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Abstract

Multi-objective AI planning suffers from a lack of benchmarks exhibiting known Pareto
Fronts. In this work, we propose a tunable benchmark generator, together with a dedicated
solver that provably computes the true Pareto front of the resulting instances. First, we
prove a proposition allowing us to characterize the optimal plans for a constrained version
of the problem, and then show how to reduce the general problem to the constrained one.
Second, we provide a constructive way to find all the Pareto-optimal plans and discuss
the complexity of the algorithm. We provide an implementation that allows the solver to
handle realistic instances in a reasonable time. Finally, as a practical demonstration, we
used this solver to find all Pareto-optimal plans between the two largest airports in the
world, considering the routes between the 50 largest airports, spherical distances between
airports and a made-up risk.

1 Introduction

The progress of algorithmics, the availability of more & more data and the dramatic increase
of computational power drive a fast-pace evolution of the artificial intelligence (AI) field. As
part of this change, the need to assess the performances of computational methods and to
compare their merits is crucial. Many of the core fields of AI have set up standard benchmarks
and competitions, in order to complement expert knowledge and analysis. In that regard, the
automated planning community is at the edge of the state of the art, with the well-known
International Planning Competition (IPC), hosting a large benchmark and using a common
definition language.

A deterministic planning problem consists in selecting a sequence of actions —a plan—
having an effect on a state, so that applying the plan on an initial state allows to reach a goal
(partial) state, while optimizing a function of the plan’s value. This function is generally the
total duration to reach the goal (the makespan), each action having a duration. However, the
value function may very well represent another aspect of the problem, such as the cost of the
plan, the energy it requires or the uncertainty produced by the actions.

In realistic problems, it is very often the case that several such objective functions exists and
are contradictory. For example, a short plan may be costly, while a cheap plan may take a long
time. In such a setting, using a linear combination of those objective functions falls back to
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introducing a bias about the preferences of the operational user. However, preferences cannot
always be modelled easily in practice, e.g. the user may decide based on political information.
In addition, the knowledge of the feasible compromises between the objectives may, in fact,
influence the decision maker simply because it gives additional information about the problem
itself. For instance, if the two objectives are a cost and a risk, the decision maker might revise
its risk appetite knowing that the increase of the risk by 1% beyond its initial acceptable risk
threshold can lead to a 50% cost decrease.

This calls for the use of multi-objective optimization, where the problem is actually modelled
with several objective functions, and the output of the solver is a set of solutions that are non-
dominated by other solutions, regarding the objectives. The weak dominance of a d-dimensional
point a over point b is defined as a ≤ b ⇐⇒ ad ≤ bd ∀d ∈ N+. A set of point P is then defined
as Pareto-optimal if it dominates every other points in X, all its points being non-dominated
by each others: p ≤ x ∧ @q | q ≤ p ∀p,q ∈ P, x ∈ X. The output of solving such a problem is
thus a set of solutions ordered as a “Pareto front”. That is, for a problem with two objective
functions, a set of points ordered along a monotonic function. Operationally, the user is still
in charge of taking the final decision, but the complexity of their decision has been drastically
reduced to a d− 1 dimensional problem.

While real-world problems are often multi-objective in nature, few work actually consider
their study in the automated planning area. The well known IPC do not proposes benchmark
for such problems [VCM18, CP19] to this date. In fact, PDDL 3.0 explicitly offered hooks for
several objectives [GHL+09], but the only organized competition tracks concerned aggregated
objectives, tracks which were canceled in 2011.

Despite various work on benchmark generation [LDG+18,ADE+20,BF22] and extension to
other planning problems [PF21], no truly multi-objective planning problem has been proposed
apart from our line of work.

1.1 Previous Works

We have previously proposed a problem instance generator for such multi-objective planning
problems [SSV06, KSV+13, QS15], extending the ZenoTravel [PW94] problem with an ad-
ditional objective. Such problem sets are crucial for benchmarking optimization algorithms,
especially when the optimum is known, as it allows for a rigorous comparison of the perfor-
mances of solvers.

The original ZenoTravel problem [PW94] involves planes moving passengers between
cities, while taking care of their fuel. Actions such as flying, boarding, deplaning or refueling
take various time to complete, and a plane cannot fly without fuel. The objective is to minimize
the makespan, while honoring passengers’ destinations.

The proof-of-concept of the MultiZenoTravel problem is based on a simplified Zeno-
Travel model [SSV06]. In this model, there are five connected cities (see Figure 1), planes may
transport only one passenger at a time and there is only one flying speed. The main addition
to the problem is that an additional objective is attached to all actions. This second objective
is either a cost, which is additive (each plane has to pay the corresponding tax every time it
lands in that city) either a risk (for which the maximal value encountered during the complete
execution of a plan is to be minimized). In this first instance, three passengers can be moved
across the cities.

The second version of the MultiZenoTravel problem [KSV+13] builds up on the proof-of-
concept, allows for 3, 6 and 9 passengers, and a 3-to-2 passengers-to-planes ratio, which makes
up for very small instances, due to the combinatorial explosion of the solution space.

In [QS15], we introduce an algorithm to compute the true Pareto fronts of very large instance
in reasonable time, and the first version of the ZenoSolver software is described (see Section 4
for further details). The article also provides a few typical instances that exhibit very different
shapes of Pareto Fronts, for different levels of complexity. Unfortunately, this works suffer
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Figure 1: A schematic view of a non-symmetric clique MultiZenoTravel problem.

from two unrealistic assumptions. First, the distances are assumed to be symmetric around the
central cities, that is to say f∀i, di = d̄i. Second, the proof of the proposition which allows us
to find Pareto-optimal plans relies on the following unrealistic assumption:

∀(i, j) ∈ [1, n]2, di + dj < dij

In other words, none of the instances generated under this assumption would respect a trian-
gular inequality. Even if a benchmark does not necessarily have to be realistic by nature, this
particular assumption drastically restrains the extrapolation of the performances of a solver
observed on the benchmark to real life problems.

1.2 Our Contribution

In this work, we introduce a constructive way to find the Pareto-optimal solutions for the Mul-
tiZenoTravel problem. Our first contribution is to generalize from the original symmetric
clique problem introduced in [SSV06] to a non-symmetric clique version and to a version with
no particular assumption on the graph.

As a second contribution, we provide a way to characterize the Pareto-optimal plans for all
versions of the problem, leading to a constructive algorithm to find the Pareto-optimal solution
for any instance. In particular, we would like to insist on the fact that this paper is not an
extension of [QS15] to a more generic case. In fact, in [QS15] the unrealistic aforementioned
assumption contradicts the triangular inequality assumption made in this paper. In addition,
even the technical implementation of the algorithm have been completely revised. The only
intersection between the papers is contained in Section 3 and concerns how we define and count
the potential and admissible Pareto Optimal Plans.

