
HAL Id: hal-04129229
https://hal.science/hal-04129229

Submitted on 15 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Functional Properties of Automatically
Generated Fixed-Point Controllers

Dorra Ben Khalifa, Matthieu Martel

To cite this version:
Dorra Ben Khalifa, Matthieu Martel. On the Functional Properties of Automatically Generated Fixed-
Point Controllers. 9th International Conference on Control, Decision and Information Technologies,
Jul 2023, Rome, Italy. �hal-04129229�

https://hal.science/hal-04129229
https://hal.archives-ouvertes.fr

On the Functional Properties
of Automatically Generated Fixed-Point Controllers

Dorra Ben Khalifa1 and Matthieu Martel1,2

Abstract— The implementation of control algorithms typi-
cally starts with the development of executable models and
prototype implementations, e.g. in C, running on desktop com-
puters before being ported to the target embedded architecture.
Often, this latter architecture uses fixed-point arithmetic that
differs in terms of accuracy from the floating-point arithmetic
used by the desktop computer. In this article, we show that our
POPiX tool is capable of automatically transforming floating-
point codes into fixed-point ones while preserving the functional
properties of the original control algorithms and optimizing
resources in terms of memory and power consumption. We
experiment POPiX on two widely used algorithms: a PID
controller and a Kalman filter. Our experimental results val-
idate, at the functional level, the code generation performed
automatically by POPiX.

Index Terms— Precision Tuning, Fixed-point arithmetic,
Code Generation, PID Controller, Kalman Filter.

I. INTRODUCTION

In general, the implementation of a control command
algorithm starts with a high-level description of its behavior,
e.g. using a Simulink graphical model, continues with an
implementation in a program, e.g. in C, and ends with a
mapping to the target embedded architecture with limited
resources. While the first two steps are performed on a
desktop computer and are not much constrained in terms
of memory, energy or computational power, this is not
the case for the target system. In particular, the program
must be adapted to run with less memory and less accurate
arithmetic than in the conception phase, and these changes
may introduce errors that may alter the functional properties
of the algorithm under consideration.

A classic problem when porting a control command code
implementation to an embedded architecture concerns the
change of arithmetic: when a C program designed to work
with floating-point numbers [1] is ported to a fixed-point
architecture [2], [3]. While the fixed-point arithmetic is less
resource consuming, it introduces different rounding errors
which may change the behavior of the controller.

In this article, we experimentally demonstrate how our
tool POPiX [4], [5] can take a floating-point program and
generate a fixed-point code which is efficient both in terms of
resources and accuracy. In particular, we show that the fixed-
point codes generated by POPiX preserve the functional
properties of two intensively used command control bricks:

1Dorra Ben Khalifa and Matthieu Martel are with the LAMPS
Laboratory of Perpignan university, 52 Avenue Paul Alduy, Per-
pignan, 66100, France dorra.ben-khalifa@univ-perp.fr
matthieu.martel@univ-perp.fr

2 Matthieu Martel is also with the Numalis company, 265 Avenue des
États du Languedoc, Montpellier, 34000, France.

a PID controller [6] and a Kalman filter [7]. More precisely,
POPiX is a precision tuning tool [8]–[12] based on static
analysis [13] that finds the minimum formats (number of
bits) needed to perform fixed-point arithmetic computations
derived from the input program to ensure that the results
will be close to the floating-point ones up to a user-defined
threshold. POPiX takes as input an arbitrary program written
in imperative language and computes this information by
generating and then solving an Integer Linear Problem (ILP)
representing the propagation of the errors through the code.
From the formats returned by POPiX, we may derive fixed-
point formats which optimize the memory consumption and
fulfill the accuracy threshold set by the user.

The rest of this article is organized as follows. Related
work is discussed in Section II. In Section III, we introduce
some background material concerning the fixed-point arith-
metic and the main approach of the POPiX tool. Our case
studies are presented in Section IV. Experimental results are
presented in Section V before concluding in Section VI.

