

Recently, Koh and Cahill reported the most notable and

cited experimental work so far regarding the frequency

behavior of the thermal conductivity of SC crystal alloys.37

Using time domain thermoreflectance (TDTR),38–40 the

authors measured the thermal conductivity of a number of

SC crystals including alloys and single crystals as a function

of the frequency of excitation of the heat source which, in

the experiment was the modulation frequency of the laser

pump beam.38–40 The analysis of the dynamical behavior of

the thermal conductivity at room temperature showed a cut-

off frequency fC smaller than 10 MHz for SC alloys. On the

other hand, the thermal conductivity of single SC crystals

showed a plateau over the whole range of frequency used in

the experiment (0.6–10 MHz).37 This surprising result came

to defy all previous theoretical investigations of the fre-

quency or time dependence of the thermal conductivity of

SC crystals.

To explain their valuable observations, Koh and Cahill37

made the statement that all phonons with MFP longer than

the thermal penetration depth d(X), where X is the circular

frequency of the excitation source, transport heat ballistically

and as such would not contribute to the thermal conductivity

j(X) measured in the TDTR experiment, we will refer to this

statement later in the discussion section as Koh and Cahill
statement. Using a modified Debye-Callaway formalism as

first proposed by Asen-Palmer et al.17 and Morelli et al.,18

the authors translate their assumption as a boundary scatter-

ing process that phonons would undergo at a virtual inter-

face. This virtual interface is actually the surface of a sphere

whose radius is the thermal penetration depth d(X). The

authors found a satisfactory agreement between experimental

data and the results of this phenomenological approach. We

will get back to comment on this at the end of the discussion

section.

The motivation behind the current work is twofold.

First, we present an approach within the frame work of

Boltzmann kinetic theory of phonon transport using the Call-

away approximation of the collision operator in order to cal-

culate and develop a compact formula capturing the leading

dynamical behavior of the lattice thermal conductivity of

bulk SC crystals j(X), which will shed more light on the

effect of different intrinsic and extrinsic parameters in influ-

encing this dynamics. Second, we investigate the conditions

under which Shastry’s sum rule (SSR) holds in the frame

work of Boltzmann theory and we give an alternative expres-

sion to the classical limit of the expectation of the thermal

operator introduced in Shastry’s formalism.35,36

The detail of the theoretical derivation of j(X) is pre-

sented in the next section. In the third section, we discuss the

results of this approach by analyzing the effect of varying

different intrinsic and extrinsic parameters of bulk SC crys-

tals. At the end of this section, we comment on the recent ex-

perimental data of Koh and Cahill,37 then we discuss the

applicability of Shastry’s sum rule and we finish with a sum-

mary and concluding remarks.

II. THEORY

Our goal in this section is to develop a compact expres-

sion of the dynamical lattice thermal conductivity j(X) of

bulk SC crystals that gives an insight onto the leading behav-

ior in their response to a dynamical temperature gradient. The

latter could originate from application of a periodic heat

source at the surface of the SC crystal, as was the case in the

experimental work of Koh and Cahill,37 or within its volume.

A. Boltzmann-Peierls transport equation (BPTE)

To develop an expression for j(X) of a bulk SC crystal,

one starts with BPTE. As many of the previous investiga-

tions,1–18 the solution of this integral-differential equation is

approximated by the use of the relaxation time concept in

which the phonon scattering process is expressed in terms of

the single relaxation time sðq; SÞ for a phonon of wave vector

q and polarization S. In this case, the scattering cross sections

are calculated using perturbation techniques.1–4,6 In such

an approach, the temperature and intrinsic frequency depend-

ences of anharmonic three-phonon relaxation times are

strongly dependent on the actual phonon polarization branch

and on the dispersion relation of the phonon spectrum. The

expressions derived for the relaxation times are only valid

for specific phonons in a limited temperature range. For sim-

plification, however, we assume the latter expressions to be

valid for any temperature and we further assume an isotropic

linear (Debye-like) phonon spectrum for each phonon polar-

ization branch.

Callaway5 approximation of the collision operator in

BPTE allows a simple separation of normal processes (N-

processes) and U-processes. The pioneer purely intuitive

work of Callaway5 was investigated in detail by many

authors and more robust theoretical foundations have been

found.10,15,16 For their algebraically convenient forms, the

Callaway5 and Holland11 methods have been the most and

widely used formulations for the steady-state thermal con-

ductivity j(T) that enable fitting of the experimental data for

a large number of materials in which heat is carried by pho-

nons, with only few number of adjustable parameters.

To derive j(X), we extend the use to a broader time de-

pendent phenomena of the same approach used by Asen-

Palmer et al.17 and later Morelli et al.,18 and we make use of

the modified Debye-Callaway model to explicitly include both

longitudinal and transverse phonon modes. Although this

model might be not very rigorous, the treatment is to some

extent justified by the reasonable agreement with experiment

that has been obtained with it in the steady-state.17,18 In this

approach, the contributions of longitudinal and transverse

acoustic branches are considered separately, furthermore, any

conversion of normal modes between both branches (inter-tran-

sitions) is neglected; only transitions within the same acoustic
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branch (intra-transitions) are considered. This approach was

first used by Holland11 in his extension of Callaway model.5

We assume application of a temperature gradient along

a direction ~i, where ~i is a unit vector along a geometrical

direction within the bulk SC crystal, this could be a principal

crystal axis. Under the relaxation time approximation, the

Callaway form of the BPTE for a phonon distribution func-

tion nSðx; q; tÞ � nq;S is given by

@nq;S

@t
þ Vq;S:$nq;S ¼ �

@nq;S

@t

����
Coll

¼
nkS

q;S � nq;S

sN
q;S

þ
n0

q;S � nq;S

sR
q;S

;

(1)

where n0
q;S ¼

�
e

�hxSðqÞ
kBT � 1

��1
is the equilibrium phonon Planck

distribution function to which resistive phonon scattering

processes (all scattering processes that change the total pho-

non wave vector: Umklapp, boundary, defects, imperfec-

tions) tend to return the phonon system with a single

relaxation time sRðq; SÞ. xSðqÞ is the dispersion relation of

the phonon in state (q, S), kB and T are the Boltzmann con-

stant and the absolute local temperature, respectively. On the

other hand, the distribution function which is stationary for

N-processes (scattering processes that do not change the total

phonon wave vector) is not n0
q;S but rather nkS

q;S. N-processes

lead the phonon system to a displaced (drifted) Planck distri-

bution function nkS

q;S with a single relaxation time sNðq; SÞ,
where kS is a vector that has the dimension of a velocity

times Planck constant �h:5,8

nkS

q;S ¼ exp
�hxSðqÞ � kS:q

kBT

� �
� 1

� ��1

: (2)

kS=�h is called the drift velocity vector of the phonon (q, S),

while Vq;S ¼ vS;iqi ¼ @xSðqÞ=@qi is its group velocity vec-

tor, which in general depends on the direction of qi. Here,

we assume the heat transport to be in the same direction as

the applied temperature gradient.

In this analysis, we assume all relaxation times describ-

ing the different intrinsic and extrinsic phonon scattering

processes, to be independent of the time or frequency de-

pendence of the applied temperature gradient.