In addition, we present the ZenoSolver, a C++ implementation of the algorithm to solve
MultiZenoTravel. It can output the instance definition in PDDL such that the generated
instance can easily be used by other solvers. We demonstrate how to generate instances with
different behavior by tuning the input parameters. We provide a theoretical and empirical study
of the performances of ZenoSolver.

Although we think that the primary utility of ZenoSolver is to generate benchmarks with
known Pareto Front to study other solvers’ properties and behaviors, we provide a demonstration
of the ZenoSolver on a problem using real data. This had been made possible because of the
extension of the solver capabilities from the symmetric clique problem to any arbitrary graph.

1.3 Outline

The plan of this paper is as follows: in Section 2, we define three versions of the MultiZeno-
Travel problem. Section 2.2 is dedicated to solve the symmetric MultiZenoTravel problem,
followed by Section 2.3 that focuses on the non-symmetric version of the problem. In Section
2.4, we show how any instance of the general MultiZenoTravel problem can be reduced to
a non-symmetric version via a polynomial-time reduction.
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In Section 3, we detail how to construct Pareto optimal plans for the non-symmetric problem.
In Section 4, we introduce the ZenoSolver, a C++ implementation of the algorithm described
in the previous sections.

Finally, in Section 5, we study an (almost) realistic application for MultiZenoTravel and
ZenoSolver using the Openflight database to find the optimal routes between the two largest
airports in the world.

2 MultiZenoTravel problems

In this Section, we introduce three versions of the MultiZenoTravel problem: the symmetric
clique MultiZenoTravel, the non-symmetric clique MultiZenoTravel and the general
MultiZenoTravel. First, we will prove a proposition that characterizing the non-optimal
plans for the symmetric clique MultiZenoTravel and therefore, helps building optimal plans.
Then, we show that the for the non-symmetric version, the proposition still holds. Finally, we
show that we can reduce the general MultiZenoTravelto a clique version, and thus, still
build optimal plans.

2.1 Instances

Let us introduce some notations related to the planning problem briefly presented in the in-
troduction: a non-symmetric clique MultiZenoTravel instance (Figure 1) is defined by the
following elements:

• n central cities, organized as a clique in which every node is connected to CI and CG,
respectively the initial city and the goal city.

• c ∈ (R+)n, where ci is the cost for landing in Ci.

• D ∈ (R+)n×n, where dij is the flying time between Ci and Cj .

• d ∈ (R+)n, where di is the flying time between CI and Ci.

• d̄ ∈ (R+)n, where d̄i is the flying time between Ci and CG.

• p planes, initially in CI , that have a capacity of a unique person.

• t persons, initially in CI .

The goal of MultiZenoTravel is to carry all t persons, initially in cI , to cG using p planes,
minimizing both the makespan and the cost of the plan.
Without loss of generality, all pairs (di, ci) are assumed to be pairwise distinct. Otherwise, the
2 cities can be “merged” and the resulting n − 1 cities problem is equivalent to the original n
cities problem, as there exist no city capacity constraints. Finally, we only consider cases where
t ≥ p, as the problem is otherwise trivial.

An instance of the symmetric clique MultiZenoTravel problem is an instance such that
d = d̄. A general MultiZenoTravel instance is an instance such that the n central cities are
organized as an arbitrary graph.

p1 : CI
t1→ C4 → CG → C2

t2→ CG

p2 : CI
t2→ C2 → CI

t3→ C3
t3→ C4 → CG

Figure 2: Example of an admissible plan to transport 3 travelers via 2 planes. This representa-

tion indicates the successive actions for each plane. We noted by
ti→ a flight with a traveler.
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Figure 2 illustrates an admissible solution. Note that the makespan for a plan is not nec-
essarily the largest sum of the flights’ duration as some planes might have to wait for others.
This could be the case for p1 waiting for t2 in C2.

2.2 Symmetric MultiZenoTravel

The method to find the Pareto Front of any general MultiZenoTravel instance consists of
three steps. First, we provide an efficient algorithm to find the Pareto Front for any symmetric
clique MultiZenoTravel instance. Then, we show that there exists one particular case in
which the algorithm does not work for the non-symmetric version of the problem. However,
we provide a way to easily transform the instance such that a slightly modified version of the
algorithm can find the Pareto Front. Last, we provide an algorithm to transform any instance
of the general MultiZenoTravel problem into a non-symmetric clique version.

The following proposition is the cornerstone of the method to identify and construct the
Pareto Set of any instance:

Proposition I: Pareto-optimal plans are plans where exactly 2t−p (possibly identical) central
cities are used by a plane.

In particular, Proposition I will be proven only for the symmetric case as we will show there
is one corner-case to the demonstration for the non-symmetric version. We will overcome this
corner-case by a slight modification of the solver’s main algorithm.
For the rest of this paper, we make the following triangular inequality assumption:

Assumption: ∀(i, j, k) ∈ ([1, n] ∪ {I,G})3, dij + djk ≥ dik (A∆)

The goal of this section is to establish the proof of Proposition I for the Symmetric case.
For that purpose, we will first determine a couple of properties, mostly deduced from (A∆), to
restrict the movements of the planes in Pareto Optimal plans to four different patterns.

Property I:

1. A plane flies from CI with a passenger and to CI empty.

2. A plane flies from CG empty and to CG with a passenger.

3. A plane does not fly two times in a row between central cities with or without a passenger.

Proof: Straightforward consequences of (A∆). �

Corollary I: All the planes finish their respective sequence in CG.

Proof: If a plane finishes in CI , it cannot arrives full from a central city due to Property I.1
nor empty because the last move would be useless. If the plane finishes in Ci and came empty,
it cannot comes from CI due to Property I.1. It cannot come from Cj another central city or
CG because the movement would be useless. If the plane finishes in Ci and came full, another
plane will have to carry the passenger to CG and thus, it would be at least as fast to go directly
to CG with the inital plane. �

From those observations, we deduce the only four possible patterns that a plane can perform,
denoted by A, Ā, B, B̄. More precisely, if a plane does perform another pattern than these ones,
the plan is dominated by the plan corrected in such a way that it respects Property I because
the second plan uses less cities (the makespan might be the same but no longer as insured by
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Figure 3: On top, Pattern A and Ā. In the bottom, B and B̄. The dots above the arrows
indicate a flight with a passenger.

the triangular inequality).

