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ABSTRACT

The study of cellular networks mediated by ligand-
receptor interactions has attracted much attention
recently owing to single-cell omics. However, rich
collections of bulk data accompanied with clinical
information exists and continue to be generated with
no equivalent in single-cell so far. In parallel, spatial
transcriptomic (ST) analyses represent a revolution-
ary tool in biology. A large number of ST projects rely
on multicellular resolution, for instance the Visium™
platform, where several cells are analyzed at each lo-
cation, thus producing localized bulk data. Here, we
describe BulkSignalR, a R package to infer ligand-
receptor networks from bulk data. BulkSignalR inte-
grates ligand-receptor interactions with downstream
pathways to estimate statistical significance. A range
of visualization methods complement the statistics,
including functions dedicated to spatial data. We
demonstrate BulkSignalR relevance using different
datasets, including new Visium liver metastasis ST
data, with experimental validation of protein colocal-
ization. A comparison with other ST packages shows
the significantly higher quality of BulkSignalR infer-
ences. BulkSignalR can be applied to any species
thanks to its built-in generic ortholog mapping func-
tionality.

GRAPHICAL ABSTRACT

INTRODUCTION

The dialog of cells in a tissue through the secretion of lig-
ands and sensing by receptors plays an essential role in de-
velopment, homeostasis, and diseases (1). The advent of
single-cell omics has led to remarkable progresses in the
analysis of the cell composition and ligand-receptor net-
works within a tissue (2–5). Nevertheless, these technolo-
gies remain expensive and single-cell data on cohorts are
limited compared with bulk datasets, particularly for pa-
tient cohorts associated with clinical data. Moreover, bulk
techniques are more sensitive to low-abundant molecules.
Therefore, tools to untangle cellular networks from bulk
data are needed as a complementary solution to single-cell
studies.
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Here, we describe BulkSignalR, a R package that builds
on our previous work on bulk (6) and single-cell data (7).
BulkSignalR exploits reference databases of known ligand-
receptor interactions (LRIs), gene or protein interactions,
and biological pathways to assess the significance of corre-
lation patterns between a ligand, its putative receptor, and
targets in a downstream pathway. This integrated model-
ing provides the increased specificity that is required by the
convoluted bulk format. It also allows generating gene sig-
natures to report the LRI activity and their downstream
consequences, which may facilitate sample comparisons. As
BulkSignalR uses correlation patterns to determine the sta-
tistical significance of LRIs, datasets can be analyzed with-
out any prior knowledge of sample groups or clusters.

Despite the popularity of LRI inference in the single-cell
bioinformatics community with many existing tools (8), its
equivalent in bulk data has not attracted much attention. A
seminal paper explored LRIs in non-small-cell lung cancer
(NSCLC) (9) using an empirical algorithm, called CCCEx-
plorer, that required separate bulk transcriptome datasets
for different cell populations. Exploiting dual mouse and
human microarrays, i.e. dual transcriptomes, Komurov (10)
proposed an algorithm to infer interactions between can-
cer and stromal cells using bulk data from a lung adeno-
carcinoma mouse xenografts model. Among the studies on
LRI inference from single-cell data, two tools indicate in
their documentation that they may be applied to bulk data.
CellPhoneDB (11) mentions the possibility to process bulk
data provided they were obtained from pure cell popula-
tions, and ICELLNET (12) is able to exploit two separated
bulk datasets to predict interactions. Due to the need for
separated bulk datasets, CCCExplorer, CellPhoneDB and
ICELLNET cannot be compared with BulkSignalR com-
pletely. They offer a less general approach.

After single-cell omics, ST (13) is another revolution in
functional genomics. Spatial data are often obtained at mul-
ticellular resolution, e.g. with the popular Visium™ system,
and therefore, they are localized bulk data. Consequently,
bulk-specific approaches could be used to assess ST data
analysis. However, most software tools developed for ST
target single-cell or subcellular resolution datasets, where
the individual transcriptomes of adjacent or nearby cells
can be directly accessed. By simply adjusting a few param-
eters, we found that BulkSignalR could be used for multi-
cellular resolution ST successfully. We compared the per-
formance of BulkSignalR and of three tools for multicellu-
lar resolution analyses, CellPhoneDB (11), stLearn (14) and
SpaTalk (15).

Lastly, we generated an original Visium™ dataset from
four colorectal cancer liver metastases (CRC-LM) to con-
firm a selection of BulkSignalR predictions by protein colo-
calization in immunofluorescence (IF) analysis.

MATERIALS AND METHODS

Expression data and randomized expression data

We denote with A the n × m matrix that represents the ex-
pression of n genes (or proteins) in m samples. To com-
pute the null distributions of the Spearman rank correla-
tion coefficients, we need to generate randomized expres-
sion datasets. To do this, we assign each gene to b equally

sized bins of comparable average (over the samples) expres-
sion levels and we shuffle genes within the same bin. By de-
fault, we use b = 20. This procedure preserves the global
distribution of gene pairwise correlations, which is essential
for realistic null distribution estimates. It also preserves a
potential relation between pairwise correlations and aver-
age gene expression levels.

Definition of (ligand, receptor, pathway) triples

To relate a ligand L to a receptor R, and R to its
downstream-regulated genes, BulkSignalR searches for
triples (L, R, pw), where pw is a pathway containing
R. Potential LRIs are taken from LRdb, while pathways
are constructed combining a reference, global interaction
network and sets of genes that delineate the pathways.
LRdb was obtained from SingleCellSignalR Bioconductor
package (7) (3249 LRIs, downloaded March 2022). The
reference network was obtained from Pathway Commons
v19 (16) combining KEGG (17) and Reactome (18).
This network is built with directed and undirected links
depending on edge annotations. Annotations yielding
to directed links are control-state-change-of, catalysis-
precedes, controls-expression-of, controls-transport-of,
controls-phosphorylation-of. The sets of genes delineating
pathways were defined by GO Biological Process (GO BP)
terms (19) (downloaded from uniprot.org, May 2020) and
Reactome pathways (18) (downloaded from reactome.org,
May 2020). To identify genes reporting on a pathway activ-
ity, which we generally called target genes, we exploited the
topology of the reference network. Namely, R target genes
in a given pathway pw that includes R are all the genes
in pw reachable from R and linked by an edge annotated
as controls-expression-of. By default, we add to target
genes those genes that code for proteins forming a complex
with R (annotated as in-complex-with or interacts-with)
as they should display correlated expression to preserve
complex stoichiometry. For statistical analysis, see below,
pw contribution to the significance of a (L, R, pw) triple is
provided by the target gene correlations with R.

Null distributions of the spearman rank correlation coeffi-
cients

BulkSignalR statistical model requires null distributions of
Spearman correlation coefficients between a ligand and a
receptor (L–R null distributions) and also between a re-
ceptor and its target genes (R–T null distribution). By de-
fault, an empirical algorithm selects the appropriate statis-
tical model for these null distributions because their shapes
depend on the dataset.

Empirical random Spearman L–R correlations are ob-
tained by generating r1 randomized expression datasets. For
each dataset, Spearman correlation (across samples) is com-
puted for each L–R pair documented in the LRdb database.
We typically use k1 = 5 because each random dataset yields
a large number of random correlations, one for each L–R
interaction in LRdb with ligands and receptors in the matrix
A. We pool all correlations to estimate the null distribution.
For some datasets, a censored––or truncated––normal
distribution (correlations lie in [−1; 1]) provides an

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad352/7152875 by guest on 06 June 2023



Nucleic Acids Research, 2023 3

accurate fit (Figure S1A). With f (t) = 1
σ
√
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the
density function of a N(μ, σ ) distribution, the density of
the censored normal distribution is fc(t) = 1

q f (t), with

q =
1
∫
−1

f (t)dt. The parameters μ and σ are estimated with

a maximum-likelihood (ML) approach. However, in some
cases, it is necessary to use a mixture of two censored
normal due to a slight asymmetry (Figure S1B). A mixture
of two normal distribution density functions is given by
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, and the
censored – or truncated – mixture distribution is obtained

as above: gc(t) = 1
r g(t), with r =

1
∫
−1

g(t)dt. The five parame-

ters α,μ1, σ1, μ2, σ2 are estimated by maximum-likelihood.
We also implemented a purely empirical distribution and
a Gaussian kernel-based empirical distribution (Figure
S1C).

