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INDEPENDENCE PRESERVING PROPERTY OF KUMMER LAWS

We prove that if X, Y are positive, independent, non-Dirac random variables and if for α

 is necessarily a product measure with Kummer marginals. The result extends earlier characterizations of Kummer and gamma laws by independence of

1+X , which corresponds to the case of ψ 1,0 .

We also show that this independence property of Kummer laws covers, as limiting cases, several independence models known in the literature: the Lukacs, the Kummer-Gamma, the Matsumoto-Yor and the discrete Korteweg de Vries models.

Introduction

Consider, for b, c > 0, the gamma distribution Gamma(b, c) with density proportional to y b-1 e -cy I (0,∞) (y) and for p ∈ R, a > 0, b > 0, the generalized inverse Gaussian (GIG) distribution GIG(p, a, b) with density proportional to

x p-1 e -ax-b/x I (0,∞) (x).

Following [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF], we say that a quadruplet of probability measures (µ, ν, μ, ν) on U, V, Ũ, Ṽ, respectively, satisfy the detailed balance equation for a map F :

U × V → Ũ × Ṽ if F (µ ⊗ ν) = μ ⊗ ν,
where

F (µ ⊗ ν) means (µ ⊗ ν) • F -1 .
The Matsumoto-Yor property is the following: for p, a, b > 0, given two independent, positive random variables X and Y such that X ∼ GIG(-p, a, b) and Y ∼ Gamma(p, a), the random variables 1 X+Y and 1

X -1 X+Y are independent (and follow the GIG(-p, b, a) and Gamma(p, b), respectively). Using the terminology of [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF], the Matsumoto-Yor property says that the quadruplet of probability measures µ = GIG(-p, a, b), ν = Gamma(p, a), μ = GIG(-p, b, a), ν = Gamma(p, b) satisfy the detailed balance equation for the map F : (0, ∞) 2 → (0, ∞) 2 (x, y)

F → 1 x + y , 1 x - 1 x + y .
This property was discovered in [START_REF] Matsumoto | An analogue of Pitman's 2M -X theorem for exponential Wiener functionals. Part II: the role of the generalized inverse Gaussian laws[END_REF] in the case a = b, while studying some functionals of exponential Brownian motion. In [START_REF] Letac | An independence property for the GIG and gamma laws[END_REF] it was noticed that it holds also when a ̸ = b and it was proved that this independence property is in fact a characterization: for two non-Dirac, positive and independent random variables X and Y , the random variables 1 X+Y and 1 X -1 X+Y are independent if and only if X ∼ GIG(-p, a, b) while Y ∼ Gamma(p, a) for some p, a, b > 0.

In [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF] the authors studied the question of finding decreasing and bijective functions f : (0, ∞) → (0, ∞) such that there exists a quadruplet of probability measures (µ, ν, μ, ν) on (0, ∞) satisfying the detailed balance equation for the map T f : (0, ∞) 2 → (0, ∞) 2 (x, y) → (f (x + y), f (x) -f (x + y)).

This led, at the cost of some regularity assumptions, to other independence properties of Matsumoto-Yor type (of course, one retrieves the original Matsumoto-Yor case for f (x) = 1/x), amongst which was a property involving the Kummer distribution: for a, c > 0 and b ∈ R, the Kummer distribution K(a, b, c) is defined through the density proportional to

x a-1 e -cx (1+x) b I (0,∞) (x). More precisely, it was proved in [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF] that if X and Y are independent Kummer and gamma random variables with suitably related parameters then

U = X + Y and V = 1+(X+Y ) -1 1+X -1
are independent Kummer and beta random variables. This was the starting point of a number of works on Matsumoto-Yor type characterizations of the Kummer distribution. Firstly, starting from the latter property and looking for an involutive version of it, i.e. trying to find an involutive map F : (X, Y ) → (U, V ) for which the Kummer distribution is involved in a detailed balance equation, the following interesting property was discovered in [START_REF] Hamza | On Kummer's distribution of type two and a generalized beta distribution[END_REF]: let X and Y be independent, X have the distribution K(a, b, c) and Y have the gamma distribution Gamma(b, c), then [START_REF] Abramowitz | Pocketbook of Mathematical functions[END_REF] U = Y 1+X and V = X 1+X+Y 1+X are independent, U ∼ K(b, a, c) and V ∼ Gamma(a, c).

In [START_REF] Piliszek | Change of measure technique in characterizations of the Kummer and gamma laws[END_REF] this independence property was proved to give a characterization result with no assumption of existence of densities. Related characterizations were considered in [START_REF] Weso Lowski | On the Matsumoto-Yor type regression characterization of the gamma and Kummer distributions[END_REF] and [START_REF] Piliszek | Kummer and gamma laws through independencies on trees -another parallel with the Matsumoto-Yor property[END_REF]. In [START_REF] Ko Lodziejek | Independence characterization for Wishart and Kummer random matrices[END_REF] an extension to the matrix-variate case was established, while in [START_REF] Piliszek | Regression conditions that characterize free-Poisson and free-Kummer distributions[END_REF] a free probability version of the property and characterization was given. The latter needed a definition of a new distribution, a free analogue of the Kummer distribution.

In the past ten years there has been a revival of interest in transformations preserving independence properties, triggered mostly by invariance properties of random iterations schemes or random walks in random environment. In particular, the log-gamma random polymer introduced in [START_REF] Seppäläinen | Scaling for a one-dimensional directed polymer with boundary conditions[END_REF] relies on the Lukacs independence property for the Gamma distributions (see [START_REF] Lukacs | A characterization of the gamma distribution[END_REF]), while the beta polymer introduced in [START_REF] Barraquand | Random walk in beta-distributed random environment[END_REF] refers to an independence property for beta distributions, called neutrality. This property can be traced back to the characterization of the bivariate Dirichlet distribution of [START_REF] Darroch | A characterization of the Dirichlet distribution[END_REF] (see also [START_REF] Seshadri | Constancy of regressions for beta distributions[END_REF]). For a complete description of all stationary polymers on the lattice Z 2 + see [START_REF] Chaumont | Characterizing stationary 1 + 1 dimensional lattice polymer model[END_REF], where also many further references can be found.

Let us come back to the definition of the detailed balance equation and recall its context as described in [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF], which considers models assuming the following dynamics: for (n, t) in Z 2 , n is the spatial coordinate and t the temporal one. For fixed t ∈ Z, (x t n ) n∈Z ∈ (0, ∞) Z is the configuration of the system at time t, and (y t n ) n∈Z ∈ (0, ∞) Z a collection of auxiliary variables through which the dynamics from t to t + 1 are defined. Namely, (x t n , y t n ) depends on (x t-1 n , y t n-1 ) only,

(2)

(x t n , y t n ) = G(x t-1 n , y t n-1 ),
where for a bijection F : X × Y → X × Ỹ either G = F , when n + t is even or G = F -1 when n + t is odd. The case when F is involutive is referred to as type I model, while the general case is referred to as type II model. Let x = (x n ) n∈Z be such that the above recursion with the initial condition x 0 n = x n , n ∈ Z, has a unique solution (x t n (x), y t n (x)) n,t∈Z . Let X * denote the set of all such x's. According to Theorem 1.1 in [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF], for a type I model, a sequence of iid random variables

X = (X n ) n∈Z with X 1 ∼ µ satisfies X d = x 1
n (X) n∈Z iff there exists a probability measure ν such that the pair (µ, ν) satisfies the detailed balance condition with respect to F . That is, µ ⊗ ν is the invariant measure for the recursion [START_REF] Bao | Characterizations of the generalized inverse Gaussian, asymmetric Laplace, and shifted (truncated) exponential laws via independence properties[END_REF]. In case of the type II model similar alternating invariance holds for pairs µ ⊗ ν and μ ⊗ ν depending on parity of n + t in [START_REF] Bao | Characterizations of the generalized inverse Gaussian, asymmetric Laplace, and shifted (truncated) exponential laws via independence properties[END_REF]. In [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF] the authors identified four such type I and/or type II models.

