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Abstract

Monte Carlo (MC) sampling is a popular method for estimating the statistics (e.g.
expectation and variance) of a random variable. Its slow convergence has led to the
emergence of advanced techniques to reduce the variance of the MC estimator for the
outputs of computationally expensive solvers. The control variates (CV) method cor-
rects the MC estimator with a term derived from auxiliary random variables that are
highly correlated with the original random variable. These auxiliary variables may
come from surrogate models. Such a surrogate-based CV strategy is extended here to
the multilevel Monte Carlo (MLMC) framework, which relies on a sequence of levels cor-
responding to numerical simulators with increasing accuracy and computational cost.
MLMC combines output samples obtained across levels, into a telescopic sum of differ-
ences between MC estimators for successive fidelities. In this paper, we introduce three
multilevel variance reduction strategies that rely on surrogate-based CV and MLMC.
MLCV is presented as an extension of CV where the correction terms devised from sur-
rogate models for simulators of different levels add up. MLMC-CV improves the MLMC
estimator by using a CV based on a surrogate of the correction term at each level. Fur-
ther variance reduction is achieved by using the surrogate-based CVs of all the levels in
the MLMC-MLCV strategy. Alternative solutions that reduce the subset of surrogates
used for the multilevel estimation are also introduced. The proposed methods are tested
on a test case from the literature consisting of a spectral discretization of an uncertain
1D heat equation, where the statistic of interest is the expected value of the integrated
temperature along the domain at a given time. The results are assessed in terms of the
accuracy and computational cost of the multilevel estimators, depending on whether the
construction of the surrogates, and the associated computational cost, precede the eval-
uation of the estimator. It was shown that when the lower fidelity outputs are strongly
correlated with the high-fidelity outputs, a significant variance reduction is obtained
when using surrogate models for the coarser levels only. It was also shown that taking
advantage of pre-existing surrogate models proves to be an even more efficient strategy.

Keywords: Multifidelity, multilevel Monte Carlo, control variates, surrogate models,
polynomial chaos, variance reduction.
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1 Introduction
In recent years, the propagation of uncertainties in numerical simulators has become an
essential step in the study of physical phenomena. Therefore, uncertainty quantification (UQ)
has emerged as an important element in scientific computing [50, 52]. For complex nonlinear
systems, the task of quantifying the effect of uncertainties on the simulator behaviour can
pose major challenges as closed-form solutions often do not exist. Sampling-based algorithms
are considered the default approach when it comes to UQ for complex nonlinear simulators.
The Monte Carlo (MC) sampling method is the most popular and flexible method in UQ.
Here, statistical information is extracted from a n-sample of simulator responses. Due to its
non-intrusive nature, MC is straightforward to implement. On the one hand, the convergence
of an MC statistic is independent of the dimension, but on the other hand, it is very slow,
namely at a rate of n−0.5. For computationally expensive simulators, the cost of MC is often
considered impractically high. In some cases, slight improvements can be obtained through
the use of importance sampling [27], latin hypercube sampling [35] or quasi-Monte Carlo
(QMC) [13].

Another well-known approach in UQ consists in replacing the simulator by a surrogate
model. Fast-to-evaluate surrogates can be used to approximate the high-fidelity model re-
sponse and therefore reduce drastically the computational cost of estimating statistics. Poly-
nomial chaos (PC) [34, 37], Gaussian process models [45], radial basis functions [41] and
(deep) neural networks [54] are commonly used surrogate models. The downside of the
surrogate-based approach is that it introduces approximation error, which causes biases in
the statistics estimators. Besides, this approximation error tends to increase in high dimen-
sion.

One recent MC sampling framework based on control variates (CV) [29, 31, 30, 33] has
been extensively developed and used. In a sampling-based CV strategy, one seeks to reduce
the variance of the MC estimator of a random variable, arising from the high-fidelity model,
by exploiting its correlation with an auxiliary random variable that arises from low-fidelity
models approximating the same input-output relationship. In classic CV theory, the mean
of the auxiliary random variable is assumed to be known. Unfortunately, in many cases such
an assumption is not valid. This creates the need to use another estimator for the auxiliary
random variable [24, 44, 43, 42, 39], which involves an additional computational cost. Re-
cently, the adoption of surrogate models as such auxiliary random variables, in particular PC
models, has been explored in [16, 56, 17, 25]. The benefits are twofold: (1) the prediction of
the surrogate models may be highly correlated with the output high-fidelity model, leading
to a reduced variance of the CV estimator as compared to the MC estimation; (2) certain
surrogate models provide exact statistics that are needed by the CV approach. Another
variance reduction technique, called the multilevel MC (MLMC) method [21, 10, 22], uses
a hierarchy of models. Originally devised for the estimation of expected values, MLMC has
since been extended to the estimation of other statistics, see, e.g., [4, 5] for the estimation
of variance and higher order central moments and [36] for the computation of Sobol’ indices.
Typically, multilevel methods are based on a sequence of levels which correspond to a hi-
erarchy of simulators with increasing accuracy and cost. From a practical standpoint, the
different levels often correspond to simulators with increasing mesh resolutions. This trans-
lates into a lower accuracy of the so-called coarse levels, whereas the finer levels correspond
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to accurate simulators. By construction, MLMC results in an unbiased estimator. It relies
on a telescopic sum of terms based on the differences between the successive simulators. It
debiases the MC estimator associated with the lowest-level simulator. Many other unbiased
multilevel estimators have been devised in recent years. The multi-index MC estimator [26]
is an extension of the MLMC estimator such that the telescoping sum idea is used in multi-
ple directions. In [23], the authors developed a variant of MLMC which uses QMC samples
instead of independent MC samples for each level. Multi-fidelity MC (MFMC) estimators
[19, 18] are another extension that is based on the CV approach. Recently, the authors in
[48, 47] took a different approach by formulating a multilevel estimator as the result of a
linear regression problem.

In this work, we combine multilevel sampling with surrogate-based CV to define new es-
timators with the advantages of both. These novel multifidelity variance reduction strategies
allow us to quantify efficiently the output uncertainties of simulators with limited computa-
tional budgets. A first strategy, named multilevel control variates (MLCV), uses CVs based
on surrogate models of simulators corresponding to different levels. Although this strategy
does not build on the MLMC approach specifically, it still exploits multilevel information
through the surrogates constructed at different levels. The second strategy, named multilevel
Monte Carlo with control variates (MLMC-MLCV), utilizes CV in an information fusion
framework to exploit synergies between the flexible MLMC sampling and the correlation
shared between the high- and low-fidelity components. The numerical results show that the
unbiased MLMC-MLCV estimators can converge faster than the existing estimators.

The paper is organized as follows. We introduce notations and the necessary mathematical
background in section 2. In section 3, we briefly discuss the MLMC estimator and then define
our proposed MLMC-MLCV estimator that combines multilevel sampling and surrogate-
based CV. In section 4, we conduct numerical experiments to support the theoretical results.
Section 5 proposes concluding remarks.

2 Background
In this section, we summarize the important results of statistical estimation using control
variates and we show how surrogate models can be leveraged in this setting.

2.1 Notation

We first introduce a few notations. Throughout the rest of this paper, the high-fidelity
numerical model is abstractly represented by the deterministic mapping

f : Ξ −→ R
x 7−→ f(x),

(1)

where x :=
(
x1 · · · xd

)ᵀ is a vector of d uncertain input parameters evolving in a mea-
surable space denoted by Ξ = Ξ1 × · · · × Ξd, with Ξi ⊂ R. Following a probabilistic
approach, the d inputs are assumed to be continuous random variables X1, . . . , Xd, de-
fined on a probability space (Ω,F ,P), with known probability density functions (PDFs)
pX1 , . . . , pXd

. They are assumed to be independent, so that the PDF of the random vector
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X :=
(
X1 · · · Xd

)ᵀ
: Ω→ Ξ is pX =

∏d
i=1 pXi

. In this work, we seek an accurate estimator
of some statistic θ of the output random variable Y := f(X) : Ω→ R, e.g., its expected value
(θ = E[Y ]) or variance (θ = V[Y ]), at a reasonable computational cost C.

2.2 Crude Monte Carlo

In practice, the MC estimator θ̂ of the statistic θ is based on n observations Y (1), . . . , Y (n)

defined as Y (i) = f(X(i)) where X = {X(1), . . . ,X(n)} is a n-sample of X, that is, a collection
of independent and identically distributed random variables with the same distribution as
X. For instance, the sample mean and (unbiased) sample variance estimators,

Ê[Y ] = n−1

n∑
i=1

Y (i) and V̂ [Y ] = (n− 1)−1

n∑
i=1

(Y (i) − Ê[Y ])2 (2)

are MC estimators of the expectation and variance of Y , respectively. It is well known that
these estimators are unbiased, that is, E[θ̂] = θ, so that the mean square error (MSE) of θ̂
reduces to the variance of the estimator:

MSE(θ̂, θ) := E[(θ̂ − θ)2] = V[θ̂] + (E[θ̂]− θ)2 = V[θ̂]. (3)

The convergence of these MC estimators is known to be slow, so that variance reduction
techniques are needed when dealing with computationally expensive simulators.

2.3 Control variates

In this section, we present a well-known variance reduction technique using auxiliary random
variables Z1, . . . , ZM as control variates. We denote by τ1, . . . , τM the statistics of the control
variates that correspond to the statistic θ that we seek to estimate. These control statistics
τ1, . . . , τM are assumed to be known exactly. Then, the CV estimator is defined as

θ̂CV(α) = θ̂ −αᵀ(τ̂ − τ ), (4)

where θ̂ and τ̂ =
(
τ̂1 · · · τ̂M

)ᵀ are unbiased MC estimators of θ and τ =
(
τ1 · · · τM

)ᵀ,
respectively, based on a common input n-sample X , and where α ∈ RM is the control
parameter. We note that the CV estimator is unbiased by construction, regardless of the
value of the parameter α, and that its variance reads

V[θ̂CV(α)] = V[θ̂] + αᵀΣα− 2αᵀc. (5)

with c := C[τ̂ , θ̂] ∈ RM and Σ := C[τ̂ ] ∈ RM×M . To fully take advantage of the control
variates, the parameter α is selected so as to minimize the variance (5) of the CV estimator.
Assuming that the covariance matrix Σ is non-singular (and thus symmetric positive definite,
SPD), the first- and second-order optimality conditions of the minimization problem imply
that there exists a unique optimal solution,

α∗ = Σ−1c. (6)
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The optimal CV estimator is thus θ̂CV(α∗), and its variance is given by

V[θ̂CV(α∗)] = (1−R2)V[θ̂], (7)

where R2 = V[θ̂]−1cᵀΣ−1c is nonnegative, as Σ−1 is SPD. Denoting by D = Diag(Σ) ∈
RM×M the diagonal matrix consisting of the diagonal of Σ, it can be shown further that
R2 = rᵀR−1r, where r = (V[θ̂]D)−1/2c is the vector of the Pearson correlation coefficients
between θ̂ and τ̂ , and R = D−1/2ΣD−1/2 is the correlation matrix of τ̂ . Thus, R2 ∈ [0, 1]
corresponds to the squared coefficient of multiple correlation between θ̂ and the elements
of τ̂ [1, section 2.5.2]. Consequently, 0 ≤ V[θ̂CV(α∗)] ≤ V[θ̂], and we refer to R2 as the
variance reduction factor of the CV estimator. This shows that the variance of the optimal
CV estimator θ̂CV(α∗) is always reduced (or, rigorously speaking, not increased) compared
to the MC estimator θ̂. Furthermore, the higher R2, the greater the reduction in variance.