II. RELATED WORK

Automating fixed-point code synthesis has interested many
researchers in the last decade. The TAFFO tool [10] is a
tuning assistant for floating-point to fixed-point optimization.
It is known as an LLVM-based framework designed to
assist programmers in the precision tuning of software. The
common point between POPiX and TAFFO is that both
tools perform static precision tuning and are able to generate
fixed-point codes. Let us note that combining these two
frameworks is a work in progress. Recently, TAFFO has been
extended to perform tuning of trigonometric functions with
a new library called FixM [14] that generates code for fixed-
point mathematical functions. Their approach is demon-
strated on all the trigonometric and hyperbolic functions,
as well as other functions that can be computed using the
CORDIC method [15]. The approaches proposed in [2], [16]
address the transformation of linear filters and controllers
into hardware operators using fixed-point arithmetic. Their
contribution is based on a complete error analysis, with
respect to the internal word-lengths and the formulation of
the word-length optimization as a convex non-linear integer
optimization problem solved using appropriate heuristics.
Najahi et al. [3] presented an automated approach to syn-
thesize fixed-point codes for linear algebra basic blocks by
taking a mathematical description of the problem as well as
the range of the input variables to generate fixed-point codes.

In the context of the fixed-point code generation for PID
controllers and filters, Dedania et al. [6] presented the design

and implementation of a floating-point PID controller accel-
erator built on low-power Field-Programmable Gate Array
(FPGA) chips. Let us note that in future work we would like
to generate fixed-point codes on embedded hardware such
as FPGAs and microcontrollers. The work in [17] proposes
both best-precision fixed-point arithmetic and the FPGA
implementation details of a digital PID controller. Also, it
illustrates the process of converting analog controllers to
digital ones. Choi et al [18] generalized the Kalman filter
algorithm to one that approximates the fixed-point of an
operator that is known to be a Euclidean norm contraction.
Instead of noisy samples of the desired fixed point, the
algorithm updates parameters based on noisy samples of
functions generated by application of the operator.

To summarize, POPiX is a standalone framework that
allows its users to choose the optimal precision in fixed-point
arithmetic, also in bit-level and floating-point arithmetic, in
order to obtain the best performance in terms of power/mem-
ory consumption and computation time.

III. POPIX: STATIC FIXED-POINT CODE GENERATOR

In this section, we first review the necessary background
for fixed-point arithmetic. We then highlight the implemen-
tation details of our tool POPiX.

A. Fixed-Point Arithmetic

Unlike to the floating-point arithmetic, virtually all proces-
sors have built-in support for integer arithmetic. Since fixed-
point operations are essentially based on integer instructions,
computing with fixed-point numbers is very efficient.

A fixed number of digits is assigned to the sign, integer
and fractional parts of the number within the data type
format. As integer data types can be signed or unsigned, the
sign field can be omitted also in fixed-point numbers. This
is the case of unsigned fixed-point numbers, which represent
the absolute value of the real number defined in Equation (1).
Note that the binary point in fixed-point representation and
the number of bits of each part are fixed. Thus, the scale
factor (with powers of the base 2) of the associated data is
constant and the range of the values that can be represented
does not change during the computation.

(−1)sign × integer× f ractional (1)

Noting that many implementations of the fixed-point arith-
metic use a two’s complement representation instead of
Equation (1). Figure 1 presents the general representation
of a number in fixed-point format composed of a bit of sign
s (the most significant bit) and b−1 bits divided between the
integer and the fractional parts. m and n represent the position
of the binary point respectively to the most significant bit and
to the least significant bit.

B. POPiX Implementation

The POPiX approach to generate fixed-point code is based
on two components. The first component consists of an au-
tomated precision tuning framework. The second component
is a fixed-point library called FixMath.

s bm-1 bm-2 b1 b0 b-1 b-2 b-n+1 b-n.
m bits n bits

Integer part Fractional part

b bits

Fig. 1: Fixed-point representation of a signed number.