As in Callaway analysis,5,8 the vector kS is assumed to

have a very small module. Then, to first order in kS, the Tay-

lor’s series expansion of nkS

q;S such that Oðk2
SÞ is neglected,

gives

nkS

q;S � nq;SðkSÞ ffi nq;Sð0Þ þ kS:
@nq;SðkSÞ
@kS

� �
kS¼0

ffi n0
q;S þ

kS: q

kBT

e
�hxq;S
kBT

e
�hxq;S
kBT � 1

� �2
¼ n0

q;S þ
ðkS:qÞT
�hxq;S

dn0
q;S

dT
:

(3)

In our analysis, we treat the bulk SC crystal as a contin-

uum elastic isotropic linear medium, in which case and by

symmetry consideration; kS must be a constant vector in the

direction of the applied temperature gradient, so it is conven-

ient to define still another parameter (Callaway parameter)

bS that has the dimension of a relaxation time:5,8

kS ¼ ��hbSv2
S;i

$T

T

� �
: (4)

Since we are dealing with Debye-like phonon dispersion

relation xSðqÞ � xq;S ¼ vS;ijqj, so that one considers heat

transport due only to acoustic phonons, we have q ¼ Vq;Sxq;S

v2
S;i

.

This implies

kS:q ¼ ��hxq;SbSVq;S:
$T

T

� �
: (5)

To solve Eq. (1), we continue to use two more approxi-

mations that are usually made in the treatment of the steady-

state case of BPTE; (1) The distribution function nq;S

depends on the position only through the temperature

T(x):$nq;S ¼ dnq;S

dT $T and (2) it is assumed that deviation

from equilibrium is small, i.e.,
dnq;S

dT ffi
dn0

q;S

dT0
, where T0 is the

absolute local equilibrium temperature.

When the expression kS:q is substituted into Eq. (3) then

in Eq. (1), and based on the above two approximations,

Eq. (1) takes the form

@nq;S

@t
þ Vq;S:

dn0
q;S

dT0

$T ¼
n0

q;S � nq;S

sC
q;S

� bS

sN
q;S

Vq;S:
dn0

q;S

dT0

$T

) sC
q;S

@nq;S

@t
þ nq;S ¼ n0

q;S � sC
q;S 1þ bS

sN
q;S

" #
Vq;S:

dn0
q;S

dT0

$T

¼ n0
q;S � sef f

q;SVq;S:
dn0

q;S

dT0

$T; (6)

where sC
q;S and sef f

q;S are, respectively, the “combined” and the

“effective total” relaxation times given, respectively, by

1

sC
q;S

¼ 1

sN
q;S

þ 1

sR
q;S

and sef f
q;S ¼ sC

q;S 1þ bS

sN
q;S

" #
: (7)

In Eq. (6), the effect of N-processes is contained in the

effective total relaxation time sef f
q;S which is a complicated

quantity, depending on sN
q;S, sR

q;S, and bS. This complication is

necessary because of the behavior of N-processes which

shuffle crystal momentum back and forth between normal

modes, and then contribute implicitly to the thermal conduc-

tivity of a given SC crystal.5,8

As for all relaxation times considered in this study, and

taking into account the approximations made above, we fur-

ther assume that Callaway pseudo-relaxation time bS is a

constant independent of the time or frequency dependence

of the applied temperature gradient, and thereby can be

calculated similarly to the steady-state case.5,8 This means

that the dependence of the phonon gas drift on time and

space is contained in the expression of the drift velocity

kS=�h only through the applied dynamical temperature gradi-

ent $Tðx; tÞ.
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For each acoustic phonon polarization branch, Callaway

pseudo-relaxation time bS is determined by recalling that

N-processes cannot change the total phonon wave vector (total

crystal momentum). In the steady-state case ð@nq;S=@t ¼ 0Þ,
bS can be calculated following the same procedure of calcula-

tion as first performed by Callaway5 and Carruthers.8

B. Dynamical thermal conductivity

In order to solve Eq. (6), we apply Fourier transform

with respect to time to both sides. One obtains

ð1� jXsC
q;SÞnq;S ¼ n0

q;S � sef f
q;SVq;S:

dn0
q;S

dT0

$T

) nq;Sðx;XÞ ¼
1

1� jXsC
q;S

n0
q;S �

sef f
q;SVq;S:

dn0
q;S

dT0

1� jXsC
q;S

$Tðx;XÞ;

(8)

where the top bars over nq;S, n0
q;S and $T indicate Fourier

transforms and j is the complex operator ðj2 ¼ �1Þ.
Once we know the distribution function in Fourier (fre-

quency) domain, the next step is the calculation of the heat

flux density current JQ in the same domain along the direc-

tion of the applied temperature gradient. JQ is defined as

JQðx;XÞ ¼
1

W

X
q;S

�hxSðqÞnq;Sðx;XÞVq;S

¼ � 1

W

X
q;S

�hxq;Sv2
S;i

sef f
q;S

dn0
q;S

dT0

1� jXsC
q;S

$Tðx;XÞ; (9)

where we use W to denote the volume of the bulk SC crystal.

We should note here that the contribution of the first term in

Eq. (8) to JQ vanishes since the phonon equilibrium distribu-

tion n0
q;S can give no contribution to any energy (heat) trans-

port.1,6,8,16 The latter is an isotropic function in the wave vector

q space while the velocity Vq is an algebraic function; the dis-

persion relation and the relaxation times depend on the module

of the wave vector q and as such are even functions of q.

The density of states in the q space is very great; we can

use the standard relation to replace the sum sign by an inte-

gral sign (
P

q;S ! W
8p3

P
S

Ð
d3q)

JQðx;XÞ ¼ �
1

8p3

X
S

ð sef f
q;S

1� jXsC
q;S

v2
S;iCPhðq;SÞd3q

#
$Tðx;XÞ

"

¼ �jðXÞ$Tðx;XÞ: (10)

In Eq. (10), CPh represents the phonon specific heat or

heat capacity per normal mode CPhðq; SÞ ¼ CPhðxq;S; T0Þ
¼ �hxq;Sdn0

q;S=dT0:
By considering the dynamical temperature gradient and

the heat flux density current Fourier-analyzed as in the cus-

tomary way, we recognize from Eq. (10) the dynamical ther-

mal conductivity j(X) which takes the expression

jðXÞ ¼ 1

8p3

X
S

ð sef f
q;S

1� jXsC
q;S

v2
S;iCPhðq; SÞd3q: (11)

Note that X represents the circular frequency which is

related to the real frequency f by the standard definition

X ¼ 2pf .

