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This work elaborates on the numerical solution to cope with the enforce-
ment of a general robin-type weak/strong discontinuity interface in acoustic
problems, where energy dissipative media with complex-valued properties
are involved. We propose a discrete variational formulation based on the
idea of Nitsche’s method in the eXtended Finite Element Method (X-FEM)
framework. The formulation is stable in the sense that it is able to treat any
interface parameters accurately within any mesh configuration and approx-
imation order. We prove the stability of the method, fully considering the
effects of energy dissipation, and provide a robust strategy involving basis
conversion to obtain the stability parameter. Numerical examples demon-
strate that the proposed discrete formulation gives an optimal solution in
terms of accuracy and conditioning, compared to a penalty-like formulation.
For all interface types, optimal rates of convergence are achieved on both pri-
mal and dual variables. Our method exhibits high robustness and stability
regardless of discretization, geometries, materials, excitation frequency and
interface parameters.
Interface laws; Dissipative acoustic; Nitsche’s formulation; high-order X-

FEM

1. Introduction

Thin layers are widely used in vibro-acoustic systems such as sound proofing, imperious
screen and porous films. They are usually employed in conjunction with bulk sound dis-
sipation materials to constitute sound attenuation systems. One can find such systems
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extensively in the automotive/aircraft industry on the wind front windows or as passive
noise reduction components coated on cabin seats. This paper focuses on simulating
sound propagation in systems that comprise both thick and thin dissipative layers. As
one of the frequently used sound dissipation materials, porous materials present a high
performance in absorbing vibration energy resulting from an intrinsic interaction between
saturated air and elastic frame. Concerning the physical models for such acoustic mate-
rials, Biot’s theory [1, 2] provides two fully coupled equations linking the homogenized
solid and fluid phases, where the propagation of solid and pressure waves are simultane-
ously considered. Equivalent fluid models such as the JCA (Johnson-Champoux-Allard)
[3, 4] and Limp models [5] were also developed as an alternative to the Biot theory,
assuming that the frame is motionless and that the energy dissipation is accounted for
by complex-valued material parameters. This class of models will be considered in this
contribution. As the thickness of the thin acoustic layers is relatively small compared
to the size of the entire system, one usually reduces it to a null-thickness interface with
an appropriate interface condition [6]. In particular, the pressure drop model [7] is
considered in the current work.
The numerical solution of such acoustic problems using spatial discretization methods,

could be computationally demanding. In particular, time-harmonic Helmholtz equations
are known to suffer from dispersion error [8] in large-scale domains or when subjected to
high frequency excitations, for which high-resolution meshes [9], high order [10, 11, 12]
or wave-based [13] approximations are necessary. In addition, conventional mesh-based
numerical methods require geometrically conforming meshes where the boundaries of
the elements have to align with the geometries. This leads to more complicated and
time-costly pre-processing steps when the boundaries of the interfaces are complex or
when dealing with interfaces subjected to topological variations. In order to alleviate
these numerical restrictions seamlessly, high-order approximation methods combined
with techniques that are able to handle unfitted meshes are appealing. Within these
techniques, the approximation of the solution and the geometry can be treated indepen-
dently. However, the enforcement of potentially discontinuous interface conditions inside
elements and the representation of complex geometries with high-order approximations
need to be appropriately addressed.
One major family of the relevant methods is the eXtended Finite Element Method (X-

FEM). This method may first trace back to the work of Moës et al.[14], where the concept
of the X-FEM was proposed to address crack propagation problems without re-meshing.
The X-FEM is considered as a special case of the Generalized Finite Element Method
(GFEM [15]) where the whole or a part of the computational domain is enriched by
additional functions to represent complex features of the solution such as discontinuities,
singularities or other non-smooth behaviours. With the versatility of the enrichment,
in the past two decades, the X-FEM has been applied extensively to model holes [16],
inclusions [16, 17] and phases interfaces [18], etc. (for more applications, see [19]).
Heaviside enriched X-FEM has even become one of the most widely used numerical
methods to treat fracture problems [20]. Meanwhile, Hansbo and Hansbo [21] proposed
an unfitted finite element method to treat discontinuities across interfaces. Instead of
using an enrichment, two overlapping elements are defined over the interface through
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the concept of phantom [22] or ghost [23] nodes. This setup allows the construction of a
discontinuous approximation basis to model the discontinuity. This method, which has
been applied, from solid mechanics [24], fluid-structure interaction [25] to stokes interface
[26] and many other problems [27, 28], is now being well-known as the family of Cut-FEM
methods (see review [29]). Although the Cut-FEM can be seen as a reparametrization
of the Heaviside enriched X-FEM, spanning the same approximation space [30], the
resulting algebraic systems (matrices) are not identical. The effect of this aspect during
the computation is rarely recognized in former studies, which will be clarified as well in
this work.
Properly prescribing the boundary/interface conditions within the aforementioned

methods might be a key ingredient. The penalty method [31] could be the most straight-
forward candidate to impose Dirichlet boundary conditions or enforce the continuity of
the solution at the interfaces. However, it is not consistent with the original problems,
and it requires a sufficiently large penalty parameter to retain an optimal convergence
rate, which eventually destroys the conditioning of the discrete system. Another classi-
cal approach to weakly prescribe the boundary conditions is Lagrange multipliers [18].
Within this approach, the multiplier space needs to be chosen carefully to satisfy the
well-known inf-sup or LBB stability condition [32]. Moreover, this method further in-
creases the number of degrees of freedom. In order to address these issues, Nitsche’s
variational approach [33] or augmented Lagrange multipliers [34] were proposed, replac-
ing the Lagrangian multiplier by a representation of the boundary flux together with
a penalty term for stabilization. In the context of unfitted-FEM methods, this ap-
proach was first introduced in [21] for elliptic interface problems and then was applied
for non-matching meshes [25], fictitious domain [35, 36] and embedded interfaces [37, 38].
Nitsche’s method has become a standard ingredient when using the Cut-FEM approach.
Furthermore, Ghost penalty [39, 40] and γ-Nitsche [41, 42, 43] were also proposed to
improve the stability of Nitsche’s formulation in the context of cut elements.
Regarding the numerical solution of the Helmholtz equation using Nitsche’s method,

we revisit the two most relevant former works. One of them was conducted by Zou
et al. [23], where Nitsche’s formulation is applied for a classical two-media steady-state
acoustic problem, where a perfect interface (continuity of the pressure field) was enforced.
The problem was solved using a linear Cut-FEM approach. The second work was carried
out by Yedeg et al.[44], and discussed a Nitsche-type formulation for a complex-valued
transmission interface condition. This formulation is especially attractive because the
two extreme cases (perfect and imperfect interfaces) can be recovered by a unique formu-
lation. In their work, a single homogeneous media was involved, and a conforming finite
element mesh was required to discretize the computational domain. From a physical
point of view, our problem of interest includes multiple different complex-valued dissi-
pative media that have not yet been investigated for strong/weak discontinuity interface
problems. From a numerical point of view, our solution will be approximated using
a high-order Heaviside enriched X-FEM space that is different from any discretization
space analyzed in the literature.
The work presented in this paper enlarges the application of high-order X-FEM and

Nitsche’s method to acoustic dissipative problems. The main contributions are as follows:
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Firstly, based on the idea proposed in [24, 44], we discuss the effect of complex-valued
media and robin-type interface condition involved in a Nitsche-type formulation. The
proof of stability and the lower bound of its parameter are provided. Secondly, we
elaborate on the equivalence and difference between the Heaviside enriched X-FEM and
Cut-FEM for our problem of interest, in particular the influence on the estimation of
the stability parameter. Finally, we verify numerically the critical choice of stabilization
and highlight the stability and robustness of the proposed Nitsche-type formulation with
respect to interface laws, and compare it with the penalty-like method.
The rest of the paper is organized as follows: In section 2, the problem of interest is

stated with corresponding strong and weak formulations. Section 3 is dedicated to the
discussion on discretization, including the emphasis on the difference between X-FEM
and Cut-FEM basis in our case, in addition to the proof of coercivity for the discrete
formulation. Two strategies to compute the stability parameters in the current frame-
work are presented as well in this section. In section 4, the proposed method is assessed
against a series of numerical examples with gradual geometrical complexity to verify
the theoretical proofs and implementation. Several significant numerical conclusions are
reported. At last, section 5 gives concluding remarks and perspectives to our work.