(1) Ultra-discrete KdV (Korteweg-de Vries): type I model with

F (x, y) := F (J,K) udK = (y -(x + y -J) + + (x + y -K) + , x -(x + y -K) + + (x + y -J) + )
with µ and ν the shifted truncated exponential or shifted scaled truncated geometric laws.

(2) Discrete KdV: type I model with

F (x, y) := F (α,β) dK (x, y) = y(1+βxy)
1+αxy , x(1+αxy) 1+βxy with µ the GIG law and ν the GIG (gamma) law which, when αβ = 0, has a direct connection with the Matsumoto-Yor property and related characterization of the GIG and gamma laws. (3) Ultra-discrete Toda: type II model with

F (x, y) := F udT * (x ∧ y, x -y)
with µ, ν, μ the shifted exponential, ν asymmetric Laplace or µ, ν, μ shifted scaled geometric, ν scaled discrete Laplace laws; this one is related to classical characterizations of the exponential and geometric distributions from [START_REF] Ferguson | A characterization of the exponential distribution[END_REF] and [START_REF] Crawford | Characterization of geometric and exponential distroibutions[END_REF]. (4) Discrete Toda: type II model with F (x, y) := F dT * (x, y) = x + y, x x+y with µ, ν, μ the gamma, ν the beta laws having a direct connection with the characterization of the gamma distribution given in [START_REF] Lukacs | A characterization of the gamma distribution[END_REF].

For relations to box-ball systems and Pitman's transform one can consult [START_REF] Croydon | Bi-infinite solutions for KdV-and Toda-type discrete integrable systems based on path encodings[END_REF] and [START_REF] Croydon | Dynamics of the box-ball system with random initial conditions via Pitman's tranform[END_REF]. Also recently a mysterious connection between independence properties and Yang-Baxter equations holding for related transformations was discovered in [START_REF] Sasada | Yang-Baxter maps and independence preserving property[END_REF].

In the context of the discrete KdV model in [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF] the authors observed that if X and Y are independent, U and V are independent and all four have GIG distributions with suitable parameters, then (X, Y ) and (U, V ) satisfy the detailed balance equation for the map F (α,β) dK . They also conjectured that the GIG distributions are the only possible ones that satisfy the F (α,β) dK -detailed balance equation. Recently, in [START_REF] Letac | About an extension of the Matsumoto-Yor property[END_REF] this conjecture was proved without the assumptions of existence and regularity of densities made in [START_REF] Bao | Characterizations of the generalized inverse Gaussian, asymmetric Laplace, and shifted (truncated) exponential laws via independence properties[END_REF] in proving a version of the same conjecture. More precisely, [START_REF] Letac | About an extension of the Matsumoto-Yor property[END_REF] established the following extension of the Matsumoto-Yor property: if A and B are non-degenerate, positive and independent random variables, and if α and β are two positive and distinct numbers, then the random variables

S = 1 B βA+B αA+B , T = 1 A βA+B αA+B
are independent if and only if A and B have GIG distributions with suitable parameters.

In this paper we reveal one more candidate for an invariant measure for a lattice recursion model. We derive the detailed balance equation for the Kummer distributions. Specifically, our main result (Theorem 4.3) gives a characterization of the Kummer laws, which is a result of a similar nature as the one in [START_REF] Letac | About an extension of the Matsumoto-Yor property[END_REF] for the GIG laws, i.e. it says that the Kummer distributions are the only possible ones which let the detailed balance equation be satisfied for the map (3) F (x, y) = y 1+β(x+y) 1+αx+βy , x 1+α(x+y) 1+αx+βy . The proof uses a suitably designed "Laplace-type" transform and leads to a special second order linear differential equation for an unknown function of such form. In this sense the general methodology (a Laplace type transform and a second order ordinary linear differential equation) resembles that of the proof from [START_REF] Letac | About an extension of the Matsumoto-Yor property[END_REF]. However, at the technical level, the challenges to overcome were of quite a different nature. Interpreting this result in the context of the lattice system of recursions described above, it says that the Kummer distributions are the only relevant invariant measures for the type I model governed by the F defined in [START_REF] Barraquand | Random walk in beta-distributed random environment[END_REF].

The paper is organized as follows: in Section 2 we introduce a scaled version of the Kummer distribution, we express and prove the considered independence property in terms of that scaled Kummer distribution (Theorem 2.1). We show in Section 3 that some limit versions of Theorem 2.1 cover several well-known independence preserving transformations. Indeed, relying on a version of Theorem 5.5 from [START_REF] Billingsley | Convergence of probability measures[END_REF], we prove that Theorem 2.1 yields, as limiting cases, the Lukacs property, [START_REF] Lukacs | A characterization of the gamma distribution[END_REF], the Kummer-Gamma property, [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF], the Matsumoto-Yor property, [START_REF] Matsumoto | An analogue of Pitman's 2M -X theorem for exponential Wiener functionals. Part II: the role of the generalized inverse Gaussian laws[END_REF][START_REF] Letac | An independence property for the GIG and gamma laws[END_REF] and the KdV property, [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF]. In Section 4 we define and analyze the Kummer transform, an extended Laplace transform that will help us to prove the chacterization theorem formulated at the end of this section. Section 5 contains the proof of the characterization split in several steps (subsections), amongst which is the crucial observation that the unknown Kummer transform satisfies the Kummer differential equation (see [START_REF] Abramowitz | Pocketbook of Mathematical functions[END_REF]).

The independence property

For the purpose of this paper it will be convenient to introduce a scaled version of the Kummer distribution.

Definition 2.1. Let K α (a, b, c) for α ≥ 0, a, c > 0 and b ∈ R be the probability distribution defined by the density

f (x) ∝ x a-1 e -cx (1+αx) b I (0,∞) (x) Theorem 2.1. Assume that (X, Y ) ∼ K α (a, b, c) ⊗ K β (b, a, c) for a, b, c > 0 and α, β ≥ 0, α ̸ = β. Let (4) U = Y 1+β(X+Y ) 1+αX+βY and V = X 1+α(X+Y ) 1+αX+βY . Then (U, V ) ∼ K α (b, a, c) ⊗ K β (a, b, c).
Remark 2.1. Note that K 0 (a, b, c) = Gamma(a, c) and for α > 0 and X ∼ K α (a, b, c) we have αX ∼ K(a, b, c/α). Consequently, by taking (α, β) = (1, 0), we see that Theorem 2.1 is a straightforward extension of the independence property observed in [START_REF] Hamza | On Kummer's distribution of type two and a generalized beta distribution[END_REF] and recalled in the introduction, see [START_REF] Abramowitz | Pocketbook of Mathematical functions[END_REF].