For simplification and further discussion (see Sec. III),

we set

j0
q;S ¼

1

8p3
sef f

q;Sv2
S;iCPhðq; SÞ (12)

j(X) takes then the more compact form

jðXÞ ¼
X

S

ð j0
q;S

1� jXsC
q;S

d3q ¼ jrðXÞ þ jjiðXÞ ; (13)

where jr and ji are, respectively, the real and the imaginary

parts of j(X)

jrðXÞ ¼
X

S

ð j0
q;S

1þ ðXsC
q;SÞ

2
d3q

jiðXÞ ¼
X

S

ð
j0

q;S

XsC
q;S

1þ ðXsC
q;SÞ

2
d3q:

8>>>><
>>>>:

(14)

To simplify more the expression of j(X), we express it,

as it is customary in the modified Debye-Callaway model, as

the sum over one longitudinal (jL) and two degenerate trans-

verse (jT) phonon polarization branches18

jðXÞ ¼ jLðXÞ þ 2jTðXÞ: (15)

By using the isotropy of the group velocity in the real

and reciprocal spaces v2
S;qx
¼ v2

S;qy
¼ v2

S;qz
¼ 1

3
v2

S and the

usual change of variable x ¼ �hx=kBT0, it is straightforward

to show that the real part jr(X) takes the form

jrðXÞ ¼ jr
LðXÞ þ 2jr

TðXÞ
jr

SðXÞ ¼ jr
S1ðXÞ þ jr

S2ðXÞ

jr
S1ðXÞ ¼

1

3
CST3

0

ðhS
D=T0

0

sC
S ðxÞ

1þ ½XsC
S ðxÞ�

2
DðxÞdx

jr
S2ðXÞ ¼

1

3
CST3

0bS

ðhS
D=T0

0

sC
S ðxÞ

sN
S ðxÞ

1þ ½XsC
S ðxÞ�

2
DðxÞdx

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(16)

and similarly for the imaginary part ji(X)

jiðXÞ ¼ ji
LðXÞ þ 2ji

TðXÞ
ji

SðXÞ ¼ ji
S1ðXÞ þ ji

S2ðXÞ

ji
S1ðXÞ ¼

1

3
CST3

0

ðhS
D=T0

0

X½sC
S ðxÞ�

2

1þ ½XsC
S ðxÞ�

2
DðxÞdx

ji
S2ðXÞ ¼

1

3
CST3

0bS

ðhS
D=T0

0

X
½sC

S ðxÞ�
2

sN
S ðxÞ

1þ ½XsC
S ðxÞ�

2
DðxÞdx;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(17)
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where CS ¼ k4
B=ð2p2�h3vSÞ, (S¼L, T), DðxÞ ¼ x4ex= ðex � 1Þ2

is Debye function, and hS
D is Debye temperature of the acoustic

polarization branch S.41 The partial conductivities jS1 and jS2

are the usual Debye-Callaway terms.5,8

C. Phonon scattering processes and their relaxation
times

In SC crystals, phonons scattering processes can be

divided into intrinsic processes arising from the anhar-

monicity of the interatomic forces, and extrinsic proc-

esses due to phonons scattering at the boundaries of the

crystal and at various sorts of crystal defects and imper-

fections (e.g., point defects, impurities, dislocations,

alloy disorder, grain boundaries, embedded nanoparticles,

etc.) As first pointed out by Peierls,1 anharmonic phonon

scattering processes are of two distinct types, normal

scattering processes (N-processes) which conserve the

total crystal momentum after a collision, and Umklapp

scattering processes (U-processes) for which the total

crystal momentum changes by a reciprocal lattice vector

after a collision. On the other hand, all extrinsic scatter-

ing processes do not conserve the total crystal momen-

tum after a collision. Because of their conservative

character of the total crystal momentum, N-processes

cannot by themselves lead to a finite thermal conductiv-

ity. Consequently, as pointed out by Callaway,5 it can-

not be legitimate just to add scattering rates for

N-processes to those which do not conserve the crystal

momentum (U-processes and all extrinsic processes).

The latter processes are called resistive scattering proc-

esses because at least one of them is needed to obtain a

finite thermal conductivity. The effect of N-processes is

addressed with a particular attention through the use of

the displaced (drifted) Planck distribution as we have

seen in Eq. (1).

In the single relaxation time approximation, as we

have presented it in the above section, each scattering pro-

cess is described by a relaxation time which naturally is a

function of the phonon wave vector q and polarization S.

It depends also on the nature of the scattering mechanism

through coefficients characteristic of this mechanism. We,

generally, express the relaxation times as functions of the

phonon intrinsic frequency instead of the wave vector.8

Depending on the nature of the scattering mechanism,

relaxation times have different expressions. In our present

analysis, we limit our discussion to four different scatter-

ing mechanisms, a phonon can undergo in a SC crystal.

We use the forms of their relaxation times according to

the approach of Morelli et al.,18 in which every phonon

scattering mechanism depends explicitly on the phonon

mode. Moreover, we assume these forms to be the same

for all studied SC crystals. Phonon scattering processes

that are considered in our study are: (i) N-processes, (ii)

U-processes, (iii) scattering of phonons by imperfections,

and (iv) boundary scattering. The expressions of the scat-

tering rates describing these processes are, respectively,

given by18

½sN
L ðxÞ�

�1 ¼ BL
Nx2T3;BL

N ¼
k3

Bc2
LV

�h2Mv5
L

½sN
T ðxÞ�

�1 ¼ BT
NxT4;BT

N ¼
k4

Bc2
TV

�h3Mv5
T

ðiÞ

8>>><
>>>:
½sU

S ðxÞ�
�1 ¼ BS

Ux2 Texpð�hS
D=3TÞ;BS

U ¼
�hc2

S

Mv2
Sh

S
D

ðiiÞ

½si
SðxÞ�

�1 ¼ VC

4pv3
S

x4 ðiiiÞ

½sB
S ðxÞ�

�1 ¼ vS

LC
ðivÞ;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(18)

where cS, M, and V are the Gr€uneisen parameter for the pho-

non acoustic polarization branch S, the atomic mass, and the

volume per atom, respectively. Depending on the temperature

range, the crystallographic class and symmetry group of the

SC crystal, different forms for normal and Umklapp scattering

rates have been employed in literature to fit the experimental

data of the steady-state thermal conductivity.5,7–14,16–18,37,42,43

In the case of scattering of phonons by imperfections,

we assume scattering of phonons by natural isotopes in

pure single SC crystals and by alloy disorder in SC crystal

alloys. In both cases, the relaxation time is calculated

assuming Rayleigh scattering regime valid, and the expres-

sion of the scattering rate as derived by Klemens4 [Eq.

(18ii) above]. C denotes the phonon scattering parameter

that takes into account contributions from mass differen-

ces, atomic size differences, and bond strength differences

between the impurity (imperfection) and the host lattice

atom. Since we are treating the SC crystal as an elastic iso-

tropic continuum medium, no much additional errors,

would be introduced by neglecting the contribution of the

differences in the atomic size and bond strength and

considering only mass-difference contribution. In that

case, C will represent the mass-fluctuation phonon scatter-

ing parameter.