2. Problem statement and formulation

2.1. Model and strong form

Figure 1: Two-media sound propagation configuration

For the sake of simplicity, we confine attention to a two-dimensional two-media domain
Ω ∈ R2 as illustrated in fig. 1, partitioned into subdomain Ω1 and Ω2 with Ω1 ∪ Ω2 =
Ω, Ω1 ∩ Ω2 = ∅. The subdomains represent bulk acoustic media such as air and energy
dissipative material, respectively. The domain is enclosed by the boundary ∂Ω1∪∂Ω2 =
∂Ω associated with the corresponding subdomains. We suppose that a thin layer exists
between the two media, such as a resistive sound film, which is reduced to a null-thickness
interface Γ∗ with an outward normal n pointing from Ω1 to Ω2. It is noted that this
outward unit normal n is not only needed on the interface, but is also used to define the
Neumann boundary conditions presented in eq. (4). The terms related to such normal
need to be treated carefully in order to obtain correct signs in the final formulations.
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As mentioned before, this paper considers dissipative materials as equivalent fluids.
Sound propagation in such media is hence described by the classical Helmholtz equation
(which, in the case of air, involves only real-valued parameters). Thus, the governing
equations under the time dependence e+jωt with angular frequency ω for both bulk parts
are written in the following way:

∇2pi + k2i p = 0, i = 1, 2, (1)

where pi corresponds to the acoustic pressure in each subdomain, and ∇2• represents
the Laplacian operator. Coefficient ki denotes the wave number of the medium that is
defined as ki = ω/ci where ci is the sound velocity in the medium. The wave number is
a complex number when modelling energy dissipative materials.
At the interface, an interface law is enforced to model the thin acoustic resistive layers.

These layers induce a pressure difference due to their flow resistivity σ [7, 45], so-called
pressure jump model. In addition, flow velocity is assumed to be conserved at the
interface Γ∗ as the thickness of the resistive layer is small compared to the characteristic
length of the whole computational domain. Then, the interface conditions are expressed
as:

p1 − p2 = σdv̄ onΓ∗, (2a)

1

ρ1

∂p1
∂n

=
1

ρ2

∂p2
∂n

onΓ∗, (2b)

in which d denotes the thickness of the thin layer and ρi are effective fluid densities
(complex-valued for dissipative media). v̄ represents the mean flow velocity at the in-
terface, which is defined as:

v̄ = − 1

jωρ1

∂p1
∂n

= − 1

jωρ2

∂p2
∂n

onΓ∗, (3)

where the two expressions in eq. (3) are identical due to the continuity condition eq. (2b).
However, when the problem is solved numerically by means of the finite element method,
the mean flow velocity is related to the numerical solution of interfacial flux (normal
gradient), which will depend on the discretization as well. In that case, the definition of
this flow quantity becomes more crucial, which will be addressed in the following section.
Combing the bulk governing equations eq. (1) for the two media and the interface

conditions given in eq. (2), the description of the boundary value problem (BVP) written
on the whole domain equipped with Neumann boundary conditions on ∂Ωi reads as:

2∑
i=1

(
∇2p+ k2i p

)
=0 inΩ1 ∪ Ω2, (4a)

∂p

∂n
=gN on ∂Ω1 ∪ ∂Ω2, (4b)

JpK − σdv̄ =0 on Γ∗, (4c)

J
1

ρ

∂p

∂n
K =0 on Γ∗, (4d)
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where J•K is the jump operator J•K = •1 − •2 at the interface Γ∗. gN is the known
value of the Neumann boundary condition. It is worth emphasizing that the pressure
discontinuity eq. (4c) depends on the change of its gradient, which corresponds to a
generalized Robin interface condition. For the particular situation, where σd = 0, the
pressure will be continuous at the interface, and the interface will be said ”perfect” in
the following.
Remark that the existence and uniqueness of the solution for the above problem

equipped with Neumann boundary conditions and energy damping (could be dissipa-
tive media and/or pressure jump) has already been discussed in [46], so that it will not
be presented here in detail.

2.2. Penalty-type weak formulation

In general, the weak solution to the prescribed problem could be formulated as a varia-
tional form as follows: find p ∈ P = H1(Ω1 ∪ Ω2) such that

a(q, p) = ℓ(q) ∀q ∈ H1(Ω1 ∪ Ω2), (5)

where the right-hand linear form ℓ(q) originates from the Neumann boundary conditions.
In our case, the bilinear form consists of two parts: the first one denoted as aB from the
two bulk subdomains Ω1 and Ω2 and the second one denoted aI defined on the interface
Γ∗ as follows:

a(q, p) := aB(q, p) + aI(q, p). (6)

The key point for this bilinear form is to impose two interface conditions on Γ∗. Con-
servation of velocity eq. (4d) is directly satisfied when multiplying the bulk governing
equations by 1/ρi. With the test function q ∈ P as well, aB is rewritten as:

aB(q, p) :=

2∑
i

(∫
Ωi

1

ρi
∇q∇p dΩ−

∫
Ωi

ω2

Ki
qpdΩ

)
, (7)

where k2i /ρi is modified to k = ω/ci and bulk compressibilityKi = ρic
2
i (this modification

aims at facilitating the following stability analysis). Regarding the interface integrals on
Γ∗, we have:

aI(q, p) := −
∫
Γ∗

q1
ρ1

∂p1
∂n

dS +

∫
Γ∗

q2
ρ2

∂p2
∂n

dS, (8)

thanks to the conservation of the mean velocity eq. (3), aI can be written as:

aI(q, p) =

∫
Γ∗

jωv̄JqKdS, (9)

then, with the pressure jump condition eq. (4c), v̄ is replaced, and the final interface
bilinear form is obtained:

aI(q, p) =
jω

σd

∫
Γ∗

JqKJpKdS. (10)
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This interface term is similar to spring-like interfaces in solid mechanics, as studied in
[47] or is called ”substitution” method as in [28]. This term has a similar form to the
penalty method [31] to enforce the Dirichlet boundary condition but with real physical
constants σ, d and ω instead of a pure numerical parameter in the case of penalization.
This means that once the physical problem is determined, the weak formulation can be
readily implemented and solved directly without additional numerical terms. Moreover,
in contrast to conventional penalty methods, such penalty-type formulation is varia-
tionally consistent with the original problem, and the interface pressure jump condition
is preserved naturally. This type of formulation has been shown to lead to good per-
formances within the X-FEM in [48] to treat composite materials. For the following
analysis, the results of the penalty-type formulation are regarded as a reference.

However, this formulation is not able to model a perfect interface and also cases where
σd → 0 for which the corresponding linear system could be potentially ill-conditioned,
especially when using X-FEM method. Therefore, we strive to derive a more general
and stable variational formulation in the sense that it can treat seamlessly perfect and
imperfect interfaces, while preserving the conditioning of the discrete system regardless
of the physical parameters of the interface law.

2.3. Nitsche-type weak formulation

We derive a Nitsche-type formulation relied on the idea proposed in [47, 44]. To this
end, we first rewrite the mean flow velocity at the interface as:

v̄ := − 1

jω

(
γ1
ρ1

∂p1
∂n

+
γ2
ρ2

∂p2
∂n

)
= − 1

jω

〈
1

ρ

∂p

∂n

〉
γ

, (11)

in which, ⟨•⟩γ refers to the weighted-average operator with γ1 + γ2 = 1. As aforemen-
tioned, in the continuous case, any admissible γi could be chosen leading to a same
resulting mean flow since the continuity of the velocity at the interface is always guar-
anteed. The choice of the weighting parameter has a non-negligible influence on the
numerical solution, especially here when interface embedded methods such as the X-
FEM are employed. A detailed discussion for choosing a suitable γ will be stated in
section 3.
With such mean flow expression, the pressure jump condition eq. (2a) is rewritten as:

JpK +
σd

jω

〈
1

ρ

∂p

∂n

〉
γ

= 0. (12)

Thus, the interface term aI in eq. (8) becomes:

a∗I(q, p) = −
∫
Γ∗

JqK
〈
1

ρ

∂p

∂n

〉
γ

dS. (13)
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Following by addition and subtraction of σd
jω

〈
1
ρ
∂q
∂n

〉
γ

〈
1
ρ
∂p
∂n

〉
γ
, we obtain:

a∗I(q, p) = −
∫
Γ∗

〈
1

ρ

∂p

∂n

〉
γ

(
JqK +

σd

jω

〈
1

ρ

∂q

∂n

〉
γ

)
dS +

∫
Γ∗

σd

jω

〈
1

ρ

∂q

∂n

〉
γ

〈
1

ρ

∂p

∂n

〉
γ

dS,

(14)
then, we symmetrize the formulation with the interface condition eq. (12):

a∗I(q, p) := −
∫
Γ∗

〈
1

ρ

∂p

∂n

〉
γ

(
JqK +

σd

jω

〈
1

ρ

∂q

∂n

〉
γ

)
dS −

∫
Γ∗

〈
1

ρ

∂q

∂n

〉
γ

(
JpK +

σd

jω

〈
1

ρ

∂p

∂n

〉
γ

)
dS

+

∫
Γ∗

σd

jω

〈
1

ρ

∂q

∂n

〉
γ

〈
1

ρ

∂p

∂n

〉
γ

dS,

(15)
finally, the formulation is stabilized by a term weighted by a coefficient λ to be defined:

a∗I(q, p) := −
∫
Γ∗

〈
1

ρ

∂p

∂n

〉
γ

(
JqK +

σd

jω

〈
1

ρ

∂q

∂n

〉
γ

)
dS︸ ︷︷ ︸

consistency

−
∫
Γ∗

〈
1

ρ

∂q

∂n

〉
γ

(
JpK +

σd

jω

〈
1

ρ

∂p

∂n

〉
γ

)
dS︸ ︷︷ ︸

symmetry

+

∫
Γ∗

σd

jω

〈
1

ρ

∂q

∂n

〉
γ

〈
1

ρ

∂p

∂n

〉
γ

dS + λ

∫
Γ∗

(
JqK +

σd

jω

〈
1

ρ

∂q

∂n

〉
γ

)(
JpK +

σd

jω

〈
1

ρ

∂p

∂n

〉
γ

)
dS︸ ︷︷ ︸

stabilization

.