We denote by |X| the number of the patterns X ∈ {A, Ā,B, B̄} in a given plan and call multi-
plicity the number θ associated to a specific pattern execution. Depending on the pattern, the
number of cities involved is either even or odd, so as to respect Property I. Using Property I
and the triangular inequality, we deduce the following property on the cardinal of each patterns
in potential Pareto plans:

Property II: If a plan does not respect the following constraints, it is dominated:

1. |A|+ |B| = t

2. |A|+ |B̄| = t

3. |B| = |B̄|

4. |A| = |Ā|+ p

Proof: The pattern A and B are the only ones that allow to take out a passenger from CI , so
a feasible plan has at least t of those patterns. Once all the passengers are out, (A∆) ensures
that there is no reason to come back to CI . Apply the same reasoning to CG with A and B̄ to
prove the second point. The third point is a simple substraction. To go to CG from CI there
is a need for a pattern A but as all the planes are finishing in CG, there is at least p pattern
A. If there is a pattern Ā there is a need of another pattern |A|, thus proving the fourth point. �

Corollary II: If a plan does not perform exactly 2t− p patterns, it is dominated.

Proof: Straightforward consequence of Property II. �

By using (A∆) and given any plan such that a passenger crosses more than one city using
two planes, it is easy to find a reorganization of the plan such that it uses only one city and
dominates the previous one. However, if a passenger lands in more than one city using at
least three planes (one flying full between two central cities), it is not clear whether such a
reorganization is possible. This case is illustrated in Figure 4. Such a sequence always starts
by a pattern A or B and ends by a pattern Ā or B̄. As the method to reorganize a plan is
independent of the original number of cities a passenger goes through, without loss of generality,
we will consider the case where a passenger goes through two cities using three planes.

5



cI ci1

ci2

cj

cG

ci

p1

p3

p2

Figure 4: The only non-trivial case where a plan rearrangement is not trivial. One passenger
travels through two cities ci1 and ci2 using three planes, respectively p1, p2 and p3. The path
taken by the passenger is in bold. By Property II, p1 transports the passenger by performing a
pattern X1 ∈ {A,B} and p2 a pattern X3 ∈ {Ā, B̄}. We do not assume the pattern performed
by p2.

Fixing |A| fully determines the cardinal of all patterns and as |A| ∈ [p, t] we can parameterize
the pattern distribution by a single integer k ∈ [0, t− p]. For a given k, Ψ(k) denotes the set of
elements indicating for each pattern the list of cities. We characterize such a partition w.r.t. a
given k by:

Ψ(k) = {ψ(k)} s.t. ψ(k) of the form

ψ(k) =


a := (a1, ..., ap+k)
ā := (ā1, ..., āk)
b := (b1, ..., bt−p−k)
b̄ := (b̄1, ..., b̄t−p−k)

such that any element e of any of the four tuples describes a pattern execution, i.e. e ∈
{1, ..., n}|e| with |e| the number of cities involved in the pattern.

For the sake of readability, we denote ψ(k) by (k, ψ) where implicitly, ψ ∈ Ψ(k). For each
couple (k, ψ) we denote by P(k, ψ) the set of all feasible plans respecting the induced conditions.
For a given instance of MultiZenoTravel, it is easy to see that

⋃
(k,ψ)

P(k, ψ) is a partition of

the set of feasible plans respecting Property II. In other words, for any feasible plan p, there
exists an element (k, ψ) such that p ∈ P(k, ψ)

For any k, Ψ0(k) denotes the subset of Ψ(k) such that each pattern has a null multiplicity. The
elements of the union of P(k, ψ0) for any k and ψ0 ∈ Ψ0(k) are the feasible plans using only
2t− p cities. Notice that P(k, ψ0) may be empty, for instance if a city bi in b is not present in
b̄. In such a case, it is impossible to create a feasible plan respecting the induced constraints.
The idea of the demonstration is to show how we can transform any (k, ψ) into a (k, ψ0) such
that there exists p ∈ P(k, ψ0) such that for any p′ ∈ P(k, ψ), p � p′.

The idea is to arbitrarily chose one city for each pattern such that each pattern as a null
multiplicity. The only problem is with the pattern B and B̄ that may not have joint city, i.e.
one plane will carry a passenger in city and no other plane will come to bring it to CG. Then,
we show it is always possible to repair such a plan, such that the new plan has a lower cost and
makespan by construction and uses only 2t− p cities.

Assumption: (Symmetry) ∀i ∈ [1, n], di = d̄i (S)
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Figure 5: Pattern reduction for a pattern A such that |A| = 4, using city i3.

cI ci1

ci2

cG → cI ci1

ci2

cG

Figure 6: (BB̄)-pairing assuming dI,ij + dij ,G < dI,ij+1 + dij+1,G.

Definition: (Pattern Reduction) For any pattern with a multiplicity θ > 0 such that it goes
through the cities with indices (i1, ..., iK) (with the first and the last city being I or G depend-
ing on the considered pattern), the pattern reduction operation consists in selecting a single
city among (i2, ..., iK−1) to create a new reduced pattern of the same type but with multiplicity 0.

The reduced pattern has obviously a lower cost as it requires less landings and its duration is
lower due to the Assumption A∆.

Definition: ((BB̄)-pairing) Consider a pattern B and B̄ in a list of patterns, both of multi-
plicity 0 and using respectively the central city Ci and Cj . Pairing them consists in using the
central city C∗ = argmin (di + d̄i, dj + d̄j).

In the symmetric case, the condition becomes C∗ = argmin (di, dj). Under Assumption (S),
the duration of both patterns involved in the pairing is lower or equal to its duration before the
pairing.

Let us consider a plan p1 such that there is at least one pattern (of any type) with a
multiplicity higher than 0. We can always apply the following transformation on its list of
patterns:

1. for each pattern with a non-zero multiplicity, do a pattern reduction.

2. for each couple of patterns B and B̄, do a (BB̄)-pairing.

It is always possible to pair the patterns since we consider only plans respecting the Property
II and in particular the following pattern constraint: |B| = |B̄|.

Those steps transform any (k, φ) into a (k, φ0). Indeed, the cardinality of each type of pat-
terns defined by k is conserved but for each single pattern, its multiplicity is now zero. On top
of that, each city that appeared in φ0 also appears in φ which implies a lower cost of all feasible
plans on (k, φ0). The set P(k, φ0) is not empty since we constructed a valid plan. The duration
of each pattern remains the same or is lower than in the original plan due to the reduction. The
(BB̄)-pairing also let unchanged the duration for one of the pattern and lower it for the second
one involved in the couple due to the symmetric assumption (S). As a result, the transformed
plan dominates the original one while using only 2t− p cities, thus proving Proposition I under
Assumption (A∆) and Assumption (S). �
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In conclusion, we proved that for the Symmetric MultiZenoTravel problem, Pareto Op-
timal plans are plans using exactly 2t−p central cities. This will allow a constructive algorithm
to drastically reduce the search space of feasible and Pareto-optimal plans.