In ST, random correlations tend to be more asymmet-
ric (biased towards positive values) and heavy-tailed. Be-
sides the previously described empirical models, we found
that censored stable distributions fitted such data accu-
rately (Figure S1D). Stable distributions are a family of
distributions that include normal, but also heavy-tailed
distributions, such as Cauchy distributions. The stable
distribution density function is given by (Nolan repre-

sentation) h(x) = 1
2π

∞
∫

−∞
ϕ(t)e−i xtdt, with ϕ(t; α, β, γ, δ) =

eitδ−|γ t|α(1−iβ sgn(t)	), where sgn(t) is the sign function and

	 =
{

(|γ t|1−α − 1) tan(πα
2 ) α �= 1

− 2
π

ln |γ t| α = 1
.

The censored––or truncated––stable density is obtained

with hc(x) = 1
s h(x) and s =

1
∫
−1

h(x)dx. The four parameters

α, β, c, μ are estimated by ML. The stable density and cu-
mulative distribution functions are provided by the R pack-
age stabledist (20).

The R–T null distribution is obtained in a similar man-
ner. For each randomized dataset, we consider all combina-
tions of receptors (from the LRdb database) and contain-
ing downstream pathways. For each combination, we iden-
tify the target genes and we compute their Spearman cor-
relation with the receptor. We then pool all correlations for
all receptors and pathways. We repeat this for k2 random-
ized datasets, again pooling all correlations. We typically
use k2 = 2 because each iteration yields >100 000 random
correlations. In the special case of the censored stable distri-
bution, subsampling is used to avoid endless computations
by randomly selecting the same number of random corre-
lations as obtained for the L–R null distributions. As the
L–R null distribution and the R–T distribution are usually
very similar, BulkSignalR offers the possibility to use the
L–R null distributions for R–T to save training time. We
do not recommend this option for accurate computations,
but it may be convenient for preliminary analyses, especially
when using stable distributions where parameter estimation
can take up to 15 min on a powerful processor. We tried the

expectation-maximization algorithm implemented in the R
package alphastable (21), but it did not fit our distributions
and required comparable computing time (data not shown).

The user can impose any model manually. A control plot
displaying the empirical histograms of (L–R) and (R–T)
correlations and the chosen fitted model can be generated
by BulkSignalR training function (Figure S1) for control
purposes. By default, BulkSignalR parameter training algo-
rithm automatically chooses a model among the censored
normal, censored mixture of two normal, and Gaussian
kernel-based empirical models. An empirical model selec-
tion algorithm is applied:

• Compute χ2 statistics between a random correlation his-
togram with equally sized bins (bin width = 0.05) and the
censored normal, censored mixture of normal, and Gaus-
sian kernel-based empirical models.

• Select the censored Gaussian if its χ2 is not worse than
1.25 times the censored mixture χ2 and 2 times the Gaus-
sian kernel χ2.

• Select the censored mixture if its χ2 is not worse than
2 times the Gaussian kernel χ2

• Select the Gaussian kernel-based empirical model,
otherwise.

Statistical model

Under the null hypothesis, we assume that L–R and R–T
correlations are independently and identically distributed
after their respective null distributions. Accordingly, we es-
timate independently and multiply the significance of the L–
R correlation and the set of R–T correlations. We obtain the
L–R correlation significance directly from its null distribu-
tion. To allow the search of antagonist ligands (see Results),
L–R significance computation depends on its sign. If F(r ) is
the cumulative distribution function (CDF) of random L–
R correlations r , then we use P-value = 1 − F(r ) for r ≥ 0,
and P-value = F(r ) otherwise.

It is very difficult to assess the activity of the pathways
downstream of the receptor in full generality, considering
pathways of all possible sizes and topologies, and also
RNA-seq, DNA chip, or proteomic data. Moreover, we
wanted BulkSignalR to learn from the expression dataset
directly, without any manual intervention, and to be appli-
cable to datasets of virtually any size. Therefore, we opted
for a simple but robust approach. Once the target genes
g1, · · · , gN of a pathway pw downstream a receptor R
are identified, we can compute the Spearman correlations
between R and each of gi . We use order statistics (making
the assumption of independence between R–T correlations
under the null hypothesis) to integrate the information
provided by several target genes, and also to take into
account branches of a large pathway that are not all active,
or regulatory mechanisms that cannot be detected with
the used technology, e.g. posttranslational modifications in
transcriptomic data. Namely, all the R–T correlations are
sorted by increasing order and the kth percentile is used.
With k = 100 we only check the best correlation and with
k = 75 we check the 75th percentile of all correlations.
By construction, the order statistics integrates the pathway
size and the correlation strengths. For a kth percentile
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correlation rk, the probability to observe a Spearman
correlation R ≤ rk is given by the CDF of the
chosen censored distribution FR(rk). The order
statistics CDF is given by a binomial distribution

FRk(r ) =
N∑

j=k
[FR(r )] j [1 − FR(r )]N− j and P-values are

obtained from FRk(r ). Multiple hypothesis correction is ap-
plied using the R package multtest with Bejamini-Hochberg
as default method.

Gene signature scoring

We implemented a simple scheme to score gene signatures
for cellular deconvolution. Each gene is normalized sepa-
rately across samples to obtain z-scores, and the score of a
gene signature is the average of the z-scores of all its genes.

LRI association with cell types

We assume that two matrices of gene signature scores are
available, a t × m matrix C for cell types and a u × m ma-
trix I for LRI activity. That is, t different cell type signatures
and u distinct LRI signatures were scored over the m sample
of the dataset. To associate the LRI on row l of the matrix I
with one or several cell types, a preliminary filter requires a
minimum Spearman correlation between a cell type signa-
ture and the LRI signature Il,. (default = 0.25). If any cell
type passes this filter, the selected cell types are used to con-
struct a regularized linear model with the LASSO and by
imposing non-negative coefficients (otherwise default pa-
rameters of the glmnet R library (22) were used to optimize
the weight λ of the penalty term). If we denote Pt the set
of cell types with non-zero weights and Pt �= ∅, the linear
model

∑
j∈Pt

α j c j,. approximates Il,.. We remove all cell types

with a low weight α j in the model (<0.1 by default) to ob-
tain a new set of cell type indices P′

t ⊂ Pt. The model is con-
sidered valid provided its correlation with LRI activity, i.e.
Spearman correlation between

∑
j∈P′

t

α j c j,. and Il , is sufficient

(> 0.35 by default).

Association with tissue areas

Users can choose among a default statistical non-
parametric model (Kruskal–Wallis for global association
and Wilcoxon for each area versus all the others), a para-
metric Gaussian model (ANOVA and t-test), Spearman
correlations, and the coefficients of determination (r2) of
linear regressions. In the two last models, tissue regions are
represented by their characteristic functions (1 = inside the
region, 0 = outside).

Implementation

BulkSignalR is implemented in R following an S4 object-
oriented approach. The package follows the Bioconductor
standards (submission pending).

Bulk datasets and their preparation

All the examples provided in this article were based on
public data made available by their respective authors,
but for the CRC-LM spatial data that were generated by
us (see liver metastasis below). We downloaded TCGA
RNA-seq data (gene read counts) from the BROAD In-
stitute TCGA GDAC at firebrowse.org (March 2019).
The frontal cortex transcriptome data were from the
Genotype-Tissue Expression (GTEx) Project v8 (2017–
06-05) RNASeQCv1.1.9 gene reads gct. Lung cancer cell
line transcriptome (RNA-seq) data were from DepMap
(23) 22Q2 Portal. SDC data are available from GEO
(GSE138581) and from Ref. (24) authors.

BulkSignalR includes a data preparation function that
eliminates non- or barely expressed genes/proteins and per-
forms common normalization procedures. We chose default
parameters for RNA-seq data: genes were retained if a min-
imum read count of 10 was found in at least 10% of sam-
ples (percentage and minimum value can be changed to
adapt to different data). The default normalization is upper
quartile, but total count is available as well. Pre-normalized
data can be used to allow filtering and normalization ac-
cording to more advanced strategies. We processed datasets
with default parameters unless otherwise specified. For the
datasets presented in Supplementary Information, refer to
Supplementary Methods. For the DepMap lung cancer cell
line data, we imposed a minimum read count of 1 and log-
transformation.

Pseudo-receiver operating characteristics (ROC) curves

To estimate true and false positives (TPs and FPs), we ap-
plied BulkSignalR to the original data matrix A and also
randomized matrices (see above for the randomization pro-
cedure). By varying a threshold on the Q-values we ob-
tained estimates of the number of FPs from the random-
ized data for that specific Q-value. The corresponding num-
ber of TPs was estimated by the number of selected LRIs
at the same Q-value from the original matrix A minus the
number of FPs. This procedure is strongly inspired by de-
coy databases in proteomics (25). We named the resulting
curves pseudo-ROC curves because the estimates were ob-
tained in the absence of an exact reference. To estimate their
variability, we generated 100 randomized expression matri-
ces Aper dataset. We also generated pseudo-ROC curves for
single-cell scores (similar to what done by ICELLNET and
CellPhoneDB). We computed ICELLNET-like scores using
normalized data according to the ICELLNET original pub-
lication (12). We obtained CellPhoneDB-like P-values from
1000 shuffled datasets. We did not implement any specific
treatment for multimeric receptors, thus departing from the
original CellPhoneDB and ICELLNET implementations.
We estimated the pseudo-ROC curve variability based on
50 randomized expression matrices A in this case.