Proof of Theorem 2.1. Denote ψ(x, y) = y 1+β(x+y) 1+αx+βy , x 1+α(x+y) 1+αx+βy =: (u, v), x, y > 0.
Note that ψ : (0, ∞) 2 → (0, ∞) 2 is an involution. Moreover, the following identities hold true:

x + y = u + v, (5) 
x 1+βy = v 1+αu , (6) 
y 1+αx = u 1+βv . (7) 
Using ( 5), ( 6) and ( 7) we compute the Jacobian J

ψ -1 (u, v) of ψ -1 = ψ as follows (8) J ψ -1 (u, v) = ∂(x,y) ∂(u,v) = ∂x ∂u ∂x ∂v 1 -∂x ∂u 1 -∂x ∂v = ∂x ∂u -∂x ∂v = 1+αx+βy 1+αu+βv = xy uv .
Now we are ready to find the joint density of (U, V ). We have

f (U,V ) (u, v) = J ψ -1 (u, v) f X (x(u, v)) f Y (y(u, v)) ∝ xy uv x a-1 (1+αx) b e -cx y b-1 (1+βy) a e -cy I (0,∞) 2 (u, v) = 1 uv x 1+βy a y 1+αx b e -c(x+y) I (0,∞) 2 (u, v).
Again referring to ( 5), ( 6) and ( 7) we get

f (U,V ) (u, v) ∝ 1 uv v 1+αu a u 1+βv b e -c(u+v) I (0,∞) 2 (u, v)
and the result follows. □ Theorem 2.1 yields the following independence property for pure (i.e. α = β = 1) Kummer variables. In a very interesting recent paper, [START_REF] Sasada | Yang-Baxter maps and independence preserving property[END_REF], the authors announced (independently) a result (see their Theorem 1.1 (ii)), which is equivalent to the independence property observed in Theorem 2.1.

Corollary 2.2. Let ( X, Ỹ ) ∼ K(a, b, c) ⊗ K(b, a, γc) for 1 ̸ = γ > 0. Then ( Ũ , Ṽ ) := Ỹ X+γ(1+ Ỹ ) 1+ X+ Ỹ , X Ỹ +γ -1 (1+ X) 1+ X+ Ỹ ∼ K(b, a, c) ⊗ K(a, b, γc). Proof. For α, β ̸ = 0 denote X = αX, Ỹ = βY , Ũ = αU , Ṽ = βV . Let γ = α/β. Then α ̸ = β

Limiting cases of the Kummer independence property

We will show that Theorem 2.1 yields, as limiting cases, several well-known independence properties: the Lukacs property, [START_REF] Lukacs | A characterization of the gamma distribution[END_REF], the Kummer-Gamma property, [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF], the Matsumoto-Yor property, [START_REF] Matsumoto | An analogue of Pitman's 2M -X theorem for exponential Wiener functionals. Part II: the role of the generalized inverse Gaussian laws[END_REF][START_REF] Letac | An independence property for the GIG and gamma laws[END_REF] and the KdV property, [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF].

We will rely on the following version of Theorem 5.5 from [START_REF] Billingsley | Convergence of probability measures[END_REF].

Theorem 3.1. Let X n d → X, with X n and X assuming values in a separable metric space S. Let ϕ n , ϕ : S → S be measurable functions such that for any x ∈ S and any sequence x n → x we have

ϕ n (x n ) → ϕ(x). Then ϕ n (X n ) d → ϕ(X).
Note that except the equality K 0 (a, b, c) = Gamma(a, c), in case b > a > 0 we have K 1 (a, b, 0) = Beta II (a, b -a), where the Beta II (p, q) law with p, q > 0 is defined by the density

f (x) ∝ x p-1 (1+x) p+q 1 (0,∞) .
Several other distributions can be obtained by taking weak limits of Kummer laws.

Proposition 3.2. If α → ∞ then (1) when a > b (9) K α (a, b, c) w → Gamma(a -b, c),
(2) when b > a

(10) K 1 (a, b, c/α) w → Beta II (a, b -a), (3) when b > 0 (11) K α (αb + a 1 , αb + a 2 , c) w → GIG(a 1 -a 2 , c, b). (4) when b > 0 (12) K α (a √ α + b, a √ α, c) w → Gamma(b, c).
(5) when b > 0

(13) K α (aα, aα + b, c/α) w → InvGamma(b, a),
where InvGamma(b, c) is defined by the density

f (x) ∝ x -b-1 e -c/x 1 (0,∞) (x).
3.1. The Lukacs property. The following independence property is related to the characterization of the gamma laws proved in [START_REF] Lukacs | A characterization of the gamma distribution[END_REF].

Theorem 3.3. Assume that (X 1 , Y 1 ) ∼ Gamma(a 1 , c) ⊗ Gamma(b 1 , c). Let (U 1 , V 1 ) = Y1 X1 , X 1 + Y 1 . Then (U 1 , V 1 ) ∼ Beta II (b 1 , a 1 ) ⊗ Gamma(a 1 + b 1 , c).
Proof. In view of Theorem 2.1 with α = n, β = 0 and Remark 2.1 we see that

(X (n) 1 , Y 1 ) ∼ K n (a 1 + b 1 , b 1 , c) ⊗ Gamma(b 1 , c) implies that for ϕ n (x, y) = ny 1+nx , x 1+n(x+y) 1+nx
we have [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF] ϕ n (X

(n) 1 , Y 1 ) ∼ K 1 (b 1 , a 1 + b 1 , c/n) ⊗ Gamma(a 1 + b 1 , c). Since, see (9), K n (a 1 + b 1 , b 1 , c) w → Gamma(a 1 , c) as n → ∞, we see that (15) (X (n) 1 , Y 1 ) d → (X 1 , Y 1 ) ∼ Gamma(a 1 , c) ⊗ Gamma(b 1 , c).
Moreover, for x n → x > 0 and y > 0

ϕ n (x n , y) = y xn+1/n , xn xn+1/n (x n + y + 1/n) → y x ,
x + y =: ϕ(x, y). Thus, in view of (15), Theorem 3.1 implies [START_REF] Letac | About an extension of the Matsumoto-Yor property[END_REF] ϕ n (X

(n) 1 , Y 1 ) d → ϕ(X 1 , Y 1 ) = Y1 X1 , X 1 + Y 1 .
On the other hand, [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF], in view of (10), yields [START_REF] Lukacs | A characterization of the gamma distribution[END_REF] P ϕn(X (n)

1 ,Y1) w → Beta II (b 1 , a 1 ) ⊗ Gamma(a 1 + b 1 , c).
Comparing ( 16) and ( 17) we conclude that

(U 1 , V 1 ) = Y1 X1 , X 1 + Y 1 ∼ Beta II (b 1 , a 1 ) ⊗ Gamma(a 1 + b 1 , c). □ 3.2.
The Kummer-Gamma independence property. The following result was proved in [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF]; see also [START_REF] Weso Lowski | On the Matsumoto-Yor type regression characterization of the gamma and Kummer distributions[END_REF].

Theorem 3.4. Assume that (X 2 , Y 2 ) ∼ K(a 2 , a 2 + b 2 , c 2 ) ⊗ Gamma(b 2 , c 2 ). Let (U 2 , V 2 ) = X 2 + Y 2 , 1+ 1 X2+Y2 1+ 1 X2
.