2.3 Non-Symmetric Clique MultiZenoTravel

In this section, we relax the Assumption (S). As a result, the previous method does not work in
the particular case a (BB̄)-pairing is not possible. More precisely, it happens when there is no
choice of cities to perform a (BB̄)-pairing because for two cities Ci and Cj (resp. for B and B̄)
we have di < dj and d̄j < d̄i. In such case, the (BB̄)-pairing on Ci (resp. Cj) would increase
the duration of the pattern B̄ (resp. B) by 2(d̄i − d̄j) (resp. 2(dj − di)). As a result, without
any other change, the transformed plan has a larger total flight duration for at least one plane
which may result in a larger makespan. A reorganization of the plan is not trivial such that
instead, we will further characterize such situations and propose in Section 3.3 a transformation
to get rid of them.

We will show that for a plan not to be dominated, the three patterns executed by p1, p2 and
p3 as illustrated by Figure 4 must be B, A and B̄. We call it a BĀB̄ situation and in particular,
A is of multiplicity exactly equals to 1.

For each plan, denote by O (for out) and I (for in) the sets of patterns, respectively to take
a passenger from CI and to bring a passenger to CG. The set O contains all patterns A and B
while I contains also all A but also B̄.

As proven previously, in a non-dominated plan, a passenger needs to travel through exactly
one pattern from O and one pattern from I. Therefore, for each particular passenger, there is
the choice between the following couples of patterns:

C1 = a single A with θ = 0
C2 = (A,A)
C3 = (A, B̄)
C4 = (B,A)
C5 = (B, B̄)

The multiplicity for each pattern in each couple is defined by

M1 = (0)
M2 = (θ > 0, θ > 0)
M3 = (θ > 0, θ ≥ 0)
M4 = (θ ≥ 0, θ > 0)
M5 = (θ ≥ 0, θ ≥ 0)

Therefore, for each couple of patterns, we can calculate the number of passengers transported
from CI or to CG, on top of the passengers defined by the couple itself:

T1 = (0, 0)
T2 = (1, 1)
T3 = (0, 1)
T4 = (1, 0)
T5 = (0, 0)

For instance, it means that C3 implies that another passenger moved from a central city to the
destination. Therefore, it implies that we need to select another couple such that the pattern
I = A, i.e. C2 or C4.

8



cI ci1

ci2 cG

p2

Figure 7: Illustration of a BĀB̄ situation. The passenger is carried to and from a central city
by a B or B̄ (dashed) and is transported by a Ā between central cities (bold).

We can deduce that:
C3 =⇒ C2 ∨ C4
C4 =⇒ C2 ∨ C3
C2 =⇒ C2 ∨ C4 + C3 ∨ C3

As there is a finite number of patterns to pick in a feasible and optimal plan, it is impossible
to select C2, C3 or C4. In other words, we can use only C1 and C5.

The only pattern in C1 has a null multiplicity by definition, such that, if a passenger travels
through two central cities, it implies that, not only she does it through B and B̄ but also, there
exists a central pattern with multiplicity greater than zero. This pattern cannot be A.

Assume such case and that the (BB̄)-pairing is not possible. If the central pattern is B,
then, another passenger has been moved from CI . Therefore, there is another B somewhere in
the plan. In total, the situation implies four patterns B1, B̄1, B2 and B̄2 and we assumes B1

and B̄1 could not be paired with any other pattern. However, by construction, B2 is pairable
with B̄1. Therefore, the central city cannot be B.

By a symmetric reasoning, we conclude that the central city cannot be B̄ and must be Ā
with multiplicity greater than 0 as illustrated by Figure 7.

In conclusion, we proved that the proof of the previous section holds except when a BB̄-
pairing is not possible. In this case, we proved that non-dominated plans must use a conjunction
of three patterns BĀB̄ altogether, with A having a multiplicity exactly equal to 1. Therefore,
a constructive algorithm can still focus on plans with 2t− p central cities with additional care
for the particular situation where BB̄-pairing is not possible.

2.4 General MultiZenoTravel

We now consider a connected weighted graph U = (V,E) such that |E| = n + 2 and two
arbitrary vertices named I and G (with weight 0), respectively for the initial and the goal cities.
A MultiZenoTravel instance Π is defined by the triplet (U, I,G). We denote by Λ the set
of paths over U , and for any path p ∈ U , |p| is the number of cities in the path. We define the
functions φ (resp. ω) as follows:

∀p ∈ Λ, φ(p) =
∑

0≤i≤|p−1|

dpi,i+1 (1)

∀p ∈ Λ, ω(p) =
∑

1≤i≤|p|

cpi (2)

The function φ provides the duration, while ω provides the landing cost of the path. Notice
that the first city in a path does not appear in ω because the initial state is such that the planes
are in the initial city.

The following algorithm f allows to transform the general MultiZenoTravel transport
problem defined by (U, I,G) into the original non-symmetric clique problem.

9



• For each vertex i find all the paths from I → i (resp. from G → i) and denote this set
ΛI→i (resp. Λi→G).

• Construct a new graph Ū = (V̄ , Ē) such that for each (wi, ei) ∈ ΛI→i × Λi→G, create a
vertice of weight ω(ei) + ω(wi)

1 and an edge I → i (resp. i → G) of weight φ(wi) (resp.
φ(ei)).

• For all couple of cities (i, j) ∈ V̄ 2, assign di,j = +∞.

Proposition: A solution to the transformed problem is a solution to the generic problem.

Proof: Let Π be an instance of the generic problem and Π∗ the clique instance obtained by the
reduction function f , i.e. Π∗ = f(Π). We need to show that p ∈ Ps(Π)⇔ p∗ = f(p) ∈ Ps(Π∗).

The function f is surjective: ∀p∗ ∈ P(Π∗), f−1(p∗) is the (unique) plan such that we expand
every vertex by the associated path in ΛI→i×Λi→G. For a given p ∈ P(Π) there exist as many
p∗ ∈ P(Π∗) as there are ways of splitting a sequence of cities into two. The application f−1 is
obviously injective.

By construction, ∀p ∈ P(Π),∀p∗1, p∗2 ∈ (Imf (p))2, M(p∗1) = M(p∗2) and C(p∗1) = C(p∗2). Fur-
thermore, ∀p ∈ P(Π),∀p∗ ∈ Imf (p), M(p) = M(p∗) and C(p) = C(p∗) by construction of
f . Therefore, f−1 defines an equivalence relation whose classes are uniquely identified by a
p ∈ P(Π)2. As a result, f defines a bijection from P(Π) to P( Π∗

f−1 ). As for all p∗ ∈ P( Π∗

f−1 ) the

objective vectors of p∗ and f−1(p∗) are the same, p ∈ Ps(Π) =⇒ p∗ = f(p) ∈ Ps(Π∗). �

By construction, for any generic instance Π, the reduced instance Π∗ satisfies the assumption
(A∆) such that the method described in Section 3.2 to identify the Pareto Front directly apply
to any instance.