Remark 1. The requirement that Σ be non-singular is a reasonable one. Indeed, let us
suppose that Σ is singular. Then, because Σ is positive semi-definite by construction, this
implies that there exists a nonzero vector η ∈ RM \ {0} such that ηᵀΣη = V[ηᵀτ̂ ] = 0,
indicating that any one element of τ̂ can be expressed as an affine function of the others. As
such, it does not bring any additional information to the CV estimator, so that at least one
of the control variates can simply be discarded.

A desirable property of the CV estimator is that increasing the number of control variates
improves the CV estimator. Specifically, under mild assumptions, proposition 1 states that
the variance of the CV estimator is reduced (or, rigorously speaking, not increased) when
adding a new control variate.

Proposition 1. Let τ̂+ :=
[
τ̂ ᵀ τ̂M+1

]ᵀ, τ+ :=
[
τ ᵀ τM+1

]ᵀ, and define c+ = C[τ̂+, θ̂], and
Σ+ = C[τ̂+]. We further assume that Σ and Σ+ are non-singular and that V[τ̂M+1] > 0. Let
θ̂CV(α∗

+) := θ̂ − α∗+
ᵀ(τ̂+ − τ+), with α∗+ = Σ−1

+ c+, be the optimal CV estimator based on
M + 1 control variates, and let R2

+ denote its variance reduction factor. Then R2
+ ≥ R2.

Proof. We have R2
+ = rᵀ+R−1

+ r+, where r+ =
[
rᵀ γ

]ᵀ and R+ =

[
R u
uᵀ 1

]
, and where

u = (V[τ̂M+1]D)−1/2C[τ̂ , τ̂M+1] and γ = (V[θ̂]V[τ̂M+1])−1/2C[θ̂, τ̂M+1]. Note that R and R+

are both non-singular, because so are Σ and Σ+. The augmented matrix R+ may be inverted
by block using the Schur complement s = 1 − uᵀR−1u 6= 0 of the (1,1)-block R. It follows
that R2

+ = R2 + s−1(γ − uᵀR−1r)2. Now, because R+ is SPD (it is positive semidefinite
by construction and non-singular by assumption), xᵀR+x > 0 for any choice of x 6= 0.
The particular choice of x =

[
−uᵀR−1 1

]ᵀ implies that s > 0, which in turn implies that
R2

+ ≥ R2.

Corollary 1. Under the assumptions of proposition 1, the equality R2
+ = R2 holds if and

only if γ = uᵀR−1r.

Proof. Straightforward from R2
+ = R2 + s−1(γ − uᵀR−1r)2 with s > 0.

For the CV estimation of specific statistics, the expressions of c and Σ may be further
reduced to involve statistics on Y and Z :=

(
Z1 · · · ZM

)ᵀ directly. These expressions, as
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well as the consequences on eqs. (6) and (7), are given in appendix A for the CV estimators
of E[Y ] and V[Y ].

It should be noted at this point that, in practice, the optimal parameter α∗ needs to
be approximated. Specifically, the statistics involved in c and Σ need to be estimated.
This can be done either using the same sample X as for the CV estimator itself, or using
an independent, pilot sample X ′. The former strategy introduces a bias in the resulting
CV estimator, while the latter guarantees unbiasedness but requires additional high-fidelity
simulator evaluations, so that the former strategy is generally preferred. Besides, statistical
remedies such as jackknifing, splitting or bootstrapping have been proposed to reduce or
eliminate the bias introduced by the former strategy [38]. In both strategies, however, neither
the theoretical variance reduction given by eq. (7) nor proposition 1 hold anymore.

Remark 2. In some instances, because it only involves the control variates, Σ may be known
exactly (see remark 3 for an example in a multilevel setting involving PC-based control vari-
ates) or estimated accurately using many independent samples at negligible cost. Unfortu-
nately, this is not the case for c, which involves the output Y = f(X) of the high-fidelity
simulator f .

2.4 Surrogate-based control variates

The efficiency of the CV approach relies on the strong correlation between Y = f(X) and the
control variates Z. In a multifidelity framework, the control variates correspond to the output
of low-fidelity versions of f , typically in the form of simulators with simplified physics and/or
coarser discretization. In many applications, the exact statistical measures τ of such control
variates Z may not be available. One way to circumvent this limitation is to use additional
samples to also estimate τ . This type of estimators led to an approximate CV class of
methods [24, 39, 43], where different model management and sample allocation strategies
may be used to find a suitable trade-off between the additional cost of sampling Z and the
resulting variance reduction. Recently, an optimal strategy was proposed [48, 49, 47] leading
to the so-called multilevel best linear unbiased estimator (MLBLUE), as well as a unifying
framework for a large class of multilevel and multifidelity estimators.

In this paper, we focus on the case where the low-fidelity models correspond to surrogate
models of the high-fidelity simulator f . The main advantage is that the statistics τ may,
in some instances, be directly available, or at least may be estimated arbitrarily accurately
at negligible cost, so that the original CV approach described in section 2.3 can be used.
Using surrogate models in a CV strategy has been explored previously in [16, 56], where the
available computational budget is allocated both to the construction of the surrogates and
to the actual CV estimations. In [56], the authors introduce an approach that optimally
balances the computational effort needed to select the optimal degree of the polynomial
chaos (PC) expansion used in a stochastic Galerkin CV approach. In our work, we focus on
the situation in which the surrogate models are available, so that we do not consider any
optimization strategy for the construction of the surrogates. Nevertheless, for the fairness of
comparison, we still report the pre-processing cost of contructing the surrogate models.

We now briefly describe three different surrogate models commonly used in a UQ frame-
work, and discuss the availability of statistics of their output.
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2.4.1 Gaussian process modelling

We assume that the simulator f is a realization of a Gaussian process (GP) F indexed by x
and defined by its mean function mF and covariance kernel kF ,

E[F (x)] = mF (x), (8)
C[F (x), F (x′)] = kF (x,x′), ∀x,x′ ∈ Ξ. (9)

In practice, one can parametrize the forms of mF and kF . For example, in the widely used
ordinary GP method, a stationary GP is assumed. In this case, mF is set as a constant
mF (x) = m. More importantly, it is assumed that kF (x,x′) = k̄F (x − x′), and kF (x,x) =
k̄F (0) = σ2 is a constant. Popular forms of kernels include polynomial, exponential, Gaussian,
and Matérn functions. For example, the Gaussian kernel can be written as kF (x,x′) =

σ2 exp(−1
2
‖x− x′‖2

h), where the weighted norm is defined as ‖x− x′‖h =
(∑d

i=1
(xi−x′i)2

h2i

)1/2

where h1, . . . , hd are correlation lengths. The hyperparameters σ and hi can be obtained
by maximum likelihood. Then, given n observations F =

(
f(x(1)) · · · f(x(n))

)ᵀ of F at
X =

(
x(1) · · · x(n)

)ᵀ, the posterior F̃ of F can be defined as

F̃ = [F | F (X ) = F ], (10)

whose expectation and covariance are given by

mF̃ (x) = E[F̃ (x)] = mF (x) + kF (x,X )ᵀkF (X ,X )−1(F −mF (X )), (11)

kF̃ (x,x′) = C[F̃ (x), F̃ (x′)] = kF (x,x′)− kF (x,X )ᵀkF (X ,X )−1kF (X ,x′). (12)

Thereafter, the high-fidelity model f at x will be approximated by the conditional expecta-
tion,

gGP(x) = mF̃ (x). (13)

Thus, the expectation and variance of gGP(X) are defined as

E[gGP(X)] =

∫
Ξ

mF̃ (x)pX(x) dx, (14)

V[gGP(X)] =

∫
Ξ

(mF̃ (x)− E[gGP(X)])2pX(x) dx. (15)

These two statistics can be approximated empirically by taking a large sample of X, as
the GP model is inexpensive. Analytical formulas exist for some pairs of distributions and
covariance functions (see [8, Table 1] and [28, 15]).

2.4.2 Taylor polynomials

We assume that the numerical simulator f is infinitely differentiable and that the moments of
X are finite. Under this assumption, it is possible to expand the original simulator f around
the input’s expected value µX := E[X] as the infinite polynomial series according to Taylor’s
theorem,

f(X) = gT∞(X) =
∑
|β|≤p

(X− µX)β

β!
Dβf(µX), (16)
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where β ∈ Nd, |β| =
∑d

i=1 βi, β! =
∏d

i=1 βi!, x
β =

∏d
i=1 x

βi
i and Dβf =

∂|β|f

∂β1x1 · · · ∂βdxd
.

Thus, the function f may be approximated by the first- and second-order Taylor polynomials,

gT1(X) = f(µX) + Jf (µX)(X− µX), (17)

gT2(X) = f(µX) + Jf (µX)(X− µX) +
1

2
(X− µX)ᵀHf (µX)(X− µX), (18)

where Jf (µX) = ∇f (µX)ᵀ ∈ R1×d and Hf (µX) ∈ Rd×d are the Jacobian and Hessian matrices
of f at µX, respectively. In practical computations, the derivatives may be approximated by
numerical differentiation if they are not provided. The expectation and variance of gT1(X)
and gT2(X) are then defined as

E[gT1(X)] = f(µX), (19)
V[gT1(X)] = Jf (µX)�2σ2

X, (20)

E[gT2(X)] = f(µX) +
1

2
Tr(Hf (µX)Σ2

X), (21)

V[gT2(X)] = Tr(Jf (µX)ᵀJf (µX)Σ2
X) +

1

2
Tr(Hf (µX)�2σ2

X(σ2
X)ᵀ), (22)

where for any matrix A, A�2 denotes the element-wise square of A, Tr(A) is the trace of A,
σ2

X =
[
σ2
X1
· · · σ2

Xd

]ᵀ ∈ Rd is the element-wise variance of X, and Σ2
X = Diag(σ2

X) ∈ Rd×d.

2.4.3 Polynomial chaos expansion

We consider the truncated polynomial chaos (PC) expansion of f(X) [55, 9, 20, 32],

f(X) ' gPCP (X) =
P∑
k=0

gkΨk(X), (23)

where the coefficients gk are real scalars and Ψk are orthonormal multivariate polynomials:

∀i, j ≥ 0, 〈Ψi,Ψj〉pX :=

∫
Ξ

Ψi(x)Ψj(x)pX(x) dx = E[Ψi(X)Ψj(X)] = δij, (24)

where δij denotes the Kronecker delta. The coefficients gk may be approximated using non-
intrusive techniques such as non-intrusive (pseudo)spectral projection [46, 12, 11], regres-
sion [3, 51, 6, 7], interpolation [2, 40], or from intrusive approaches such as the stochastic
Galerkin method [20, 32]. Assuming Ψ0 ≡ 1, the expectation and variance of gPCP (X) are
then given by

E
[
gPCP (X)

]
= g0 and V

[
gPCP (X)

]
=

P∑
k=1

g2
k. (25)

3 Multilevel estimators
In this section, we present so-called multilevel statistical estimation techniques based on
a sequence of simulators (f`)

L
`=0, with increasing accuracy and computational cost, where
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fL ≡ f denotes the high-fidelity numerical simulator. The levels are ordered from the coarsest
(` = 0) to the finest (` = L). We denote by Y` the random variable Y` = f`(X) and θ` the
statistic of f`(X) increasingly close to θL ≡ θ.