Comparison with other ST software tools

We used BulkSignalR with default parameters except
min.count = 1, method = ‘TC’, min.prop = 0.01 when call-
ing the method prepareDataset(), min.positive = 2 when
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calling the method learnParameters(), and min.cor = –1
when calling the method initialInference().

For stLearn, we followed the steps provided by the cell–
cell interaction tutorial in the stLearn documentation web-
site (version 0.4.8, October 2022). We used the function
st.tl.cci.run() with distance = 0 to compute LRIs in the
within-spot mode, and we set n pairs (the number of ran-
dom pairs generated to compute the background distri-
bution) to 1000. We did not apply any P-value correc-
tion for multiple hypotheses. We replaced the stLearn L–
R database by LRdb (7). Then, we exported all L–R and
the associated P-values from data.uns[‘lr summary’] and
data.obsm[’p vals].

CellPhoneDB v3 was used to compute inferences of
LRIs according to the documentation provided by the Cell-
PhoneDB website. CellPhoneDB database v4 was used. We
set the method parameters to ‘statistical analysis’. Spatial
information of cell types was incorporated via the microen-
vironments file.

We used SpaTalk to directly infer cell-cell commu-
nications, thus skipping the deconvolution mode as
described in its Wiki documentation. We called the
function createSpaTalk() with the following parameters:
if st is sc = FALSE, spot max cell = 1. We defined the ma-
jor cell type at each spot according to the data released
by the authors of the different datasets. We used the LRdb
database as the core database for LRI, thus replacing the
native database. We called LRIs with downstream targets
using the function find lr path().

Liver metastasis patient material

The ICM Translational study committee, Montpellier, ap-
proved the present study (approval number ICM-CORT-
2019-38). In accordance with the French law, patients who
did not oppose to the use of their material for research pur-
poses provided consent (opting-out rule). Four CRC-LM
samples were used in the present study.

Liver metastasis spatial gene expression analysis

Prior to Visium analysis the quality of RNA extracted from
the selected formalin-fixed paraffin-embedded (FFPE)
CRC-LM samples was analyzed. To this end the percent-
age of fragments with length >200 nucleotides (DV200)
was evaluated. Briefly, two 10 �m-thin FFPE tissue sections
were devaxed, lysed and the RNA extracted using the High
Pure FFPE RNA Isolation Kit (Roche Diagnostics GmbH,
Mannheim, Germany; cat. no.: 06650775001). The DV200
analysis was conducted using microfluidics-based auto-
mated electrophoresis Bioanalyzer (Agilent, Santa Clara,
CA, USA). All tested samples had a DV200 >50% (data
not shown). Following this, a serial section from the same
tissue blocks was stained with Hematoxylin Eosin Saffron
(HES) to identify an area of ∼6 × 6 mm containing the
liver metastasis. The size of the area was selected such so
that it provides optimal coverage of the 6.5 × 6.5 mm cap-
ture area on the Visium slide. Following macro-dissection,
10 �m-thin sections of the selected areas was fixed on the
Visium slide, followed by dewaxing, HES staining, imag-
ing, and decrosslinking according to the manufacturer’s in-
structions (10X Genomics, Pleasanton, CA, USA; Visium

Spatial Gene Expression for FFPE kit, Human Transcrip-
tome, protocol no.: GC000408 and GC000409). Visium li-
braries were prepared according to manufacturer’s instruc-
tions (10X Genomics; protocol no.: GC000407). Sequenc-
ing was performed using the NovaSeq 6000 system (Illu-
mina, San Diego, CA, USA; S1 flowcell) to obtain ∼50 000
reads per spot. Raw data were demultiplexed, aligned to the
human probes, barcode assigned and counted by unique
molecular identifier counts using the Space Ranger Soft-
ware Suite (10X Genomics; version 1.3). Raw data were de-
posited at GEO with the accession code GSE217414.

Multiplexed immunofluorescence

FFPE CRC-LM tissue sections were devaxed in xylene,
followed by rehydratation in a series of methanol dilu-
tions (26). Antigen retrieval was performed in AR6 buffer
(Perkin Elmer, Waltham, MA, USA; cat. no.: AR600250)
using a pressure cooker for 10 min. Tissues were then
blocked using serum-free blocking solution (Agilent-Dako,
Santa Clara, CA, USA; cat. no. X0909) at room temper-
ature for 30 min followed by incubation with the anti-
epidermal growth factor receptor (EGFR) primary anti-
body (Cell Signaling, Danvers, MA, USA; cat. no.: 4267)
at 4◦C overnight. Then, the slides were washed in TBS–
0.01% Tween 20 and incubated with Histofine MAX PO
Multi (Nichirei, Tokyo, Japan; cat. no. 414152F) secondary
antibody at room temperature for 30 min. The first round
of staining was performed with the TSA Coumarin sys-
tem (Akoya, Boston, MA, USA; cat. no.: NEL703001KT).
Next, the antibod was stripped with the AR6 buffer in a
pressure cooker for 5 min, followed by antigen blocking
for 30 min and subsequent incubation with the next an-
tibody. Staining, stripping and blocking steps were then
repeated for each antibody. Set 1 (structure) included:
anti-CD31 (Agilent-Dako; cat. no.: IR61061-2), anti-pan-
CK (Agilent-Dako; cat. no.: GA05361-2) and anti-SMA
(Agilent-Dako; cat. no.: GA61161-2) antibodies. Set 2
(decorin) included: anti-ERK1/2 (Cell Signaling; cat. no.:
4695), anti-cMET (Cell Signaling; cat. no.: 8198), and
anti-DCN (R&D Systems, Minneapolis, MN, USA; cat.
no.: AF-143) antibodies. Set 3 (cadherin) included: anti-
ERK1/2, anti-cMET (same antibody as in set 2) and anti-
CADH1 (Agilent-Dako; cat. no.: GA05961-2) antibodies.
The secondary antibody was the same for most antibodies
(Histofine MAX PO Multi), but for the anti-DCN antibody
that was detected using Histofine MAX PO G (Nichirei;
cat. no.: 414162F). For staining we used the Opal system
(Akoya; cat. no.: NEL810001KT). After mounting using
VECTASHIELD® Vibrance Mounting Medium without
DAPI (Vector, Burlingame, USA), we visualized staining
using a Thunder microscope (Leica, Wetzlar, Germany).

RESULTS

BulkSignalR approach and design

Most single-cell tools infer LRIs by relying only on the lig-
and L and the receptor R abundance because they have ac-
cess to separate data for each cell population. With bulk
data, the observed abundance of transcripts (or proteins)
is the net contribution of different cell types, each of which
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represents an unknown proportion of the analyzed tissue.
Therefore, we hypothesized that LRI inference using bulk
data should rely on additional modeling steps. Specifically,
we modeled the consequence of a putative LRI by consid-
ering the participation of R in biological pathways and the
regulation of the genes targeted by these pathways. Fur-
thermore, as we did not assume any knowledge about the
different samples, such as clusters harboring similar pro-
files, we modeled relationships between ligands, receptors,
and downstream pathways based on Spearman correla-
tions across the whole dataset. Consequently, BulkSignalR
searches for triples (L, R, pw) where pw is a pathway down-
stream of R (Figure 1A). L, R and pw must display cor-
related activities to be deemed significant by our statistical
model. Potential LRIs are taken from the LRdb database
(7), while pathways originate from Reactome (18) or GO
biological processes (19). To identify genes reporting on a
pathway activity, which we called target genes, we exploited
the topology of a reference network combining Reactome
and KEGG (17) interactions. BulkSignalR uses a statisti-
cal model to assess the significance of all possible triples
(L, R, pw) based on the null distributions of L–R and also
R–T correlations, pathway sizes, and total number of target
genes. Importantly, BulkSignalR combines all correlation
values independently from the sample number. This avoids
the issue of very small, but highly significant correlations in
large datasets and allows the analysis of small cohorts.

BulkSignalR statistical analysis output is summarized in
a table that contains putative LRIs, pathways including the
receptors, and statistical parameters (Figures 1B and S2).
Due to redundancies in pathway definitions, the same in-
teraction can appear in multiple pathways. Moreover, some
ligands can have more than one receptor and vice versa.
Therefore, we introduced different reduction operations to
limit redundancy, or to emphasize the ligand, the receptor,
or the pathway (Figures 1C and S3). Such operations can
be chained.