On the complexity: In general the number of cities in Π∗ is not polynomial in function of n,
the number of cities in Π and thus, solving Π through Π∗ might be challenging w.r.t. the initial
complexity of the problem and our algorithm. On top of that, the number of paths between two
vertices can be up to super-exponential, as illustrated in Figure 8, and computing the cardinal
of the set of paths is already a ]P -complete problem [Val79].

We can notice that in our case, every sub-path of a path in a Pareto-optimal Plan is a
non-dominated path itself. Consider a plan p ∈ P(Π) such that there exists two cities i and j
such that the path between those two cities is dominated by another path. It then obvious that
the plan p′ based on p but using the non-dominated path is at least as good as p because there
can not be any BĀB̄ situation by construction. Therefore, in non-dominated plans, all paths
are non-dominated and all sub-path of a non-dominated path is non-dominated. As a result, it
is unnecessary to turn the dominated paths from Π into the cities of Π∗3.

However, even in this case, the number of central cities in Π∗ is function of the cardinal
of the Pareto Set of non-dominated paths for each couple of cities in Π. In [Han80], Hansen
proposed some pathological instances of bicriterion graphs such that the set of non-dominated
paths between two extremes nodes is exponentiel in the size of nodes n. We slightly modified
the instance to fit our problem as illustred by Figure 9. In this instance, all the paths between

CI and CG are non-dominated and there are exactly 2
n−1
2 paths.

1The cost of landing in city Ci is counted only once, in the west path.
2They are defined by p and not by M and C since it might exist two plans in P(Π∗) with the same objective

vector but a different image by f−1.
3It is possible to lose some elements of the Pareto Set, i.e. in the decision space, but the Pareto Frontier will

be entirely found.
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Figure 9: A modified instance of Hansen graph for which the set of non-dominated paths
between CI and CG is exponential in n.

For computational purposes, we show that if an instance respects an extended version of the
triangular inequality, then the number of non-dominated paths is bounded by a polynomial in n.
This assumption holds, for instance, for planar straight line graph where nodes are associated
to points in a Euclidean plane.

Proposition IV: If for a graph U the number of non-dominated paths is bounded by a poly-
nomial of n, the reduction is polynomial of n and the number of cities in Π∗ is polynomial of
n.

Proof: Since any subpath of a non-dominated path must be non-dominated, and the number of
non-dominated paths is bounded by a polynomial of n, finding the set of non-dominated paths
can be done in nk for a certain k. For each non-dominated paths from CI to CG, the reduction
consists in splitting the paths for each city in the paths to create a new city. Let us denote by
D the number of non-dominated paths from CI to CG and by L the maximal number of central
cities of a non-dominated path from CI to CG. For any non-dominated path from CI to CG,
there are at most L new cities to create. Therefore, the total complexity is bounded by nkDL. �

In conclusion, we know have a method to reduce any general MultiZenoTravel instance
to a symmetric MultiZenoTravel instance. Therefore, any solver for the symmetric Multi-
ZenoTravel problem can solve the general MultiZenoTravel problem after transformation.
We leave for future work the classification of graphs for which the assumption of Proposition
IV holds.
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3 Pareto Optimal Plans

We now focus on finding the Pareto Optimal Plans (PPP) from any list of 2t − p cities, that
is to say from the elements (k, ψ0), for k ∈ [0, t − p] and ψ0 ∈ Ψ0(k) for the symmetric and
non-symmetric case, that is, for the latter, we assume that there is no BĀB̄ situations for now.

3.1 Definitions

PPPs and Admissible PPPs: A Possibly Pareto-optimal Plan (PPP) is defined by 3 tuples,
namely a ∈ {1, ..., n}k+p for cities involved in a pattern A, ā ∈ {1, ..., n}k for cities involved in
a pattern Ā, and b ∈ {1, ..., n}t−p−k for the cities involved in B and B̄.

Nevertheless, a, ā and b do not hold any information about which plane will land in a particular
city. This is the reason why there exists many feasible schedules, i.e., schedules that actually
are feasible plans for p planes4 using the corresponding 4t−2p edges. There are at most n(2t−p)

possible PPP but it is clear that the set of PPPs contains many redundancies, that can easily
be removed by ordering the indices

Definition: (Admissible PPP) An admissible PPP is an element of A × Ā × B, where A =
{a ∈ [1, n]k+p;∀i ∈ [1, k + p], dai ≥ dai+1}, Ā = {ā ∈ [1, n]k; ∀i ∈ [1, k], dāi ≥ dāi+1} and
B = {b ∈ [1, n]t−p−k; ∀i ∈ [1, t− p− k], dbi ≥ dbi+1

}.

Number of admissible PPPs: Let Km
k be the set of k-multicombinations (or multi-subset

of size k) with elements in a set of size m. The cardinality of Km
k is Γmk =

(
m+k−1

k

)
. As A is in

bijection with Kn
k+p, Ā with Kn

k and B with Kn
t−p−k, the number of PPP is (t−p)Γnk+pΓ

n
kΓnt−p−k,

i.e., (t− p)
(
n+k+p−1

k+p

)(
n+k−1

k

)(
n+t−p−k−1

t−p−k
)
.

Cost of a PPP: Given the PPP ψ0 = (a, ā, b) ∈ A × Ā × B, the cost of any plan using only
the cities in a, ā and b is uniquely defined by Cost(ψ0) =

∑
ai∈a

cai +
∑
āi∈ā

cāi + 2
∑
bi∈b

cbi .

Makespan of a PPP: The makespan of a PPP is thus that of the shortest schedule that uses
its 4t− 2p edges in a feasible way. Trivial upper and lower bounds for the shortest makespan of
a PPP ψ0 are respectively MS(ψ0), the makespan of the sequential plan (i.e., that of the plan
for a single plane that would carry all persons one by one), and ML(ψ0), the makespan of the
perfect plan where none of the p planes would ever stay idle and the length can be perfectly
shared between the planes. These bounds are useful to prune the set of PPPs:

MS(ψ0) =
∑
ai∈a

(dai + d̄ai) +
∑
āi∈ā

(d̄āi + dāi) +
∑
bi∈b

(dbi + d̄bi)

ML(ψ0) =
MS(ψ0)

p

Ψ-domination: Given two PPP (k, ψ0) and (k′, ψ′0), ψ0 Ψ-dominates ψ′0 if MS(ψ0) ≤ML(ψ′0)
and Cost(ψ0) ≤ Cost(ψ′0).