3.1 Multilevel Monte Carlo

The statistic θL can be expressed as the telescoping sum

θL =
L∑
`=0

T`, (26)

where T` = θ` − θ`−1, and, by convention, θ−1 := 0. The MLMC estimator θ̂MLMC
L of θL is

then defined as [21, 22, 53]

θ̂MLMC =
L∑
`=0

T̂
(`)
` , (27)

where, at each level `, T̂ (`)
` is an unbiased MC estimator of T`, based on an input sample

X (`) = {X(`,i)}n`
i=1 such that the members of X (`) and X (`′) are mutually independent for

` 6= `′. In many instances, T̂ (`)
` is actually defined as T̂ (`)

` = θ̂
(`)
` − θ̂

(`)
`−1, where θ̂

(`)
k denotes the

unbiased MC estimator of θk based on the simulator fk using the n`-sample X (`).
For example, the MLMC estimator ÊMLMC[Y ] of the expectation E[Y ] is given by

ÊMLMC[Y ] = Ê(0)[Y0] +
L∑
`=1

Ê(`)[Y`]− Ê(`)[Y`−1], (28)

where Ê(`)[Yk] = n−1
`

∑n`

i=1 fk(X
(`,i)), with k ∈ {`, `− 1}. We stress that the correction terms

at each level ` are computed from the same input sample X (`), but using two successive
simulators, f` and f`−1. Similarly, the MLMC estimator V̂ MLMC[Y ] of the variance V[Y ] is
defined as [4]

V̂ MLMC[Y ] = V̂ (0)[Y0] +
L∑
`=1

V̂ (`)[Y`]− V̂ (`)[Y`−1], (29)

where V̂ (`)[Yk] = n`

n`−1
(Ê(`)[Y 2

k ]−Ê(`)[Yk]
2) is the single-level unbiased MC variance estimator.

Owing to the independence of the estimators T̂ (`)
` , the variance of the MLMC estimator is

V[θ̂MLMC] =
L∑
`=0

V[T̂
(`)
` ]. (30)

In practice, the MLMC method relies on the allocation of the total (expected) computa-
tional cost of the MLMC estimator across the different levels, with

cost(θ̂MLMC) =
L∑
`=0

n`(C` + C`−1), (31)
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where C` is the (expected) cost of one evaluation of the simulator f`, with C−1 := 0 by
convention. Thus, a key aspect is played by the choice of the number of samples n` allocated
to each level `. The goal is to find the sample sizes n0, . . . , nL that minimize the variance
of the estimator V[θ̂MLMC] given a computational budget C. Thus, the sample allocation
problem reads

minimize
n0,...,nL∈N∗

V[θ̂MLMC]

subject to cost(θ̂MLMC) = C.
(32)

This minimization problem has a unique solution which can be computed analytically (see,
e.g., [21, 10, 36]). In practice, V[θ̂MLMC] is not known, and we instead rely on the assumption
that V[T̂

(`)
` ] . n−1

` V`, with V` independent of n` [53, 36]. This is a reasonable assumption that
holds for the MLMC estimation of the expectation, variance and covariance [36, Table 1].
Note that, for the estimation of the expectation, we have V[T̂

(`)
` ] = n−1

` V`, with V` = V[Y` −
Y`−1] and Y−1 ≡ 0. The sample allocation problem eq. (32) is then replaced with

minimize
n0,...,nL∈N∗

L∑
`=0

n−1
` V`

subject to cost(θ̂MLMC) = C,

(33)

which is equivalent for the expectation, and an approximation for other statistics.

3.2 Multilevel surrogate-based control variate strategies

In this section, we introduce various surrogate-based control variate strategies in a multilevel
framework where a hierarchy of simulators (f`)

L
`=0 is available. These strategies rely on using

the random variables (g`(X))L`=0 as control variates, where g` is a surrogate model of the
simulator f`.

3.2.1 Multilevel control variates (MLCV)

The first strategy, referred to as multilevel control variates and hereafter abbreviated MLCV,
consists of using the surrogate models at all levels to build the control variates in eq. (4).
Thus, τ` corresponds to the statistical measure of the random variable Z` = g`(X), and τ̂` to
its unbiased MC estimator. For instance, the MLCV estimator of the expectation based on
an nL-sample X (L) = {X(1), . . . ,X(nL)} reads

ÊMLCV[Y ](α) = Ê(L)[YL]−
L∑
`=0

α`

(
Ê(L)[Z`]− µZ`

)
, (34)

where Ê(L)[YL] = n−1
L

∑nL

i=1 fL(X(i)), Ê(L)[Z`] = n−1
L

∑nL

i=1 g`(X
(i)), and µZ`

= E[g`(X)]. Note
that this approach does not build on the MLMC methodology described in section 3.1, but
still exploits multilevel information through the surrogates constructed at different levels.
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3.2.2 Multilevel Monte Carlo with control variates (MLMC-CV)

The second strategy consists of improving the MLMC estimator eq. (27) using the surrogate-
based control variates Z0, . . . , ZL. Specifically, the MLMC-CV estimator improves the MC
estimation of each of the correction terms of the MLMC estimator by using a surrogate model
of the corresponding correction term as a control variate. Note that the MLMF approach
proposed in [18, 19] is based on a similar strategy, using arbitrary low-fidelity models at level
in an approximate CV setting. The MLMC-CV estimator reads

θ̂MLMC-CV(α1, . . . , αL) =
L∑
`=0

T̂CV
` (α`), (35)

where T̂CV
` (α`) is the CV estimator of the multilevel correction term T` (cf. eq. (26)),

T̂CV
` (α`) = T̂

(`)
` − α`(Û

(`)
` − U`), (36)

with Û (`)
k an unbiased MC estimator of the control variate statistic Uk = τk − τk−1, based on

the same input sample X (`) as T̂ (`)
` , again with members of X (`) and X (`′) being independent

for ` 6= `′. Note that, in eq. (36), because a single control variate is used at each level, the
definition of Û (`)

k is used in the specific case where k = `. The more general definition when k
and ` are not necessarily equal will be useful later in section 3.2.3, where we consider multiple
control variates per level. In practice, Û (`)

k may be defined as Û (`)
k = τ̂

(`)
k − τ̂

(`)
k−1, where τ̂

(`)
k is

an unbiased estimator of τk using the n`-sample X (`).
The optimal value α∗` for α` is obtained individually for each ` = 0, . . . , L as the optimal

(single) CV parameter for T̂CV
` (α`),

α∗` =
C[T̂

(`)
` , Û

(`)
` ]

V[Û
(`)
` ]

, (37)

and the resulting variance of the control variate estimator of the correction is

V[T̂CV
` (α∗`)] = (1− ρ2

`)V[T̂
(`)
` ], with ρ` =

C[T̂
(`)
` , Û

(`)
` ]

V[T̂
(`)
` ]1/2V[Û

(`)
` ]1/2

∈ [−1, 1]. (38)

The correction estimators (T̂CV
` )L`=0 being mutually independent, the variance of the optimal

MLMC-CV estimator is

V[θ̂MLMC-CV(α∗0, . . . , α
∗
L)] =

L∑
`=0

V[T̂CV
` (α∗`)] =

L∑
`=0

(1− ρ2
`)V[T̂

(`)
` ] ≤

L∑
`=0

V[T̂
(`)
` ], (39)

indicating that the variance of the MLMC-CV estimator is smaller (as long as ρ2
` > 0) than

that of the MLMC estimator; see eq. (30). We remark that the variance reduction depends
on the (squared) correlation between T̂ (`)

` and Û (`)
` , which, in turn, typically relates to some

measure of similarity between high-fidelity corrections Y` − Y`−1 and the corresponding CV
corrections (see appendix A for the expectation and variance estimators in a single-level
setting).
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In our surrogate-based approach, we may define control variates as Z` = g`(X), where
g` is a surrogate of f`, so that τ` and τ`−1 could be estimated using samples of Z` and
Z`−1, respectively. It is then crucial to construct the surrogates such that their successive
differences g`−g`−1 are good approximations of f`−f`−1, to ensure a high similarity between
Y` − Y`−1 and Z` − Z`−1. However, constructing g` as a surrogate of f` does not give any
guarantee on the quality of g` − g`−1 as a surrogate of f` − f`−1. Instead, in addition to the
surrogates models g` of f`, we construct surrogate models h` of the differences f`− f`−1, and
we define auxiliary surrogate models g̃`−1 = g`−h`, for ` = 1, . . . , L. On each level `, we then
use samples of Z` = g`(X) and Z̃`−1 = g̃`−1(X) for the estimation of τ` and τ`−1, respectively.
As a result, the variance reduction now depends on the similarity between Y` − Y`−1 and
W` := Z` − Z̃`−1 = g`(X)− g̃`−1(X) = h`(X), where h` has been constructed to ensure such
a similarity. Specifically, for the expectation, the MLMC-CV estimator reads

ÊMLMC-CV[Y ](α0, . . . , αL) =
L∑
`=0

(
Ê(`)[Y`]− Ê(`)[Y`−1]

)
− α`

(
Ê(`)[Z`]− Ê(`)[Z̃`−1]− (µZ`

− µZ̃`−1
)
)
, (40)

with optimal values of α` given by (see appendix A.1, with M = 1)

α∗` =
C[Y` − Y`−1,W`]

V[Z` − Z`−1]
, ∀` = 0, . . . , L, (41)

resulting in level-dependent reduction factors 1− ρ2
` , where

ρ2
` =

C[Y` − Y`−1,W`]
2

V[Y` − Y`−1]V[W`]
(42)

is the squared correlation coefficient between Y` − Y`−1 and W` = h`(X). It should be noted
that, because of the linearity of the expectation operator and its MC estimator, the use of g̃`−1

is superfluous. Indeed, we may directly define the MLMC-CV estimator of the expectation
as

ÊMLMC-CV[Y ](α0, . . . , αL) =
L∑
`=0

(Ê(`)[Y`]− Ê(`)[Y`−1])− α`(Ê(`)[W`]− µW`
), (43)

with µW`
= E[W`]. For the variance, the MLMC-CV estimator reads

V̂ MLMC-CV[Y ](α0, . . . , αL) =
L∑
`=0

(
V̂ (`)[Y`]− V̂ (`)[Y`−1]

)
− α`

(
V̂ (`)[Z`]− V̂ (`)[Z̃`−1]− (σ2

Z`
− σ2

Z̃`−1
)
)
, (44)

with σ2
Z`

= V[Z`] and σ2
Z̃`−1

= V[Z̃`−1]. The resulting level-dependent reduction factors are
then related to the correlation between (Y` − Y`−1 − E[Y` − Y`−1])2 and (h`(X)− E[h`(X)])2

(see appendix A.2, with M = 1). Further details on the construction of h` will be given in
section 4.
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3.2.3 Multilevel Monte Carlo with multilevel control variates (MLMC-MLCV)

We now propose to further improve the MLMC-CV estimator eq. (35) by combining MLMC
with the MLCV approach described in section 3.2.1, resulting in the MLMC-MLCV method.
The approach consists in using, at each level `, the surrogate-based control variates of all the
levels `′ = 0, . . . , L, rather than only using those of level `, as was previously done with the
MLMC-CV approach.