(16)
Therefore, the Nitsche-based bilinear form for the problem given in eq. (4) writes:

aλ(q, p) := aB(q, p) + a∗I(q, p), (17)

where the integral involving λ ensures the stability (coercivity) of the formulation above.
As seen that when σd = 0, the bilinear form becomes the standard Nitsche’s formulation
that enforces the continuity at the interface as [23] with stability parameter λ. On the
other hand, when choosing λ = jω/(σd), this formulation is reduced to the penalty-type
one eq. (10). In fact, with a clever expression of λ, the Nitsche-type formulation can
be bounded between these two extreme cases to take advantage of both formulations,
which will be presented lately.

3. Spatial discretization

3.1. Implicit interface and eXtended Finite Element Method (X-FEM)

In the general framework of unfitted-FEM, the interface or the boundary (see fictitious
domain method [35]) are usually described implicitly by means of level-set functions
[49]. For the considered two media problem we choose Ω ∈ R2, and discretize the
domain Ω = Ω1 ∪ Ω2 into a set of non-overlapping triangular elements Ωe, constituting
a mesh. A discrete level-set function is obtained by interpolation on this mesh as:
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ϕ(x) =
n∑
i

Ni(x)ϕi, (18)

where Ni(x) represent the standard finite elements shape functions and ϕi are the signed
distances from finite element nodes to the interface. The computational domain is clas-
sified with the help of the sign of the level-set function, and the interface Γ∗ is located
as the iso-zero curve:

Γ∗ = {x ∈ R2 : ϕ(x) = 0}. (19)

Note that a geometrical error will appear when a curved interface is described because
of the linear approximation of the level-set. This will degrade the convergence rate if a
high-order approximation is considered. To mitigate such numerical issue, the strategy
proposed in [50] is adopted, where the mesh used to approximate the solution is decou-
pled from the one used to interpolate the level-set function. The interface is defined
on an adaptively refined mesh, while the high order solution is still approximated on
a coarse uniform mesh. Contrary to the standard interface-fitted FEM, our solution is
approximated on an extended finite element space PXFE

h (Ph in the following) enlarging
the standard FE space with an enriched one such that:

PXFE
h = PFE

h ⊕ PENR
h , (20)

where the enrichment space is only defined on the elements intersecting with the interface
to introduce special features in the solution. According to the type of discontinuity to
be modelled (crack, hole or material inclusion), there exists many enrichment strategies
and enrichment functions[16, 17, 51]. In the considered problem, as a pressure jump
(potential strong discontinuity) is introduced at the material interface, the pressure field
is approximated by ph ∈ Ph ∈ P, such that:

ph(x)
∣∣∣
Ωe

=

n∑
i

Ni(x)pi +

nenr∑
j

Nj(x)H(x)apj , (21)

with H(x) denoting the generalized Heaviside function:

H(x) =

{
1 ϕ(x) ≥ 0

−1 ϕ(x) < 0,
(22)

where Ni(x) and Nj(x) are the shape functions associated to the standard and enriched
degrees of freedom respectively. The later one could be different from the ones used for
standard degrees of freedom but needs to satisfy the partition of unity [52] (thus they are
usually taken to be the same as Ni). In this work, high order Bernstein shape functions
will be used for the approximation. Coefficients apj are the enriched degrees of freedoms
used to represent the discontinuity. As mentioned that the enriched part is only defined
on the elements containing interfaces, the number of enriched degrees freedoms remains
small: nenr ≪ n.
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Arising from such discretization, the computational domain includes standard ele-
ments, fully enriched elements and partially enriched elements also called blending ele-
ments as shown in fig. 2. As the material interface is allowed to be embedded in elements,

Figure 2: 2D domain cut by an interface: Standard, enriched and blending elements.
Sub-triangulation is shown in the enriched elements.

one enriched element may contain multiple materials with different physical properties.
The elements containing the interface are therefore partitioned into sub triangular el-
ements to facilitate the association between an element (sub-element) and a material
type, and to apply a modified Gauss quadrature for the weak formulation [16].
As mentioned in the section 1, the Heaviside-enriched X-FEM approximation eq. (21)

is different from the one commonly used in the Cut-FEM community [21, 47, 37, 41,
38, 52, 26, 42, 23]. In fact, the latter one is usually being confused with X-FEM in
the literature because of its similarity concerning the resulting approximation space as
with X-FEM. The Cut-FEM is considered as an overlapping of standard finite elements
[21] across the interface, which can be seen as the reparametrization of the Heaviside
enriched X-FEM [30]. However, the structure of the resulting algebraic matrices are not
identical. This distinction leads to different manipulations to calculate some element-
wise quantities, such as the stability parameters for Nitsche’s formulation, which will be
thoroughly discussed in the section 3.3.
Here, we first address this difference by comparing the two bases in a 1D linear element

for the convenience of illustration, as depicted in fig. 3. Functions N+
i and N−

i in fig. 3(b)
represent the shape functions within Cut-FEM on each side of the interface, which are
independent of the one to the other side. However, for X-FEM, it can be seen that the
approximation on both sides involves all four shape functions. It is worth noting that
this difference holds as well for higher order shape functions with the same numerical
effects.
Despite this difference, the two basis can be linked by a simple relationship with
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Figure 3: 1D example of linear elements for (a) Heaviside X-FEM and (b) Hansbo’s Cut-
FEM for a strong discontinuity

following arrangement of degrees of freedom:
N+

1

N+
2

N−
1

N−
2


=

1

2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1




N1

N2

N1H

N2H


, (23)

which can be readily extended to general higher order basis as:N+

N−


2(p+1)

= [T]

 N

NH


2(p+1)

, (24)

with a transition matrix [T]:

T =
1

2

[
I I
I −I

]
2(p+1)×2(p+1)

, (25)

where I are identity matrices. This relation allows converting discrete quantities (elemen-
tary matrix structure) from one basis to the other, in order to take the most advantage of
each basis depending on the circumstances. We will revisit this aspect in the later part.
The interested reader is recommended to refer to [30, 53] for other details of equivalence
and relationship between these two bases.

3.2. Stability analysis

In this subsection, we analyse the stability (coercivity) of the Nitsche-type formulation
presented eq. (16) in the discrete setting p ∈ Ph (high-order X-FEM using a Heaviside
enrichment) such that:

aλ(qh, ph) = ℓ(qh) ∀qh ∈ Ph, (26)
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in which a clever definition of λ on interface integral is proposed:

λ =

(
1

βh
+

σd

jω

)−1

, (27)

where βh is a discretization-dependent parameter for which both mesh configuration and
approximation order have been taken into account. Unlike the expressions presented in
[47, 44], the element size h is already accounted implicitly here through βh to accommo-
date the high order approximation and non-matching discretization across the interface.
To ensure the stability of the entire weak formulation aλ, parameter βh must satisfy a
specific condition that is elaborated in theorem 3.4 and proved in the following analysis.
Such a definition of λ provides a natural transition between two extreme cases as well:

When the interface parameters vanish (σd/ω = 0), the whole discrete formulation turns
into the standard Nitsche’s formulation to enforce continuity (with stability parameter
as βh). While for βh → ∞, the formulation tends to the penalty-type one.

The main ideas of the proof follow the principle described in [44], but with several
differences that are originality of this paper: (i) the effect of complex-valued materials
has to be considered in the proof and (ii) a high-order X-FEM approximation is used.
For the sake of analysis, the bilinear form aλ is rewritten in the following way:

aλ(qh, ph) = aB(qh, ph)−
∫
Γ∗

(
1− λ

σd

jω

)
JqhK

〈
1

ρ

∂ph
∂n

〉
γ

dS −
∫
Γ∗

(
1− λ

σd

jω

)
JphK

〈
1

ρ

∂qh
∂n

〉
γ

dS

−
∫
Γ∗

σd

jω

(
1− λ

σd

jω

)〈
1

ρ

∂qh
∂n

〉
γ

〈
1

ρ

∂ph
∂n

〉
γ

dS +

∫
Γ∗

λJqhKJphKdS.

(28)
And, two discretization-dependent norms need to be defined as:

∥ph∥2 =
2∑
i

(∣∣∣ω2

Ki

∣∣∣ ∫
Ωi

|ph|2dΩ
)

(29a)

|||ph|||2 =
2∑
i

(∣∣∣ 1
ρi

∣∣∣ ∫
Ωi

|∇ph|2dΩ +
∣∣∣ω2

Ki

∣∣∣ ∫
Ωi

|ph|2dΩ
)
+

1

βh

∫
Γ∗

∣∣∣ 〈1

ρ

∂ph
∂n

〉
γ

∣∣∣2dS +

∫
Γ∗

|λ| |JphK.|2dS,

(29b)

where the value of βh, as aforementioned, depends on the mesh configuration and ap-
proximation order. The detailed proofs of the subsequent lemmas and theorems are
provided in A, we state only the most influential conclusions here.