Then (U 2 , V 2 ) ∼ K(a 2 + b 2 , a 2 , c 2 ) ⊗ Beta I (a 2 , b 2 )
, where Beta I (p, q) has the density

f (y) ∝ y p-1 (1 -y) q-1 1 (0,1) (y).
Proof. In view of Theorem 2.1 with α = 1 and β = n we see that

(X 2 , Y (n) 2 ) ∼ K 1 (a 2 , a 2 + b 2 , c 2 ) ⊗ K n (a 2 + b 2 , a 2 , c 2 ) implies that for ϕ n (x, y) = y 1+n(x+y) 1+x+ny , nx 1+x+y 1+x+ny we have (18) ϕ n (X 2 , Y (n) 2 ) ∼ K 1 (a 2 + b 2 , a 2 , c 2 ) ⊗ K 1 (a 2 , a 2 + b 2 , c 2 /n). Since, see (9), K n (a 2 + b 2 , a 2 , c) w → Gamma(b 2 , c 2 ), we see that (19) P X2, Y (n) 2 w → K 1 (a 2 , a 2 + b 2 , c 2 ) ⊗ Gamma(b 2 , c 2 ).
Moreover, for any x > 0 and y n → y > 0 we have

ϕ n (x, y n ) = yn yn+(1+x)/n (x + y n + 1 n ),
x yn+(1+x)/n (1 + x + y n ) → x + y, x y (1 + x + y) =: ϕ(x, y). Consequently, by Theorem 3.1, in view of [START_REF] Matsumoto | Interpretation via Brownian motion of some independence properties between GIG and gamma laws[END_REF], we have [START_REF] Piliszek | Regression conditions that characterize free-Poisson and free-Kummer distributions[END_REF] ϕ n (X 2 , Y

(n) 2 ) d → ϕ(X 2 , Y 2 ) = X 2 + Y 2 , X2 Y2 (1 + X 2 + Y 2 )
. On the other hand, [START_REF] Matsumoto | An analogue of Pitman's 2M -X theorem for exponential Wiener functionals. Part II: the role of the generalized inverse Gaussian laws[END_REF], in view of (10), yields [START_REF] Piliszek | Kummer and gamma laws through independencies on trees -another parallel with the Matsumoto-Yor property[END_REF] P ϕn(X2,Y (n)

2

) w → K 1 (a 2 + b 2 , a 2 , c) ⊗ Beta II (a 2 , b 2 ).
Comparing [START_REF] Piliszek | Regression conditions that characterize free-Poisson and free-Kummer distributions[END_REF] and ( 21) we conclude that

(U 2 , V 2 ) := X 2 + Y 2 , X2 Y2 (1 + X 2 + Y 2 ) ∼ K 1 (a 2 + b 2 , a 2 , c) ⊗ Beta II (a 2 , b 2 ). But for h(u, v) = (u, v 1+v ) and ϕ = h • ϕ we have ϕ(x, y) = x + y, x y (1+x+y) 1+ x y (1+x+y) = x + y, 1+ 1 x+y 1+ 1 x . Thus (U 2 , V 2 ) = X 2 + Y 2 , 1+ 1 X2+Y2 1+ 1 X2 = ϕ(X 2 , Y 2 ) = U 2 , V2 1+ V2 ∼ K 1 (a 2 + b 2 , a 2 , c) ⊗ Beta I (a 2 , b 2 ).
Here we used the fact that if Z ∼ Beta II (p, q) then Z 1+Z ∼ Beta I (p, q). □ 3.3. The Matsumoto-Yor property. The following result was proved in Matsumoto and Yor [START_REF] Matsumoto | An analogue of Pitman's 2M -X theorem for exponential Wiener functionals. Part II: the role of the generalized inverse Gaussian laws[END_REF][START_REF] Matsumoto | Interpretation via Brownian motion of some independence properties between GIG and gamma laws[END_REF]; see also [START_REF] Letac | An independence property for the GIG and gamma laws[END_REF].

Theorem 3.5. Assume that

(X 3 , Y 3 ) ∼ GIG(-a 3 , b 3 , c 3 ) ⊗ Gamma(a 3 , b 3 ). Let (U 3 , V 3 ) = 1 X3+Y3 , 1 X3 -1 X3+Y3 . Then (U 3 , V 3 ) ∼ GIG(-a 3 , c 3 , b 3 ) ⊗ Gamma(a 3 , c 3 ).
Proof. In view of Theorem 2.1 with α = n and β = n 2 we see that if

(22) X (n) 3 , Y (n) 3 ∼ K n (nc 3 , nc 3 + a 3 , b 3 ) ⊗ K n 2 (nc 3 + a 3 , nc 3 , b 3 ) then with ϕ n (x, y) = y 1+n 2 (x+y) 1+nx+n 2 y , nx 1+n(x+y) 1+nx+n 2 y we have (23) ϕ n X (n) 3 , Y (n) 3 ∼ K n (nc 3 + a 3 , nc 3 , b 3 ) ⊗ K n (nc 3 , nc 3 + a 3 , b 3 /n).
Since, see ( 11) and ( 12),

K n (nc 3 , nc 3 + a 3 , b 3 ) w → GIG(-a 3 , b 3 , c 3 ) and K n 2 (nc 3 + a 3 , nc 3 , b 3 ) w → Gamma(a 3 , b 3 )
we see that ( 24)

X (n) 3 , Y (n) 3 d → (X 3 , Y 3 ) ∼ GIG(-a 3 , b 3 , c 3 ) ⊗ Gamma(a 3 , b 3 ).
Moreover, if x n → x > 0 and y n → y > 0 then we have

ϕ n (x n , y n ) = y y+ x n + 1 n 2 (x + y + 1 n 2 ), x x+y+ 1 n y+ x n + 1 n 2 → x + y, x (x+y) y . 
Consequently, by [START_REF] Sasada | Yang-Baxter maps and independence preserving property[END_REF], in view of Theorem 3.1 we have (25)

ϕ n X (n) 3 , Y (n) 3 d → ϕ(X 3 , Y 3 ) = X 3 + Y 3 , X3(X3+Y3)

Y3

.

On the other hand, since ( 11) and ( 13),

K n (nc 3 + a 3 , nc 3 , b 3 ) w → GIG(a 3 , b 3 , c 3 ) and K n (nc 3 , nc 3 + a 3 , b 3 /n) w → InvGamma(a 3 , c 3 )
we conclude that (26)

P ϕn X (n) 3 , Y (n) 3 w → GIG(a 3 , b 3 , c 3 ) ⊗ InvGamma(a 3 , c 3 ).
Combining [START_REF] Seppäläinen | Scaling for a one-dimensional directed polymer with boundary conditions[END_REF] with [START_REF] Weso Lowski | On the Matsumoto-Yor type regression characterization of the gamma and Kummer distributions[END_REF] we get

( U 3 , V 3 ) := X 3 + Y 3 , X3(X3+Y3) Y3 ∼ GIG(a 3 , b 3 , c 3 ) ⊗ InvGamma(a 3 , c 3 ). Denoting h(u, v) = (u -1 , v -1 ) and ϕ = h • ϕ, we get ϕ(x, y) = 1 x+y , y x(x+y) = 1 x+y , 1 x -1 x+y . Finally, we obtain (U 3 , V 3 ) = 1 X3+Y3 , 1 X3 -1 X3+Y3 = ϕ(X 3 , Y 3 ) = 1 U3 , 1 V3 ∼ GIG(-a 3 , c 3 , b 3 ) ⊗ Gamma(a 3 , c 3 ) □ 3.4.
The discrete KdV independence property. The following result was proved in [START_REF] Croydon | Detailed balance and invariant mesures for discrete KdV-and Toda-type systems[END_REF]; see also [START_REF] Bao | Characterizations of the generalized inverse Gaussian, asymmetric Laplace, and shifted (truncated) exponential laws via independence properties[END_REF] and [START_REF] Letac | About an extension of the Matsumoto-Yor property[END_REF].