The MLMC-MLCV estimator then reads

θ̂MLMC-MLCV(α0, . . . ,αL) =
L∑
`=0

T̂MLCV
` (α`), (45)

where α` denotes the CV parameter at level `, and T̂MLCV
` (α`) is the MLCV estimator of T`,

T̂MLCV
` (α`) = T̂

(`)
` −αᵀ

` (Û
(`)
` −U`), (46)

with

U0 = (τk)
L
k=0 Û

(0)
0 = (τ̂

(0)
k )Lk=0 (47)

U` = (Uk)
L
k=1, for ` > 0, Û

(`)
` = (Û

(`)
k )Lk=1, for ` > 0, (48)

and with Uk and Û (`)
k defined as in section 3.2.2.

Because each term eq. (46) is an unbiased (multiple) CV estimator of T`, the resulting
estimator eq. (45) is also unbiased, and the optimal (variance minimizing) value α∗` of α` is
given individually for each ` = 0, . . . , L as the optimal (multiple) CV parameter for T̂ (`)

` (α`),

α∗` = C[Û
(`)
` ]−1C[Û

(`)
` , T̂

(`)
` ]. (49)

The resulting variance is given by

V[θ̂MLMC-MLCV(α∗0, . . . ,α
∗
L)] =

L∑
`=0

V[T̂MLCV
` (α∗`)] =

L∑
`=0

(1−R2
` )V[T̂

(`)
` ] (50)

with
R2
` = V[T̂

(`)
` ]−1C[Û(`), T̂

(`)
` ]ᵀα∗` ∈ [0, 1]. (51)

Again, owing to the fact that R2
` ≤ 1, the variance of the MLMC-MLCV estimator is always

less than or equal to the variance of the MLMC estimator given by V[θ̂MLMC
L ] =

∑L
`=0 V[T̂

(`)
` ]

(see eq. (30)).
In our surrogate-based approach, L + 1 surrogate-based control variates can be used for

the coarsest level ` = 0, namely g0, . . . , gL, so that α0 ∈ RL+1. At correction levels ` > 0, we
can use L control variates based on g1, . . . , gL and g̃0, . . . , g̃L−1, as described in section 3.2.2,
so that α` ∈ RL, for ` > 0.

The MLMC-MLCV estimator of the expectation E[f(X)] is defined by eq. (45), with

T̂MLCV
0 (α0) = Ê(0)[Y0]−αᵀ

0(Ê(0)[Z]− µZ), (52)

T̂MLCV
` (α`) = Ê(`)[Y`]− Ê(`)[Y`−1]−αᵀ

` (Ê
(`)[W]− µW), for ` > 0, (53)
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where

Z = (Z0, . . . , ZL) = (g0(X), . . . , gL(X)), µZ = E[Z], (54)

W = (W1, . . . ,WL) = (h1(X), . . . hL(X)), µW = E[W]. (55)

The optimal values α∗` of the CV parameters are given by

α∗0 = Σ−1
0 c0, Σ0 = C[Z], c0 = C[Z, Y0], (56)

α∗` = Σ−1
` c`, Σ` = C[W], c` = C[W, Y` − Y`−1], for ` > 0, (57)

resulting in R2
` = V[Y` − Y`−1]−1cᵀ

`Σ`c`, for ` = 0, . . . , L. Note that Σ` = C[W] is the same
for all ` > 0. The optimal MLMC-MLCV variance estimator is derived in appendix B.

Remark 3. In practice, Σ and c` may be estimated using either a pilot sample or the same
sample as for the estimation of Û

(`)
` and T̂ (`)

` . Alternatively, in the specific context of PC-
based control variates, for the estimation of the expectation, a closed-form expression for Σ

can be obtained. Letting Z` = g`(X) =
∑P `

g

k=0 g`,kΨk(X) and W` = h`(X) =
∑P `

h
k=0 h`,kΨk(X),

we have

∀m,m′ = 0, . . . , L, [Σ0]m,m′ = C[Zm, Zm′ ] =

min(Pm
g ,Pm′

g )∑
k=1

gm,kgm′,k, (58)

∀m,m′ = 1, . . . , L, [Σ`]m,m′ = C[Wm,Wm′ ] =

min(Pm
h ,Pm′

h )∑
k=1

hm,khm′,k, for ` > 0. (59)

3.3 Practical details

A summary of the methods is presented in table 1. We remark that all the MLMC-like
estimators (including the MLMC estimator), hereafter abbreviated MLMC-*, have variance∑L

`=0(1−R2
` )V[T̂

(`)
` ], with

• R2
` = 0 for plain MLMC;

• R2
` = ρ2

` as defined in eq. (38) for MLMC-CV; and

• R2
` defined by eq. (51) for MLMC-MLCV.

For all these methods, we will further assume that V[T̂
(`)
` ] . n−1

` V` (see section 3.1), which
implies that V[T̂MLMC-*

` (α∗`)] = (1−R2
` )V[T̂

(`)
` ] . n−1

` VCV
` , with VCV

` := (1−R2
` )V`.

In the surrogate-based variants of MLMC, the cost of evaluating the surrogate models
is assumed to be negligible compared to the costs of evaluating the simulators f0, . . . , fL.
Therefore, the total computational cost of the MLMC-* estimator reduces to the cost of
the MLMC estimator, cost(θ̂MLMC-MLCV) = cost(θ̂MLMC), given by eq. (31). Similarly to the
case of the MLMC estimator (see, e.g., [36]), the optimal sample sizes (n∗`)

L
`=0 such that∑L

`=0 VCV
` /n∗` is minimal under a constrained computational budget of C are given by

n∗` =
C
SL

√
VCV
`

C` + C`−1

, with S` :=
∑̀
`′=0

√
(C`′ + C`′−1)VCV

`′ , (60)
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so that
∑L

`=0 VCV
` /n∗` = S2

L/C. As a consequence,

V[θ̂MLMC-MLCV
L (α∗`)] .

S2
L

C
, (61)

with an equality between the left- and right-hand sides for the expectation estimators.
In practice, VCV

` is not known and must be estimated for each level. In this work, we
consider the sequential algorithm proposed in [36, Algorithm 2] for the MLMC. The algorithm
starts from an initial, small number of samples ninit

` on each level. Then, it selects the optimal
level on which to increase the sample size by an inflation factor r` > 1, i.e. the level `∗ on
which the reduction in total variance relative to the additional computational effort achieved
by inflating the sample size by r`∗ is maximal.

Algorithm 1 Simplified MLMC-* algorithm inspired by [36].

Require: ninit
` > 1, r` > 1, surrogate models (depending on the method), and budget C.

1: Set consumed budget to C̃ = 0 and δn` = ninit
` samples on levels ` ≤ L;

2: while C̃ ≤ C do
3: compute δn` samples on each level by evaluating f` and the appropriate surrogates;
4: update sample size on each level: n` ← n` + δn`;
5: update consumed budget: C̃ ← C̃ +

∑L
`=0 δn`(C` + C`−1);

6: estimate the optimal CV parameter(s) on each level;
7: compute/update CV estimates for T̂ (`)

` and VCV
` from samples on levels ` ≤ L;

8: select level `∗ = arg max
0≤`≤L

VCV
`

r`n2
`(C` + C`−1)

;

9: δn`∗ ← b(r`∗ − 1)n`∗c, δn` 6=`∗ ← 0;
10: end while
11: return θ̂MLMC-*

L , the MLMC-* estimate of θL.

4 Numerical experiments
We demonstrate the value of our MLMC-MLCV method on the uncertain heat equation
problem proposed in [18] and summarized in section 4.1. The surrogate models used for the
control variates are described in section 4.2, and the results from numerical experiments are
presented and discussed in section 4.3.

4.1 Problem description

We consider the partial differential equation describing the time-evolution of the temperature
u(x, t; X) in a 1D rod of unit length over the time interval [0, T ], with uncertain (random)
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initial data u0 and thermal diffusivity ν,

∂u(x, t; X)

∂t
= ν(X)

∂2u(x, t; X)

∂x2
, x ∈ D := (0, 1), t ∈ [0, T ],

u(x, 0; X) = u0(x; X), x ∈ D,

u(0, t; X) = u(1, t; X) = 0, t ∈ [0, T ],

(62)

where X : Ω→ Ξ is a random vector modelling the uncertainty in the input parameters, and
where ν(X) > 0 almost surely. The solution of eq. (62) may be expressed as

u(x, t; X) =
∞∑
k=1

ak(X) exp(−ν(X)k2π2t) sin(kπx) (63)

with
ak(X) = 2

∫
D
u0(x; X) sin(kπx) dx. (64)

The initial condition is chosen to have the same prescribed form as in [18]. Specifically, we
consider u0(x; X) = G(X)F1(x) + I(X)F2(x) with

F1(x) = sin(πx), (65)
F2(x) = sin(2πx) + sin(3πx) + 50(sin(9πx) + sin(21πx)), (66)

I(X) =
7

2

[
sin(X1) + 7 sin(X2)2 + 0.1X4

3 sin(X1)
]
, (67)

G(X) = 50(4|X5| − 1)(4|X6| − 1)(4|X7| − 1), (68)

which allows to control the spectral content of the solution u. Furthermore, as in [18], the
diffusion coefficient is modelled by ν(X) = X4. The random output variable of interest is
defined as the integral of the temperature along the rod at final time T ,

M(X) =

∫
D
u(x, T ; X) dx (69)

=
∞∑
k=1

ak(X)

∫
D

exp(−ν(X)k2π2T ) sin(kπx) dx (70)

= G(X)H1(X) + I(X) [H3(X) + 50H9(X) + 50H21(X)] , (71)

where Hk(X) = 2
kπ

exp(−ν(X)k2π2T ). In this experiment, we seek to estimate the expecta-
tion E[M(X)], for a given uncertain setting. Consistently with [18], we consider the random
variables X1, . . . , X7 to be independent and distributed as

X1, X2, X3 ∼ U [−π, π], X4 ∼ U [νmin, νmax], X5, X6, X7 ∼ U [−1, 1]. (72)

The expected value E[M(X)] is then given by

E[M(X)] = 50H1 +
49

4
(H3 + 50H9 + 50H21) , (73)
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where
Hk = E[Hk(X)] =

2

k3π3T

exp(−νmink
2π2T )− exp(−νmaxk

2π2T )

νmax − νmin
. (74)

Finally, we set T = 0.5, νmin = 0.001 and νmax = 0.009, resulting in E[M(X)] ≈ 41.98.
Numerically, M(X) is approximated by truncating the Fourier expansion in eq. (70)

to K <∞ modes and by approximating the integrals in eqs. (64) and (70) by a trapezoidal
quadrature rule with equispaced nodes in [0, 1]. The multilevel hierarchy of simulators {f`}L`=0

is then defined according to the number of quadrature nodes N` used for the approximation
at level `. Specifically,M(X) is approximated at level ` by

Y` = f`(X) =
K∑
k=1

A`k(X)B`
k(X), (75)

with

A`k(X) = 2

N∑̀
i=1

wiu0(xi; X) sin(kπxi), B
`
k(X) = exp(−ν(X)k2π2T )

N∑̀
i=1

wi sin(kπxi), (76)

where {(xi, wi)}N`
i=1 are the pairs of quadrature nodes and associated weights on level `. It is

then natural to assume that the computational cost C` of an evaluation of f` is O(KN`). The
statistic of interest is thus θ = θL = E[fL(X)], whose MC estimator θ̂L = n−1

L

∑nL

i=1 fL(X(L,i))
will represent the baseline estimator for our experiments. Besides, the quality of all the
presented estimators will be assessed in terms of their root mean square error (RMSE) w.r.t.
the exact statistic E[M(X)] given by eq. (73).