Lemma 3.1. Let βh > 0, the function λ in definition eq. (27) satisfies:

0 < |λ| ≤ βh, (30a)

1− λ
σd

jω
=

λ

βh
, (30b)∣∣∣∣σdjω

(
1− σd

jω

)∣∣∣∣ ≤ 2

βh
, (30c)

Re (λ) + Im (λ)− 1

2
|λ| ≥ 1

2
|λ|. (30d)
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Lemma 3.2. The imaginary part of the bilinear form aB in aλ satisfies Im (aB(p̄h, ph)) >
0, ∀ph ∈ Ph

Proof

Im (aB(p̄h, ph)) =

2∑
i

Im

(
1

ρi

)∫
Ωi

|∇ph|2dΩ−
2∑
i

Im

(
ω2

Ki

)∫
Ωi

|ph|2dΩ. (31)

It is known that for porous materials, the effective density ρ has a negative imaginary
part and the effective compressibility K has a positive imaginary part so that damping
due to thermal and viscous effects can be introduced. Therefore, we have Im (1/ρi) ≥ 0
and Im

(
ω2/K

)
≤ 0, the positivity of the whole term holds.

Lemma 3.3. There exists a discretization-dependent constant CI such that (discrete
inverse inequality):

∫
Γ∗

∣∣∣∣∣
〈
1

ρ

∂ph
∂n

〉
γ

∣∣∣∣∣
2

dS ≤ CI

2∑
i

∫
Ωi

∣∣∣∣ 1ρi
∣∣∣∣∣∣∣∇ph

∣∣∣2dΩ, (32)

where CI depends on the polynomial approximation order and mesh regularity. This
constant can be obtained by solving generalized eigenvalue problems that will be presented
in the following section.

With lemmas 3.1–3.3, the stability of the proposed formulation aλ in the X-FEM
discrete space can be proven by the following theorem 3.4.

Theorem 3.4. For any βh ≥ 16CI , where CI is the constant in lemma 3.3, the bilinear
form aλ satisfies :

|aλ(ph, ph)|+ ∥ph∥2 ≥
1

4
|||ph|||2, ∀ph ∈ Ph, (33)

which is the G̊arding inequality that proves the coercivity of the variational formula-
tion of the Helmholtz equations.
Up to here, we proved that if βh ≥ 16CI is set, the discrete Nitsche-type formulation

is coercive. The following question is how to evaluate the constant CI in our discrete
setup.

3.3. Estimation of the stabilization parameters: classical strategy

Parameter βh in the complex function λ affects the stability of the proposed Nitsche’s
formulation, and has to satisfy βh ≥ 16CI . Constant CI in the inverse inequality eq. (32)
is associated to the eigenvalues of a generalized eigenvalue problem proposed by [41] as:

Ax = αBx, (34)
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with matrices A and B are, in the scope of our problem:

[A]ij =

∫
Γ∗
e

(〈∣∣∣∣1ρ
∣∣∣∣∇Ni

〉
γ

.n

)(〈∣∣∣∣1ρ
∣∣∣∣∇Nj

〉
γ

.n

)
dS, (35a)

[B]ij =

∫
Ωe

∣∣∣∣ 1ρi
∣∣∣∣∇Ni∇Nj dΩ, (35b)

where the weighting parameters γi need to be fixed a priori, and are chosen as γ1 =
γ2 = 0.5 for the classical Nitsche’s method. Then, the eigenvalue problem can be solved
globally as proposed in [18] or locally for each element as [37]. Hereinafter, the solving
procedure at the element-level is presented.
In the case where a strong discontinuity is introduced into the approximation space,

matrix B is singular with two zero eigenvalues (corresponding to the rigid body motions
of two subdomains separated by the interface). The associated null space is also the null
space of A, which leads to indeterminate eigenvalues that cannot be used to stabilize
the formulation. The deflation procedure proposed in [42] needs to be performed first.
Unlike with Cut-FEM basis where B has two independent diagonal blocks by construc-
tion, we have a fully coupled matrix when using the X-FEM basis. The null space of
B corresponds to rigid body modes, which can be obtained a priori in certain cases
1. Herein, for a high order Heaviside-enriched X-FEM discretization, we provide the
common null space basis vectors x̃ for these two matrices for two-dimensional triangular
elements with the arrangement of degree of freedom eq. (24) as 2:

x̃ =

[
1 1 ... 1 1 0 0 ... 0 0
0 0 ... 0 0 1 1 ... 1 1

]
2×2(3p+3)

, (36)

where p denotes the approximation order. Entries 0 and 1 correspond to the dofs asso-
ciated to enriched and standard shape functions. With this null space, the first and last
rows, columns of matrices A and B are deleted by the deflation approach proposed in
[42]. Then, CI is estimated as the largest eigenvalue of the deflated eigenvalue problem.
Note that the deflated matrix A may remain singular, but this will not prevent one from
solving the determinate eigenvalue problem.

3.4. Evaluation of stabilization parameter: robust strategy

The choice of weighting averages and estimation strategy for the stabilization parameter
presented in the former section can unfortunately yield to overestimated values for CI ,
which may sometimes result in large condition number in the cases where large material
contrasts are involved, or when elements are cut with very small volume fractions. To
alleviate such numerical issues, the so-called γ-Nitsche or weighted Nitsche was proposed
by Annavarapu et al. [41]. This method was shown to be a robust for linear triangular

1Null space of bicubic B-splines in two dimensions is given as x̃ = [1, 1, 1 . . . ]1×16 in [42]
2The null space depends as well on the polynomial type. Hierarchical polynomials will lead to a different
expression compared to the one presented here for the Lagrange or Bernstein polynomials.
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and tetrahedral elements. Jiang et al. [42] further extended the approach to higher order
elements with help of two one-sided inequalities, such that in our case:∫

Γ∗
e

∂p̄

∂n

∂p

∂n
dS ≤ C1

∫
Ω−

e

∇p̄.∇p dΩ, (37a)∫
Γ∗
e

∂p̄

∂n

∂p

∂n
dS ≤ C2

∫
Ω+

e

∇p̄.∇p dΩ, (37b)

in which constants Ci are also obtained as the maximum eigenvalues of two generalized
eigenvalue problems associated to the above inequalities (with two matrices for each
side):

[A]− =

∫
Γ∗−
e

(∇Ni.n) . (∇Nj .n) dS, [A]+ =

∫
Γ∗+
e

(∇Ni.n) . (∇Nj .n) dS, (38a)

[B]− =

∫
Ω−

e

∇Ni.∇Nj dΩ, [B]+ =

∫
Ω+

e

∇Ni.∇Nj dΩ. (38b)

Let us stress that the procedure proposed in Jiang et al.[42] was developed using Cut-
FEM basis where the matrices originating from negative/positive sides are independent.
One can readily extract the non-zero terms in bases, leading to matrices [A]± and
[B]± each composed of one non-zero sub-matrix that only has one a priori known zero
eigenvalue. The deflation approach is then straightforward and easy to be performed.

Here, despite the use of a one-sided quadrature strategy3, the Heaviside enrichment
couples all the dofs on the interface (see figure fig. 3), so that the block nature of the
matrices is lost. The corresponding matrices are of size of (2× 3(p+1))× (2× 3(p+1))
for order p triangular elements. Such matrices have a null space of dimension three,
which leads to a worse indeterminate eigenvalue system than before. To remove this
type of singularity, a direct deflation could be conducted as with the previous strategy
by eliminating three columns and rows of the original matrices by finding properly the
associated null eigenvectors, respectively.

In order not to search for the null space basis for each matrix and not to perform the
deflation three times, we propose to decouple the matrices and reduce their dimensions
first. As we know that only half of the dofs would be involved in the one-sided matrix
if a Cut-FEM basis was considered, the decoupling procedure relies on a conversion of
basis from the Heaviside X-FEM to Cut-FEM. The relationship between these two bases
are revealed by eq. (24) with the transition matrix [T]. Therefore, when matrices A and
B integrated on each side are multiplied by the transition matrix T:

A∗± = TTA±T, (39a)

B∗± = TTB±T, (39b)

3Matrices [B]± and [A]± are integrated only on one side of the element.
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it yields that the decoupled matrices are in the form:

A∗+ =

[
A+ 0
0 0

]
, A∗− =

[
0 0
0 A−

]
, (40a)

B∗+ =

[
B+ 0
0 0

]
, B∗− =

[
0 0
0 B−

]
. (40b)

Now, the dimension reduced matrices are obtained only picking the non-zero block in
A∗±, B∗± of size 3(p + 1) × 3(p + 1) denoted by Ã∗± and B̃∗±. Then, the same
deflation procedure as the one presented in the former section can be applied to obtain
the eigenvalue constant Ci. Taking the effects of materials properties into account, we
give the weighting parameters:

γi =
1/(Ci|1/ρi|)

(1/(C1|1/ρ1|) + 1/(C2|1/ρ2|))
, (41)

with this weighting parameters, the lower bound of constant CImin is derived as:

CImin =
1

1/(C1|1/ρ1|) + 1/(C2|1/ρ2|))
, (42)

as seen that, this choice avoids a large stability parameter for the cases where |1/ρ1|/|1/ρ2| ≫
1 (large contrast) and C1/C2 ≫ 1 (small volume fraction). In fact, substituting weights
eq. (41) in the global system with matrices eq. (35) and applying the classical strategy,
will yield an equivalent minimum of CI as eq. (42).