Ψ-domination is different from the standard domination as it occurs in a different space: we do
not compare plans but the PPP structures which can individually lead to several plans. Note

4Most of them are probably not Pareto-optimal, but w.r.t. Using Proposition I as hypothesis, any schedule
resulting from a larger tuple a or ā or b would be Pareto-dominated.
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that if ψ0

Ψ
� ψ′0, there is no need to compute the shortest makespan for ψ′0 because any plan in

P(k′, ψ′0) is dominated by any plan in P(k, ψ0).

3.2 Computing the Shortest Makespan and Constructing the Plan

The method to compute the optimal makespan for a particular PPP ψ0 is broken down into
four steps. All the steps are performed greedily allowing a resolution per PPP in linear time in
function of the size of ψ0. After detailing these steps, we will give a constructive proof that the
obtained makespan is optimal.

If a non-symmetric instance is highly imbalanced in durations, while performing a BB̄, there
is a chance that the plane performing B̄ will have to wait. It implies that its makespan is not
the sum of the durations of its patterns but the moment the passenger arrives in the central
city, plus the remaining duration of its track. For this reason, we denote by Ti the moment
passenger i arrives in the central city she goes through.

1. For each city i in b, greedily distribute by descending order of di + d̄i the duration
2 max (di, d̄i) among the planes. If the di > d̄i add CG → Ci → CG to the sequence
of the plane, otherwise add CI → Ci → CI . If there is already a sequence from CI (resp.
CG) add the new one at the right side (resp. left side) of the existing ones.

2. Greedily distribute the p-largest elements of a among the p planes. Note that each plane
must receive one duration due to the fact that each plane should finish in CG. For each
plane, the sub-sequence CI → Ci → CG is to be added between the western and eastern
parts of the pattern induced by b distributed in the first step.

3. While it remains some elements in a and ā, select the plane with the minimal duration
and add the largest element of a or ā depending the previous element it received (a if ā,
and vice versa). For an element of a (resp. ā), add CI → Ci → CG (resp. CG → Ci → CI)
right before the sequence added during the second step.

4. For each city i in b, greedily distribute by descending order of di + d̄i the duration
2 min (di, d̄i) among the planes. The rules to add the sub-sequences are the same as
in the first step. If di < d̄i, assign to the plane the makespace max(D(p) + d̄i), Ti) + d̄i
where D(p) is the duration of the partial track up to the moment the plane arrives in Ci.

The optimal makespan for the given PPP is the longest duration among the p planes.

Proposition: For a given PPP ψ0 and βset, the algorithm returns the optimal makespan.

Proof for the symmetric case: The incompressible time to transport all passengers, accord-
ing to a given PPP is T (ψ0) = 2

∑
i∈b

(di + d̄i) +
∑

i∈{a,ā}
(di + d̄i). A theoretical optimal plan with

this pattern repartition is a plan without any waiting point for any plane. The above algorithm
gives the optimal distribution of the set of times into p. Then, if a plan can be constructed with
such a makespan, it is optimal for the PPP. As it constructs such plan, we can conclude that
the algorithm is optimal for the PPP, thus proving Proposition I. �

Proof for the non-symmetric case: The above algorithm gives the optimal distribution of
the set of times into p and provides a plan that minimizes the waiting time by starting the plan
by the patterns that could lead to a waiting time. �
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Figure 10: The BAB situation is transformed into a regular BB̄-pairing through a new city
and a Ā with a null multiplicity. The cost of the new city Ck is ci for B, cj for B̄ and ci + cj
for Ā or A.

Complexity: For a given instance, the size of any PPP is 2t− p. Finding the best makespan
for a PPP is linear in 2t − p. As a result, the complexity to solve an instance is given by
(t− p)

(
n+k+p−1

k+p

)(
n+k−1

k

)(
n+t−p−k−1

t−p−k
)
O(2t− p).

3.3 Adapting the method to BĀB̄ situations

A PPP cannot be a structure in which there are BĀB̄ situations. Otherwise, there might exist
plans using the cities of such PPP, with an additional city for pattern A, such that the plan is
non-dominated by any plan using only the 2t− p cities of the PPP. However, the algorithm is
still optimal even if the duration of flights does not only depends on the city but also on the
type of patterns. For instance, if we could arbitrarily decide that a pattern A going through Ci
has a larger duration than the counterpart Ā using the same city. In other words, there would
be dXi and d̄Xi for any X ∈ {A, Ā,B, B̄}. Using this idea, we can transform any instance with
some BĀB̄ situations into an instance without any, such that the algorithm A1 is optimal.

Consider an instance Π of the non-symmetric MultiZenoTravel problem. For each po-
tential BĀB̄ situation going through Ci and Cj , add a new city Ck such that:

dBk = 2di (3)

dB̄k = 2dj (4)

dAk = min(di + d̄i, dj + d̄j) (5)

dĀk = d̄i + dij + dj (6)

This transformation is illustrated by Figure 10. The transformation has O(n2) complexity and
the resulting instance Π∗ is a non-symmetric MultiZenoTravel without any BĀB̄ situation.
More precisely, if there is a plan using a BĀB̄ that is optimal in Π, then it is also optimal in
Π∗, but there exists a plan with the same makespan and cost without any BĀB̄ situation in
Π∗.

4 ZenoSolver

ZenoSolver is a C++ software dedicated to generate and exactly solve MultiZenoTravel
instances. ZenoSolver computes the true Pareto Front using the algorithm described in
Section 3. It outputs the corresponding PDDL file5, that can be directly used by most AI
planners.

We implemented two versions of the algorithms to iterate over the set of PPP, namely the
classic, by reference to our previous work [QS15], and the no-duplicate version. Algorithms 1
and 2 present a high-level view of both versions, respectively for classic and no-duplicate.

5Planning Domain Definition Language [FL03], almost universally used in the AI Planning to describe domains
and instances.
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4.1 Classic and no-duplicate

In the classic version (shown on Algorithm 1), we iterate over the set of t tuples that represents
the cities involved in patterns going eastward, and then over the set of t−p patterns representing
the cities involved in patterns going westward. For each couple of tuple (e, w), we compute the
powerset of the intersection. This gives all the possibilities for a BB̄-pairing based on the
PPP. Finally, we iterate over this powerset and compute the lower makespan for each triplet
(e \ β,w \ β, β). This version is simple to understand and generates PPP in an approximately
increasing order of cost which allows for efficient pruning. However, the method still generate
a set of duplicates that grows exponentially with the number of passengers. The duplicates
appears both in the space of PPP and the set of plans (because some patterns A and Ā can
sometimes be swapped).