In the following experiments, we set the number of quadrature nodes K = 21 and the
number of levels to 4 (i.e. L = 3). Furthermore, we set N` = 120 × 2L−` so that evaluating
f` is twice as expensive as evaluating f`−1. Table 2 summarizes the number of quadrature
nodes and the evaluation cost per level. Note that the costs are normalized so that C3 = 1.

Table 2: Number of quadrature nodes N`, simulator evaluation cost C` and MLMC correction
evaluation cost C` + C`−1 per level.

` 0 1 2 3

N` 15 30 60 120
C` 0.125 0.25 0.5 1

C` + C`−1 0.125 0.375 0.75 1.5

4.2 Surrogate models

We will mostly use PC models (see section 2.4.3) for the surrogate-based CV estimators.
Constructing high-quality surrogates in 7 dimensions can be hard, especially in the presence
of non-linearities and with a limited sample size. To avoid overfitting, we resort to the least
angle regression (LARS) procedure [14], which is a model-selection regression method that
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promotes sparsity. More precisely, we employ the basis-adaptive hybrid LARS algorithm
proposed by [7, Fig. 5] for the selection of sparse PC bases. For a given design of experiment
(DoE) for the PC surrogate construction, this algorithm applies the LARS procedure on
candidate PC bases Ap of increasing total polynomial degree p = 1, . . . , pmax, resulting for
each p in the selection of a limited number |Ãp| < |Ap| of basis polynomial functions. For each
p, a PC surrogate is constructed by classical least-squares regression on the corresponding
reduced (or active) PC basis Ãp, and its quality is estimated using a corrected leave-one-
out cross-validation procedure [7]. The best surrogate according to this quality measure is
eventually retained, and the associated reduced PC basis is denoted by Ãp∗ .

In our experiments, we set pmax = 16 and the construction budget to 400 times the
evaluation cost of f3, i.e. CDoE = 400. This budget is distributed equally among the different
levels, so that the associated evaluation cost on each level corresponds to the cost of 100 f3

evaluations, i.e. nDoE
` C` = 100, as reported in tables 3 and 4. Once constructed, the quality

of a surrogate g of f is assessed in terms of the Q2 measure,

Q2(g, f) = 1− E[(g(X)− f(X))2]

V[f(X)]
, (77)

estimated using a test sample of size ntest = 10 000, which is more robust than the corrected
leave-one-out measure used for the model selection. The higher the Q2 value, the higher-
quality the associated surrogate.

For the MLCV estimator, we learn a PC model g` of f` from a training DoE of size nDoE
`

generated by latin hypercube sampling (LHS) improved by simulated annealing. The training
DoE samples for the surrogate construction are different for each level and independent.
Table 3 summarizes the properties of the different PC models. Except for g3, which is built
with only 100 points, all the PC models have a good Q2, greater than 0.8. We observe that
the basis-adaptive LARS algorithm has selected a decreasing polynomial degree p∗ with level
`, while retaining only a limited number |Ãp∗| of polynomials in these reduced bases. Thus,
although g1 and g2 have distinct degrees, the sizes of the associated reduced bases are similar.

Table 3: PC models for CV and MLCV estimators, with their sample size, degree and quality
measure. These models are built with the basis-adaptive LARS algorithm of [7, Fig. 5].

PC models g0 g1 g2 g3

nDoE
` 800 400 200 100
p∗ 10 8 6 4
|Ãp∗| 211 77 74 14
Q2 0.98 0.94 0.86 0.59

For the MLMC-based estimators, we learn a PC model g` of f` for ` = 0, . . . , L and a PC
model h` of f` − f`−1 for ` = 1, . . . , L. In practice, training points used for the construction
of g0, . . . , gL may be reused for the construction of h1, . . . , hL using nested DoEs. However, it
should be noted that the generation of nested LHS DoEs is not as straightforward as for purely
random DoEs. While using nested random DoEs is a perfectly valid strategy, we opt for an
alternative choice based on LHS. Specifically, we first generate a DoE X (0)

DoE of size nDoE
0 using
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LHS improved by simulated annealing. Then, for ` = 1, . . . , L, we sequentially extract a DoE
X (`)

DoE ⊂ X
(`−1)
DoE of size nDoE

` . The subset X (`)
DoE is selected such that it has minimal centered

L2 discrepancy among a pool of 1 million random candidate subsets. Table 4 summarizes
the properties of these different PC models. The PC models again have a quality measure
higher than 0.8, except for g3 and h3, which were constructed from only 100 evaluations.
Note that the values of p∗, |Ãp∗| and Q2 are of the same order of magnitude as those of the
PC surrogate models reported in table 3.

Table 4: PC models for the estimators combining MLMC and CV techniques, with their
sample size, degree and quality measure. More precisely, g` is the surrogate of f`, h` is the
surrogate of f` − f`−1 and the samples used to train h` are also used to train g` and g`−1.
These models are built with the basis-adaptive LARS algorithm of [7, Fig. 5].

PC models g0 g1 g2 g3 h1 h2 h3

nDoE
` 800 400 200 100 400 200 100
p∗ 10 8 8 2 9 7 5
|Ãp∗| 211 83 57 6 112 71 30
Q2 0.98 0.95 0.86 0.21 0.99 0.82 0.63

Hereafter, the CV and MLCV estimators use the PC models of table 3, while the MLMC-
based estimators use the PC models presented in table 4.

4.3 Results

First, in section 4.3.1, we illustrate the use of one or several control variates to reduce the
variance of a single-level MC estimator. Then, we compare the MLCV and MLMC-MLCV
approaches with the MC and MLMC estimators in section 4.3.2, and we discuss variants of
the MLMC-CV and MLMC-MLCV approaches, considering only a limited subset of the sur-
rogate models, in section 4.3.3. We conclude the analysis by reporting the estimation budget
allocation across levels resulting from the various MLMC-based methods in section 4.3.4. In
practice, all the MLMC-based estimators are built using algorithm 1. Unless stated other-
wise, the parameters are set to ninit

` = 30 and r` = 1.1 for ` = 0, . . . , 3. The quality of the
various estimators will be assessed in terms of their RMSE w.r.t. E[M(X)], estimated from
500 repetitions of the experiment.

4.3.1 Single-level MC and control variates

In this first part, we consider only the finest simulator f3 and try to reduce the variance
of the MC estimator of E[f3(X)] by means of surrogate-based CVs. For that purpose, we
consider a first-order Taylor polynomial expansion gT1

3 around µX = E[X] (see section 2.4.2
and appendix C) and the PC model gPC

3 described in table 3.
Table 5 shows that gPC

3 (X) is well correlated with Y3 = f3(X), with a Pearson coefficient
of 0.8, while gT1

3 is less so, with a coefficient of 0.57, which may be explained by the strong
non-linearity of f3. According to eq. (7), these correlation coefficients lead to a theoretical
variance reduction factor R2 of 64% when using gPC

3 (X) as a single CV, and of about 32%
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Table 5: Pearson correlation coefficients between the finest simulator f3 and the correspond-
ing PC model (see table 3) and T1 model around µX = E[X], estimated with a sample of
size 1000.

Y3 gPC
3 (X) gT1

3 (X)

Y3 1.00 0.80 0.57
gPC

3 (X) 0.80 1.00 0.64
gT1

3 (X) 0.57 0.64 1.00

when using gT1
3 (X) as a single CV. Using both CVs results in a reduction factor of 65%. This

minor increase in R2 can be explained by the modest correlation coefficient of 0.64 between
gT1

3 (X) and gPC
3 (X). Note that a reduction factor of R2 in the variance corresponds to a

reduction factor of 1−
√

1−R2 in the standard deviation.
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(a) The evaluation cost does not include the cost
of constructing the surrogate models.
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(b) The evaluation cost includes the cost of con-
structing the surrogate models.

Figure 1: Convergence comparison of MC and CV estimators of θ = E[f3(X)] (see eq. (75))
with respect to the number C ∈ {100; 300; 1000; 3000; 10 000} of f3 evaluations. The CV uses
either a first-order Taylor approximation (T1) of f3 or a PC approximation of f3 trained from
100 evaluations (CDoE = 100), or both. The RMSEs are computed using 500 replicates.

These theoretical expectations are reflected in fig. 1a with an RMSE reduction of about
20% when using gT1

3 and 40% when using gPC
3 alone or jointly with gT1

3 . This figure con-
firms that gPC

3 provides a better CV than gT1
3 , reducing the RMSE of the MC estimator

twice as much, regardless of the computational budget. However, the construction cost of
the surrogate is not the same. While constructing gT1

3 requires only one evaluation of f3 and
its Jacobian matrix, namely at µX, the construction of gPC

3 involved 100 f3 evaluations. In
the case where the surrogate is built specifically for the estimation of the statistic, the real
estimation cost is higher as it includes this construction cost. Figure 1b illustrates this dif-
ference by including the surrogate construction cost in the total evaluation cost. As a result,
a significant offset appears when using gPC

3 , since part of the computational budget (namely
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100) is used for the surrogate construction and thus not for the estimation. Specifically, the
RMSEs of the CV estimators using gPC

3 get below that of the CV estimator using only gT1
3

for a budget of 300 f3 evaluations. For budgets under 200, using only gT1
3 is preferable, even

without the analytical gradient available, which would then incur a construction cost of 8
f3 evaluations to approximate the gradient using finite differences. This figure also illus-
trates proposition 1, that is, increasing the number of control variates improves (rigorously
speaking, does not deteriorate) the variance of the CV estimator.

4.3.2 MLCV and MLMC-MLCV

Figure 2 compares the MLCV and MLMC-MLCV estimators proposed in eqs. (34) and (45)
with the classical MC and MLMC estimators. This comparison is repeated for different
budgets C, expressed in terms of the equivalent number of f3 evaluations. Note that the MC
and MLCV estimators only use evaluations of the finest simulator f3, so that C = n3, while
MLMC-based estimators use all the simulators, so that C is given in terms of the MLMC cost
eq. (31), indeed corresponding to the equivalent number of f3 evaluations, since the costs are
normalized such that C3 = 1. From here on, only PC-based surrogates will be used, so that
we omit the superscript “PC” in the notations of the surrogate models.
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(a) The evaluation cost does not include the cost
of construction of the surrogate models.
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(b) The evaluation cost includes the cost of con-
struction of the surrogate models.

Figure 2: Convergence comparison of MC, MLMC, MLCV and MLMC-MLCV esti-
mators of θ = E[f3(X)] (see eq. (75)) with respect to the sampling budget C ∈
{100; 300; 1000; 3000; 10 000} of f3 evaluations. The surrogates used for the MLCV and
MLMC-MLCV estimators are described in tables 3 and 4, respectively, and their total con-
struction cost is CDoE = 400. The RMSEs are estimated using 500 replicates.

Figure 2a shows that, for a given sampling budget C, the MC estimator is the least
accurate. This can be explained by the fact that it only has access to the finest simulator,
f3, whose cost only allows a limited number of evaluations. On the contrary, the MLMC
estimator spreads this sampling budget over the four simulators. Ideally, the optimal sample
allocation of MLMC eq. (60) results in many coarse, cheap evaluations and few fine, expensive
evaluations. This is typically the case when the outputs of the simulators are highly correlated
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and the associated computational cost grows exponentially. Table 7 shows that the first
assumption holds. The second assumption also holds since C` = O(KN`) = O(N`), K being
fixed, i.e., the evaluation cost grows linearly with the number of quadrature nodes. As a
consequence, the MLMC estimator has a lower RMSE than the standard MC estimator.