4. Numerical examples

To verify the implementation of the proposed methods and their performances in the
X-FEM discretization, we conduct a series of numerical examples. The sound dissipation
media used in all problems are modelled by equivalent fluid with JCA parameters [3, 4].
The resulting material properties such as density ρ are complex-valued and frequency
dependence calculated from the formulas in C. Pressure jump model behaves as the
interface law to represent thin acoustic resistive layers with diverse resistivity σ and
thickness d. All the used porous materials with their properties are summed up in
table C.1. In the figures legends, the Nitsche-type represents formulation eq. (16) and
penalty-type is denoted for eq. (10). Without exception, the discrete systems for the
following examples are solved by a direct linear solver.

When the exact solution is available, the accuracy of the methods is assessed with
errors measured in L2 norm, we define a global relative error for pressure solution over
the entire domain:

εg
L2 =

(∫
Ω

∣∣∣pfXFE − pfexa

∣∣∣2dΩ)1/2

(∫
Ω

∣∣∣pfexa∣∣∣2dΩ)1/2
× 100%, (43)
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and a measurement of derivative at the interface, the flux is evaluated as well:

εf
L2 =

(∫
Γ∗

∣∣∣∇pfXFE.n−∇pfexa.n
∣∣∣2dS)1/2

(∫
Γ∗

∣∣∣∇pfexa.n
∣∣∣2dS)1/2

× 100%, (44)

where the pfexa represents the exact (analytical) pressure.
The mesh resolution is normally indicated by the number of dofs per wave-number

Dλ in the time-harmonic problems instead of mesh size h, such that:

Dλ =
2π

k∗

√
Ndof

area(Ω)
, (45)

where k∗ is the largest absolute value of wave numbers of two media. Ndof denotes the
total number of dofs and area(Ω) is the measure of the computational domain.

4.1. Planar interface

4.1.1. Equivalent 1D problem: impedance tube

We first begin with a simple impedance tube problem, which is a common configuration
to characterize porous materials. A normal unit velocity at 2, 000 Hz is prescribed on
the left end of the tube and a rigid wall is set at the right end as depicted in fig. 4. The
air and a plastic foam are set as the two media in the tube, between which a perfect
interface or an imperfect interface modelling a resistive film are both to be simulated.
As the wave propagates only in the horizontal direction, the waveform depends only on
x, so that a one-dimensional mesh Ω = [−1, 1] is sufficient to obtain the solution. The
interface is located at x = 0 and only cuts the central element of the mesh.

Figure 4: Illustration of the impedance tube problem

Note that only the Nitsche-type formulation is able to handle the perfect interface
condition case. When a thin woven film with flow resistivity σ = 775.103 Nsm−4

and thickness d = 1 mm is inserted at the interface, both Nitsche and penalty-type
formulations can account for the pressure drop caused by the film. Fig. 5 shows the real
part solution for two types of interfaces, numerical solutions are obtained with Dλ = 60.
An obvious and progressive attenuation of the pressure is observed for both solutions for
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Figure 5: Real part of pressure solution (in Pa) for (a) perfect interface problem (σd = 0)
and (b) imperfect interface σd = 775 N sm−3 at 2, 000 Hz.

x > 0 because of the plastic foam. All the numerical solutions are in great qualitative
agreement with the analytical ones.
In order to further quantify the numerical properties of the proposed method, the

convergence is to be examined. Before that, the sensitivity of the accuracy to variations
in the stability parameter βh needs to be identified for Nitsche-type formulation. This
allows us to corroborate the stability criterion that was derived from the coercivity
proof. We solve the same problems, conducting a set of numerical experiments through
sweeping the value of βh using the same discretization Dλ. Global errors are evaluated
in fig. 6 for perfect and imperfect interface. For both types of interface, a ’spike’ in the
error is observed, for values of βh very close to the constant CI (calculated from the
problem-independent generalized eigenvalue problem eq. (34)).The region around this
spike is deemed ’unstable’, as the solution error varies significantly. Then, there exists a
quite large range of βh where the error remains ’optimal’, which implies that the choice of
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(a)

(b)

Figure 6: Sensitivity of the relative error to the stability parameter βh in function λ for
(a) perfect interface and (b) imperfect interface (σd = 775 N sm−3).

the stability parameter is not very restrictive in regard to obtaining an accurate solution.
It is seen that 16CI , which is the lower bound of our stability condition obtained from
previous theoretical analysis, is slightly greater than βh at the ’spike’ and located within
the stable region. This result verifies our proof of stability, which requires βh ≥ 16CI .
It is noted that similar curves have also been reported in [54].
We notice that for perfect interface fig. 6(a), the error starts to increase beyond

βh ≃ 1013, which is because the large stability parameter begins to violate the whole
formulation. On the contrary, for the imperfect case fig. 6(b), a ’constant’ error is ob-
served over the entire range of tested βh. This is due to the definition of λ eq. (27) which
includes jω/σd that bounds the formulation when βh keeps increasing.

Now, we monitor the convergence of the proposed method for the perfect and im-
perfect interface cases with prescribed physical parameters. h-refinement is conducted
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with a base discretization where Dλ = 1 and split the mesh sequentially six times under
linear, quadratic, cubic and quartic approximations respectively. p-refinement is also
performed by increasing interpolation order until p = 10 with the base mesh. The sta-
bilization parameter is chosen as βh = 16CI , with CI calculated by the robust strategy
described in section 3.4. Fig. 7 shows convergence curves of the relative global error for
the two interface types. Optimal rates of convergence O(h−(p+1)) are reached for every
polynomial degree after a pre-asymptotic stage where the known rule of thumb (8− 10
dofs per wavelength for a linear element to obtain a reliable result) is also verified. More-
over, p-refinement, as expected, exhibits an exponential rate of convergence compared
to h-refined, as reported in [11] for the Helmholtz equation.

The conditioning of the general global stiffness matrix is also worth being assessed,
as it is associated with the stability and efficiency of the resolution procedure. The
variation of the condition number of the global matrix with respect to βh for different
σd is plotted in fig. 8. First, small ’spikes’ on the conditioning close to the constant CI

are observed, as well as in the global error for all σd. Second, all the condition numbers
tend to an asymptotic value when βh is large enough. In fact, these asymptotic condition
numbers correspond exactly to those of the penalty-type formulation, implying that the
conditioning of the proposed Nitsche-type is also bounded for imperfect interfaces.
In contrary to the global error shown previously, the condition number is more sensitive

to βh when σd is smaller. The stability parameter βh may not be chosen too large in order
to avoid ill-conditioned linear systems. We observe that the Nitsche-type formulation
offers a stable conditioning when the stability parameter is chosen near βh = 16CI . In
addition to the global error plot fig. 6, the lower bound of βh seems to be the best choice
for the stability parameter in order to obtain an ’optimal’ solution in terms of accuracy
and conditioning.
Finally, it is known that penalty methods may suffer from ill-conditioning and cannot

offer a converged solution when the penalization parameter becomes very large. This
issue drives us to investigate the behaviour of the proposed Nitsche-type formulation with
the optimal stability parameter for near-perfect interface cases. The convergence and
conditioning of the formulation under a h-refinement are examined for three gradually
decreasing σd in fig. 9. The curves for the penalty-type formulation are also depicted for
comparison.
The curves corresponding to the Nitsche-type formulations are all superimposed for

both convergence and condition number. Furthermore, optimal convergence rates are
preserved. Regarding the penalty-type results, optimal convergence is only maintained
for σd = 1.10−5 Nsm−3, and is completely degraded for σd = 1.10−15 Nsm−3 be-
yond certain Dλ. In addition, the penalty-type condition numbers are all larger than
the corresponding ones using the Nitsche-type formulation. In the literature, these poor
convergences are usually attributed to the ill-conditioning of the system [28]. We empha-
size that the condition numbers does not increase significantly here (and even decrease)
during the h-refinement (see fig. 9(b)). In addition, although these conditioning is much
higher, converged solutions should still be obtained when a direct solver is used. Hence,
the conditioning should not be the main reason leading for such a poor convergence of
the solution. It is more probably because under these pressure jump parameters, inter-
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face conditions are enforced too strictly to be able to cope with the other bulk terms in
the formulation when a very large penalization parameter is selected. We will revisit this
aspect in two-dimension meshed problems to verify this conclusion. Nevertheless, the
proposed Nitsche-type formulation shows excellent performances for any pressure jump
parameters.