Reduction to the pathway that yields the best P-value for
each LRI results in a table with unique interactions. Using
this reduction, we estimated the TP and FP rates in order
to obtain pseudo-ROC curves (Figure 1D). Since our sta-
tistical model allows varying the depth at which target gene
correlations are assessed, we explored different choices. Al-
though considering all the target genes might be an option,
large pathways may comprise multiple branches that are not
all activated. As a compromise, we did not go deeper than
the top 45% of the correlation (55th percentile in Figure
1D). This revealed that it was advantageous to exploit the
pathway thoroughly. The L–R correlation on its own did
not provide a useful inference mechanism. Indeed, the per-
formance of sole L–R correlation was either limited or did
not detect any significant LRI.

As explained in Introduction, single-cell scores have been
proposed to infer LRIs from bulk data, although they re-
quire separate datasets for the ligand-secreting cells and
the receptor-expressing cells. We investigated whether such
scores could be adapted when no upfront cell separation is
available. To this aim, we selected a salivary duct carcinoma
(SDC) dataset (6) that included well-separated clusters of
samples with limited intra-cluster variability. The scoring
of common immune cell gene signatures (Table S1) revealed

such clusters (Figure 1E). We then compared the clusters to
identify LRIs that were enriched in one cluster as a selection
mechanism. Due to the necessary presence of both ligand
and receptor in the dataset, and the default requirements of
BulkSignalR analysis (L–R correlation > 0.25, minimum
four target genes found in pathways of sizes between 5 and
200), we could evaluate 777 LRIs with BulkSignalR. We
submitted those 777 LRIs to adapted single-cell scores. We
used a score based on ICELLNET (a product of average
values) with specific data normalization (12), and another
one based on CellPhoneDB (P-values of the ligand and re-
ceptor average expression by sample random permutations
across clusters). We compared cluster A versus B∪C, respec-
tively A versus B, to obtain strong, respectively extreme,
differences in tumor immune infiltrate abundance (Figure
E). Furthermore, we selected scores that were higher in the
cluster with most immune cells or in one of the two com-
pared clusters. This resulted in four pseudo-ROC curves
for each score (Figure 1E), none of which performed bet-
ter than random selection. CellPhoneDB- and ICELLNET-
based scores are reported in Table S1.

To compare samples and searching for differential activ-
ity of LRIs is an important functionality. Therefore, we in-
troduced a notion of gene signature to reflect the overall
activity of the interactions, including downstream pathway
targets (Figure 1F). The expression values of different genes
(or proteins) are transformed into z-scores and a weighted
sum defines a score in each sample. By default, the average
of the ligand and the receptor z-scores accounts for one half
of the score, while the average of the target gene z-scores in-
cluded in the statistical model (correlations above chosen
percentile) account for the other half with equal individ-
ual weights. Gene signatures and scores remain compati-
ble with any combination of reduction operations due to
BulkSignalR software design. To facilitate the analysis of
non-human datasets, we integrated a generic ortholog map-
ping mechanism that allows users to virtually work with
any species (Figure 1G). We designed BulkSignalR with the
aim of proposing a user-friendly tool. Therefore, only few
lines of code, accessible to basic R users, are sufficient to
perform a complete analysis and generate informative out-
puts (Figure S4) including graphical representations (Fig-
ures 1HI and S5).

Potential biases in bulk-identified LRIs

The number of LRIs found by BulkSignalR was lower com-
pared to what was obtained when comparable single-cell
datasets were available. As expected, the LRIs found in bulk
data only were enriched in low-abundance molecules (Fig-
ure S6). To better characterize a potential bias introduced
by the bulk approach, we generated synthetic bulk data (27)
from a cohort of 29 primary, untreated breast tumors ana-
lyzed in single-cell transcriptomics (28) (Figure S7A). LRIs
were inferred from single-cell data with SingleCellSignalR
and synthetic bulk with BulkSignalR (Figure S7B). Results
were qualitatively similar to what was reported in Figure
S6. By relaxing BulkSignalR filters we could recover most
of the single-cell-inferred LRIs (Figure S7C). This indicates
that what was missed in bulk was mostly due to signal loss
because of averaging in the bulk readout. By focusing on
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Figure 1. BulkSignalR overview. (A) Model of a LRI with a pathway downstream the receptor. The pathway activity in terms of correlation with the
receptor is reported by target genes (in blue) that include the other members of the receptor complex (denoted by C) and regulated genes (denoted by Re).
(B) Example of BulkSignalR output. (C) Examples of reduction operations at the receptor level and at the best pathway level. Other reduction operations
are available. (D) Representative pseudo-ROC curves showing the effect of using the pathway information at various depths (depth increases with smaller
percentiles (0.55 = 55th percentile). RNA-seq transcriptome data of 1087 TCGA breast invasive carcinoma samples (BRCA), 24 salivary duct carcinoma
(SDC) samples (6), and 209 brain frontal cortex samples retrieved from GTEx v8; microarray transcriptome data (Affymetrix) of 310 sarcoma samples
(62). In the SDC and GTEx brain cortex datasets, no individual L–R correlation was strong enough such that it reached 5% statistical significance or
better without considering pathways. A simple dot at (0,0) was drawn to indicate this fact. (E) Performance of simple single-cell-inspired scores when
samples display clear differences in cellular composition. We considered clusters A vs. B∪C and A versus B to look for increased scores compared with the
randomized expression data in (A) or in both directions. (F) Principle of constructing of a gene signature for a L–R-pathway triple, and computation of the
weighted average of z-scores (left). Multiple L–R-pathway signature scores can be compared among samples, e.g. in a heatmap (right). (G) In BulkSignalR,
the reference database is of human origin, but an integrated ortholog mapping tool allows using it for virtually any species. (H) Example of graphical
display of LRIs limited to a chosen pathway (PD-1 signaling in the SDC dataset). (I) Representation of the LRIs of the chosen pathway (PD-1 signaling
in the SDC dataset) with the shortest paths to target genes.
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LRIs found in bulk and comparing selected versus reject
LRIs (Figure S7D), we found that selected LRIs tend to
display more gene targets and higher correlation between
those targets and the receptor (Figures S7EF). No general
association (R2 = 0.035) between (L, R, pw) triple Q-values
and the number of target genes was found nonetheless (Fig-
ure S7G). We repeated this analysis with an 11-primary, un-
treated lung tumor cohort (29) and made similar observa-
tions (Figures S7K–N) with a mild association (R2 = 0.091)
between (L, R, pw) triple Q-values and the number of tar-
get genes, indicating a potential bias of our algorithm for
larger pathways.

Since correlation analysis lies at the heart of our ap-
proach, there is a risk that cellular compositional varia-
tion alone might drive correlations across samples. This
would imply that only autocrine LRIs could be detected
by BulkSignalR because ligand and receptor expression by
the same cell would drive correlations. We exploited the
single-cell cohorts above with their synthetic bulk coun-
terparts to assess for the presence of paracrine LRIs (the
paracrine/autocrine status was obtained from the single-
cell data). We found that a number of paracrine interactions
could be identified (Figures S8 and S9).

We also investigated whether functional biases might ex-
ist between selected versus rejected LRIs in bulk. Using
TCGA breast (BRCA) and lung (LUAD) primary bulk
transcriptomic data, we found that there was tumor-specific
bias, but no systematic bias (Figures S10 and S11).

Autocrine communications in lung cancer cells

For the first application of BulkSignalR, we analyzed bulk
transcriptomic data from 206 lung cancer cell lines from
DepMap (23). We reduced BulkSignalR output to the best
pathway for each LRI to obtain only unique interactions,
and we imposed a FDR <0.1% (full output in Table S1). We
obtained and scored gene signatures (Figure 2A). Cell lines
originating from the two main histologic subgroups, small-
cell lung cancer (SCLC) and NSCLC, harbored distinct
autocrine communication patterns. Mesothelioma-derived
cell lines were close to those of NSCLC-derived cell lines,
although they constitute a different entity. This similarity
may simply reflect the absence of microenvironment in cul-
tured cell lines. The presence of only two lung carcinoid cell
lines in the dataset prevented drawing any conclusion on
this subgroup.