1) Precision Tuning Framework: The main idea of preci-
sion tuning is to determine the minimum precision required
for the variables of a given program. After analyzing the
code of a program, a new optimized data type is determined
for each variable according to the user desirable precision
required on the program output. Finally, the code of the
program is changed to reflect this new data type allocation.
The precision tuning component we employ in the POPiX
framework is based on an ILP formulation. Conceptually, our
approach depends on two integer quantities: the unit in the
first place of the values denoted by ufp (see Equation (2))
and a user requirement denoting the final accuracy wanted for
the outputs. Hereby, the term accuracy refers to the number
of significant bits required by the user on a variable of the
program. Let us note that the latter two information are
known at the moment of constraint generation.

ufp(x) =
{

min{i ∈ Z : 2i+1 > |x|}= ⌊log2(|x|)⌋ if x ̸= 0
0 if x = 0 (2)

Once the semantic equations are generated, POPiX calls
a linear solver to find the minimal number of significant
bits needed for the input and intermediate variables of the
program. To obtain the optimal solution to our system of
constraints, cost functions are given to the linear solver as
optimization objective functions [19]. Depending on which
cost function is used, different criteria may be considered
for the tuning. For instance, we can by default minimize the
sum of the number of bits of all the variables assigned in
the program. Noting that the latter cost function is used in
the experiments of Section V. Other criteria are related to
the largest data type, the number of bits needed for each
operation and the prohibition of type conversions of the
same variables in a given program. Concerning our resulting
data types, the key feature of our method consists in finding
directly the minimal number of bits needed at each control
point of the original program. Next, these precision can be
approximated to the upper number of bits corresponding to
an existing fixed-point format int16 t, int32 t, etc. By way
of illustration, if a variable x has 18 bits, then x is tuned
to the int32 t format. Finally, the next step of POPiX is to
synthesize a fixed-point version of the program with only
integer numbers.

2) Fixed-Point Library: For the fixed-point code synthesis
with POPiX, we use the open source library Fixmath1 where
all fixed-point numbers are represented as 32-bit signed inte-
gers. The library is designed to be fast on platforms without
floating-point support and it is written in ANSI-C (C89). The

1https://www.nongnu.org/fixmath/doc/index.html

choice of this library is justified by its ease of use and its
completeness. It implements all the arithmetic expressions,
the algebraic and transcendental functions. Also, it contains
conversions between fixed-point, integer and floating-point
numbers.

More precisely, the error bound is measured in the unit
in the last place of the number denoted by ulp, which
is the smallest representable value. The error for the con-
versions and the arithmetic operations is within 1

2ulp. For
the remaining math functions the error is higher. The error
bounds for these functions are determined empirically using
random tests. By way of illustration, for the addition and
subtraction operations, the terms to be added/subtracted must
have the same number of fractional bits. For the fixed-point
multiplication and division, the number of fraction bits in
the result is f 1+ f 2− f rac where f 1 and f 2 are the number
of fraction bits of the operands and f rac is the number of
fractional bits. Thus, if both f 1 and f 2 are equal to f rac,
the number of fraction bits in the result will also be f rac.
Let us note that in future work we plan to extend the fixed-
point library to support mixed-precision formats e.g. int16 t,
int64 t and int128 t. For more details, we refer the reader to
the Fixmath manual of users available at their webpage.

For the sake of the efficacy validation of POPiX, we deal
in the next section with the generation of control and filter
algorithms in fixed-point arithmetic.

IV. APPLICATIONS

The objective of this work is to investigate the performance
of two well-known algorithms: a PID digital control and
a Kalman filter. Noting that, in this article, we study the
behavior of these applications separately and combining both
algorithms to get a fixed-point Kalman filter based self-
tuning PID controller is also realizable by POPiX.

A. PID Algorithm

The prime objective of a controller in any dynamic
system is to modulate the output value of the system
in order to synchronize it with a given reference input
value. Proportional-Integral-Derivative (PID) controllers are
the most popular among the control engineering community
and widely used controllers in the process industries for
closed loop control [6]. They are usually implemented either
in hardware using analog components or in software using
computer-based systems. PID controllers are popular for
their simplicity of implementation and broad applicability.
They can assure satisfactory performances for a wide range
of processes. In addition, they are quite robust to tuning
errors and mismatches and reasonably economical due to
dependence on fewer resources. Figure 2 shows how the PID
controller works in a closed-loop system. These controllers
are composed of three components: Proportional (P), Integral
(I) and Derivative (D). These parts are adjusted based on the
difference e(t) between a setpoint SP and a measured process
variable PV where e(t) = SP − PV . The output of a PID
controller is computed using three gain parameters kp, ki,
and kd that correspond respectively to the proportional gain,

the integral gain and the derivative gain. These constants can
be adjusted to fine-tune the performance of the controller.

x

x

Kp

Ki

Kd

e(t)

∫e(t) dt

de(t)

PID controller

x

- ∑e(t) Controlled
System

Reference
Setpoint

Measured State

dt

Fig. 2: PID controller.