4.1.2. Oblique incident wave problem

To validate the conclusions from the uni-dimensional problem presented in the previous
section and to account for the effects of mesh configuration, we consider herein a classical
two-dimensional benchmark as used in [55]. An oblique incident plane wave of unit
amplitude propagates in an infinite plane from air to a foam coated with a thin acoustic
layer at x = 0. The foam medium is modelled by JCA equivalent fluid once more,
and the pressure jump condition is prescribed at the interface to represent the thin
layer. The analytical solution for such a problem is obtained by solving reflection R and
transmission T with the interface condition in eq. (4), which is provided in D.
The computational domain Ω is a square of [−0.25, 0.25] × [0, 0.5] m2 discretized by

means of an unstructured triangular mesh, as illustrated in fig. 10(a). It is clear that
in such mesh, the interface intersects with elements arbitrarily, which allows us to test
the robustness of methods with respect to cut elements. Concerning the boundary
conditions, the exact velocity (Neumann) is prescribed on the four external boundaries.
Fig. 10(b) depicts the real part of the pressure field using such mesh, and solved by the
Nitsche-type X-FEM. An incident plane wave tilted by π/4 rads at 2, 000 Hz is modelled,
and an imperfect interface with σd = 775.103×1.10−3 Nsm−3 is considered. Aside from
the attenuation and drop of the pressure observed in 1D configuration, a change of
propagation direction is also observed at the interface due to the material heterogeneity.
For the proposed Nitsche-type formulation, the stability parameter has first to be com-

puted. To highlight the difference between the classical and robust strategies proposed
in section 3 when material heterogeneity 4 and small cuts are involved, we illustrate
in fig. 11 the element-wise stabilization parameter (βh = 16CI) along the interface, es-
timated by the two strategies and considering a cubic polynomial approximation. In
general, the classical strategy provides larger βh than the robust one. The element with
the smallest cut portion leads to the largest stability parameters (deep red in fig. 11(a)),
which is consistent with what was observed using the classical Nitsche method. By
contrast, the robust strategy averages the two constants Ci on each side with appro-
priate weightings, yielding a much smaller stability parameter (deep blue in fig. 11(b))
for the same element. In fact, the stability parameter can be controlled in a reasonable
range even when the interface is extremely close to the element boundary, while the
one evaluated by the classical strategy will explode, resulting in conditioning issue 5.
It is worth reminding that for Nitsche’s method, increasing the stability parameter by
one or two orders of magnitude (as observed here) does not lead to any incorrect or

4The density of air and considered foam are respectively |ρa| = 1.213 kgm3, |ρf | = 29.4 kgm3

5The evolution of constant CI against the relative position of the interface inside 1D elements is provided
in B for completeness
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non-converged solution, as discussed previously. However, for problems involving a large
contrast in the material properties (for instance a 1010 ratio as investigated in [42]),
classical Nitsche’s method will lead to deteriorated results. Although we are not in the
case of such large materials contrast, the robust strategy for computing the stability
parameter βh is employed, without exception, for all the following calculations to ob-
tain the ’optimal’ performance of the Nitsche-type formulation. We refer the interested
reader to [42] and [41] for in-depth studies on the influence of the interface location and
material contrast within Nitsche’s method.
The convergence is now analyzed: in addition to the global error over the domain,

the average flux across the two sides of the interface is also evaluated to assess the
local accuracy of the dual variable. For the sake of brevity, only the results for p = 3
are presented. Figs. 12(a) and 12(b) present the convergence curves for perfect and
imperfect interfaces with realistic film parameters (σd = 775 N sm−3). The Nitsche-
type formulation achieves an optimal rate regarding both global solution O(h−(p+1)) and
average interfacial flux O(h−p) for the two types of interface conditions. The penalty-type
formulation is not able to enforce the perfect interface condition, but exhibits a similar
convergence behaviour as the Nitsche-type for imperfect interface. As for the previous
numerical example, we compare the convergence behaviour of the two formulations for
near-perfect interfaces such when σd = 1.10−15 Nsm−3, shown in fig. 12(c). TheNitsche-
type formulation can still give an optimal convergence with an error level similar to the
two previous interface conditions. However, both global solution and interfacial flux fail
to converge when the penalty-type approach is used. These curves confirm the conclusions
drawn from the 1D configuration.
We now try to identify how does the Nitsche-type formulation behave with respect

to the interface parameters σd, and also explain the divergence of the solution with the
penalty-type formulation for small σd. The variation of solution accuracy and condition-
ing of the discrete system are thus evaluated with decreasing σd.

In order to focus on the solution at the interface, we define two additional error
indicators at the interface that are the local pressure error along the interface:

εlL2 =

(∫
Γ∗

∣∣∣pXFE − pref

∣∣∣2dS)1/2

(∫
Γ∗

∣∣∣pref ∣∣∣2dS)1/2
× 100%, (46)

and the local pressure jump error JpK:

εj
L2 =

(∫
Γ∗

∣∣∣JpKXFE − JpKref
∣∣∣2dS)1/2

. (47)

Note that the value of JpKref varies (decreases) with respect to σd. Therefore, in order to
avoid a large error indicator, the absolute error rather than relative error is calculated
for the pressure jump.
Fig. 13 plots the relative average pressure error, average interfacial flux error, absolute

pressure jump error and condition number computed in the asymptotic stage (fourth
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point in fig. 12) as a function of (σd)−1. The effects of the frequency are considered as
well in this study by taking a low 10 Hz and a medium 1, 000 Hz frequency excitation.
We recall that the frequency has an influence on the whole solution, as the properties of
the JCA model and the interface jump behaviour are frequency-dependent.
It can be observed that for all metrics the Nitsche-type formulation with the ’optimal’

stability parameter delivers, as expected, a stable trend over the entire range of interface
parameters. Moreover, it exhibits a marginally lower error level in a large range of
interface parameter compared to the penalty-type formulation for local pressure value
fig. 13(a) and the interfacial flux fig. 13(b), especially under the low frequency excitation.
Interestingly, the curves corresponding to the penalty case exhibit two distinct regimes

for these metrics. Regarding the local pressure and interfacial flux, it gives an accuracy
which is similar to the Nitsche-type formulation at the beginning until about (σd)−1 =
1010, where the condition numbers are slightly larger. Then, from (σd)−1 = 1010 to 1014,
the error increases brutally, while its conditioning is still in a reasonable range for which
the direct linear solver should be able to give an accurate solution. After (σd)−1 = 1014,
even if the conditioning keeps increasing with a linear rate, the error remains almost
constant. It is seen that there is no strong correlation between convergence loss and
conditioning for the penalty-type formulation.
When it comes to the error in the pressure jump condition, errors for the penalty-type

case continue to decrease with a linear rate after a short range of superimposition with
Nitsche-type until around (σd)−1 = 106 − 1010, and after that the error stays constant.
This phenomenon indicates that the physical parameters in the interface term of the
penalty-type formulation not only determine the value of pressure jump, but also work
as a penalization to enforce the interface condition. The larger the penalty parameter
is, the better the interface condition is enforced. However, this ’better’ imposition only
seek to enforce the pressure jump JpK at the interface, at the expense of the rest of
the physics. When σd is beyond a specific value (1010 here), the limit of accuracy for
the pressure jump is reached, and larger σd solely makes the elementary matrices along
the interface too stiff to represent the whole solution properly. Then, when (σd)−1

becomes sufficiently large, the interface integral takes control of the behaviour of the
whole formulation. This also explains the linear increase of the condition number in the
range of constant error in the pressure jump.
In summary, the proposed Nitsche-type formulation within X-FEM presents stability

in terms of accuracy and conditioning with respect to the interface parameters. In
addition, the prediction of the interfacial flux is more accurate than with the penalty-
type formulation. Although there exists a wide range of σd (under a fixed frequency),
where the penalty-type formulation shows a similar accuracy as the Nitsche’s one, it
should be noticed that this range might change with regard to frequency and material
properties. Therefore, in order to avoid unexpected results for some specific problem
setups, the Nitsche-type formulation is recommended.
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4.2. Curved interface: cylinder scattering problem