In the NSCLC cell lines, we obtained the highest scores
for LRIs that involved EGFR. This is in line with its in-
creased activity in more than half of patients with NSCLC
(30). We identified specific interactions between EGFR and
its seven activating ligands (31) (Figure 2A). It is impor-
tant to be able to identify each interaction because differ-
ent ligands may be associated with functional differences
(32). The pathways associated with these interactions in-
cluded EGFR downregulation, clathrin-mediated endocy-
tosis, general ERBB2-related signaling processes, signaling
by PTK6, and signaling by non-receptor tyrosine kinase
(Table S2). An example of ligand-specific signaling was re-
lated to the heparin binding EGF-like (HBEGF)–EGFR
interaction, for which we identified additional pathways,
e.g. NOTCH3 Activation and Transmission of Signal to

the Nucleus (Table S1). Previous studies already reported
the crosstalk between EGFR and the Notch pathway in
NSCLC (33), and the important specific role of the HBEGF
ligand (34). LRIs harboring a prognostic value also were en-
riched in NSCLC cell lines. For example, TGFB1-TGFBR2
is involved in TGF-� receptor signaling associated with the
Epithelial-Mesenchymal Transition (EMT) pathway (35,
(36). Other LRIs involved the CD44 receptor, which is of-
ten described as a cancer stem cell marker. In NSCLC,CD44
and its isoforms have been associated with poor prognosis
and tumor invasion (37).

In agreement with the fact that SCLCs are high grade
neuroendocrine tumors, we found several LRIs related to
neurexins and neuroligins, for instance NXPH1-NRXN1
and NLGN1-NRXN3. Interestingly, the NRXN1 receptor
is considered a novel potential target of antibody-drug con-
jugates against SCLC (38). The NCAM1 ligand, which is a
surface marker for SCLC (39), interacted with the PTRA
and CACNA1C receptors. These interactions are needed
to activate signaling for neurite outgrowth, thus contribut-
ing to the neuroendocrine phenotype. Lastly, other LRIs
suggested the potential activation of Notch-related signal-
ing, for instance the DLL3-NOTCH4 interaction. In SCLC,
Notch signaling may have tumor suppressive or promoting
activity and is a candidate biomarker of the response to im-
mune checkpoint blockade (40). Recent studies investigated
treatments targeting DLL3 in recurrent SCLC (41), and
in high-grade pulmonary neuroendocrine tumor-initiating
cells (42).

Summarizing at the pathway level

In the analysis of lung cancer bulk data, we found LRIs
that implicated a single receptor or related to a single
pathway. BulkSignalR capacity to reduce data can be ex-
ploited to investigate a dataset at the pathway level. We il-
lustrate this procedure using transcriptomic data from hu-
man brain and heart during development and adult life
(43). We started by reducing the output at the pathway
level. To this aim, we pooled together all receptors impli-
cated in a given pathway, followed by pooling of all their
ligands. In this way, that pathway was associated with a
meta-ligand and a meta-receptor instead of many single
interactors (Figure S3): a standard triple (L, R, pw) be-
comes ({L1, · · · , LN}, {R1, · · · , RM}, pw). If two different
pathways were associated with the same meta-ligand and
-receptor, we performed a reduction to maintain only the
best pathway chaining BulkSignalR chained reduction op-
erations (Figure S3).

The pathway-level analysis (Figure 2B) identified tissue-
specific, and also shared pathways and LRIs, including
some that are development stage-dependent. Brain-specific
pathways included Synaptic adhesion-like molecules (in-
cluding the LRIs CDH1-PTPRF and PTN-PTPRS), and at
later stages Opioid signaling (including CALM1-ADCY8
and CALM2-PDE1A) and Neurotransmitter release cy-
cle (RIMS1-SLC17A7). NCAM signaling for neurite out-
growth (NCAM1-PTPRA and PSPN-GFRA2), Neurexins
and neuroligins (NLGN1-NRXN1 and NXPH1-NRXN1),
and ROBO receptors bind AKAP5 (OLFM2-ROBO2)
were additional brain pathways that start in utero and
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Figure 2. Bulk data analysis with BulkSignalR. (A) Autocrine communications in the DepMap lung cancer cell line dataset. Analysis was performed at the
LRI level. Representative interactions are indicated (FDR < 0.1%). (B) Analysis (pathway level) of transcriptome data of human brain and heart samples
at different development and adult life stages (43). Representative pathways are indicated with one LRI example in brackets. Pathways were taken from
Reactome. FDR < 0.1%. WPC = weeks post-conception.

show maximal activity after birth. Shared developmen-
tal pathways were Signaling by BMP (BMP2-BMPR1A
and GDF11-ACVR2B) and Pre-NOTCH Expression and
Processing (DLL1-NOTCH1, DLL4-NOTCH4 and JAG1-
NOTCH1). Regulation of insulin-like growth factor trans-
port and uptake by insulin-like growth factor binding pro-
teins (ANOS1-SDC2 and FGF2-SDC2) and Muscle con-
traction (ADAM9-ITGB5, ANXA1-DYSF and COL1A1-
ITGA1) are examples of heart pathways. The complete list
of all LRIs and pathways is provided in Table S1.

Relating ligand-receptor interactions to cell types

In the single-cell paradigm, LRI inference comes with the
knowledge of which cell types express the receptor and the
ligand. As such information is not directly accessible in bulk

datasets, we implemented an algorithm to predict cell type-
LRI associations. This requires scoring a set of cell type
gene signatures in all samples. It can be achieved with a
simple z-score average-based function provided by BulkSig-
nalR, or with more advanced cellular deconvolution tools
the output of which can then be imported in BulkSignalR.
By comparing cell type and LRI gene signature scores (Fig-
ure 3A), we build a sparse linear model in which LRI ac-
tivity is linked to cell type abundances by the following
equation: LRI l activity Il

∼= ∑
j∈J

α j CT j for a small set J

of cell types CT j . See Materials and Methods for details.
Due to the intrinsic limitations of bulk data and the ab-
sence of complete LRI reference, BulkSignalR cannot pre-
dict whether a given cell type expresses the ligand, the re-
ceptor, or both. Using the SDC dataset, we scored cell type
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Figure 3. Assigning cell types to interactions. (A) Using the gene signature scores for cell types and the gene signature scores for LRIs, mathematical
models are built to predict the L–R scores from a minimum set of cell type scores. (B) For the SDC dataset, we represented the total weights of each cell
type contribution to LRIs (network). Left: most recurrent pathways related to LRIs only between fibroblasts and endothelial cells. Right: most recurrent
pathways for interactions only between immune cell types. These pathways include important immune checkpoint molecule interactions: (PD-L1)–(PD-1),
(Galectin-9)–(TIM-3), and (CD80/86)–(CTLA-4). (C) Immunofluorescence-supported interactions and cell types in SDC (6) and BulkSignalR predictions.
(D) True positive rate (TPR) and true negative rate (TNR) of the cell type association algorithm for synthetic data. Correct cases include interactions
involving 1, 2 or 3 cell types and increasing Gaussian noise N(0, σ ). Random cases were obtained by shuffling 10, 25 or 50% of data. Synthetic models were
generated using a small (SDC) and a large (TCGA breast cancer, BRCA) dataset. In total, 100 synthetic models were constructed for each configuration
(correct/random, �, shuffling rate, #CTs = number of cell types).

signatures for common tumor-infiltrating cell types: im-
mune cells, endothelial cells, and fibroblasts (Table S1). We
summarized cell communications by summing the weights
of the cell types in all LRI activity models as above, i.e.
by summing the α j values (Figure 3B). We noted stronger
communications within the stromal (endothelial cells and
fibroblasts) and immune components of the tumor, as ex-
pected. By selecting all LRIs that were exclusively asso-
ciated with stromal cells or with immune cells, we found
that they were involved in very relevant pathways (Fig-
ure 3B). Immune pathways included well-known immune
checkpoints such as PD-L1–PD-1 or CD80/86–CTLA-4,
in agreement with the strong immunosuppressive microen-
vironment of immune cell-infiltrated SDCs. We experimen-
tally identified these immune checkpoints and some of the
implicated cell populations in a previous study on the SDC
landscape (6), and found a good agreement between our
previous results and the BulkSignalR associations (Figure
3C). In the absence of available ground truth, we relied on
synthetic data to obtain a more general performance esti-
mation of cell type assignment. By randomly picking 1, 2 or
3 cell line signature scores and adding Gaussian noise, we
generated correct cases, i.e. artificial LRI signature scores
that should be assigned to the randomly picked cell lines.
The noise standard deviation σ in real data varies between
0.2 and 0.4. We computed the TP rates (TPR) and true neg-
ative rates (TNR) using the small SDC and the large TCGA
BRCA cohorts (Figure 3D). We also generated randomized
data that should not be assigned to any cell type by pick-
ing LRI signature scores and shuffling 10, 25 or 50% of the

values (Figure 3D). The obtained TNR and TPR showed
that the algorithm avoided wrong assignments, but its sen-
sitivity to detect complex relationships with three cell types
decreased with increasing noise, especially in the smaller
dataset.