Table 6: Pearson correlation coefficients between the finest output Y3 = f3(X) and the
corresponding control variates based on the PC models of table 3 used for the MLCV method,
estimated with a sample of size 1000.

Y3 g0(X) g1(X) g2(X) g3(X)

Y3 1.00 0.96 0.97 0.93 0.80
g0(X) 0.96 1.00 0.96 0.92 0.80
g1(X) 0.97 0.96 1.00 0.95 0.81
g2(X) 0.93 0.92 0.95 1.00 0.80
g3(X) 0.80 0.96 0.81 0.80 1.00

For this experiment, the MLCV estimator is more accurate than the MLMC estimator.
Based on one control variate per level `, based on the PC model g` of f` from table 3, this
estimator dedicates all the sampling budget to the finest simulator f3, and uses these control
variates based on g0, g1, g2 and g3 to reduce the variance of the MC estimator at no extra
cost, as the evaluation cost of a PC model g` is negligible compared to the evaluation cost
of f3. This MLCV technique works particularly well in this case because the control variates
are highly correlated to f3. Indeed, table 6 shows that their Pearson coefficients are at least
0.8, which guarantees a theoretical reduction of at least 94% in the variance of the MC
estimator (i.e. a reduction of at least about 76% in standard deviation), corresponding to
the variance reduction when using a single control variate based on g3. In fact, the variance
reduction factor R2 when using all the surrogates is only slightly higher, namely R2 ≈ 95%
corresponding to a standard reduction factor of around 78%, which is reflected in fig. 2a.

Combining the MLMC and MLCV techniques allows the resulting MLMC-MLCV esti-
mator to reduce the variance even more significantly. This can be explained by the very high
correlation between Y0, Y1, Y2 and Y3 on the one hand, which ensures the good performance
of the MLMC approach, and by the strong correlation between the control variates on the
other hand, ensuring their good performance in combination with the MLMC technique. In
particular, table 7 shows that g0(X), g1(X) and g2(X) are highly correlated with Y3, with
Pearson correlation coefficients greater than 0.9, while g3(X) is poorly correlated with Y3,
with a correlation coefficient of 0.48. Besides, h1(X), h2(X) and h3(X) are well-correlated
with Y1− Y0, Y2− Y1 and Y3− Y2, respectively, with correlation coefficients greater than 0.8.

Further insights regarding the expected variance reduction of the MLMC-MLCV estima-
tor can be drawn from table 8, which reports the variance reduction factor R2

` w.r.t. pure
MLMC on each level defined in eqs. (50) and (51), as well as the quantity S2

` defined in
eq. (60). In particular, S2

L/C corresponds to the variance of the MLMC-MLCV estimator of
the expectation with optimal sample allocation (see eq. (61)), so that the ratio between the
variance of MLMC-MLCV estimator and that of the MC estimator is S2

L/(CLV[YL]) (here
with CL = C3 = 1). Furthermore, the variance of the different MLMC-based estimators
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Table 7: Pearson correlation coefficients between the outputs Y` = f`(X) of the simulators
and g`(X) of the PC models, as well as the successive differences Y` − Y`−1 and the outputs
h`(X) of the associated PC models, for the MLMC-based estimators. The coefficients are
estimated from a sample of size 1000.

Y0 Y1 Y2 Y3 Y1 − Y0 Y2 − Y1 Y3 − Y2 g0(X) g1(X) g2(X) g3(X) h1(X) h2(X) h3(X)

Y0 1.00 0.97 0.97 0.97 -0.11 -0.04 -0.04 0.99 0.96 0.93 0.47 -0.12 -0.13 -0.10
Y1 0.97 1.00 1.00 1.00 0.13 0.19 0.19 0.97 0.97 0.93 0.48 0.12 0.09 0.09
Y2 0.97 1.00 1.00 1.00 0.14 0.20 0.20 0.96 0.97 0.92 0.48 0.13 0.10 0.10
Y3 0.97 1.00 1.00 1.00 0.14 0.20 0.20 0.96 0.97 0.92 0.48 0.13 0.10 0.10

Y1 − Y0 -0.11 0.13 0.14 0.14 1.00 0.96 0.96 -0.10 0.07 0.01 0.03 0.99 0.90 0.80
Y2 − Y1 -0.04 0.19 0.20 0.20 0.96 1.00 1.00 -0.03 0.12 0.06 0.06 0.94 0.90 0.81
Y3 − Y2 -0.04 0.19 0.20 0.20 0.96 1.00 1.00 -0.03 0.12 0.06 0.06 0.95 0.90 0.81
g0(X) 0.99 0.97 0.96 0.96 -0.10 -0.03 -0.03 1.00 0.96 0.93 0.48 -0.11 -0.12 -0.09
g1(X) 0.96 0.97 0.97 0.97 0.07 0.12 0.12 0.96 1.00 0.94 0.47 0.06 0.04 0.04
g2(X) 0.93 0.93 0.92 0.92 0.01 0.06 0.06 0.93 0.94 1.00 0.47 -0.00 -0.03 -0.02
g3(X) 0.47 0.48 0.48 0.48 0.03 0.06 0.06 0.48 0.47 0.47 1.00 0.03 0.01 0.02
h1(X) -0.12 0.12 0.13 0.13 0.99 0.94 0.95 -0.11 0.06 -0.00 0.03 1.00 0.91 0.80
h2(X) -0.13 0.09 0.10 0.10 0.90 0.90 0.90 -0.12 0.04 -0.03 0.01 0.91 1.00 0.80
h3(X) -0.10 0.09 0.10 0.10 0.80 0.81 0.81 -0.09 0.04 -0.02 0.02 0.80 0.80 1.00

per unit cost can be compared directly through S2
L. We observe that the variance of the

MLMC-MLCV estimator is significantly reduced compared to that of the MLMC estimator,
by about 98.6%, resulting in a reduction in standard deviation of about 88%. Again, this is
well reflected in fig. 2a.

These first results from fig. 2a highlight the interest of multilevel control variates, be it
with the MLMC-MLCV estimator or simply with the MLCV one. These results suppose that
the PC models are not built specifically for the study, so that the budget does not include
the number of f3-equivalent simulations required for their construction. Figure 2b illustrates
the alternative case where the cost of the surrogate based CV estimators includes the cost of
constructing the surrogates. As a result, an additional budget of CDoE = 400 (see section 4.2),
is allocated to the construction of the PC models. As was the case for the single-level PC-
based CV estimators, this results in an offset of 400 in the total cost of the MLCV and
MLMC-MLCV estimators. The effect is especially noticeable when the construction budget
larger than the estimation budget, i.e. for C ∈ {100; 300}. For a sampling cost of 100, i.e.
a total evaluation cost of 500, the MLCV estimator is still slightly more accurate than the
MLMC estimator, while the MLMC-MLCV estimator still largely outperforms both.

4.3.3 Variants of MLMC-based CV estimators

The discussion about the surrogate construction budget prompts us to investigate variants of
MLMC-MLCV using fewer surrogates, in order to reduce the total evaluation cost for limited
budgets. The MLMC-CV estimator is described in section 3.2.2, while the variants MLMC-
CV[0] and MLMC-MLCV[0] of MLMC-CV and MLMC-MLCV are introduced in table 1.
The MLMC-CV[0] estimator only uses a control variate based on g0, so that the construction
cost drops to CDoE = 100, while the MLMC-MLCV[0] estimator uses control variates based on
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Table 8: Relevant quantities for the MLMC-based estimators, with n∗` and S2
` as defined

in eq. (60), and where V` and R2
` have been estimated using an independent sample of size

10 000.

` 0 1 2 3

V` = V[Y` − Y`−1] 1.0850× 104 5.9029× 102 1.0590 5.8160× 10−2

R2
`

MLMC 0 0 0 0
MLMC-CV 0.9838 0.9916 0.8224 0.6469
MLMC-MLCV 0.9840 0.9920 0.9173 0.9202
MLMC-CV[0] 0.9838 0 0 0
MLMC-MLCV[0] 0.9840 0.9916 0.8992 0.9027

n∗`
C` + C`−1

C

MLMC 69.63 % 28.13 % 1.68 % 0.56 %
MLMC-CV 71.00 % 20.66 % 5.69 % 2.66 %
MLMC-MLCV 73.66 % 20.97 % 4.05 % 1.32 %
MLMC-CV[0] 22.59 % 71.69 % 4.29 % 1.42 %
MLMC-MLCV[0] 72.84 % 21.30 % 4.42 % 1.44 %

S2
`

MLMC 1356.31 2673.54 2766.49 2797.65
MLMC-CV 21.99 36.64 41.33 43.62
MLMC-MLCV 21.72 35.85 38.99 40.04
MLMC-CV[0] 21.99 382.87 418.54 430.71
MLMC-MLCV[0] 21.76 36.35 39.84 41.01

g0, g1 and h1, so that the construction cost drops to CDoE = 200. The MLMC-CV estimator
uses control variates based on surrogates at all levels, so that the construction cost remains
CDoE = 400.

Figure 3a shows that MLMC-CV[0] has much higher RMSE than the other variants,
resulting from the fact that it only reduces the variance associated with the coarsest level
of the MLMC estimator. This behavior is consistent with the quantities of table 8. In
particular, the value of S2

L is about 10 times higher than for the other variants, accounting
for its RMSE being about 3 times higher than for the other variants. The remaining variants
have similar performances regardless of the estimation budget, which is consistent with the
S2
L values given in table 8. On the other hand, when considering the construction cost of

the surrogates, fig. 3b shows that MLMC-MLCV[0] performs best, as it uses only surrogate
models related to the two coarsest levels, namely g0, g1 and h1, so that the construction
cost is reduced. Furthermore, these surrogates have excellent Q2, and they are such that
g0(X) is highly correlated with Y0, g1(X) is highly correlated with Y1, and h1(X) is highly
correlated with Y1 − Y0, Y2 − Y1 and Y3 − Y2. Namely, the associated Pearson correlation
coefficients reported in table 7 are all at least 0.94. Therefore, should one have to build the
surrogates specifically for the CV estimation of a statistic, it is more advantageous to adopt
the MLMC-MLCV[0] variant over the others. In our case, the construction budget is divided
by two compared to MLMC-MLCV and MLMC-CV, for a similar performance in terms of
RMSE.
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Figure 3: Convergence comparison of the MLMC-MLCV, MLMC-CV, MLMC-MLCV[0], and
MLMC-CV[0] estimators of θ = E[f3(X)] (see eq. (75)) with respect to the sampling budget
C ∈ {100; 300; 1000; 3000; 10 000} of f3 evaluations. The surrogates used for the MLMC-
based estimators are described in table 4. The RMSEs are computed using 500 replicates.

4.3.4 Budget allocation

Lastly, fig. 4a shows the number n` of evaluations for each of the L + 1 correction levels of
the MLMC-* telescopic sum. Precisely, n0 is the number of evaluations of f0, while n` is
the number of evaluations of f` − f`−1, for ` > 0. We observe a typical sample allocation
for MLMC-like estimators in ideal cases, that is, many coarse evaluations, and fewer and
fewer fine evaluations. The MLMC-CV[0] estimator slightly deviates from this pattern, with
n1 ≈ n0, which can be explained by the fact that V1 ≈ 590 is of the same order of magnitude
as (1−R2

0)V0 ≈ 176. Figure 4b depicts the share of overall sampling cost associated with the
different correction levels. Specifically, n0C0C−1 is the share of sampling budget dedicated
to evaluating f0, and n`(C` + C`−1)C−1 is the share dedicated to evaluating f` − f`−1, for
` > 0. We see that, except for MLMC-CV[0] for the reasons explained above, most of the
sampling budget (around 70%) is allocated to the coarsest level, and most of the remaining
budget is dedicated to correction level ` = 1. We note that the CV-based MLMC estimators
dedicate slightly more budget to levels 2 and 3 than for the standard MLMC estimator. The
sampling budget shares of fig. 4b are consistent with the theoretical optimal shared reported
in table 8, including those of the MLMC-CV[0] estimator. This suggests that the sample
allocation resulting from algorithm 1 seems to converge to the theoretical optimal sample
allocation eq. (60).