Theorem 3.6. Assume that

(27) (X 4 , Y 4 ) ∼ GIG(-a 4 , αb 4 , c 4 ) ⊗ GIG(-a 4 , βc 4 , b 4 ). Let (U 4 , V 4 ) = Y 4 1+αX4Y4 1+βX4Y4 , X 4 1+βX4Y4 1+αX4Y4 . Then (28) (U 4 , V 4 ) ∼ GIG(-a 4 , αc 4 , b 4 ) ⊗ GIG(-a 4 , βb 4 , c 4 ).
Proof. In view of Theorem 2.1 with α changed into n/α and β changed into n/β we see that if 

(29) X (n) 4 , Y (n) 4 ∼ 
ϕ n X (n) 4 , Y (n) 4 d → ϕ( X 4 , Y 4 ) = α Y 4 X4+ Y4 β X4+α Y4 , β X 4 X4+ Y4
β X4+α Y4 . On the other hand since, see again [START_REF] Ferguson | A characterization of the exponential distribution[END_REF], Note that for g(x, y) = (1/x, βy), in view of ( 27) and (31), we have

K n/α (
g(X 4 , Y 4 ) d = ( X 4 , Y 4 ) (note that if R ∼ GIG(p, a, b) anf if k > 0, then kR ∼ GIG(p, a/k, kb)
) and for h(x, y) = (x/α, 1/y), in view of ( 32) and (28), we see that

h( U 4 , V 4 ) d = (U 4 , V 4 ). Therefore, defining ϕ = h • ϕ • g we get (U 4 , V 4 ) d = ϕ(X 4 , Y 4 ). But ϕ(x, y) = y 1+αxy 1+βxy , x 1+βxy 1+αxy ,
which concludes the proof. □

The Kummer transform and the characterization

For a positive random variable W and γ ≥ 0 consider an extended Laplace transform L

W of the form

L (γ) W (s, t, z) = E W s (1+γW
) t e -zW . We will call it the Kummer transform. Note that the Kummer tranform is well defined at least for s, z > 0 and t ∈ R. Moreover, for any fixed s > 0, t ∈ R, the Kummer transform as a function of z > 0, is just the Laplace transform of the measure w s (1+γw) t P W (dw), so it uniquely determines the distribution of W . Note also that ( 35)

L (γ) W (s, t, z) + γL (γ) W (s + 1, t, z) = L (γ)
W (s, t -1, z) and for any k = 1, 2, . . .

(36) ∂ k L (γ) W (s,t,z) ∂z k = (-1) k L (γ) W (s + k, t, z). Proposition 4.1. Let X ∼ K α (a, b, c), a, c > 0, b ∈ R. Then (37) L (α) X (s, t, z) = Γ(a+s)U a+s,a+s-b-t+1, c+z α α s Γ(a)U (a,a-b+1, c α ) , s > 0, t ∈ R, z > -c
, where U is the Kummer function (see 13.2.5 in [START_REF] Abramowitz | Pocketbook of Mathematical functions[END_REF]) defined by 

(38) U (a, b, z) = 1 Γ(a) ∞ 0 x a-1 (1+x) a-b+1 e -zx dx, a, z > 0, b ∈ R.
U (a, a + 1, z) = z -a ,
whence, if X ∼ K α (a, 0, c) then (37) gives

L (α)
X (0, 0, z) = c a (c+z) a , which implies that X is a Gamma random variable, Gamma(a, c).

Proposition 4.2. Let b ∈ R, a, c, α > 0. Assume that for some fixed (s, t) ∈ (0, ∞) × R and all z > 0 (39) L (α) X (s, t, z) = k(s, t)U a + s, a + s -b -t + 1, c+z α ,
where k(s, t) is a constant (depending also on α, a, b, c). Then X ∼ K α (a, b, c).

Proof. Fix some z 0 > 0. Then (39) implies ( 40)

L (α) X (s,t,z+z0) L (α) X (s,t,z0) = U a+s,a+s-b-t+1, c+z0+z α U a+s,a+s-b-t+1, c+z0 α , z ≥ 0.
This is the Laplace transform of a random variable Y with distribution (41) P Y (dy) = y s (1+αy) t e -z 0 y P X (dy) L ] Let X and Y be independent and U, V are defined as in [START_REF] Billingsley | Convergence of probability measures[END_REF]. In view of (5), ( 6) and (7) we then see that if

(42) L (α) X (s, t, z) L (β) Y (t, s, z) = L (α) U (t, s, z) L (β)
V (s, t, z), (s, t, z) ∈ (0, ∞) × R × (0, ∞) then U and V are independent.

Let (X, Y ) ∼ K α (a, b; c) ⊗ K β (b, a; c). Consequently, to prove Theorem 2.1, it suffices to check that identity (42) is satisfied for (U, V ) ∼ K α (b, a; c) ⊗ K β (a, b; c). Referring to (37), we see that (42) is then equivalent to

(43) U a+s,a+s-b-t+1, c+z α U b+t,b+t-a-s+1, c+z β α s β t U (a,a-b+1, c α ) U b,b-a+1, c β = U b+t,b+t-a-s+1, c+z α U a+s,a+s-b-t+1, c+z β α t β s U (b,b-a+1, c α ) U a,a-b+1, c β .
To see that (43) holds true we rely on the following identity for the Kummer function U (see (13.1.29) in [START_REF] Abramowitz | Pocketbook of Mathematical functions[END_REF])

(44) U (a, b, z) = z 1-b U (1 + a -b, 2 -b, z).
Note also, that in view of (42) and (37) of Proposition 4.1 we have

L (α) X (s,t,z) L (α) U (t,s,z) = L (β) V (s,t,z) L (β) Y (t,s,z) = c a-b Γ(b) Γ(a) Γ(a+s) Γ(b+t) (c + z) b-a+t-s .
Now we are ready to formulate the main result which is a characterization of Kummer laws by the detailed balance condition with respect to the function F given in (3). 1 and symmetry with respect to α and β we conclude that the cases β = 0, α > 0 and β > 0, α = 0 also follow immediately from Theorem 2.6. of [START_REF] Piliszek | Change of measure technique in characterizations of the Kummer and gamma laws[END_REF]. That is, we need only to prove Theorem 4.3 for α > 0 and β > 0. The proof of this case requires much more efforts and is given in several steps in the next section.

5.