We now consider a two-dimensional cylinder scattering problem where a cylindrical
porous material made of a classical foam is surrounded by an infinite air media. At
the interface, a null-thickness thin layer is considered as well. This example provides
a more complicated scenario to assess the performance of the proposed methods. The
presence of curved interfaces requires more effort to represent the geometry, reducing the
influence of the geometrical error in the finite element approximation. The analytical
solution of such sound radiation in the free field involves complex-valued Hankel and
Bessel functions and is provided in D.
The computational domain is defined as Ω = [−0.25, 0.25]× [−0.25, 0.25] m2 meshed

with triangular elements. Exact velocities are prescribed as Neumann boundary condi-
tion on the outer boundaries. The scatterer profile (circle of radius 0.12 m at x = 0) is
described by a piece-wise linear level-set function. In order to recover the optimal rate
of convergence with the high-order approximation, such level-set is defined on a refined
geometrical mesh. Fig. 14(a) illustrates the problem set-up and the three times locally
refined mesh for the geometry of the circle. We recall that although the level-set is
defined on the refined mesh, the approximation of the solution is still performed on the
uniform coarse mesh. The detailed relationship between approximation and geometric
mesh size can be found in [50, 42]. Fig. 14(b) illustrates the solution using the Nitsche-
type X-FEM and the corresponding mesh. It corresponds to the propagation of a plane
wave in an infinite domain at 2, 000 Hz which interacts with the porous scatterer on
which a woven film (σd = 775 N sm−3) is attached. Both dissipation and discontinuity
of the pressure at the interface are successfully captured on this relatively coarse mesh
thanks to quartic elements.
Again, the convergence analysis is carried out within the proposed framework, and

compared to the results obtained by the penalty-type formulation. Fig. 15 plots the
convergence of the L2 norm of the relative global error and average interfacial error for
p = 3. For the parameters corresponding to a woven film at the interface in fig. 15(a),
the two formulations lead to identically optimal convergence rates for the two accuracy
indicators. These results also demonstrate that optimal convergence rates can be ob-
tained when the geometric error is mastered. As in the previous examples, near-perfect
interface conditions are also tested, as shown in fig. 15(b). Optimal convergences are still
obtained using the Nitsche-type formulation and maintain an error level which is similar
to the imperfect interface. Like for the planar interface, the penalty-type formulation is
not able to converge with these near-perfect interface parameters.

4.3. Application to car cavity problem

In this final example, we test the proposed method to predict a more realistic acoustic
field in a relatively larger domain Ω ∈ R2. The problem consists of a car cavity full of
air with a dimension of 2.67 m× 1.1 m and a driver seat made of porous XFM material
(eXtra Firm Mattress). The sound field is generated through imposing an arbitrary
normal velocity (∂p/∂n = 1) on the front windscreen. As the analytical solution does
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not exist for this problem, the problem is solved using an interface-fitted mesh that
serves as a reference. The geometry of the model and used meshes are depicted in
fig. 16. Fig. 16(a) displays that within interface-fitted FEM, a sufficient amount of
elements is necessary to conform to the boundary of the interface and describe the small
geometrical features (top of the seat). This is in stark contrast with the X-FEM where
the geometry of the seat is independent of the elements. The geometry is then defined
implicitly by a set of linear level-set functions (see fig. 16(b)). The mesh used for the
X-FEM has a comparable element size with respect to its conventional interface-fitted
counterpart. In order to avoid changing the mesh to obtain a converged solution, we
increase the polynomial degree p (p-refinement) for both methods.

(a)

(b)

Figure 17: Snapshots of the numerical solution (pressure in dB) for (a) interface-fitted
FEM with penalty-type formulation and (b) embedded interface X-FEM with
Nitsche-type formulation.

The effect of the thin porous layers under an excitation frequency of 1, 000 Hz is
first assessed. A high resistive foam (σ = 57.103 Nsm−4) of thickness d = 3 mm is
attached on the driver seat, which is accounted by the pressure jump model as an in-
terface condition. The solutions for a perfect interface (σd = 0) are also calculated for
the purpose of comparison. For the interface-fitted FEM, double nodes are created at
the interface to represent the discontinuity, and a penalty-type formulation is employed
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to impose the interface conditions weakly. For the interface-embedded X-FEM, both
penalty-type and Nitsche-type formulations proposed previously are used to enforce the
interface conditions. It is worth noticing that the penalty-type formulation cannot han-
dle the perfect interface exactly: the solution has to be approximated by near-perfect
parameters. Considering the magnitude of the matrix terms, which are almost around
0.1 to 1, σd = 1.10−15Nsm−3 is chosen to represent a value close to zero. This value of
σd is used for penalty-type in both interface-fitted FEM and interface embedded X-FEM
model to verify mutually if it is able to represent the perfect interface appropriately and
to give a converged solution.

Fig. 17 shows the sound pressure level (SPL) for the considered problem where the
thin porous layer attached on the seat. The sound absorption in the region of the seat
and distinct discontinuities at its contour are observed in the two figures. The two
different discretization methods are in a very good accordance. For completeness, we
provide in fig. 18 the evolution of the solution along a line in the middle of the cavity
(see the black dashed line in fig. 17). The three curves (reference solution, penalty-type
and Nitsche-type formulations) are superimposed in fig. 18(a). By comparing with the
solutions for a perfect interface (fig. 18(b)), the pressure drop at the interface is clearer
and a lower level of pressure in the seat is observed because of the coated thin layer.
On the other hand, interface-fitted FEM penalty-type formulation using the near-perfect
interface value of σd are in great agreement with X-FEM Nitsche-type formulation with
σd = 0, which validates the rationality of choosing such σd to represent perfect interfaces.
However, for the same value of σd, the penalty-type formulation within X-FEM differs
with the two other solutions, particularly in the vicinity of the porous seat. As discussed
previously, these gaps result from the degradation of the solution on the cut elements at
the interface when the penalty-type formulation applied for nearly perfect interfaces.
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Figure 18: Comparison of the solutions on the dashed line depicted in fig. 17. (a) in-
terface coated with a thin resistive foam (σd = 57.103 × 1.10−3) (b) Perfect
interface.
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Figure 19: Frequency Response Function (a) interface coated with a thin resistive foam
(σd = 57.103 × 1.10−3) (b) Perfect interface.

In many situations, the frequency response is of primary importance to examine acous-
tic systems. It is known that the material properties of porous materials (effective density
ρ and bulk compressibility K), the interface law (σd/ω) and the global solution are all
modified as variation of frequency in our case. Therefore, studying the solution against
the frequency allows us to evaluate the robustness of the proposed method with respect
to all these effects. The pressure level at the head position of the conductor (marked by
a red point at (1.17, 0.0045) in fig. 16) are assessed in the frequency range f ∈ [100, 750]
Hz. Again, the Frequency Response Function (FRF) is evaluated for both the coated
thin layer interface and the perfect interface (see Fig. 19).
Similar with the former case, the three approaches lead to the same behaviour for

a coated thin layer interface, while an obvious difference is observed for the perfect
interface case. The Nitsche-type formulation agrees almost perfectly with the reference
solution (interface-fitted FEM penalty) over the whole frequency range. On the contrary,
the penalty-type within X-FEM displays a non-negligible discrepancy, bigger than 3 dB
around 660 Hz especially.
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5. Conclusions and perspectives

In this work, we explored the weak enforcement of interface laws in in-homogeneous
dissipative acoustic problems, with particular emphasis on the framework of Heaviside
enriched eXtended Finite Element Method (X-FEM). A general pressure jump robin-type
interface condition is considered as an interface law so that it can cover the imperfect
and perfect interface cases. Porous materials with complex-valued properties are the
main dissipative media considered in this work.
We start by deriving a weak form of the Helmholtz equation that accounts for the

pressure jump condition directly, highlighting a structure similar to the penalty method.
Then, in order to handle prefect interface conditions in a common framework and to avoid
the potential numerical issues, a Nitsche-type weak formulation is established. The rela-
tionship and conversion between these two formulations are also revealed through choos-
ing particular values for the stability parameter. Then, we propose a discrete Nitsche-
type formulation with a clever definition of parameter λ on stability term, which extends
the ideas already presented in [47] and [44] to dissipative in-homogeneous Helmholtz
problems and relaxes meshing requirements by means of a high-order X-FEM approxi-
mation. The proof of stability for this formulation and its corresponding conditions are
provided. Two strategies to determine the stability parameter in the proposed compu-
tational framework are proposed, with a highlight of the differences compared to the
Cut-FEM method.
We present a set of numerical tests from 1D, 2D planar and curved interface problems

to a relatively larger scale realistic application. For the Nitsche-type formulation, the
results demonstrate that the choice of the stability parameters given from the theoret-
ical analysis is ’optimal’ in terms of accuracy and conditioning of the discrete system.
Compared to the penalty-type formulation, the Nitsche-type approach with the proposed
stability parameter is able to provide an equivalent or lower conditioning while main-
taining the same level of accuracy. The convergence tests illustrate that the Nitsche-type
formulation manages to achieve the ’optimal’ rates for both pressure error over the do-
main (O(h−(p+1))) and flux at the interface (O(h−p)) in L2 norm for perfect, imperfect
and nearly-imperfect interfaces (σd → 0). In contrast, we find that the penalty-type
formulation is unable to converge for the cases where σd → 0, and that it is not related
to the condition number of the discrete system.
In summary, the proposed discrete Nitsche-type formulation within the X-FEM is a

reliable method in the sense that it is always able to provide a stable and solvable re-
sult regardless of discretization, geometry, frequency and interface parameters. Such
robustness is a great advantage for parametric or optimization studies. In this paper,
dissipative media were considered as equivalent fluids governed by the Helmholtz equa-
tion. Future work is expected to extend these results to the two-phase Biot’s coupling
governing equations [1, 2] for dissipative vibro-acoustic problems, which will leads to a
fluid-solid interface. That would bring supplement challenge to prove the coercivity of
the formulation and to estimate the weighting and stability parameters.
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A. Stability proofs for the discrete Nitsche-type formulation