• Proportional (P) component: It adjusts the output of the
process based on the current error e(t) and scaled by a
gain factor of Kp.

• Integral (I) component: This component adjusts the
output based on the accumulated error over time. The
error signal e(t) is integrated by the I component and
multiplied by the constant Ki before it gets added to the
control input.

• Derivative (D) component: This component calculates
the time differentiation of the error signal de(t)

dt and
weighs it by a multiplicative coefficient Kd .

Each of the above components adds some value to the final
control signal by taking care of different output features like
overshoot, oscillations, etc. and hence, play an integral role
in the correct functionality of the controller. The quality of
control in a system depends on three characteristics. The
settling time is defined as the time required for the output
to reach and steady within a given tolerance band. The rise
time which is the time taken by a signal to change from a
specified low value to a specified high value and overshoot
which is the amount that the process variable overshoots the
final value. The main challenge is to optimally reduce such
timing parameters, avoiding undesirable overshoot, longer
settling times and vibrations. In this work, we will address
this problem by studying the impact of fixed-point arithmetic
on these parameters.

B. Kalman Filter Algorithm

The Kalman filter is applied to many industrial and
academical areas such as aerospace systems, vehicle sys-
tems, robots, power prediction and weather forecast [20].
The Kalman Filter process has two steps. The first step
is prediction which predicts the next state of the system
given the previous measurements. The second step called
update and estimates the current state of the system given
the measurement at that time step.

Formally, it is defined as a set of mathematical equations
that provides an efficient computational means to estimate
the state of a process, in a way that minimizes the mean of
the squared error. The process model defines the evolution of
the state from time k−1 to time k as shown in Equation(3).

xk = Fxk−1 +Buk−1 +wk−1 (3)

The role of the Kalman filter is to provide estimate of
xk at time k, given the initial estimate of x0 , the series of
measurement, z1,z2, . . . ,zk, and the information of the system
described by F , B and H. In Equation (3), F denotes the
state transition matrix applied to the previous state vector
xk−1. Any xk is a linear combination of its previous value
plus a control signal k and a process noise. B is the control-
input matrix applied to the control vector uk1 and wk−1 is
the process noise vector.

Kalman filter requires linear measurements for updating
the predicted estimations based on Equation (4)

zk = Hxk +vk (4)

where zk is the the measurement vector, Hk is the measure-
ment matrix and vk is the white noise.

In this article, we show that using fixed-point arithmetic
can have an effect on the error estimation done by the
Kalman filter.

V. EXPERIMENTAL EVALUATION

In this section, we conduct some experiments to show the
effectiveness of our fixed-point code synthesis method for
the PID controller and Kalman filter applications, already
presented in Section IV.

A. Experimental Setup

We run all the experiments on a machine Ubuntu 22.04
LTS, with a CPU AMD Ryzen 5 4500U with Radeon Graph-
ics × 6 and 8 GB of RAM. The PID controller and Kalman
filter programs are evaluated with arbitrarily precision chosen
by the user: 12 and 20 bits, which bound the relative error of
the result. For each experiment, we compare the fixed-point
results of our two applications generated by POPiX with the
initial results given in floating-point arithmetic.

B. Results Discussion

For what concerns the PID controller application, we
evaluate three programs: PID1, PID2 and PID3. For each
of these programs, we use different gain parameters kp, ki,
and kd as shown in Table I. The purpose of having several
PIDs is to study the effects of the gain parameters, when they
are increased or decreased, on the rise and settling time and
the percent overshoot values. Figure 3 shows the behavior of
the three PID controllers in function of both floating-point
and fixed-point arithmetic. For each setpoint value given in
the source code, SP = 9 and SP = 10, the principle is to
compute the output value of the algorithm in a floating-
point arithmetic and compare it to the fixed-point ones for
the different precision required by the user. All the results
gathered in Table I are depicted graphically in Figure 3.