The alloy is assumed to be a random mixture of atoms

with different masses and volumes arranged in a lattice. In

this case of alloy disorder scattering, C represents the disor-

der parameter and is calculated using the virtual lattice

approach of Abeles.9 According to this approximation, C of

a mixture of two atoms A and B is given by9

C ¼ xð1� xÞ DM

M

� �2

DM ¼ MA �MB

M ¼ xMA þ ð1� xÞMB:

8>><
>>: (19)

In the case of scattering of phonons due to the bounda-

ries of the crystal, the scattering rate of this process is

assumed to be independent of temperature and phonon dis-

persion for each acoustic phonon mode polarization S. LC is

a characteristic length of the crystal in the direction of the

phonon transport. For all SC crystals considered in our study,

we take LC to be constant, LC¼ 5 mm. The value of LC is

assumed to be long enough for the SC crystals to be treated

as bulk materials.18
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The inverse of the total resistive relaxation time sR
S

accounting for all phonon scattering processes that destroy the

total crystal momentum is given according to Mathiessen’s rule

½sR
S ðxÞ�

�1 ¼ ½sU
S ðxÞ�

�1 þ ½si
SðxÞ�

�1 þ ½sB
S ðxÞ�

�1: (20)

III. RESULTS AND DISCUSSION

A. Behavior of the dynamical thermal conductivity

The physical picture we are interested in the current anal-

ysis is related to the behavior of the phonon gas in a region of

the bulk SC crystal subject to a dynamical temperature gradi-

ent or a time or frequency dependent temperature disturbance

resulting from the application of an external source.

In the theory section, we made the assumption that the

Callaway pseudo-relaxation time bS, describing the effect of

N-processes, does not depend on time and that this approxi-

mation should preserve the essential features of the dynamical

thermal conduction by phonons especially at temperatures

above the maximum in the steady-state thermal conductivity

(T� 0.05hD). This assumption is plausible if one takes into

consideration the smallness of kS, but might be questionable

at low temperatures and can eventually be relaxed to explore

the effect of possible time dependence of bS. We should note,

however that, in their investigation of the conditions of mani-

festation of the second sound in solid dielectrics, Guyer and

Krumhansl29 gave a thorough discussion based on solving

BPTE in the time domain where bS was taken an explicitly

time dependent function. The authors found that the disper-

sion relation of the second sound in solids obtained in both

cases, with and without time dependent bS, continues to exist

with similar damping terms. This constitutes a robust argu-

ment to neglect the time dependence of bS in our analysis. It

is worthwhile to mention that in the simplest case of the GSA

when all phonon modes belonging to a polarization branch S

have the same relaxation times independent of the wave vec-

tor q, we can easily find that5,8 bS ¼ sR
S . This shows the very

fundamental intertwining between anharmonic N-processes

and resistive processes; the implicit effect of N-processes in

the onset of a noninfinite thermal conductivity is taken

account of through the resisting causing collisions namely the

relaxation time of the resistive processes which effect is

explicit.

The expression of the dynamical thermal conductivity

j(X) as given by Eq. (13) shows that j(X) is an analytical

function on the upper frequency complex plane. As a matter

of fact, starting from the expressions of the real and imagi-

nary parts jr(X) and ji(X) as given by Eq. (14), it is straight-

forward to show that these expressions are Hilbert

transforms of each other, the Kramers-Kronig relations are

then verified and as such the causality requirement is fulfilled

where the dynamical temperature gradient is the driving

potential force (cause) and the heat flux density current is the

thermodynamically corresponding conjugate (effect).
When using the GSA, the expression of j(X) reduces to

jðXÞ ¼ j0

1� jXs
; (21)

where j0 is the steady-state thermal conductivity and s is an

effective wave vector independent relaxation time. Equation

(21) is Cattaneo’s expression of j(X) which one can derive

starting from BPTE in the GSA and solving directly in the

frequency domain the moment equation giving the heat flux

density current.

A very remarkable and interesting result that follows

from Eq. (10) is obtained by going back to the time domain

and performing an inverse Fourier transform; the latter trans-

forms the natural product into a convolution product. The

heat flux density current can be written in a convolution

form in the real space-time domain as

JQðx; tÞ ¼ �
ðþ1
�1

Kðt� t0Þ$Tðx; t0Þdt0 ¼ �K � $Tðx; tÞ;

(22)

where “�” represents the convolution product. Equation (22)

says simply that the response at time t (JQ) is related to the

previously applied driving potential force ($T) as is required

in all natural processes. The actual form of JQ in Eq. (22) is

similar to the form derived by Gurtin and Pipkin in their

theory of heat conduction in solids in the linear regime,44

where K(t) is the heat flux relaxation function or heat flux
kernel that takes the form

KðtÞ ¼
ð1
0

jðXÞe�jXtdX ¼
X

S

ð
1

sC
q;S

e
� t

sC
q;Sj0

q;Sd3q: (23)

In order to discuss the behavior of the dynamical thermal

conductivity j(X) of bulk SC crystals, as a function of tem-

perature as well as different intrinsic and extrinsic parameters,

we consider 5 different SC in our analysis; (i) natural Si, (ii)

natural Ge, (iii) Si0.7Ge0.3 alloy, (iv) In0.53Ga0.47As alloy, and

(v) In0.49Ga0.51P alloy. The choice of these materials is based

on their relevance and importance in microelectronic and

optoelectronic industry especially in high frequency devi-

ces.45,46 Besides Si0.7Ge0.3 alloy is known to be one of the

best SC materials suited for thermoelectric energy conversion

and more importantly in the thermoelectric generation process

especially at high temperatures.47

Tables I and II recapitulate, respectively, the different

geometrical and physical properties of the SC crystals used

in our calculations. We assume all physical properties of the

SC crystals to be independent of temperature. As we could

not find documented values of Debye temperatures of

In0.53Ga0.47As and In0.49Ga0.51P alloys in literature, we cal-

culated them for both longitudinal and transverse acoustic

phonon polarizations assuming the Debye cut-off frequency

for each phonon mode to be given by xS
D ¼ vSqS

D ¼ vSp=a,

where a is the SC lattice constant (see Table II).

When they are considered as fixed values, the Gr€uneisen

parameters for longitudinal and transverse phonon acoustic

polarization branches are taken to be the same for all single

crystals and alloys; cL¼ 1 and cT¼ 0.7.37

Figure 1 shows the calculated behavior of the steady-

state thermal conductivity j(0) of the 5 different bulk SC
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crystals as a function of temperature. A typical bell-shape