Other functionalities and applications

Our model of LRI (Figure 1A) implies significant posi-
tive correlations between the receptor and a downstream
pathway as well as correlations between ligand and recep-
tor. By default, BulkSignalR does not consider L–R cor-
relations <0.25. However, it is possible to impose a dif-
ferent minimum, particularly –1, and to find a number of
(L, R, pw) triples with strong P-values, but negative L–R
correlations. This case is properly handled by our statis-
tical model and suggests that such ligands may have an
inhibitory action. We reanalyzed the SDC dataset by im-
posing FDR <0.1% and L–R correlation >0.25 in abso-
lute value. We identified 424 unique LRIs, 361 positive and
63 negative (Table S1). By focusing on the Notch path-
way, which is deregulated in many tumors, we found com-
mon activators (DLL1, DLL4, DLK1, DLK2, JAG1 and
JAG2) with strong P-values and positive correlations with
one or several of the four Notch receptors. We also found
several interactors that were negatively correlated with
Notch receptors, for instance MFNG (correlation –0.52
with NOTCH1 and NOTCH2), a glycosyltransferase that
modulates Notch activity by modifying O-fucose residues
at specific EGF-like domains (44). DLL3, which can
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inhibit Notch (45), also displayed negative correlations
(–0.26 with NOTCH3 and, just below our 0.25 thresh-
old, –0.245 with NOTCH4) as well as PSEN1 (–0.50 with
NOTCH1, –0.27 with NOTCH2 and –0.41 with NOTCH3)
and UBA52 (–0.51 with NOTCH1). It is worth noting that
searching for negatively correlated L–R pairs is much more
prone to FP (Figure S12) because L–R databases are dom-
inated by activating LRIs. Therefore, this procedure should
be considered as exploratory and the output needs to be ex-
perimentally validated.

NicheNet (46), a single-cell tool, exploits an integrated
molecular interaction network that includes LRIs to relate
user-chosen gene sets to ligands that might drive their ex-
pression according to the network. The authors tested this
functionality using the 100-gene signature proposed by Pu-
ram (5) for a partial EMT transcriptional program taking
place at the invasive front of head and neck squamous cell
carcinoma (HNSC). As NicheNet integrated reference net-
work and our method to link ligands to receptor-pathway
target genes are conceptually similar, we use BulkSignalR
inferences to provide a similar functionality, but for bulk
data. Figure S13 describes its application to investigate the
partial EMT program using the TCGA HNSC bulk tran-
scriptome dataset (n = 500).

In Supplementary Information, we describe the analysis
of DepMap transcriptomic and proteomic data of breast
cancer cell lines (Figures S14-S17), and we use a mouse
dataset to illustrate the built-in ortholog mapping function-
ality (Figures S18-S20). Moreover, BulkSignalR allows re-
placing LRdb, its native L–R database, with a user-provided
equivalent or adding user-chosen L–R interactions.

Investigating spatial transcriptomics data with BulkSignalR

We then applied BulkSignalR to several multicellular reso-
lution datasets (Visium). BulkSignalR functions were used
unchanged, we only relaxed some parameters to adapt to
much reduced data dynamics and the large number of spots
(minimum correlation, number of target genes, expression
level, and proportion of samples with expression, see Fig-
ure S21). ST spots were hence regarded as independent sam-
ples and we relied on the correlation analysis over the whole
tissue to ensure meaningful LRIs would be identified. At-
tempts to better exploit spatial proximity are detailed in the
comparison section below. We started with a triple-negative
breast cancer (TNBC) dataset (47) the overall structure of
which is presented in Figure 4A. We identified 224 LRIs
(Table S1 and Figure S22), some of which we briefly present
here to show that BulkSignalR identified relevant interac-
tions. Most LRIs were associated with the stroma or with
the invasive cancer tissue. In the stroma, we found LRIs that
implicated adhesion molecules, e.g. CAM1, VCAM1, and
several integrins, i.e. ITGB1, ITGB2, ITGB7, ITGAL, IT-
GAX, as well as immune-related L–R complexes, e.g. B2M-
CD3D, B2M-(HLA-F), (HLA-A)-CD3D and IL16-CD4.
The presence of activated interactions related to antigen
presentation (B2M; HLA-A/B) was consistent with find-
ings by the authors of this dataset (47). Figure 4B shows
the spatial distribution of the LRI between the metallopro-
teinase MMP9 and the integrin ITGB2. MMPs are impor-
tant TME regulators that promote EMT, apoptosis, resis-

tance, angiogenesis, and tissue remodeling (48). Moreover,
MMP9 has been associated with aggressive and metastatic
breast cancer (49). In the invasive cancer tissue, we observed
the activation of the Notch signaling pathway, a TNBC
hallmark (50), through interaction with several ligands,
for instance JAG2. Moreover, we identified the TNFSF10-
TNFRSF10B interaction (Figure 4C) that commonly trig-
gers apoptosis through caspases. The second apoptosis-
triggering receptor TNFRSF10A was marginally expressed
as well as TNFRSF10D, one of the two decoy receptors that
modulate the apoptotic signal effectiveness. There are many
resistance mechanisms downstream of the TNFRSF10A/B
receptors to escape apoptosis (51), some of which were pre-
sumably active in the invasive cancer tissue.

We obtained the plots in Figure 4A–C, the overview plot
(Figure S22), statistical association with tissue regions (Fig-
ure S23), and a representation of LRI spatial pattern di-
versity (Figure S24) using BulkSignalR standard spatial
functions.

Comparison with existing spatial transcriptomic data analy-
sis packages

We identified three recent or widely used tools that offer
analysis at the multicellular resolution: stLearn (14), Cell-
PhoneDB (11) and SpaTalk (15). We compared these tools
with BulkSignalR using three human datasets: the previ-
ously used TNBC dataset (47), a HER2+ breast cancer
dataset (52) and a dorsolateral prefrontal cortex dataset
(53). To obtain comparable results, we employed LRdb (our
LRI database) with stLearn and SpaTalk. Despite our ef-
forts, we could not replace the CellPhoneDB LRI database.
Therefore, we used its native database that combines indi-
vidual molecules and also complexes. When one interaction
involved a complex (or two), we generated all possible pair-
wise LRIs. Then, we intersected this LRI list with LRdb to
be as close as possible to the other three tools. As for some
LRIs, both molecules were given as ligands or receptors in
LRdb, we discarded these CellPhoneDB LRIs.

The next step was to apply comparable selection mech-
anisms. As not all tested tools implemented multiple hy-
pothesis corrections, we used P-values for all tools including
BulkSignalR. We imposed P values <0.1% to remain close
to the FDR < 1% we typically use with spatial data. stLearn
required an adapted selection strategy. For each LRI, this
tool combines CellPhoneDB and a local enrichment test at
each spot versus its neighbors, and provides a P-value for
each spot. We used a first selection mechanism that required
at least 0.5% of the spots with P < 0.1%. This selection was
rather sensitive to the number of imposed spots. Therefore,
we used a second mechanism based on a score given by
stLearn that is equal to the number of spots where a LRI
was found with P < 5%. It was difficult to set a threshold
for this score because multiple hypothesis correction would
make most of these P-values non-significant. Hence, we sim-
ply took the same number of LRIs selected by BulkSignalR
in decreasing order of this stLearn score.

CellPhoneDB and SpaTalk offer medium-resolution
analysis, but they remain intrinsically optimized for single-
cell or subcellular spatial resolution. Indeed, users must de-
fine a dominant cell type at each spot. In addition, Cell-
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Figure 4. BulkSignalR for spatial transcriptomic data analysis. (A) Spatial organization of the TNBC tissue. DCIS stands for ductal carcinoma in situ.
(B) Example of a significant LRI associated with stroma. The left plot contains the gene signature scores of the (L, R, pw) triple where pw = interleukin
4 & 13 signaling (Reactome R-HAS-6785807). The middle and left plots show the ligand and receptor expression. (C) Example of LRI associated with
cancer invasive tissue where pw = apoptosis (Reactome R-HSA-109581). (D) Computing times in seconds for the indicated tools using the indicated
datasets. BSR = BulkSignalR, STL = stLearn, CPDB = CellPhoneDB, and SPAT = SpaTalk. (E) Number of significant LRIs in the TNBC dataset.
BSR.N = BulkSignalR with negative L–R interactions (< -0.02), STL.S = stLearn second selection with a score threshold set to have the same number of
LRIs as with BulkSignalR, STL = stLearn first selection. The color code indicates the number of tools that found one LRI (BSR and BSR.N as well as STL
and STL.S count for one tool). The Venn diagram represents the overlap between tools and selections. (F) Statistical associations between tissue regions
and concomitant expression of the ligand and the receptor captured by the product L × R yielded Q-values (Kruskal-Wallis test followed by Benjamini-
Hochberg multiple-hypothesis corrections due). The boxplots compare the strengths of association (the Q-values) obtained by each tool. (G) Spearman
correlation between ligand and receptor in the whole tissue. (H) Number of significant LRIs in the HER2+ breast cancer dataset. (I,J) Same as (F,G) for
the HER2+ breast cancer dataset. (K) Number of significant LRIs in the dorsolateral prefrontal cortex dataset. (L,M) Same as (F,G) for the cortex dataset.
*P < 0.05, **P < 0.01, #P < 1E-3, ##P < 1E-5, �P < 2.2E-16 (Wilcoxon two-sided).
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PhoneDB requires the definition of the tissue regions (like
in Figure 4A). They exploit this information to reconsti-
tute cell type-specific transcriptomic profiles, restricted to
each region for CellPhoneDB, or overall for SpaTalk. As
SpaTalk reports LRIs by specifying the cell types, we se-
lected all LRIs based on their P-values and eliminated
redundant LRIs if they were significant in several cell
type pairs. CellPhoneDB gives a P-value for each pair of
cell types occurring in each region. We took the mini-
mum P-value for each LRI and imposed a minimum P-
value <0.1%.