5 Conclusions
In this paper, we proposed multilevel variance reduction strategies relying on surrogate-
based control variates. On the one hand, using specific surrogate models, such as polynomial
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Figure 4: Comparison of the sample allocation and associate computational cost across the
correction levels for the MLMC-based estimators of θ = E[f3(X)] (see eq. (75)), with an
estimation budget of C = 10 000.

chaos expansions or Taylor polynomial expansions, allows to directly access exact statistics
(mean, variance) of the control variates. Even if these exactly statistics are not directly
accessible (e.g., when using GPs), they can be estimated very accurately at negligible cost.
This contrasts with typical control variates relying on lower-fidelity models based on mod-
els/simulators with degraded physics or coarser discretizations, for which approximate con-
trol variate strategies need to be devised, resulting in a lower variance reduction. On the
other hand, when multiple levels of fidelities (e.g., based on the discretization) with a clear
cost/accuracy hierarchy are available, the surrogate-based control variate approach can be
efficiently combined with multilevel strategies. The first strategy, MLCV, simply consists in
using multiple control variates based on surrogate models of the simulators corresponding to
the different levels. The main advantage is that the surrogate models corresponding to coarse
levels may be constructed using larger sample sizes than for the finest level, resulting in a
more accurate surrogate model (i.e., with lower model error). This strategy thus leads to a
greater variance reduction compared to only using one surrogate model based on the finest
level. This is supported by the numerical experiments we conducted, as well as by the the-
oretical variance reduction provided by proposition 1. The second strategy, MLMC-MLCV,
allows to further improve the variance reduction by combining the surrogate-based control
variates with an MLMC strategy. The most appropriate way to construct and utilize the sur-
rogate models is, however, not straightforward, and was discussed in detail in sections 3.2.2
and 3.2.3. The additional variance reduction as compared to plain MLMC is demonstrated
in our numerical experiments and supported by the theoretical variance reduction factor
eq. (51) derived in section 3.2.3.

The construction cost of the surrogate models was discussed from two perspectives. When
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the surrogate models are constructed for the sole purpose of serving for the control variate
estimation, then the cost of their construction must be taken into account for fair compari-
son with other approaches. In such a case, it may not be optimal, in terms of cost/accuracy
tradeoff, to construct surrogate models on all levels, especially when only a limited budget
is available. In particular, using a subset of surrogate models based on the coarser levels
may already lead to considerable variance reduction, provided that the outputs of the coarse
surrogate models are sufficiently correlated with that of the high-fidelity simulator. Then,
considering additional surrogate models on finer levels might only result in marginal improve-
ment, at the expense of a significant computational cost. On the contrary, if the surrogate
models have already been constructed for other purposes, and are, in some sense, available
“for free,” then their construction cost need not be considered, and the entire set of surrogate
models may then be used.

From the former perspective, that is when the cost of the surrogate construction is con-
sidered as part of the estimation cost, one may devise more involved strategies seeking to
optimize the tradeoff between the construction cost and the model error, directly impacting
the projected variance reduction. For instance, in the context of polynomial chaos surrogate
models, the truncation strategy may be controlled to this end, as proposed in a stochastic
Galerkin framework in [56], where the total polynomial degree is optimized alongside the
sample size and the CV parameter to minimize the PC-based CV estimator’s variance under
a cost constraint. Another avenue to improve the proposed approach would be to replace
the MLMC part of the MLMC-MLCV strategy by a more efficient multilevel approach, such
as the multilevel best linear unbiased estimator (MLBLUE) [48, 49, 47]. In particular, an
MLBLUE-MLCV strategy should be more efficient when a collection of low-fidelity simula-
tors (e.g., with degraded physics) with no clear cost/accuracy hierarchy is available. Finally,
although the proposed approaches apply to the estimation of arbitrary statistics, they were
only tested here on the estimation of expected values. The theoretical and algorithmic in-
gredients for the estimation of variances are, however, described in this paper and may be
tested in follow-up investigations and numerical experiments. Specifically, the multifidelity
estimation of variance-based sensitivity indices is of particular interest to our team.
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A Optimal parameter for expectation and variance CV
estimators

We derive here the expression of the optimal CV parameter α∗ for the CV estimators of
the expectation and of the variance. We define Y = f(X), Zm = gm(X) and Z = (Zm)Mm=1.
Then, given an input n-sample {X(i)}ni=1, we define Y (i) = f(X(i)), Z(i)

m = gm(X(i)) and
Z(i) = (Z

(i)
m )Mm=1.

A.1 CV estimator of the expectation

For the expectation, we have Σ = C[Ê[Z]] and c = C[Ê[Y ], Ê[Z]], i.e.

[Σ]m,m′ = C[Ê[Zm], Ê[Zm′ ]] = n−2

n∑
i,j=1

C[Z(i)
m , Z

(j)
m′ ] = n−1C[Zm, Zm′ ], (78)

[c]m = C[Ê[Y ], Ê[Zm]] = n−2

n∑
i,j=1

C[Y (i), Z(j)
m ] = n−1C[Y, Zm], (79)

so that Σ = n−1C[Z], c = n−1C[Y,Z], and, eventually,

α∗ = C[Z]−1C[Y,Z]. (80)

Furthermore, we have V[Ê[Y ]] = n−1V[Y ], so that

R2 =
C[Y,Z]ᵀC[Z]−1C[Y,Z]

V[Y ]
= rᵀY,ZR−1

Z rY,Z, (81)

where

rY,Z = (V[Y ]DZ)−1/2C[Y,Z], RZ = D
−1/2
Z C[Z]D

−1/2
Z , DZ = Diag(C[Z]). (82)

Thus, R2 ∈ [0, 1] corresponds to the squared coefficient of multiple correlation between Y
and the control variates Z1, . . . , ZM .

A.2 CV estimator of the variance

Similarly, for the variance, we have Σ = C[V̂ [Z]] and c = C[V̂ [Y ], V̂ [Z]]. We start by deriving
useful identities. In what follows, for any random variable A, we denote the corresponding
centered variable by Ā := A−E[A]. First, we remark that V̂ [A] = V̂ [Ā], so that, for any two
random variables Y and Z,

C[V̂ [Y ], V̂ [Z]] = E[V̂ [Ȳ ]V̂ [Z̄]]− V[Y ]V[Z]. (83)

Furthermore, it can be shown that

E[V̂ [Ȳ ]V̂ [Z̄]] =

(
n

n− 1

)2 (
an(Ȳ , Z̄) + bn(Ȳ , Z̄)− cn(Ȳ , Z̄)− cn(Z̄, Ȳ )

)
, (84)
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with (see proof below)

an(Ȳ , Z̄) := E[Ê[Ȳ 2]Ê[Z̄2]] =
1

n
C[Ȳ 2, Z̄2] + V[Y ]V[Z] = an(Z̄, Ȳ ), (85)

bn(Ȳ , Z̄) := E[Ê[Ȳ ]2Ê[Z̄]2] =
an(Ȳ , Z̄)

n2
+ 2

n− 1

n3
C[Y, Z]2 = bn(Z̄, Ȳ ), (86)

cn(Ȳ , Z̄) := E[Ê[Ȳ 2]Ê[Z̄]2] =
an(Ȳ , Z̄)

n
= cn(Z̄, Ȳ ). (87)

We thus have

C[V̂ [Y ], V̂ [Z]] =
1

n
C[Ȳ 2, Z̄2] +

2

n(n− 1)
C[Y, Z]2, (88)

V[V̂ [Y ]] = C[V̂ [Y ], V̂ [Y ]] =
1

n
V[Ȳ 2] +

2

n(n− 1)
V[Y ]2, (89)

eventually leading to

Σ = C[V̂ [Z]] =
1

n

(
C[Z̄�2] +

2

n− 1
C[Z]�2

)
, (90)

c = C[V̂ [Y ], V̂ [Z]] =
1

n

(
C[Ȳ 2, Z̄�2] +

2

n− 1
C[Y,Z]�2

)
, (91)

so that

α∗ =

[
C[Z̄�2] +

2

n− 1
C[Z]�2

]−1 [
C[Ȳ 2, Z̄�2] +

2

n− 1
C[Y,Z]�2

]
, (92)

R2 =

[
C[Ȳ 2, Z̄�2] +

2

n− 1
C[Y,Z]�2

]ᵀ
α∗

V[Ȳ 2] +
2

n− 1
V[Y ]2

. (93)

As n→∞, we see that

α∗ → C[Z̄�2]−1C[Ȳ 2, Z̄�2] (94)

R2 → V[Ȳ 2]−1C[Ȳ 2, Z̄�2]ᵀC[Z̄�2]−1C[Ȳ 2, Z̄�2] = rᵀY,ZR−1
Z rY,Z =: R2

lim, (95)

where
rY,Z = (V[Ȳ 2]DZ)−1/2C[Ȳ 2, Z̄�2], RZ = D

−1/2
Z C[Z̄�2]D

−1/2
Z , (96)

with DZ = Diag(C[Z̄�2]). Thus, R2
lim ∈ [0, 1] corresponds to the squared coefficient of

multiple correlation between Ȳ 2 and Z̄2
1 , . . . , Z̄

2
M .

We now proceed to the proof of identities eqs. (85) to (87). First, for eq. (85), by definition

an(Ȳ , Z̄) = E[
∑n

i=1(Ȳ (i))2
∑n

i=1(Z̄(i))2] =
1

n2

∑n
i,j=1 E[(Ȳ (i))2(Z̄(j))2]. (97)

We distinguish two (disjoint) cases:
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1. i = j: E[(Ȳ (i))2(Z̄(j))2] = E[(Ȳ (i))2(Z̄(i))2] = E[Ȳ 2Z̄2] = C[Ȳ 2, Z̄2] + V[Y ]V[Z]. There
are n such terms in the sum.

2. i 6= j: E[(Ȳ (i))2(Z̄(j))2] = E[(Ȳ (i))2]E[(Z̄(j))2] = E[Ȳ 2]E[Z̄2] = V[Y ]V[Z]. There are
n(n− 1) such terms in the sum.

Then eq. (85) follows. For eq. (86),

bn(Ȳ , Z̄) = E[(
∑n

i=1 Ȳ
(i))2(

∑n
i=1 Z̄

(i))2] =
1

n4

∑n
i,j,k,`=1 E[Ȳ (i)Ȳ (j)Z̄(k)Z̄(`)]. (98)

We distinguish five (disjoint) cases:

1. i = j = k = `: E[Ȳ (i)Ȳ (j)Z̄(k)Z̄(`)] = E[(Ȳ (i))2(Z̄(i))2] = E[Ȳ 2Z̄2] = C[Ȳ 2, Z̄2] +
V[Y ]V[Z]. There are n such terms in the sum.

2. i = j 6= k = `: E[Ȳ (i)Ȳ (j)Z̄(k)Z̄(`)] = E[(Ȳ (i))2]E[(Z̄(k))2] = E[Ȳ 2]E[Z̄2] = V[Y ]V[Z].
There are n(n− 1) such terms in the sum.