behavior is reproduced, in which j(0) follows an almost T3

power law behavior at low temperatures, reaches a maximum

then starts to fall off at high temperatures due mainly to anhar-

monic phonon-phonon scattering processes.5–18 The peak

value of j(0) of each SC material is found to be achieved for

a temperature of about (T� 0.06hD) in agreement with the

aforementioned estimation in the introduction, where hD is an

average Debye temperature over longitudinal and transverse

acoustic branches hD ¼ ðhL
D þ 2hT

DÞ=3. Si0.7Ge0.3 alloy shows

the lowest peak value of j(0). The calculated T-behavior of

j(0) is in a very good agreement with reported experimental

data for all 5 bulk SC crystals; Si and Ge,13,14,17,18 Si0.7Ge0.3,

In0.53Ga0.47As, and In0.49Ga0.51P.37,50

In Figs. 2(a) and 2(b), we report, respectively, the calcu-

lated behaviors of the real part and amplitude of the dynami-

cal thermal conductivity j(X) for the 5 different bulk SC

crystals at room temperature, over a frequency interval

[0.1 Hz–160 THz]. The insets in Figs. 2(a) and 2(b) illustrate

the behaviors of the imaginary part and phase of j(X),

respectively. As expected, the amplitude of j(X) shows a

plateau in the low frequency regime and then starts to fall off

rapidly as the frequency gets higher; a typical first order low-

pass filter thermal behavior. The phonon gas cannot follow

the thermal perturbation when the frequency of the latter

becomes very high; the SC crystal becomes a thermal insula-

tor. We can see also that the beginning of the falling off

occurs at different threshold frequencies depending on the

SC crystal; the SC alloy crystals seem to be characterized by

lower threshold frequencies than the single SC crystals. The

inset in Fig. 2(a) shows the frequency behavior of the imagi-

nary part ji(X). The latter manifests a Lorentzian-shape

behavior describing a resonance phenomenon of the phonon

gas in the SC crystal at a resonance frequency fR ¼ 1=2psm,

where sm is a certain weighted average relaxation time over

all phonon scattering mechanisms and polarizations. SC

alloy crystals are characterized by lower resonance ampli-

tudes than single SC crystals. On the other hand, the inset in

Fig. 2(b) shows the phase of j(X) increasing as a function of

frequency to saturate at a value of p/2 in the high frequency

regime. This is also a typical behavior of the phase that

describes the delay between the cause (dynamical tempera-

ture gradient) and the effect (heat flux density current) in a

first order linear system.

Because of the important role, Si0.7Ge0.3 SC alloy plays

in thermoelectricity as well as in microelectronics, we con-

sider this SC crystal as a test bulk material to study the effect

TABLE I. Geometrical properties of the 5 bulk semiconductor crystals used

in the simulation of the steady-state and dynamical behaviors of the thermal

conductivity as a function of temperature and frequency of modulation of

the introduced heat source.

Material

Lattice

constant

a (A)

Atomic mass

Ma (kg)	 10�26

Volume

per atom

V (m3)	 10�29

Density

kg/m3

Si 5.431 4.66 2 2329

Ge 5.658 12 2.27 5332

Si0.7Ge0.3 5.493 6.9 2.07 3332a

In0.53Ga0.47As 5.868 13.8 2.52 5500

In0.49Ga0.51P 5.653 10 2.24 4470

aCalculated based on the properties of individual elements at T¼ 300 K

considering the (100) direction.48

TABLE II. Physical properties of the 5 bulk semiconductor crystals used in the simulation of the steady-state and dynamical behaviors of the thermal conduc-

tivity as a function of temperature and frequency of modulation of the introduced heat source.

Material

Longitudinal

sound

velocity vL (m/s)

Transverse

sound velocity

vT (m/s)

Longitudinal

Debye

temperature hDL (K)

Transverse

Debye

temperature

hDT (K)

Longitudinal

Gr€uneisen

parameter cL

Transverse

Gr€uneisen

parameter cT

Rayleigh

mass-fluctuation

phonon-scattering parameter C

Si 8430a 5840a 586a 240a 1b 0.7b 2	 10�4a

Ge 4920a 3540a 333a 150a 1b 0.7b 6.08	 10�4a

Si0.7Ge0.3 6812c 4769c 510d 213d 1b 0.7b 0.2403f

In0.53Ga0.47As 4267c 2984c 175e 122e 1b 0.7b 0.0357b

In0.49Ga0.51P 5208c 3609c 221e 153e 1b 0.7b 0.0675b

aReference 18.
bReference 37.
cCalculated based on the properties of individual elements at T¼ 300 K considering the (100) direction.48

dCalculated using the weighted average approach from Ref. 49.
eCalculated from the sound velocities assuming the Debye cut-off wave vector¼p/a, where a is the lattice constant: hS

D ¼ �hvSqS
D=kB

with qS
D ¼ p=a) hS

D ¼ hvS=2kBa.
fCalculated using the virtual medium approach from Ref. 9.

FIG. 1. Computed behavior of the steady-state thermal conductivity j(0) of

the 5 different bulk SC crystals as a function of temperature.
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of changing temperature as well as different intrinsic and ex-

trinsic parameters on the behavior of j(X). The first parame-

ter to consider is temperature. We report, respectively, in

Figs. 3(a) and 3(b) the calculated dynamical behaviors of the

real part and amplitude of j(X) of Si0.7Ge0.3 SC bulk alloy at

different temperatures. While the low frequency regime

behavior mirrors the steady-state behavior, we can see that at

each temperature, the values of the thermal conductivity in

the high frequency regime are reduced drastically in compar-

ison with the low frequency regime values, so that the SC

alloy becomes almost a perfect thermal insulating material.

For instance, at T¼ 300 K, the amplitude of j(X) decreases

by almost 3 orders of magnitude when it is compared to the

reference bulk value of� 5 W/m K. As the temperature

increases, the reduction rate decreases and the deviation

threshold frequency from the plateau shape increases, which

FIG. 2. Computed behavior of the dynamical thermal conductivity j(X) of the 5 different bulk SC crystals at room temperature as a function of frequency.

(a) Real part (imaginary part in the inset) and (b) amplitude (phase in the inset).

FIG. 3. (a) Computed behavior of the real part jr(X) of the dynamical thermal conductivity j(X) of Si0.7Ge0.3 SC alloy as a function of frequency for different

temperatures T, the inset shows the imaginary part ji(X). (b) Computed behavior of the amplitude of j(X) of Si0.7Ge0.3SC alloy as a function of frequency for

different T, the inset shows the phase. (c) Computed behavior of the cut-off frequency fC of j(X) for the 5 different bulk SC crystals as a function of T.

(d) Computed behavior of the combined relaxation time sC
S in the case of Si0.7Ge0.3SC alloy, for both longitudinal and transverse (inset) acoustic phonon polar-

ization branches, as a function of the intrinsic phonon frequency x and at different T.
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leads to an increase of the cut-off frequency fC of j(X) as a

function of temperature. As it is customary in microelec-

tronics, fC is defined as the frequency at which Amp½jðfCÞ� ¼
MaxfAmp½jðf Þ�g=

ffiffiffi
2
p
¼ jð0Þ=

ffiffiffi
2
p

and can formally be

expressed as fC ¼ 1=2psC
mðxL

D;x
T
DÞ, where sC

m is a weighted

average combined relaxation time of sC
L and sC

T evaluated at

the cut-off Debye frequencies xL
D and xT

D, respectively.