Proof of Theorem 4.3 for α > 0 and β > 0 5.1. Independence through Kummer transforms. We first note that the assumed independence properties imply equality (42) for (s, t, z) ∈ (0, ∞) × R × (0, ∞). Differentiating (42) with respect to z and dividing side-wise resulting equality by (42) we get

.

Using identity (35) we obtain

β L (α) X (s,t-1,z) L (α) X (s,t,z) + α L (β) Y (t,s-1,z) L (β) Y (t,s,z) = β L (α) U (t,s-1,z) L (α) U (t,s,z) + α L (β) V (s,t-1,z) L (β) Y (s,t,z)
.

Changing in the above formula s to s + 1 and t to t + 1 we arrive at

(46) β L (α) X (s+1,t,z) L (α) X (s+1,t+1,z) + α L (β) Y (t+1,s,z) L (β) Y (t+1,s+1,z) = β L (α) U (t+1,s,z) L (α) U (t+1,s+1,z) + α L (β) V (s+1,t,z) L (β) Y (s+1,t+1,z)
. Subtracting side-wise (45) (multiplied by αβ) from (46), in view of (35), we get

(47) β M (α) X (s, t, z) + α M (β) Y (t, s, z) = β M (α) U (t, s, z) + α M (β) V (s, t, z), where M (γ) W (s, t, z) = L (γ) W (s+1,t,z)L (γ) W (s,t+1,z) L (γ) W (s,t,z)L (γ) W (s+1,t+1,z)
.

From now on we suppress superscripts in L and M functions, that is we write

M X := M (α) X , L X := L (α) X , M Y := M (β) Y , L Y := L (β) Y , M U := M (α) U , L U := L (α) U and M V := M (β) V , L V := L (β) V . Note that (42) implies (48) M X (s, t, z)M Y (t, s, z) = M U (t, s, z)M V (s, t, z).
Combining (47) with (48) we get

(β M X (s, t, z) -α M V (s, t, z)) (M X (s, t, z) -M U (t, s, z)) = 0 (49) (β M U (t, s, z) -α M Y (t, s, z)) (M V (s, t, z) -M Y (t, s, z)) = 0. (50) Since M X , M Y , M U , M V all extend uniquely to meromorphic functions in a common domain in C 3 it follows from (49) that either β M X ≡ α M V or M X ≡ M U and from (50) that either β M U ≡ α M Y or M V ≡ M Y .
In Section 5.2 we will prove that β M X ≡ α M V is impossible. It will follow by symmetry that also β M U ≡ α M Y is impossible. Then, in Section 5.3 we will consider the case M X ≡ M U . It relates L X and L U through auxiliary functions a, b, f which are deciphered in Section 5.4. In Section 5.5 we eliminate L X from the problem. It leads to the Kummer differential equation for slightly modified version of L U , which allows to identify L U (and thus also L X ), up to parameters. The case M V ≡ M Y follow by the analogous approach. The final step in Section 5.6 lies in identification of relations between parameters of all four transforms: L X , L Y , L U and L V .

The case βM

X ≡ αM V is impossible. Assume (51) βM X (s, t, z) = αM V (s, t, z), s, t ≥ 0, z > 0. Define (52) A(s, t, z) := L X (s+1,t)L V (s,t) L X (s,t)L V (s+1,t)
and (53) B(s, t, z) := L X (s,t)L V (s,t+1) L X (s,t+1)L V (s,t) , where we suppressed the argument z. Note that (51) implies

A(s, t + 1, z) = β α A(s, t, z) and B(s + 1, t, z) = α β B(s, t, z), s, t ∈ N. Consequently, A(s, t, z) = β α t a(s, z), and B(s, t, z) = α β s b(t, z),
where a(s, z) = A(s, 0, z) and b(t, z) = B(0, t, z).

Note that (51) implies also (54) β A(s, t, z) L X (s,t) L X (s+1,t+1) = α B(s, t, z) L V (s,t) L V (s+1,t+1) . Consequently, h(s, t, z) := a(s,z) b(t,z) = α β t+s+1 L X (s+1,t+1)L V (s,t) L X (s,t)L V (s+1,t+1) . Then

β α s+t+1 ∂h(s,t,z) ∂z = Num [L X (s,t)L V (s+1,t+1)] 2 , where the numerator Num = [L X (s + 2, t + 1)L V (s, t) + L X (s + 1, t + 1)L V (s + 1, t)] L X (s, t)L V (s + 1, t + 1) -L X (s + 1, t + 1)L V (s, t) [L X (s + 1, t)L V (s + 1, t + 1) + L X (s, t)L V (s + 2, t + 1)] =L X (s, t)L V (s, t) [L X (s + 2, t + 1)L V (s + 1, t + 1) -L X (s + 1, t + 1)L V (s + 2, t + 1)] + L X (s, t)L X (s + 1, t + 1)L V (s + 1, t)L V (s + 1, t + 1) -L X (s + 1, t)L X (s + 1, t + 1)L V (s, t)L V (s + 1, t + 1) = I 1 + I 2 -I 3 .
Note that the last two summands in the above expression can be rewritten with the help of (35) as follows:

I 2 = 1 β L X (s, t)L X (s + 1, t + 1)L V (s + 1, t) [L V (s, t) -L V (s, t + 1)] and I 3 = 1 α L X (s + 1, t) [L X (s, t) -L X (s, t + 1)] L V (s, t)L V (s + 1, t + 1).
Consequently,

I 1 + I 2 -I 3 = L X (s, t)L V (s, t) 1 α L V (s + 1, t + 1) [αL X (s + 2, t + 1) -L X (s + 1, t)] -1 β L X (s + 1, t + 1) [βL V (s + 2, t + 1) -L V (s + 1, t)] + 1 α L X (s + 1, t)L X (s, t + 1)L V (s, t)L V (s + 1, t + 1) -1
β L X (s, t)L X (s + 1, t + 1)L V (s + 1, t)L V (s, t + 1). Note that (51) implies that the two last terms cancel. Therefore referring again to (35) in the first two expressions above we get

Num = L X (s, t)L V (s, t)L X (s + 1, t + 1)L V (s + 1, t + 1) α-β αβ whence ∂ h(s,t,z) ∂ z = h(s, t, z) α-β αβ , i.e.
h(s, t, z) = χ(s, t) exp α-β αβ z , where χ(s, t) does not depend on z. Consequently,

a(s,z) b(t,z) = a(s) b(t) e z α-β αβ ,
where a(s) = a(s, 0) and b(t) = b(0, t).

Therefore, referring to (54), for s = t = 0 we obtain

e - 1 β - 1 α z (0,∞) 2 x 1+αx e -z(x+v) P X (dx)P V (dv) = β a(0) α b(0) (0,∞) 2 v 1+βv e -z(x+v) P X (dx)P V (dv)
which, with η = 1 β -1 α , can be written as (55)

R×(0,∞) 2

x 1+αx e -z(w+x+v) δ η (dw)P X (dx)P V (dv) = β a(0) α b(0) (0,∞) 2 v 1+βv e -z(x+v) P X (dx)P V (dv).

In view of (55) we see that the support of the convolution δ η * P X * P V (determined by the left-hand side of (55)) coincides with the support of the convolution P X * P V (determined by the right-hand side of (55)). Consequently, denoting the latter support by W and letting w 0 = inf W, we get η + w 0 = w 0 , which is impossible since by assumption α ̸ = β.

5.3.