Algorithm 1 Classic version of ZenoSolver

1: procedure Solver(n, t, p, d, d̄,D, c)
2: for e ∈ Kn

t do
3: for w ∈ Kn

t−p do
4: C ← cost(e, w)
5: B ← P(e ∩ w)
6: for β ∈ B do
7: M ← lowestMakespan(e \ β,w \ β, β)
8: end for
9: end for

10: end for
11: end procedure

The no-duplicate version adopts a different view on the construction of PPP. The main
loop iterates over the set of tuples u of size 2t− p.

Then, we generate all possible subsets of p elements, without duplicate. This implements
the constraint that each of the p planes will perform a pattern A. Let denotes by P this set.
For each m ∈ P , it remains a tuple v = u \ m of size 2(t − p). With v, we apply the same
method as the classic algorithm: we compute the set of cities possibly involved in a BB̄-pairing
and generate its powerset. Iterating over the powerset, we compute the lowest makespan for
each triplet (m, v, β).

At first sight, the two algorithms are similar, except that the no-duplicate version does
“block” the firsts p occurrences of pattern A. However, this difference decreases by an expo-
nential factor the computation time in several ways: 1) there is no possible duplicate which
decreases the computation time with n by comparison to the classic version, 2) the powerset
for the possible BB̄-pairing is done on a smaller set, 3) increasing p decreases the cardinality
of v. Also, as there is only one main loop, it makes it easier to implement efficient parallelism.
The drawback is that the PPP are no longer generated in an approximately increasing order of
cost.

The classic version seems more efficient in terms of effective computational time on problems
showing a small number of passengers, while the no-duplicate one is faster with a growing number
of passengers or a compromise between cities and passengers. Also, all other things being equal,
the no-duplicate version becomes faster when p increases while the computational time for the
classic version remains unchanged. See Section 4.3 for further details.

Both algorithms are based on two costly operations: 1) generating all multicombinations of
k elements among n elements with repetitions, and 2) generating the powerset of a given set of
elements. For 1), the implementation follows the one proposed in [Knu05]. Regarding 2), we
used the Same Number of One Bit (Soob) technique [BGS72] that operates bitwise by noticing
that equal cardinality subsets have the same number of one bits.
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Algorithm 2 No-duplicate version of ZenoSolver

1: procedure Solver(n, t, p, d, d̄,D, c)
2: for u ∈ Kn

2t−p do
3: C ← cost(e, w)
4: (M,#c)← mapping (cities→ number of cities in u)
5: for v ∈ KM

2(t−p) do

6: v̄ ← determinePossibleBB̄-pairing(v)
7: B ← powerset(v̄)
8: for β ∈ B do
9: M ← lowestMakespan(u, v \ β, β)

10: end for
11: end for
12: end for
13: end procedure

Using the Ψ-domination, ZenoSolver implements a pruning method that checks if the
current PPP is dominated by any other PPP already stored. As noted, the optimal makespan
is lower or equal than the upper bound MS , leading to an efficient pruning. Indeed, as PPPs
are generated in an approximated increasing order [Knu05], this avoids iterating over the whole
set to check the domination criterion.

Determining if the current PPP is dominated has complexity O(h) where h is the number
of different total achievable costs. An obvious upper-bound for h is given by (2t−p)(maxi(ci)−
mini(ci)). However, in practice, S seems to have the same order of magnitude than the exact
Pareto Front. In addition, S is the only structure kept in memory, thus, from this point of view,
ZenoSolver turns out to be near-optimal regarding the memory usage (see Table 1).

4.2 Handling the non-symmetric instances

To handle non-symmetric instances, we need the following additional two steps:

1. We modified the algorithm such that we could specify a different duration and cost for
each pattern based on a city. In practice, it does not change anything to the optimality
of the algorithm because we only consider the total duration of a pattern rather than
individual flights within the pattern.

2. We added an additional preprocessing step prior using the algorithm. The preprocessing
step consists in determining the possible BĀB̄ situations in the given instance. For each
BĀB̄ situations, we add a new city as described in Section 3.3

4.3 Empirical Performances

All experiments have been performed using a VM running Ubuntu, equipped with a 12 cores
i7-9750H CPU @ 2.60 GHz, 64 Gb RAM and a NVMe SSD.

In Figure 11, we report the time to solve an instance with di = d̄i = ci = i. On the left,
we fixed n = 3 and on the right, we fixed t = 3. For both both, the number of planes has
been fixed to 2. Three versions are displayed: original, no-duplicate and non-symmetric which
is a no-duplicate version that takes into account the BĀB̄ situations. There is no pruning
for the last version because the Ψ-domination introduced in Section 3.1 does not hold for the
non-symmetric version in case of BĀB̄ situations due to the possibility of waiting times.

As expected, all curves are exponential in their respective parameters. The no-duplicate
version allows to solve similar problems about twice as fast as the classic version when the
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Figure 11: Time function of t (left) or n (right) for di = d̄i = ci = i.

Table 1: Increasing simultaneously n and t with di = d̄i = ci = i for the classic version.

n t p Iterations lowestMakespan calls S Size Front Size Time

3 3 2 30 33 9 5 0ms
4 4 2 350 408 19 10 0ms
5 5 2 4410 6387 33 17 3ms
6 6 2 58× 103 10× 104 51 26 79ms
7 7 2 79× 104 19× 105 73 37 1657ms
8 8 2 11× 106 34× 106 99 50 31.968s
9 9 2 15× 107 63× 107 129 65 703.141s
10 10 2 22× 108 11× 109 163 82 4:33h

number of passengers increases. Conversely, the classic version provides a similar speed-up
when the number of cities increases.

However, when both n and t grow together the no-duplicate version is clearly better, even
with the overhead implied by dealing with the BĀB̄ situations. This is clear by looking at Table
1 and 2 that reports several metrics, for both versions, when n and t increases simultaneously.
The number of generated elements is always one to three order of magnitude lower compared
to the classic version. Similarly, the call number to the costly routine lowestMakespan is one
order of magnitude lower. Interestingly, the intrinsic cost of the no-duplicate version, with the
overhead to handle BĀB̄ situations is compensated from n = t = 10.

Table 2: Increasing simultaneously n and t with di = d̄i = ci = i for the no-duplicate version.

n t p Iterations lowestMakespan calls S Size Front Size Time

3 3 2 15 41 9 5 0ms
4 4 2 84 454 19 10 0ms
5 5 2 495 6299 33 17 13ms
6 6 2 3003 83× 103 51 26 209ms
7 7 2 18× 103 10× 105 73 37 3.006s
8 8 2 11× 104 14× 106 99 50 37.584s
9 9 2 73× 104 17× 107 129 65 505.111s
10 10 2 46× 105 21× 108 163 82 1:55h
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Figure 12: Different instances with n = 7, t = 8 and p = 3 and various d, d̄ and c.