Even though it is not really systematic, but we can always

find a relation between sm and sC
m that relates the position of

the resonance peak in the imaginary part ji(X) to fC of j(X).
Fig. 3(c) reports the behavior of fC as a function of tempera-

ture for the 5 SC bulk crystals considered in our study, and

Fig. 3(d) illustrates the behavior of the combined relaxation

time sC
S [Eq. (7)] in the case of Si0.7Ge0.3 SC alloy, for both

longitudinal and transverse (inset) acoustic phonon polariza-

tion branches, as a function of the intrinsic phonon frequency

x (dispersion relation) and at different temperatures. Over

the temperature range considered in our analysis [1–1000 K],

fC(T) shows similar trends for all 5 SC bulk crystals and it

increases as the temperature is increased. It seems that there

is a threshold temperature in the fC(T) behavior at which the

increasing rate of fC suddenly gets faster. A simple look to

Fig. 1 suggests that this threshold point in the fC(T) behavior

corresponds to the temperature value at which the steady-

state thermal conductivity j(0) reaches a maximum. This

interesting feature might be attributed to the interplay

between all phonon scattering processes that take place at

this particular temperature for each SC crystal. We can see

also that for all 5 SC crystals, fC varies from 100 kHz up to

few THz. fC of Si0.7Ge0.3 SC alloy shows an interesting

trend; it has the highest increasing rate as a function of tem-

perature among all 5 SC crystals for T
 20 K, then this rate

becomes the lowest for 20
 T
 770 K. For this SC alloy, fC
is as low as 12 MHz at T¼ 100 K and is still less than 2 GHz

at room temperature (T¼ 300 K). Even at a temperature as

high as T¼ 600 K, fC is still less than 100 GHz, this latter

value will be soon within the reach of high frequency micro-

electronic devices according to the ITRS.28 The very low

value of fC in the low T regime indicates that the dominant

mean relaxation time of phonon scattering in this regime

is on the order of microseconds. These results shed light

on how crucial and critical understanding the dynamical

behavior of the thermal conductivity has become, in order

to better control energy and heat transport in low and high

operating temperature microelectronic and optoelectronic

devices.

In contrary to the high frequency behavior of the real

part, the high frequency behavior of the amplitude can be fit-

ted with a very satisfying f�1 power law at each temperature.

This confirms the previous analysis of Volz33 who found the

same asymptotic behavior in his study of j(X) of silicon

using molecular dynamics method based on spectral Green-

Kubo approach.33 The f�1 power law is expected to be valid

in the behavior of the amplitude of j(X) for f � fC. As a

matter of fact, in the high frequency regime, the transport of

phonons is predominantly ballistic, this leads to a relaxation

time independent response, for which the temperature de-

pendence is mostly governed by the specific heat tempera-

ture dependence, i.e., low temperature quantum effect, as

discussed earlier by Volz,33 and the acoustic velocity cap-

tures the dynamics.

The low operating temperature regime where long

wavelength phonons dominate is known to be a place where

very interesting and a variety of fundamental phonon trans-

port phenomena occur, particularly ballistic phonon transport

and second sound propagation in which the interplay

between anharmonic phonon-phonon scattering N-processes

and U-processes plays a key role.29 Low cut-off frequency of

j(X) is another phenomenon to be added to the list, and

might be fundamentally connected to both aforementioned

phenomena.

The frequency behavior of the imaginary part and the

phase of j(X) are reported in the insets of Figs. 3(a) and

3(b), respectively. By decreasing temperature, both the posi-

tion of the resonance peak and its amplitude change; in a

way these changes mirror the behavior of the steady-state

thermal conductivity as a function of temperature. On the

other hand, the phase seems to increase and reach the satura-

tion value of p/2 faster as the temperature decreases.

Among the extrinsic parameters that we consider the

effect of their variations on j(X), we have both longitudinal

and transverse Gr€uneisen parameters cL and cT as well as the

mass-fluctuation parameter C. We report, respectively, in

Figs. 4(a) and 4(b) the calculated dynamical behaviors at

room temperature of the real part and the amplitude of j(X)

of Si0.7Ge0.3 SC alloy for different values of cL while in Figs.

4(c) and 4(d), we report, respectively, the dynamical behav-

iors of the same functions for different values of cT. The

insets in Figs. 4(a) and 4(c) illustrate the behavior of the

imaginary part of j(X). On the other hand, the behavior of

the phase of j(X) is illustrated in the insets of Figs. 4(b) and

4(d). Rigorously speaking, the mode Gr€uneisen parameters

cL and cT depend on the phonon intrinsic frequency (disper-

sion relation). Depending on the SC crystal crystallographic

class and symmetry group, cL and cT can be calculated using

ab-initio lattice dynamical models.18

In our analysis, we consider the average values of cL and

cT to vary from 0.5 to 1.5 and from 0.2 to 1.2, respectively.

We remind here that in previous figures we assumed fixed

values of cL¼ 1 and cT¼ 0.7 in our calculations. By varying

the Gr€uneisen parameter, the strengths of both anharmonic

phonon-phonon U-processes and N-processes scattering rates

change. According to Eqs. (18i) and (18ii), both scattering

rates strengths have a quadratic dependence on the value of

the Gr€uneisen parameter.

As can be seen in Figs. 4(a)–4(d), changing cL (respec-

tively, cT) seems to have an effect mainly in the low fre-

quency regime and particularly near the resonance frequency

in the behavior of the imaginary part, while no significant

effect occurs in the high frequency regime where all curves

almost collapse. By decreasing cL (resp. cT), the strength of

the scattering rate of both N-processes and U-processes

decreases which lead to an increase in the amplitude of j(X)

in the low frequency regime, this effect mirrors again the

effect of changing cL (respectively, cT) on the steady-state

thermal conductivity where the effect is manifested for tem-

peratures above the maximum and completely disappear for

temperatures below [Fig. 4(g) for cL and Fig. 4(h) for cT].
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Probably the most interesting and intriguing effect of varying

cL (resp. cT) is illustrated in the dynamical behavior of the

imaginary part ji(X), and may be less importantly in the

behavior of the phase. For both functions, the effect occurs

on the same frequency interval. A double resonance peak

shape seems to appear in ji(X) as we decrease cL, while the

same effect happens by increasing cT. On the other hand, the

amplitude of the resonance peak increases by decreasing ei-

ther cL or cT.

In Figs. 4(e) and 4(f), we report the behavior of the cut-

off frequency fC of j(X) as a function of cL and cT, respec-

tively, for different temperatures T. At low T, fC is almost

constant independent of cL (respectively, cT), and as long as

we increase T, different behaviors of fC start to occur. In the

high T regime, fC keeps increasing as cL increases, while for

increasing cT, fC seems to reach quickly a saturation value

that increases with T.

The effects of varying cL and cT on j(X) and particularly

on ji(X) capture the essence of the fundamental interplay

between anharmonic phonon-phonon scattering N-processes

and U-processes.

In Figs. 5(a) and 5(b) we report, respectively, the calcu-

lated dynamical behavior at room temperature of the real

part jr(X) and the steady-state behavior of j(0) of Si0.7Ge0.3

FIG. 4. Computed behavior of the real part jr(X) ((a) and (c)) and amplitude ((b) and (d)) of j(X) of Si0.7Ge0.3 SC alloy at room temperature as a function of

frequency for different values of the (longitudinal, transverse) Gr€uneisen parameter (cL, cT). The insets in (a) and (c) show the imaginary part ji(X), while the

insets in (b) and (d) show the phase. Computed behavior of fC of j(X) of Si0.7Ge0.3SC alloy as a function of cL (e) and cT (f) for different T. Computed behavior

of j(0) of Si0.7Ge0.3 SC alloy as a function of T for different values of cL (g) and cT (h).