Proof[3.1] with the definition eq. (27), right inequality in eq. (30a) follows from:

|λ−1|2 =
∣∣∣∣ 1βh +

σd

jω

∣∣∣∣2 = (σd

ω

)2

+

(
1

βh

)2

≥ 1

β2
h

, (A.1)

then, and left inequality in eq. (30a) is bounded as:

|λ|−1 =

∣∣∣∣ 1βh +
σd

jω

∣∣∣∣ ≤ 1

βh
+

σd

ω
. (A.2)

Identity eq. (30b) is obtained directly from the definition of λ. Then, the left-hand
side in eq. (30c) is expressed as:
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λ,

(A.3)
and by the triangle inequality and proved inequality eq. (30a), leads to the bound
eq. (30c), that: ∣∣∣∣σdjω

(
1− λ

σd

jω

)∣∣∣∣ ≤ 1

βh
+

(
1

βh
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|λ| ≤ 2

βh
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The last inequality is given by the fact that σd is a real number (Re (λ) > 0, Im (λ) > 0)
and |Re (z)|+ |Im (z)| ≥ |z|,

Re (λ) + Im (λ)− 1

2
|λ| = |Re (λ)|+ |Im (λ)| − 1

2
|λ| ≥ 1

2
|λ|. (A.5)

Proof[3.4] choosing qh = p̄h as the conjugation in formulation eq. (28) yields:
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∫
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(A.6)
Let us combine real and imaginary part of all the expression. And applying inequality

Re (z) + Im (z) ≤
√
2|z| to the second, third and fourth terms in the above equations,
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we get an inequality as :
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(A.7)
and also with the lemma 3.2, we have

Re (aB) + Im (aB) ≥ |aB|, (A.8)

which leads to the following inequality:
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For the second term in the above equation with identity in eq. (30b), we get:
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then using inequalities 2ab ≤ 2a2 + b2/2, with a =
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second term is written as:
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and with inequality eq. (30a):
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31



Let us simplify the third term in eq. (A.9). The inequality eq. (30c) is first used,
leading third term become as:
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Substituting inequalities eq. (A.12) and eq. (A.13) into eq. (A.9), we find that:
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by the definition of aB with associated inequality for complex number |w − z| ≥ |w|− |z|
and lemma 3.3, we are able to rewrite the eq. (A.9):
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to make term associated to CI be positive, the condition:(
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and the last term in above equation replaced by the eq. (30d), we have finally:
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Using that 2|z| ≥ Re (z) + Im (z), and adding a multiple of ∥p∥ with Ck = 2: we finally
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obtain:
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from which the G̊arding equality holds for any βh ≥ 16CI

B. Influence of localization of the interface inside cut elements

This appendix provides complementary results on the influence of the interface position
with respect to cut-elements as elaborated in section 4.1.2. The experiment is conducted
within 1D elements (h ≃ 1cm) and approximation order p = 3. The material contrast
is chosen relatively small (|ρa| = 1.213 and |ρf | = 2.108) to focus on the influence
of the interface localization.The interface is moved from the middle of the element to
extremely close to the boundary. We plot the constant CI calculated from classical
and robust strategies as function of the relative interface position inside the element, as
shown in fig. B.1.
It is noticeable that constants CI obtained by the robust strategy are virtually not

impacted by the interface position with respect to the cut-element, while an large increase
is observed if it is evaluated using the classical strategy, especially when interface is
close to the element boundary. This result is consistent with observations with 2D
unstructured meshes and analysis in section 3.3, demonstrating the advantage of using
the robust strategy to evaluate the stability parameter.

C. Equivalent fluid model for dissipative materials

Table C.1: Porous materials parameters for bulk part

Parameters Plastic foam classical foam XFM

Porosity ϕ (−) 0.97 0.98 0.98
static flow resistivity σ (Nm−4s) 57× 103 15.5× 103 13.5× 103

Tortuosity α (−) 1.54 1.01 1.7
thermal characteristic length Λ′ (m) 73.8× 10−6 250× 10−6 160× 10−6

Viscous characteristic length Λ (m) 24.6× 10−6 100× 10−6 80× 10−6

We present one of equivalent fluid models, JCA model [3, 4] that is used in this paper
for modelling acoustic behaviour of porous materials. The complex-valued properties can
be calculated with the measured material parameters given in table C.1. The analytical
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expression of the effective density ρeq reads as:

ρeq =
ρaα∞
ϕ

[
1 +

σϕ

jωρaα∞

√
1 +

4jωα2
∞µρa

σ2Λ2ϕ2

]
, (C.1)

and the effective compressibility Keq:

Keq =
γP0

ϕ

[
γ − (γ − 1)

(
1 +

8µ

jωΛ′2Prρa

√
1 +

jωρaPrΛ′2

16µ

)]−1

, (C.2)

where ρa, ηa are the density of air and dynamic viscosity of the fluid. γ represents the
ratio of specific heats of air, P0 is the referred ambient pressure, Pr denotes the Prandtl
number. More detail can be referred in textbook [45].

D. Analytical solutions

We provide the analytical solutions for two plane wave benchmarks. The exact solution
of oblique plane wave propagation in a two-media infinite plane section 4.1.2 is given as:

pa = exp(−jkaxx− jkayy) +R exp(jkaxx− jkayy), (D.1a)

pf = T exp(−jkfxx− jkfyy), (D.1b)

with reflection and transmission coefficient R, T :

T = 2/(1 + ρakfx/(ρfkax) + σdkfx/(ρfω)), (D.2a)

R = 1− ρakfx/(ρfkax)T, (D.2b)

where kax, kay, kfx and kfy correspond to the directional components of wave number
for air and foam. ρa and ρf are the effective density of air and foam.

Regarding the cylinder scattering problem as in fig. 14, the pressure field under unit
amplitude incident is expressed with Hankel Hm and Bessel function Jm in polar coor-
dinate as:

pa = ρaω
2

(
J0(kar) + 2

∞∑
m=1

(−j)mJm(kar) cos(mθ) +
∞∑

m=0

RmHm(kar) cos(mθ)

)
(D.3a)

pf = ρfω
2

∞∑
m=0

Tm(−j)mJm(kfr) cos(mθ), (D.3b)

applying the interface conditions at r = R to obtain coefficients Rm and Tm, Thus, we
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have a linear system of 2× 2 to solve. The left-hand side matrix of the system are:

M1,1 = ρaHm(kaR) (D.4a)

M1,2 = −ρfJm(kfR)− σd

jω
kfJ

′
m(kfR) (D.4b)

M2,1 = kaH
′
m(kaR) (D.4c)

M2,2 = −kfJ
′
m(kfR), (D.4d)

and with right-hand side vector:

b1 = −2ρa(−j)mJm(kaR), (D.5a)

b2 = −2ka(−j)mJ′m(kaR), (D.5b)

where J′m and H′
m are the first order derivative of Bessel and Hankel functions, respec-

tively.
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(a)

(b)

Figure 7: L2 convergence of the Nitsche-type formulation for perfect and imperfect in-
terface (σd = 775 N sm−3) conditions.
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Figure 8: Sensitivity of the conditioning number w.r.t the stability parameter βh (p = 3)
for different film parameters σd.
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Figure 9: (a) L2 convergence and (b) conditioning of the Nitsche-type and penalty-type
formulations for different σd (polynomial order p = 3).
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(a)

Pressure drop

(b)

Figure 10: Oblique incident wave: (a) Problem set-up and (b) Example of solution ob-
tained by the proposed approach (real part, in Pa). One can observe a pres-
sure drop and a change in the direction of the wave propagation across the
interface.
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(a)

(b)

Figure 11: Evaluation of stability parameter βh by (a) classical strategy (γ = 0.5) and
(b) robust strategy (γ-Nitsche).
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(c)

Figure 12: Global error in the bulk and average interfacial flux for (a) perfect interface;
(b) imperfect interface (σd = 775N sm−3); (c) near-perfect interface (σd =
1.10−15Nsm−3).
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Figure 13: (a) Relative error on the pressure; (b) relative error on the interfacial flux (c)
absolute jump error; (d) condition number of global matrix with respect to
the variation of σd at 10 Hz and 1, 000 Hz.
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Figure 14: (a) Problem setup and mesh with refined geometric elements for a curved
interface; (b) Example of real part the pressure (in Pa) under excitation of
2, 000 Hz (p = 4).
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Figure 15: Global error in the bulk and average interfacial flux for (a) imperfect interface
(σd = 775N sm−3); (b) near-perfect interface (σd = 1.10−15Nsm−3).
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Figure 16: Problem setup and corresponding meshes (a) using interface-fitted FEM and
(b) embedded interface with X-FEM.
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Figure B.1: Influence of interface localization inside elements using two evaluation strate-
gies for proposed Nitsche formulation
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