The case of M X ≡ M U and functions a, b and f . We consider the equation (56) M X (s, t, z) = M U (t, s, z), s, t ∈ {0, 1, . . .}, z > 0.

Denote (57)

A(s, t, z) := L X (s+1,t)L U (t,s) L X (s,t)L U (t,s+1) , and (58) B(t, s, z) := L U (t+1,s)L X (s,t) L U (t,s)L X (s,t+1) , where we skipped the superscript (α) and the argument z in L X and L U .

Note that (56) implies that for all s, t ∈ N = {0, 1, . . .} we have A(s, t, z) = A(s, t + 1, z) and B(t, s, z) = B(t, s + 1, z).

Consequently, for (s, t) ∈ N 2 we have A(s, t, z) = A(s, 0, z) =: A(s, z) and B(t, s, z) = B(t, 0, z) =: B(t, z). Now (56) can be written as ,s+1) .

(59) A(s, z) L X (s,t) L X (s+1,t+1) = B(t, z) L U (t,s) L U (t+1

Consider now the quotient

A(s,z) B(t,z) = L X (s+1,t+1)L U (t,s) L X (s,t)L U (t+1,s+1) . Then the numerator Num of the derivative

∂ A(s,z) B(t,z) ∂z assumes the form Num =[L X (s + 2, t + 1)L U (t, s) + L X (s + 1, t + 1)L U (t + 1, s)]L X (s, t)L U (t + 1, s + 1) -L X (s + 1, t + 1)L U (t, s)[L X (s + 1, t)L U (t + 1, s + 1) + L X (s, t)L U (t + 2, s + 1)] =L X (s, t)L U (t, s)[L X (s + 2, t + 1)L U (t + 1, s + 1) -L X (s + 1, t + 1)L U (t + 2, s + 1)] +L X (s, t)L X (s + 1, t + 1)L U (t + 1, s) 1 α [L U (t, s) -L U (t, s + 1)] -L X (s + 1, t) 1 α [L X (s, t) -L X (s, t + 1)]L U (t, s)L U (t + 1, s + 1)
, where we twice used (35). Referring again to (56), after cancellation, we get

α Num L X (s,t)L U (t,s) =L U (t + 1, s + 1) [αL X (s + 2, t + 1) -L X (s + 1, t)] -L X (s + 1, t + 1) [αL U (t + 2, s + 1) -L U (t + 1, s)] .
Note that (35) applied to the expressions in square brackets above gives -L X (s + 1, t + 1) for the first square bracket and -L U (t + 1, s + 1) for the second. Consequently, Num = 0 and thus A(s,z) B(t,z) = a(s) b(t) , where a(s) := A(s, 0) and b(t) := B(t, 0). Consequently, we have the representations:

(60) A(s, z) = f (z)a(s) and B(t, z) = f (z)b(t), z > 0, s, t ∈ N,
where f = A(0,z) a(0) = B(0,z) b(0) . Note that (59) can be rewritten as (61) a(s) L X (s,t,z) L X (s+1,t+1,z) = b(t) L U (t,s,z) L U (t+1,s+1,z) . 5.4. Computing a, b and f . Taking logarithms of (57) sidewise, using the first equality of (60) and differentiating with respect to z, in view of (36), we obtain

f ′ f = -L X (s+2,t) L X (s+1,t) + L X (s+1,t) L X (s,t) -L U (t+1,s) L U (t,s) + L U (t+1,s+1) L U (t,s+1) . Note that ∂ 2 ∂z 2 log L X (s, t) = L X (s+2,t) L X (s,t) -L X (s+1,t) L X (s,t) 2 .
Using the above formula, the identity (36) and recalling the definition of M U we finally get

f ′ f ∂ ∂z log L X (s, t) = ∂ 2 ∂z 2 log L X (s, t) + L X (s+1,t)L U (t+1,s) L X (s,t)L U (t,s) (1 -M -1 U (t, s, z)).
Starting with (58), in a similar way, we obtain the analogue of the above

f ′ f ∂ ∂z log L U (t, s) = ∂ 2 ∂z 2 log L U (t, s) + L U (t+1,s)L X (s+1,t) L U (t,s)L X (s,t)
(1 -M -1 X (s, t, z)). Subtracting the last two equalities sidewise, in view of (56), we obtain

f ′ f = g ′ g , where g = ∂ ∂z log L U (t,s) L X (s,t) . Consequently, (62) K(s, t)f = ∂ ∂z log L U (t,s) L X (s,t) = L X (s+1,t) L X (s,t) -L U (t+1,s) L U (t,s)
for some function K which does not depend on z. Referring to (60) as well as to (57) and (58) again we get K(s, t) = a(s) L U (t,s+1) L U (t,s) -b(t) L X (s,t+1) L X (s,t) .

For L X (s, t) and L X (s + 1, t) in (67) insert the relevant expression from (64) and (65), respectively. Together with (66) it yields a(s)L U (t, s + 1) -K(s, t)L U (t, s) = (c + z)L U (t + 1, s).

Regarding L U (t, s) and L U (t + 1, s) as the right-hand side of identity (35) with suitable s and t we get

α(c + z)L U (t + 2, s + 1) + (c + z + αK(s, t))L U (t + 1, s + 1) -b(t)L U (t, s + 1) = 0.
In view of (36), the above equation transforms into the second order diferential equation for the function h := L U (t, s + 1) as follows

α(c + z) h ′′ (z) + α(b(t) -a(s)) -(c + z)) h ′ (z) -b(t) h(z) = 0.
Consequently, for g defined by g(z) = h(αz -c) we get the Kummer equation Returning to L U (t, s) (recall that g was defined through L U (t, s + 1)) we get L U (t, s, z) = c U (s, t)U (b + t, b + t -a -s + 1, c+z α ), with a, b > 0 and c ≥ 0.

Changing the roles of L X and L U in the above argument starting with (64) we obtain L X (s, t, z) = c X (s, t)U (a + s, a + s -b -t + 1, c+z α ). Assume that c = 0. Recalling (38) we see that: (1) if a ̸ = b then either U (a, a -b + 1, 0) = ∞ or U (b, b -a + 1, 0) = ∞; (2) if a = b then U (a, 1, 0) = U (b, 1, 0) = ∞. Since L X (0, 0, 0) = L U (0, 0, 0) = 1 we obtain thus a contradiction. Therefore c > 0 and Proposition 4.2 implies that X ∼ K α (a, b, c) and U ∼ K α (b, a, c).

In case κ = 0 we have f (z) = C ̸ = 0 and A(s, z) = a > 0 and B(t, z) = b > 0 where a = ãC and b = bC. We now show that this is impossible. Indeed, (62) then yields a -b = L X (s+1,t) L X (s,t) -L U (t+1,s) L U (t,s) . Combining this with (58) we get (a -b)L X (s, t) = L X (s + 1, t) -bL X (s, t + 1).

For s = t = 0 we thus get E((X -a + b)e -zX = bE 1 1+αX e -zX . Consequently, (x -a + b)P X (dx) = b 1+αx P X (dx). Equivalently, (1+αx)(x-a+b) b P X (dx) = P X (dx).

Since (1 + αx)(x -a + b) = b is equivalent to αx 2 + (α(b -a) + 1)x -a = 0, the roots of which have different signs. Since X is nonnegative this would imply that its support degenerates to a point, which contradicts our assumptions.