The TNBC, cortex, and HER2 + breast tumor datasets
included 4895, 3636 and 306 spots, respectively. BulkSig-
nalR, stLearn, and CellPhoneDB computing times scaled
with the dataset size, while SpaTalk times were very long
and difficult to explain (Figure 4D). CellPhoneDB was the
fastest tool.

For the TNBC dataset, the four tools reported heteroge-
neous numbers of LRIs with limited overlap (Figures 4E
and S25A). For CellPhoneDB and SpaTalk, we defined the
dominant cell type at each spot according to the dataset au-
thors who used single-cell data and a deconvolution soft-
ware to determine them. For CellPhoneDB, we used the tu-
mor regions defined by the authors and shown in Figure
4A. We obtained the largest number of LRIs with SpaTalk
(twice as many as with the other tools), and the smallest
number with stLearn (first selection). To relate the num-
bers of identified LRIs to their quality in the absence of a
complete reference, we defined two objective quality crite-
ria. First, we considered that the product of the ligand and
the receptor, indicating co-presence at a spot, should display
a statistical association with the tissue regions. Using this
criterion, BulkSignalR performed significantly better than
the other tools, with the exception of stLearn (second se-
lection) (Figure 4F). This is remarkable because BulkSig-
nalR does not exploit the knowledge of the tissue regions,
unlike CellPhoneDB and SpaTalk. When we included neg-
atively correlated ligands, BulkSignalR again performed
better than CellPhoneDB and SpaTalk. CellPhoneDB was
the worst. Second, we considered that the ligand and re-
ceptor abundances should be correlated in the whole sam-
ple. BulkSignalR output was significantly enriched in pos-
itive correlations compared with the other tools (Figure
4G). The other tools returned ∼25% of LRIs with nega-
tive L–R correlations, which are more FP prone as reported
above. Even when negative L–R correlations were allowed
in BulkSignalR, the number of less reliable LRIs was sig-
nificantly lower with BulkSignalR than with CellPhoneDB
and SpaTalk.

Next, we compared the results obtained with the
HER2+ breast tumor dataset. Tissue regions and dominant
cell types were defined by the dataset authors. The number
of significant LRIs identified by each tool was even more
heterogeneous than for the TNBC dataset (Figures 4H and
S25B). SpaTalk and CellPhoneDB found the largest num-
ber of interactions. Associations of the L × R product with
tissue regions showed that BulkSignalR outperformed sig-
nificantly SpaTalk and CellPhoneDB and also stLearn (first
selection), but not stLearn (second selection). We obtained
similar results when we allowed negative L–R correlations
in BulkSignalR (Figure 4I). In terms of L–R correlations

(Figure 4J), BulkSignalR outperformed all the other tools.
CellPhoneDB and SpaTalk returned a very large number of
negatively correlated LRIs, which might lead to substantial
FP rates.

For the last comparison we used a dorsolateral prefrontal
cortex dataset for which the authors defined regions, but
no dominant cell types at each spot. As CellPhoneDB and
SpaTalk compare remote spots anyway, we decided to apply
them by using the regions as cell type definitions. stLearn
(first selection) and CellPhoneDB returned the smallest lists
of LRIs, while the other tools gave comparable numbers of
LRIs (Figure 4K). Inter-tool heterogeneity remained sub-
stantial (Figures 4K and S25C). Region association was bet-
ter with BulkSignalR than CellPhoneDB and stLearn (first
selection), but not compared with stLearn (second selec-
tion) and SpaTalk (Figure 4L). L–R correlations indicated
that BulkSignalR performed better than the other tools.

We made an attempt to exploit spatial proximity through
local averaging or ligand signal maximization, but it did not
result in quality improvement. Local averaging increased
the number of identified LRIs. See Figure S26. A summary
of the main characteristics of the compared tools is featured
in Table S3.

Application to colorectal cancer liver metastasis spatial data

To experimentally confirm some LRIs identified by
BulkSignalR by means of IF, we generated a new ST dataset
for four CRC-LM samples. Analysis of this dataset by
BulkSignalR gave 173, 251, and 241 unique LRIs for the
first three CRC-LM samples, respectively (FDR < 1%, L–
R correlation > 0.02 in absolute value), and only 84 LRIs
for the fourth sample (Table S1). As the obtained number of
reads per spot was also smaller for the last sample (∼30%
less than the mean of the other three samples; data not
shown), we excluded it. Application of clustering in Seurat
combined with sample analysis by two pathologists allowed
defining different regions in each sample (Figure 5A).

A complete analysis of the CRC-LM data with biolog-
ical interpretation would obviously be out of the scope of
this paper. We simply focused on LRIs with EGFR because
its signaling is exacerbated in many tumors and EGFR is
a clinical target in CRC-LM. EGFR has multiple ligands
(32) and BulkSignalR identified 18, 19, and 15 of them in
CRCLM1, CRCLM2 and CRCLM3, respectively. To as-
sess their expression, we computed the 95th percentile of
their read counts in each sample. These revealed ligands that
were strongly expressed in some area. To summarize, we
represented the seven most abundant ligands in each CRC-
LM sample in Figure 5B. We excluded the LRI UBA52-
EGFR because ubiquitin A-52 residue ribosomal protein
fusion product 1 (UBA52) does not seem to be secreted.
The seven most expressed ligands displayed strong overlap
in the three CRC-LM samples, despite the heterogeneous
tumor architectures. One exception was serine protease in-
hibitor Kazal type 1 (SPINK1) that was the most expressed
ligand in CRCLM1, but was not identified in CRCLM2/3.
SPINK1 overexpression has been related to rare, fusion
events in prostate cancer (54). It could be specific to CR-
CLM1 patient. Identification of the preferential expression
of each ligand in each tumor region (see correlations in
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Figure 5. BulkSignalR analysis of a colorectal liver metastasis (CRC-LM) ST dataset. (A) Architecture of three CRC-LM samples. (B) Seven abundant
EGFR ligands in the three CRC-LM. DCN is negatively correlated with EGFR. UBA52-EGFR was considered a dubious LRI and was ignored. (C)
Spatial distribution of the four most abundant ligand-EGFR interactions (gene signature scores) in CRCLM1 and expression of EGFR, CDH1, and DCN.
(D) Spatial distribution of the three most abundant ligand-EGFR interactions in CRCLM2. (E) Representative LRI spatial distributions in CRCLM3.
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Figure 5B) showed that some ligands, e.g. decorin (DCN,
and to a lower extent heat shock protein 90, HSP90AA1)
were specific to some regions. DCN was always negatively
correlated with EGFR, in line with its inhibitory action on
EGFR signaling (55). DCN was also negatively correlated
with cMET (MET) in all samples and the DCN-MET LRI
has inhibitory effects (56). All other interactions involved
positive L–R correlations.

Figure 5C shows the spatial configuration in CRCLM1
of the four most abundant ligand-EGFR interactions:
SPINK1-, HAP90AA1-, E-cadherin (CDH1)-, and DCN-
EGFR. The scores featured in the plots are the gene signa-
ture scores (Figure 1F) that combine ligand, receptor, and
downstream pathway activity. We observed distinct areas
of higher versus lower activity. We then plotted the expres-
sion of EGFR, CDH1 and DCN (Figure 5C). We observed
that EGFR and CDH1 were almost ubiquitously expressed,
whereas DCN expression was highest in cancer-associated
fibroblast (CAF)-rich regions. This indicates that EGFR
signaling could be potentially activated in each region of
CRCLM1 through different ligands that are ubiquitously
expressed or region-specific. The same analysis in CRCLM2
(Figure 5D) showed ligands with a specific localization
(DCN), with intermediary localization (HAP90AA1), and
with broad expression (CDH1). EGFR was almost ubiqui-
tously expressed (data not shown). We obtained similar re-
sults for CRCLM3 (Figure 5E), although DCN expression
was weaker and less localized due to the absence of desmo-
plastic reactions and CAF-rich regions in this sample. Spa-
tial configurations of all the LRIs appearing in Figure 5B
are depicted in Figure S27.