3. i = k 6= j = `: E[Ȳ (i)Ȳ (j)Z̄(k)Z̄(`)] = E[Ȳ (i)Z̄(i)]E[Ȳ (j)Z̄(j)] = E[Ȳ Z̄]2 = C[Y, Z]2.
There are n(n− 1) such terms in the sum.

4. i = ` 6= j = k: E[Ȳ (i)Ȳ (j)Z̄(k)Z̄(`)] = E[Ȳ (i)Z̄(i)]E[Ȳ (j)Z̄(j)] = E[Ȳ Z̄]2 = C[Y, Z]2.
There are n(n− 1) such terms in the sum.

5. All remaining cases (at least one of the indices i, j, k, ` is different from all the others):
E[Ȳ (i)Ȳ (j)Z̄(k)Z̄(`)] = 0.

Then eq. (86) follows. Finally, for eq. (87),

cn(Ȳ , Z̄)E[(
∑n

i=1(Ȳ (i))2)(
∑n

i=1 Z̄
(i))2] =

1

n3

∑n
i,j,k=1 E[(Ȳ (i))2Z̄(j)Z̄(k)]. (99)

We distinguish three (disjoint) cases:

1. i = j = k: E[(Ȳ (i))2Z̄(j)Z̄(k)] = E[(Ȳ (i))2(Z̄(i))2] = E[Ȳ 2Z̄2] = M4[Y, Z]. There are n
such terms in the sum.

2. i 6= j = k: E[(Ȳ (i))2Z̄(j)Z̄(k)] = E[(Ȳ (i))2]E[(Z̄(j))2] = E[Ȳ 2]E[Z̄2] = V[Y ]V[Z]. There
are n(n− 1) such terms in the sum.

3. All remaining cases (at least one of the indices j, k is different from all the others):
E[(Ȳ (i))2Z̄(j)Z̄(k)] = 0.

Then eq. (87) follows.

Remark 4. When the expected value µZ of Z is known, as is the case when defining Z from
the prediction of certain surrogate models, such as PC exansion and Taylor polynomials (and,
in some instances, GPs, see section 2.4.1), it is possible to replace V̂ [Z] with Ê[Z̄�2]. The
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derivation of the optimal CV parameter is somewhat easier and leads to similar results as in
the unknown expectation case. Specifically,

[Σ]m,m′ = C[Ê[Z̄2
m], Ê[Z̄2

m′ ]] = C[n−1
∑n

i=1(Z̄
(i)
m )2, n−1

∑n
i=1(Z̄

(i)
m′)

2] (100)

= n−2
∑n

i,j=1 C[(Z̄
(i)
m )2, (Z̄

(j)
m′ )

2] = n−2
∑n

i=1 C[(Z̄
(i)
m )2, (Z̄

(i)
m′)

2] (101)

= n−1C[Z̄2
m, Z̄

2
m′ ], (102)

i.e. Σ = n−1C[Z̄�2]. Regarding the vector of covariances c,

[c]m = C[V̂ [Ȳ ], Ê[Z̄2
m]] = E[V̂ [Ȳ ]Ê[Z̄2

m]]− V[Y ]V[Zm] (103)

=
n

n− 1
(E[Ê[Ȳ 2]Ê[Z̄2

m]]− E[Ê[Ȳ ]2Ê[Z̄2
m]])− V[Y ]V[Zm] (104)

=
n

n− 1
(an(Ȳ , Z̄m)− cn(Z̄m, Ȳ ))− V[Y ]V[Zm] = an(Ȳ , Z̄m)− V[Y ]V[Zm] (105)

= n−1C[Ȳ 2, Z̄2
m], (106)

i.e. c = n−1C[Ȳ 2, Z̄�2], so that

α∗ = C[Z̄�2]−1C[Ȳ 2, Z̄�2], (107)

R2 =
C[Ȳ 2, Z̄�2]ᵀC[Z̄�2]−1C[Ȳ 2, Z̄�2]

V[Ȳ 2] +
2

n− 1
V[Y ]2

−−−→
n→∞

R2
lim, (108)

with the same definitions as in eq. (95).

B Optimal MLMC-MLCV variance estimator
The MLMC-MLCV variance estimator is given by eq. (45), with

T̂MLCV
0 (α0) = V̂ (0)[Y0]−αᵀ

0(V̂ (0)[Z]− σ2
Z), (109)

T̂MLCV
` (α`) = V̂ (`)[Y`]− V̂ (`)[Y`−1]−αᵀ

` [V̂
(`)[Z1:]− V̂ (`)[Z̃]− (σ2

Z1:
− σ2

Z̃
)], for ` > 1, (110)

where

Z = (Z0, . . . , ZL) = (g0(X), . . . , gL(X)), σ2
Z = V[Z], (111)

Z1: = (Z1, . . . , ZL) = (g1(X), . . . , gL(X)), σ2
Z1:

= V[Z1:], (112)

Z̃ = (Z̃0, . . . , Z̃L−1) = (g̃0(X), . . . , g̃L−1(X)), σ2
Z̃

= V[Z̃], (113)

g̃`−1 = g` − h`, for ` > 0. (114)
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Furthermore, we assume that the expected values of the control variates are known, so that
we use the following variance estimators:

V̂ (0)[Z] = Ê(0)[Z̄2], V̂ (`)[Z1:]− V̂ (`)[Z̃] = Ê(`)[Z̄�2
1: ]− Ê(`)[ ¯̃Z�2] = Ê(`)[Z̄�2

1: −
¯̃Z�2]. (115)

The optimal values α∗` of the CV parameters are given by

α∗0 = Σ−1
0 c0, Σ0 = C[Z̄�2], c0 = C[Z̄�2, Ȳ 2

0 ], (116)

α∗` = Σ−1
` c`, Σ` = C[Z̄�2

1: −
¯̃Z�2], c` = C[Z̄�2

1: −
¯̃Z�2, Ȳ 2

` − Ȳ 2
`−1], for ` > 0. (117)

Note that Σ` is the same for all ` > 0. For PC-based control variates, g`(X) =
∑P `

g

k=0 g`,kΨk(X)

and h`(X) =
∑P `

h
k=0 h`,kΨk(X), letting P `

g̃ := max(P `
g , P

`
h), we have

Z̃`−1 =

P `
g̃∑

k=0

g̃`−1,kΨk(X), with g̃`−1,k := g`,k − h`,k, for ` = 1, . . . , L, (118)

where g`,k := 0 for k > P `
g and h`,k := 0 for k > P `

h. Consequently,

E[Z`] = g`,0, E[Z̃`−1] = g̃`−1,0, (119)

V[Z`] =

P `
g∑

k=1

g2
`,k, V[Z̃`−1] =

P `
g̃∑

k=1

g̃2
`−1,k. (120)

Furthermore,

[Σ0]m,m′ =

Pm
g∑

i,j=1

Pm′
g∑

q,r=1

gm,igm,jgm′,qgm′,r(Φijqr − δijδqr), for m,m′ = 0, . . . , L, (121)

where Φijqr := E[Ψi(X)Ψj(X)Ψq(X)Ψr(X)] are the entries of the fourth-order Galerkin prod-
uct tensor, which is a well-known object in stochastic Galerkin methods [20, 32], and δij

denotes the Kronecker delta. Besides, noticing that Z̄�2
1: −

¯̃Z�2 = (Z̄1: − ¯̃Z) � (Z̄1: + ¯̃Z) =

W̄ � (Z̄1: + ¯̃Z), with W̄ = W − µW and the definitions in eq. (55), we have

[Σ`]m,m′ = Am,m′ +Bm,m′ + Cm,m′ + Cm′,m, for `,m,m′ = 1, . . . , L, (122)
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where

Am,m′ = C[W̄mZ̄m, W̄m′Z̄m′ ] (123)

=

Pm
h∑
i=1

Pm
g∑

j=1

Pm′
h∑
q=1

Pm′
g∑
r=1

hm,igm,jhm′,qgm′,r(Φijqr − δijδqr), (124)

Bm,m′ = C[W̄m
¯̃Zm−1, W̄m′

¯̃Zm′−1] (125)

=

Pm
h∑
i=1

Pm
g̃∑

j=1

Pm′
h∑
q=1

Pm′
g̃∑
r=1

hm,ig̃m−1,jhm′,qg̃m′−1,r(Φijqr − δijδqr), (126)

Cm,m′ = C[W̄m
¯̃Zm−1, W̄m′Z̄m′ ] (127)

=

Pm
h∑
i=1

Pm
g̃∑

j=1

Pm′
h∑
q=1

Pm′
g∑
r=1

hm,ig̃m−1,jhm′,qgm′,r(Φijqr − δijδqr). (128)

C Taylor surrogate for the numerical test case
In our example, f` is only differentiable in [−π, π]3 × [νmin, νmax]× ([−1, 0) ∪ (0, 1])3. Conse-
quently, the Taylor polynomial surrogate cannot be used directly as defined in (17) and (18),
because the Jacobian and Hessian matrices are not defined at µX. Instead, we define the
first-order Taylor surrogate as

f`(X) ' gT1
` (X) = f`(µX) +

7∑
i=1

gT1
`,i (µX; X), (129)

where, for i = 1, . . . , 4, gT1
`,i (µX; X) = (Xi − µXi

)
∂f`
∂Xi

(µX), and, for i = 5, . . . , 7,

gT1
`,i (µX; X) = (Xi − µXi

)×



∂f`
∂Xi

(µX), µXi
6= 0,

lim
µ′X→µi,0−

X

∂f`
∂Xi

(µ′X), µXi
= 0, Xi < 0,

lim
µ′X→µi,0+

X

∂f`
∂Xi

(µ′X), µXi
= 0, Xi > 0,

0 µXi
= Xi = 0,

(130)

where µi,0±

X = (µX1 , . . . , µXi−1
, 0±, µXi+1

, . . . , µX7), which is now well-defined.
With our choice of distributions for X given in (72), we have µX = (0, 0, 0, 0.005, 0, 0, 0),
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and the first-order Taylor surrogate is defined by (129), with

gT1
`,1(µX; X) = 7X1

K∑
k=1

B`
k(T ;µX)

N∑̀
j=1

wj sin(kπxj)F2(xj), (131)

gT1
`,2(µX; X) = 0, (132)

gT1
`,3(µX; X) = 0, (133)

gT1
`,4(µX; X) = −(X4 − 0.005)π2T

K∑
k=1

k2 exp(−0.005k2π2T )A`k(µX)

N∑̀
j=1

wj sin(kπxj), (134)

gT1
`,5(µX; X) = 400|X5|

K∑
k=1

B`
k(T ;µX)

N∑̀
j=1

wj sin(kπxj)F1(xj), (135)

gT1
`,6(µX; X) = 400|X6|

K∑
k=1

B`
k(T ;µX)

N∑̀
j=1

wj sin(kπxj)F1(xj), (136)

gT1
`,7(µX; X) = 400|X7|

K∑
k=1

B`
k(T ;µX)

N∑̀
j=1

wj sin(kπxj)F1(xj). (137)

Because of the piecewise definition of gT1
` , the identity E[gT1

` (X)] = f`(µX) for a regular
first-order Taylor surrogate no longer holds. Instead, we have

E[gT1
` (X)] = f`(µX) + 600

K∑
k=1

B`
k(T ;µX)

N∑̀
j=1

wj sin(kπxj)F1(xj). (138)
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