FIG. 5. (a) Computed behavior of the

real part jr(X) of Si0.7Ge0.3 SC alloy at

room temperature as a function of fre-

quency for different values of the mass-

difference fluctuation parameter C, the

inset shows the imaginary part ji(X). (b)

Computed behavior of j(0) of Si0.7Ge0.3

SC alloy as a function of temperature T
for the same different values of C. (c)

Computed behavior of fC of j(X) of

Si0.7Ge0.3SC alloy as a function of C for

different T.
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SC alloy for different values of the mass-fluctuation

parameter C. C is assumed to change from its initial alloy

disorder value of C� 0.24 to C¼ 0.36. Increasing C can be

obtained by isotopically enriching the SC alloy and/or

incorporating additional impurities. The inset of Fig. 5(a)

illustrates the dynamical behavior of the imaginary part

ji(X). Varying C does not seem to have a significant effect

on the behavior of the three functions; neither does it on

the behavior of the cut-off frequency fC, the behavior of

which as a function of C for different temperatures is

reported in Fig. 5(c). At each temperature, fC is almost a

constant independent of C and increases as one increases T
[Fig. 3(c)].

Another extrinsic parameter that deserves to be consid-

ered is scattering of phonons by embedded foreign nanopar-

ticles. This concept has been proven to be very effective in

reducing the steady-state thermal conductivity in SC crystal

alloys.49 The study of the effect of embedding SC nanopar-

ticles on the dynamical behavior of j(X) of SC crystal alloys

is underway and will be presented in a future work.

B. Koh and Cahill experimental results

In a very recent experiment, Koh and Cahill37 pub-

lished very interesting and intriguing experimental results

of the frequency behavior of the thermal conductivity of

SC crystal alloys at different ambient temperatures. As we

mentioned in the introduction, Koh and Cahill’s results

over the frequency range used in their experiments [0.6–10

MHz] show j(X) of SC alloys to have a cut-off frequency

fC< 10 MHz, while j(X) of single SC crystals manifested a

plateau at room temperature. As we mentioned in the intro-

duction, the authors used BPTE in the steady-state regime

to explain their results in which they translate Koh and
Cahill statement (see Introduction) as a boundary scatter-

ing process that phonons would undergo at a virtual inter-

face. This virtual interface is actually the surface of a

hemisphere whose radius is the thermal penetration depth

d(X). The authors found a satisfactory agreement between

experimental data and the results of this phenomenological

approach.

Even though their model seems to agree with experi-

mental data, but it cannot be considered as a relevant and ro-

bust explanation of the behavior of j(X) of SC crystals and

that for two reasons: (i) the thermal penetration depth d is a

characteristic depth of the applied heat source at the surface

of the crystal which is calculated based on the knowledge of

the thermal diffusivity (related to the thermal conductivity)

of the given crystal and the frequency of the heat source, and

then cannot be considered as a limit for phonon MFP inside

the crystal, this raises a consistency question. (ii) There is no

physically plausible reason to consider scattering of phonons

at a fictitious interface.

Koh and Cahill experimental results are very low com-

pared to the predicted values of fC based on the above mod-

eling of j(X). Furthermore, a value of fC¼ 10 MHz at room

temperature is equivalent to a relaxation time of the domi-

nant phonon scattering process of s� 16 ns, this is a very

large value and it is hard to be accepted physically; besides,

it is difficult to admit that j(X) of bulk SC alloys will

undergo such a huge reduction on a small frequency range.

The most reasonable explanation to the measured low value

of fC in SC crystal alloys in Koh and Cahill’s experiment37

would be related to the physical meaning of the measured

thermal conductivity j itself and the role of the cumulative

effect of the laser train pulses in the experimental setup and

thermal modeling assumptions used to extract j especially

at high frequency of the excitation source. The recent

experiments of Minnich et al.51,52 take the same reasoning

direction and come to support this conclusion, where the

authors used again TDTR technique to study quasiballistic

heat transport and to measure phonon MFP. The results of

the authors show the measured thermal conductivity j to

depend on the size of the heating laser pump source spot

and it is independent of the modulation frequency of the

latter.

Koh and Cahill experimental results are still intriguing

and deserve much more investigation. It is more plausible

that, in the experiment, the authors measured an apparent
thermal conductivity japp that matches the real intrinsic j at

low frequency but deviates from it as the frequency of the

excitation source gets higher due mainly to the cumulative

effect of the TDTR experimental set-up and thermal model-

ing assumptions.38–40 We believe these two factors need fur-

ther study to separate their effect from the measured japp in

order to have access to the real intrinsic thermal conductivity

of the studied dielectric crystal.

C. Shastry’s sum rule

In this last subsection, we will shed light on a very inter-

esting result that has been recently introduced by Shastry,35

namely the sum-rule for the real part of the dynamical ther-

mal conductivity. Shastry derived this sum rule for several

standard models of current interest in condensed matter. The

sum rule is obtained using standard linear response theory

and is expressed in terms of the expectation of an extensive

object hxx that Shastry named “thermal operator” in his for-

malism.35 As discussed by Shastry, the sum rule is closely

related to the behavior of energy (heat) transport in the bal-

listic regime where the expectation of hxx is an equilibrium

value that determines the magnitude of the ballistic force

exerted by the applied temperature field.36 Here, we study

the applicability of SSR and we develop rather “classical”
expressions for it as well as the expectation of hxx in the case

of the dynamical lattice thermal conductivity j(X) of bulk

SC crystals as calculated based on BPTE for phonon

transport.

According to the calculations developed earlier in the

theory section, we can calculate the integral of the real part

of j(X). We will consider two cases of anharmonic phonon-

phonon scattering processes; (i) both normal and Umklapp

processes are included and (ii) only Umklapp process is

active. In both cases of course, in addition to the above men-

tioned phonons scattering processes, all other total phonon

crystal momentum destroying processes are taken into

account. The integral is taking over all frequencies from zero

to infinity. In the first case [Eqs. (11)–(14)], one obtains
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Since the result function depends on phonons scattering

rates due to the term bS=s
N
q;S (effect of N-processes), it can-

not be viewed as a sum rule; as explained by Shastry,35 the

thermal operator hxx does not contain any scattering rate.

On the other hand, when N-processes are disregarded and

only resistive processes are considered, we can easily show

that the calculation of the integral of the real part of j(X)

gives

ðþ1
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jrðXÞdX¼ 1

8p3
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S;iCPhðq;SÞ
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6
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ðxS
D

0

v2
SCPhðx;SÞgSðxÞdx; (25)

where gSðxÞ ¼ x2=ð2p2v3
SÞ is Debye density of states of

phonons in the acoustic polarization branch S.41 This last

expression shows that the result function is independent

of any phonons scattering rate and hence can be viewed

as a sum rule. Comparison of Eq. (25) to Eq. (17) from

Shastry’s paper35 implies that the classical expression of

the expectation of the thermal operator hxx can be written

as

1

�h
hhxxiBPTE

Classical ¼
2T0W

p

ðþ1
0

jrðXÞdX

¼ T0W

3

X
S

ðxS
D

0

v2
SCPhðx; SÞgSðxÞdx; (26)

where W denotes the total volume of the SC crystal material.