5.6. Identifying the parameters. We have proved that X ∼ K α (a, b, c), U ∼ K α (b, a, c), Y ∼ K β (ã, b, c) and V ∼ K β ( b, ã, c) for some a, b, c, ã, b, c > 0. Using (37) for each of the variables X, Y, U, V , equation (42) reads: 

  and, in view of Remark 2.1, reference to Theorem 2.1 ends the proof. □

Proof.□Remark 4 . 1 .

 41 It is a simple consequence of that fact that due to the definition of the Kummer function U in (38) the normalizing constant of the Kummer distribution K α (a, b, c) has the form α a Γ(a)U (a,a-b+1, c α ). Note that when b = a + 1, in view of (38), we have

.

  In view of Proposition 4.1, by (37) and (40), the random variable Y has the Kummer distribution K α (a + s, b + t, c + z 0 ), i.e. P Y (dy) ∝ y a+s-1 (1+αy) b+t e -(c+z0)y dy. The result follows by comparing the last formula with (41). □ Remark 4.2. [Alternative proof of Theorem 2.1.

Theorem 4 . 3 .Remark 4 . 3 .

 4343 Let α, β ≥ 0, α ̸ = β. Let X, Y be positive, independent, non-Dirac random variables and define U = Y 1+β(X+Y ) 1+αX+βY and V = X 1+α(X+Y ) 1+αX+βY . If U and V are independent, then there exist a, b, c > 0 such that(X, Y ) ∼ K α (a, b; c) ⊗ K β (b, a; c).We then have(U, V ) ∼ K α (b, a; c) ⊗ K β (a, b; c).Recall that Theorem 2.6 of[START_REF] Piliszek | Change of measure technique in characterizations of the Kummer and gamma laws[END_REF] says that for random variables X and Y which are independent, positive, non-Dirac, independence of U and V given by (1) implies that X ∼ K(a, b, c) and Y ∼ Gamma(b, c). (Note the change of parametrization of the Kummer distribution: instead of b -a in[START_REF] Piliszek | Change of measure technique in characterizations of the Kummer and gamma laws[END_REF] we write here just b.) In view of the first part of Remark 2.1 this result covers the case (α, β) = (1, 0) in Theorem 4.3. Due to the second part of Remark 2.

  (68)zg ′′ (z) + (b(t) -a(s) -z)g ′ (z) -b(t)g(z) = 0.It is well known that the general solution is of the formg(z) = c 1 M (b(t), b(t) -a(s), z) + c 2 U (b(t), b(t) -a(s), z),see 13.1.1, 13.1.2 and 13.1.3 in[START_REF] Abramowitz | Pocketbook of Mathematical functions[END_REF]). Recall that M (a, b, z) is unbounded when z → ∞ (see e.g. 13.1.4 in[START_REF] Abramowitz | Pocketbook of Mathematical functions[END_REF]) and U (a, b, z) → 0 as z → ∞. Since g, as a Laplace transform of a probability measure, is bounded, we necessarily have g(z) = c U (s, t)U (b(t), b(t) -a(s), z).

Γ

  (a+s)U a+s,a+s-b-t+1, c+z α α s Γ(a)U (a,a-b+1, c α ) × Γ(ã+t)U ã+t,ã+t-b-s+1, c+z β β t Γ(ã)U ã,ã-b+1, c β = Γ(b+t)U b+t,b+t-a-s+1, c+z α α t Γ(b)U (b,b-a+1, c α ) × Γ( b+s)U b+s, b+s-ã-t+1, c+z β β s Γ( b)U b, b-ã+1, c β which, by applying identity (44) to the left-hand side, gives )U b+t,b+t-a-s+1, c+z α α t Γ(b)U (b,b-a+1, c α ) × Γ( b+s)U b+s, b+s-ã-t+1, c+z β β s Γ( b)U b, b-ã+1, c β.After cancellations we obtain (69)(c+z) b+t-a-s (c+z) b+s-ã-t c b-a cb -ã × Γ(a+s) Γ(a) × Γ(ã+t) Γ(ã) = Γ(b+t) Γ(b) × Γ( b+s) Γ( b). Taking the logarithm and differentiating in z gives b+t-a-s c+z+ b+s-ã-t c+z = 0.Since this holds for any z > 0, we conclude that c = c and b -a = ã -b. Returning to (69) we haveΓ(a+s) Γ(a) × Γ(ã+t) Γ(ã) = Γ(b+t) Γ(b) × Γ( b+s) Γ( b), which for (s, t) = (0, 1), yields ã = b and for (s, t) = (1, 0) yields a = b.

  nb 4 , nb 4 + a 4 , c 4 ) , c 4 , αb 4 ) ⊗ GIG(a 4 , c 4 , βb 4 ). , V 4 ) := ϕ( X 4 , Y 4 ) ∼ GIG(-a 4 , c 4 , αb 4 ) ⊗ GIG(a 4 , c 4 , βb 4 ).

	by (30) we conclude that
	(33) → GIG(-a 4 Combining (32) and (33) we get P ϕn(X (n) 4 ,Y (n) 4 ) w
	(34)	( U 4
		w → GIG(-a 4 , c 4 , αb 4 )
	and	
		K n/β (nb 4 + a 4 , nb 4 , c 4 )	w → GIG(a 4 , c 4 , βb 4 )
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Now, (35) applied to L U (t, s + 1) and L X (s, t + 1) gives K(s, t) = a(s) -b(t) -α a(s) L U (t+1,s+1) L U (t,s) -b(t) L X (s+1,t+1) L X (s,t)

.

Referring to (61) we see that the expression in parenthesis above is zero, whence K(s, t) = a(s) -b(t). Now we write (62) for s + 1 and t, which gives s+1,t) . Substracting sidewise this equality from (62) we get

where the last equality follows from the first part of (60).

Similarly, using (62) with s and t + 1 we get

dz , where the last equality follows from the second part of (60).

Consequently a(s) -a(s

In case κ ̸ = 0 we have A(s, z) = a+s c+z and B(t, z) = b+t c+z , where a := ã/κ, b := b/κ and c = C/κ. Since A(s, z) and B(t, z) are strictly positive for all s ≥ 0, t ≥ 0 and z > 0, we conclude that a, b > 0 and c ≥ 0. Note that κ = 0 implies f ≡ const, which in view of (60) would imply A(s, z) = const and B(t, z) = const . 5.5. The Kummer ode and identification (up to parameters) of L X , L U , L Y and L V . Note that (62), when κ ̸ = 0, in view of (63), can be rewritten as t) , z > 0, where we changed K/κ into K and c = C/κ. (Note that with such a new K(s, t) we also have a(s) = s+a and b(t) = t + b.) Consequently, (z + c) K(s,t) = c(s, t) L U (t,s) L X (s,t) , where c(s, t) does not depend on z.

Rewrite the above as

and for s + 1 and t as

65) by (64) and referring to (57) we get (66) c(s+1,t) c(s,t) = L X (s+1,t)L U (t,s) L X (s,t)L U (t,s+1) (z + c) = a(s). Now we differentiate (64) with respect to z and get (67) K(s, t)(z + c) K(s,t)-1 L X (s, t) -(z + c) K(s,t) L X (s + 1, t) = -c(s, t)L U (t + 1, s).