Concerning the rise time of the three controllers for the
two setpoints, we can observe that the rise time of the fixed-
point controllers with 12 bits is more fast than the floating-
point controllers and fixed-point controllers with 20 bits. We
also notice that floating and fixed-point curves with 20 bits
are always superposed which is also confirmed in Figure 3
(the red and black curves). Thus, we can deduce that our

technique is able to produce equivalent and more fast fixed-
point controllers with 20 bits to the floating-point ones.

For the the curves of PID2 and PID3 of Figure 3, the
difference between the fixed-point codes in 12 and 20 bits is
more clear in these cases. For instance, for PID2 controller
(SP = 10), we can deduce that the rise time of fixed-point 12
bits curve (in blue) is more fast than the fixed-point 20 bits
and the float one. The settling time is also more fast for the
12 bit curve: we gain a few seconds compared to the float
and fixed-point version with 20 bits for both setpoints.

Concerning the overshoot values, we can observe in the
column ”overshoot” of Table I and also the equivalent curves
of Figure 3, that the percent overshoot is smaller in case of
fixed-point codes with 12 bits requirement than the floating-
point one. For example, for PID3 (SP = 9), the overshoot
value is 9.25 whereas for the floating-point and the 20 bits
fixed-point code is 9.36. We underline in red the differences
of overshoot compared to the floating-point version and we
can also notice that even if the float and fixed-point 20 bits
curves are superposed in most cases but the error remains
smaller with the fixed-point version. Consequently, we can
deduce from these experiments that the fixed-points formats
applied to these PID codes and the gain parameters chosen
help to attain the optimal proportional gain in terms of
minimum achievable settling time and negligible overshoot.

Figure 4 depicts the ideal, measured and Kalman positions
in floating-point and fixed-point arithmetic. In our Kalman
filter example, the noise in the system is represented by
variables Q = 0.022 and R = 0.617. The ideal value we want
to measure is 0.5 and for 50 iterations the algorithm will
do a prediction, computes the Kalman gain and measure the
real measurement including the noise before ending with the
correction step and the system update.

The purpose of this experiment is to measure the Kalman
position in fixed-point arithmetic with two requirements 12
and 20 bits and to compare the results to the ideal and
measured values.

We can observe that the fixed-point Kalman codes ap-
proximate the black curve of the ideal value better than
the one in the measured value given in red. For instance,
in the fixed-point Kalman position with 20 bits, the yellow
curve coincides with the ideal value after only 25 seconds
whereas the blue curve with 12 bits exceeds a little the
ideal value (≈ 0.52) but it remains better than the initial
Kalman floating-point version (depicted in the right hand
side of Figure 4). Moreover, we conclude that the fixed-point
version of Kalman corrects and makes a better estimate of the
error than the floating version. Also, we observe that POPiX
succeeded in generating a more accurate kalman filter that
works better from a floating-point one.

VI. CONCLUSION AND FUTURE WORK

In this article, we have shown how our tool, POPiX, is
able to generate efficient fixed-point code which preserves
the functional properties of the implementations of usual
control command algorithms. The efficiency is measured

PID Controller Rise Time Overshoot Settling time
Setpoint = 9 Setpoint = 10 Setpoint = 9 Setpoint = 10 Setpoint = 9 Setpoint = 10

PID 1
kp = 9.4514 Float 3.5 3.5 0.054019 0.100410 10.7 18.0
ki = 0.69006 Fix (20 bits) 3.4 3.5 0.054008 0.108017 10.7 18.0
kd = 2.8454 Fix (12 bits) 3.5 3.5 0.050781 0.109375 12.1 20.4

PID 2
kp = 5.1117 Float 3.6 3.6 0.010252 0.328421 14.6 16.3
ki = 0.9621 Fix (20 bits) 3.6 3.6 0.016426 0.328537 14.6 16.3
kd = 1.5794 Fix (12 bits) 3.3 3.3 0.014062 0.195312 14.1 16.6

PID 3
kp = 2.3129 Float 4.3 4.3 0.364508 0.729015 15.0 15.4
ki = 0.8818 Fix (20 bits) 4.2 4.2 0.364258 0.728699 15.0 15.4
kd = 0.4127 Fix (12 bits) 3.3 3.2 0.250000 0.578125 14.4 13.3

TABLE I: Effects of the floating-point and fixed-point formats on the step response of PID controllers.