Then using the usual change of variable x ¼ �hx=kBT0, one

can further write (26) in a more convenient form for numeri-

cal calculation, this gives

hhxxiBPTE
Classical ¼

k4
B

p2�h2
WT4

0

1

6vL

ðhL
D=T0

0

DðxÞdxþ 1

3vT

ðhT
D=T0

0

DðxÞdx

8><
>:

9>=
>;;

(27)

where again D(x) denotes Debye function.

The expression of hhxxiBPTE
Classical as given by Eq. (27)

presents the remarkable feature of vanishing at T¼ 0 (i.e., in

the true thermodynamic ground state). This finding corrobo-

rates the arguments of Shastry who discussed this fundamental

behavior and showed its deep connection to the vanishing of

the lattice specific heat.35 As a matter of fact, starting from the

definition of the latter thermodynamic property, in our case

the lattice specific heat at constant volume CW, it is straight-

forward to show that it has the following expression:6,16,41

CWðT0Þ ¼
X

S

ðxS
D

0

CPhðx; SÞgSðxÞdx

¼ k4
B

2p2�h3
T3

0

1

v3
L

ðhL
D=T0

0

DðxÞdxþ 2

v3
T

ðhT
D=T0

0

DðxÞdx

8><
>:

9>=
>;:
(28)

Comparison of Eqs. (27) and (28) shows clearly the con-

nection between hhxxiBPTE
Classical and CW. As a matter of fact, one

can write

hhxxiBPTE
Classical

�hT0W
¼ 1

3
CWv2

ef f

v2
ef f ¼

1

vL

ðhL
D=T0

0

DðxÞdxþ 2

vT

ðhT
D=T0

0

DðxÞdx

8><
>:

9>=
>;

1

v3
L

ðhL
D=T0

0

DðxÞdxþ 2

v3
T

ðhT
D=T0

0

DðxÞdx

8><
>:

9>=
>;

;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(29)

where veff represents an effective phonon group velocity

averaged over all phonon acoustic polarization branches.

The fact that hhxxiBPTE
Classical and CW can be related by such

a compact formula [Eq. (29)] that is similar to the one sug-

gested by Shastry [Eq. (91) in Ref. 35] proves somehow the

meaningfulness of the classical limit of the expectation of

the thermal operator hxx and confirms the physical meaning

of the latter variable in capturing the ballistic dynamics as-

pect in the energy (heat) transport phenomenon.

Based on this short analysis of the sum rule within the

frame work of Boltzmann-Peierls theory of phonon transport

using the single relaxation time approximation with Call-

away approximated form of the collision operator, N-

processes appear to play a very fundamental role in capturing

the dynamics of energy (heat) transport in SC crystals.

Through their role of shuffling the total phonon crystal mo-

mentum between different phonon states, N-processes have

always to be considered in any study of phonon transport.

The fact that taking them into account within the above

framework with time independent Callaway parameter, leads

to a breakdown of the sum rule of the real part of j(X), con-

stitutes a very interesting finding regarding phonon transport

phenomena in SC crystals that needs to be checked using

more sophisticated and complete modeling of energy and

heat transport in these dielectric materials using first princi-

ples calculations and atomistic ab-initio Green’s function

approaches.53
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IV. SUMMARY AND CONCLUDING REMARKS

Using BPTE with Callaway approximated form of the

collision operator and time independent Callaway parameter,

we have derived a compact expression for the dynamical lat-

tice thermal conductivity j(X) of bulk SC crystals. This

expression of j(X) captures the leading behavior and the

essential features of the dynamical thermal conduction by

phonons. It fulfils the causality requirement and leads to a

convolution type relationship between the heat flux density

current and the temperature gradient in the real space-time

domain in agreement with Gurtin-Pipkin theory. We consid-

ered the study of the effect of temperature as well as differ-

ent intrinsic and extrinsic parameters. Our calculations

confirm previous theoretical studies regarding the order of

magnitude of the cut-off frequency fC of j(X) and further

show fC to be very sensitive to the variation of temperature

and Gr€uneisen parameter. On the other hand, varying the

mass-fluctuation parameter seems to have no effect on fC.

Low values of fC in the low temperature regime, is another

manifestation of the ballistic phonon transport regime in

which the intertwining between anharmonic phonon-phonon

scattering N-processes and U-processes plays a key role.

Our model is unable, however, to explain Koh and Cahill

puzzling experimental results and one needs to conduct more

experiments in order to check the relevance of the calculations

results and shed light on the eventual discrepancies.

The applicability of SSR to j(X) revealed anharmonic

phonon-phonon N-processes to play a very fundamental role

in capturing the dynamics of energy (heat) transport in SC

crystals. We found that SSR holds only when these phonon

scattering processes are disregarded and only resistive pho-

non scattering processes are considered. In this latter case,

we were able to extract a classical expression to the expecta-

tion of the thermal operator hxx introduced by Shastry. This

expression preserves the deep connection linking the expec-

tation of this operator to the lattice specific heat, namely the

vanishing in the true thermodynamic ground state (i.e., at

T¼ 0), as already discussed by Shastry. It also confirms the

physical meaning of hxx variable in capturing the ballistic dy-

namics aspect in the energy (heat) transport phenomenon.

The treatment outlined forth in the theory section high-

lights the leading dynamical behavior of j(X) and it allows

us to have a consistent and meaningful classical limit of

SSR, nevertheless this treatment of BPTE within the frame-

work of a single relaxation time cannot be considered as

fully rigorous as it depends on few assumptions that can

eventually be relaxed. Therefore, many improvements can

be contemplated in order to check the relevance and consis-

tency of some of the calculations results we presented above,

regarding particularly the behavior of the cut-off frequency

fC of the dynamical thermal conductivity j(X) as a function

of temperature T and Gr€uneisen parameter. The improve-

ments would be related to:

1. The form of the collision operator including the separate

effect of anharmonic N-processes and U-processes.

2. The effect of specularity in phonon boundary scattering

especially in the low temperature regime. We have con-

sidered a fixed characteristic length LC in our analysis;

changing LC would affect the behavior of j(0) and j(X)

enormously in this low T regime.

3. The phonon wave vector dependence of the expressions of

all phonon scattering rates, particularly N-processes and

U-processes. In this case, a complete modeling using first

principles calculations and atomistic ab-initio Green’s

function approaches will be very helpful and will allow to

treat intrinsic and extrinsic phonon scattering mechanisms

more respectfully including any eventual contribution

from optical phonons especially in the high T regime.

4. The explicit time dependence of Callaway parameter b
when approximated Callaway form of the collision opera-

tor is used as we did in our analysis except that we

assumed b¼ cte independent of time in our treatment. In

this case of time dependent b, the mathematical treatment

of BPTE would be a bit tedious in which it would be eas-

ier to solve the problem directly in the time domain fol-

lowing the approach of Guyer and Krumhansl and using

the trajectory integral method. We plan to investigate this

approach in a future work in order to study the impact on

the behavior of fC of j(X) as function of T (it is more

likely that fC would be a little bit lower than what we

expected above especially in the low T regime) as well as

the applicability of SSR and the causality requirement

when N-processes are turned on.
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