4.4 Examples of Instances

In Figure 12, we display some examples of the variety of Pareto Fronts that it is possible to obtain
by modifying the functions to generate d, d̄ and c. The top left picture shows regular patterns
with a uniform disposition of points. This instance is obtained with a cost ci = log(i + 1).
The top right figure is obtained by using d̄i = i and also displays some pattern but with a
non-uniform point distribution over the front. By using slightly more complex combination of
generators, it is possible to obtain non-regular fronts with non-uniform distribution such as the
bottom two figures: on the left, d̄i =

√
(i) and ci = log(i + 1), while on the right, di =

√
(i),

d̄i = log(i+ 1) and ci = 5
3x+ x mod 2.

5 Application: OpenFlight Data

To generate benchmarks with real data, we used the list of airports and routes from OpenFlight
Database6. We filtered to keep only the 50 largest airports with regards to the number of
passengers per year. We selected as initial airport and goal airport, the largest and second
largest airport, namely Hartsfield Jackson Atlanta International Airport (ATL) and Beijing
Capital International Airport (PEK). We then filtered to keep only the existing routes between
the remaining airports.

For each route, we calculated the spherical distance between the two airports using Haversine
formula. This distance is used for the makespan. The cost of landing in an airport has been
defined as follows: for a given airport Ci, 1) compute the spherical distances dATL,i and di,PEK

between the airport and respectively, ATL and PEK; 2) assign the inverse of the average distance
i.e. ci = 2

dATL,i+di,PEK
.

Then, we generated all simple paths from ATL to PEK between the remaining airports using
the existing routes with a maximal path length of 4 cities. We filtered to keep only the Pareto
efficient paths.

To generate a symmetric version of MultiZenoTravel, we used the reduction presented
in Section 2.4 on the remaining simple path between ATL and PEK.

6https://openflights.org/data.html
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The final symmetric instance has 15 central cities that corresponds to 15 different non-
dominated paths from ATL to PEK using a total of 12 airports. Some paths uses only one
intermediate airport (e.g. ATL -> DXB -> PEK), while some uses two (e.g. ATL -> LAS ->

SFO -> PEK) or three (ATL -> DFW -> LAS -> SFO -> PEK).

Figure 13: Openflight instance with n = 15, t = 6 and p from 2 to 5.
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The instance with 6 travelers and 2 planes has a Pareto front made of 29 distinct objective
vectors. The two extreme points (Cost, Makespan) are (111505, 11070) and (88410, 16410).
These two points are obtained by using exclusively one airport, either Dubai (DBX) or Seattle
(SEA) and do not perform any BAB̄ pattern:

C. 88410 Mk. 16410

(5,5,5,5,5,5,5,5,)(5,5,){}

ATL -> SEA -> PEK -> SEA -> ATL -> SEA -> PEK -> SEA -> ATL -> SEA -> PEK

ATL -> SEA -> PEK -> SEA -> ATL -> SEA -> PEK -> SEA -> ATL -> SEA -> PEK

C. 111505 Mk. 11070

(0,0,0,0,0,0,0,0,)(0,0,){}

ATL -> DXB -> PEK -> DXB -> ATL -> DXB -> PEK -> DXB -> ATL -> DXB -> PEK

ATL -> DXB -> PEK -> DXB -> ATL -> DXB -> PEK -> DXB -> ATL -> DXB -> PEK

However, there are non-dominated path using other airports, notable San Francisco (SFO) and
performing BAB̄ patterns:

C. 97212 Mk. 14238

(0,4,)(4,5,){0,4,4,}

ATL -> DXB -> ATL -> SEA -> PEK -> SFO -> PEK -> DXB -> PEK -> SFO -> PEK

ATL -> SFO -> ATL -> SFO -> ATL -> SFO -> PEK -> DXB -> PEK -> SFO -> PEK

Finally, for some Pareto optimal plan, planes do not always perform the same number of flights:

C. 101854 Mk. 13645

(0,4,)(5,5,){0,0,5,}

ATL -> DXB -> ATL -> SEA -> PEK -> SFO -> PEK -> DXB -> PEK

ATL -> DXB -> ATL -> SEA -> PEK -> SEA -> PEK -> DXB -> PEK -> DXB -> PEK -> SEA -> PEK

Of course, in this example, the cost was set up arbitrarily and does not reflect any real cost but
one can imagine that the cost is defined to represent some tax, or a sort of risk, i.e. linked with
a certain infectious disease or an on-going conflict.

As expected, the front is composed of fewer points when the number of planes increases as
reported in Figure 13.

6 Conclusion and Perspectives

In this article, we extended our preliminary work [QS15] by relaxing the unrealistic assumptions.
In particular, in this work, we only assume the triangular inequality to hold for the durations.
First, we defined three types of MultiZenoTravel problem: the symmetric clique, the non-
symmetric clique and the general version.

The algorithm to identify and build Pareto optimal plans relies on a single proposition. Due
to the increasing complexity of these problems, we first proved the proposition for the symmetric
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problem and then extended the proof for the non-symmetric version. For the general version,
we showed that any instance can be reduced to a clique instance.

From an implementation point of view, we presented an optimized version of the Zeno-
Solver which allows to tackle problem twice as big as the original version. We also imple-
mented the non-symmetric version of the algorithm and demonstrated its performances and
effect of pruning.

We demonstrated the diversity of Pareto-fronts which can be obtained by changing the
instance parameters. Finally, we provided a concrete application using real-life data. Using
OpenFlight database, we used the ZenoSolver to find all the Pareto-optimal plans between
the two largest airports in the world.

Beside the direct interest for the route and schedule multi-objective optimization for air
transport, we believe that the work presented in this paper can be useful in many regards,
and in particular for the benchmarking and comparison of algorithms, and for exploratory
landscape analysis. Moreover, existing multi-objective planing instances are, as far as we know,
not offering the exact Pareto-front, which only allows the comparison between solvers but not
to characterize how hard is an instance and how far from an optimal solution the solvers are.
On the contrary, ZenoSolver is capable to return the Pareto Front, with at least one plan for
each point of the Pareto Front in the objective space.

Future work should focus on returning the entire Pareto set, i.e. all feasible plans for any
Pareto optimal objective vector. Another possible improvement would consist in characterizing
the graphs for which Proposition IV holds, because this would allow to know the general Mul-
tiZenoTravel instances for which the reduction to a clique MultiZenoTravel can be done
in polynomial time.
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