We then experimentally validated CDH1-EGFR and
CDH1-cMET colocalization in CRCLM1 and CRCLM2 to
illustrate BulkSignalR capacity to identify interactions that
are not necessarily sample region-specific. CDH1-EGFR
and CDH1-cMET interactions have been described in many
cell types; however, their relationship remains complex and
context-dependent (57). The CDH1-MET LRI was not
identified by BulkSignalR because it was not included in
the LRdb database. We assessed EGFR, cMET and CDH1
abundance, and ERK1/2 nuclear localization in the two
CRC-LM samples by IF (Figures 6AB and S28AB). We
used ERK1/2 as downstream reporter of EGFR and cMET
signaling since upon stimulation of these receptors, activa-
tion of ERK1/2 has been well-documented (58, (59). In-
deed, activated ERK1/2 translocate to the nucleus, where
they activate several transcription factors including c-Fos
and c-Myc (60). In areas of pronounced CDH1 expression,
EGFR membrane staining and pERK expression were less
pronounced (Figures 6B and S28B). The pattern of cMET
expression was similar to that of EGFR (stronger in CR-
CLM1 than CRCLM2). Reduction of EGFR intensity con-
comitantly with prominent ERK1/2 expression was consis-
tent with EGFR activation because upon phosphorylation,
EGRF is rapidly internalized, thus decreasing its concen-
tration at the membrane (61).

We then experimentally assessed DCN-EGFR and
DCN-MET interactions by IF in CRCLM1/2 as examples
of inhibitory LRIs. We consistently observed DCN expres-
sion in the desmoplastic area of the tumor, specifically in
elongated stromal cells (Figures 6AC and S28AC). This was

in agreement with previous reports that associated DCN ex-
pression with CAFs. We then investigated by IF the zones
highlighted by the DCN-EGFR or DCN-MET LRI anal-
ysis. Activation of downstream signaling via ERK1/2 was
clearly excluded in cancer cells since no expression was de-
tected. This suggested lower receptor tyrosine kinase activa-
tion in the cancer cells that were in contact with high DCN-
expressing stromal cells. Overall, high stromal DCN expres-
sion was associated with lower receptor tyrosine kinase ac-
tivation in both CRC-LMs.

DISCUSSION

Invaluable transcriptomic and proteomic datasets are avail-
able and continue to be generated with a bulk methodol-
ogy. Here, we showed that the R library BulkSignalR offers
researchers a solution to exploit these datasets to unravel
cellular networks. BulkSignalR includes a rich set of func-
tionalities, comparable to the best libraries for single-cell
data analysis. The infrastructure that supports BulkSignalR
computations to link LRIs and downstream pathways al-
lows data analysis at both the pathway and individual LRI
levels. This infrastructure also allows network visualization
for relating LRIs to target genes. Although bulk data do
not directly convey information about the specific transcrip-
tomes of individual cell populations, we propose a simple
machine learning model that can infer what populations are
likely to participate in each LRI.

By comparing LRIs inferred by BulkSignalR from sev-
eral bulk datasets and corresponding single-cell datasets,
we found that the single-cell data analysis typically iden-
tified 2–3 times more LRIs mostly because of signal sup-
pression in bulk. We also found that LRIs identified in bulk
only tended to involve low-abundance ligands and recep-
tors, which reflects the higher sensitivity of bulk technolo-
gies. We found no functional category bias in bulk-identified
LRIs, differences were driven by sample cohorts. Clearly,
single-cell analysis is the approach of choice to map cellular
networks when few representative samples are sufficient. In
the other cases, bulk approaches can be used for cellular net-
work inference, but with reduced details. The two formats,
bulk and single-cell, could be eventually combined as well
as data analysis methods in large studies. We believe that
it is also fair to say that while BulkSignalR assesses LRIs
through downstream signaling, most single-cell tools only
test for the expression of the ligand and the receptor, and
the resulting long lists of single-cell LRIs might be inflated
by false positives.

ST is rapidly developing and a frequent setting consists
in working at multicellular resolution. Specifically, a tissue
section is probed at multiple locations (on a grid), and each
spot has a size that results in the concomitant analysis of
more than one cell. For instance, in the very popular Vi-
sium™ system, a spot contains between 3 and 30 cells, in
function of the tissue and cell types. Therefore, the tran-
scriptome data acquired at each spot are bulk by nature and
BulkSignalR is suitable for analyzing such ST data. By re-
viewing the literature, we discovered that most existing ST
software tools have been developed for single-cell or subcel-
lular resolution data. Some nevertheless claim to be com-
patible with Visium-type data, for instance CellPhoneDB
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Figure 6. IF analysis of selected ligand-receptor interactions in CRCLM1. (A) (left) Structural overview of CRCLM1 with stromal areas (delineated in
white) and EGFR+ cancer cells (green). ACTA2 is a CAF marker, CD45 is an immune cell marker, EGFR is cancer cell marker, and CD31 is an endothelial
cell marker; d, desmoplastic reaction; n, necrosis. (right) Higher magnification view of desmoplastic and necrotic areas. (B) Analysis of CDH1-EGFR and
CDH1-cMET interactions. Low-magnification view (100x) of quadruple staining (ERK1/2, EGFR, CDH1, and cMET) in CRCLM1. The area of interest
is highlighted and shown at higher magnification in the panels underneath. (C) Analysis of DCN-EGFR and DCN-cMET interactions. Same as in (B).
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(11), SpaTalk (15), and stLearn (14). In stLearn, an initial
CellPhoneDB application is combined with a local poste-
rior analysis to compare a spot with its neighbors. Con-
versely, CellPhoneDB alone and SpaTalk consider LRIs be-
tween spots that may be far from each other. Although some
LRIs have a longer range, many occur at a short range or
only at cell contacts. We think that this renders the output
of these tools difficult to interpret. Nevertheless, we com-
pared CellPhoneDB, SpaTalk, and stLearn with BulkSig-
nalR using three ST datasets. We found that BulkSignalR
inferred an average number of LRIs which were signifi-
cantly more reliable according to two neutral quality crite-
ria. The number of LRIs found by stLearn, CellPhoneDB
and SpaTalk varied substantially, and SpaTalk computing
times were very long (up to hours on four processors). We
also observed limited overlap between the four tools for
each dataset.

Using a new Visium™ dataset that included four CRC-
LM samples, we used two of these samples to experimen-
tally challenge selected inferences obtained with BulkSig-
nalR. The CDH1-EGFR, CDH1-cMET, DCN-EGFR and
DCN-cMET interactions were supported by protein colo-
calization in both samples assessed by IF. The activation of
receptors, and especially receptor tyrosine kinases, such as
EGFR, is complex and involves multiple agonist and an-
tagonist ligands, as illustrated by our analysis that unrav-
eled several, spatially-dependent ligands besides CDH1 and
DCN. The complete analysis of the net results of all these
interactions goes beyond the scope of this article, but the
presented data showed the potential of our ST data analy-
sis pipeline.

The analysis of spatial data did not require any modifi-
cation of BulkSignalR, only the adaptation of few parame-
ters. However, we added dedicated graphical functions. The
BulkSignalR R library was designed to be easy to use by
scientists with basic knowledge of R. Few functions are suf-
ficient to prepare a dataset, infer the LRIs, and generate in-
formative plots. Although our tool can only infer what is
documented in reference databases, users can add to or re-
place the list of putative LRIs entirely opening the door to
testing new LRIs.

DATA AVAILABILITY

BulkSignalR and companion scripts (BulkSig-
nalR companion) are available with documen-
tation from https://github.com/jcolinge and
Zenodo (doi.org/10.5281/zenodo.7762645 &
doi.org/10.5281/zenodo.7762632). The CRC-LM spatial
transcriptomics data are available from GEO (accession
code GSE217414). The other data were made public by
their authors.
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et Société(s); European Union (FEDER) to the project
biomarqueursMETCP; A.T. is supported by the Labex
MabImprove Starting Grant and SIRIC Montpellier
Cancer Grant INCa Inserm DGOS 12553. Funding
for open access charge: Grants INCa R17080FF-CT
(PLBIO-2017), Labex EpiGenMed ANR-10-LABX-12-01,
Fondation ARC pour la Recherche sur le Cancer PJA
20141201975; Région Occitanie, programme Recherche
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