	8.8

	9

	9.2

	9.4

	9.6

	9.8

	10

	10.2

	0 	5 	10 	15 	20 	25 	30 	35 	40 	45

M
ea
su
re

Time

Float
Fix	=	20	bits	
Fix	=	12	bits

PID	Controller	1	(SP	=	10)

	8.4

	8.5

	8.6

	8.7

	8.8

	8.9

	9

	9.1

	0 	5 	10 	15 	20 	25 	30 	35 	40 	45

M
ea
su
re

Time

Float
Fix	=	20	bits	
Fix	=	12	bits

PID	Controller	1	(SP	=9)

	8.4
	8.6
	8.8
	9

	9.2
	9.4
	9.6
	9.8
	10

	10.2
	10.4

	0 	5 	10 	15 	20 	25 	30 	35 	40 	45

M
ea
su
re

Time

Float
Fix	=	20	bits	
Fix	=	12	bits

PID	Controller	2	(SP	=	10)

	8.2
	8.3
	8.4
	8.5
	8.6
	8.7
	8.8
	8.9
	9

	9.1
	9.2

	0 	5 	10 	15 	20 	25 	30 	35 	40 	45

M
ea
su
re

Time

Float
Fix	=	20	bits	
Fix	=	12	bits

PID	Controller	2	(SP	=	9)

	8

	8.5

	9

	9.5

	10

	10.5

	11

	0 	5 	10 	15 	20 	25 	30 	35 	40 	45

M
ea

su
re

Time

Float
Fix	=	20	bits	
Fix	=	12	bits

PID	Controller	3	(SP	=	10)

	8

	8.2

	8.4

	8.6

	8.8

	9

	9.2

	9.4

	0 	5 	10 	15 	20 	25 	30 	35 	40 	45

M
ea
su
re

Time

Float
Fix	=	20	bits	
Fix	=	12	bits

PID	Controller	3	(SP	=	9)

Fig. 3: Behavior of the three PID controllers in function of the floating-point and fixed-point arithmetic.

	0.4

	0.42

	0.44

	0.46

	0.48

	0.5

	0.52

	0.54

	0.56

	0.58

	0.6

	0 	5 	10 	15 	20 	25 	30 	35 	40 	45 	50

Ideal	Position
Measured	Position	Float
Kalman	Position	Float

Ideal,	measured	and	Kalman	positions	in	Floating-Point	Arithmetic

	0.4

	0.45

	0.5

	0.55

	0.6

	0.65

	0 	5 	10 	15 	20 	25 	30 	35 	40 	45 	50

Ideal	Position
Measured	Position	Float

Kalman	Position	Fix	=	12	bits
Kalman	Position	Fix	=	20	bits

Ideal,	measured	and	Kalman	positions	in	Fixed-Point	Arithmetic

Fig. 4: Behavior of the Kalman filter in function of the floating-point and fixed-point arithmetic.

in term of memory and energy consumption and we have
experimentally evaluated POPiX on implementations of a
PID controller and a Kalman filter.

In future work, we plan to directly run POPiX generated
programs on FPGA or simple microcontrollers such as the
STM32 which equips boards like the Nucleo-144 develop-
ment board [21] in order to evaluate their performances. We
also plan to compare POPiX with other state of the art tools
like TAFFO [10] and, if relevant, to integrate both tools in
order to improve the results.

Another important direction is to extend our approach
to synthesize fixed-point code for neural networks and to
also implement them on embedded architectures. While such
techniques have been proposed for simple fully connected
neural networks [22], they have to be extended to more
general neural networks which use many other kinds of
layers (convolutions, pooling, etc.)

Finally, we aim at integrating POPiX to a standard
compiler infrastructure such as LLVM. This necessitates
that we extend the language features currently handled by
POPiX. Using LLVM could also let POPiX benefit from the
information provided by the static analysis passes already
implemented in the compiler and which could help us to
produce event more efficient code.

ACKNOWLEDGMENT

This work is partly funded by Grant Readynov
RAHW n°21009519 of Région Occitanie https://www.
laregion.fr.

REFERENCES

[1] ANSI/IEEE, IEEE Standard for Binary Floating-Point Arithmetic.
SIAM, 2008.

[2] B. Lopez, “Implémentation optimale de filtres linéaires en arithmétique
virgule fixe. (optimal implementation of linear filters in fixed-point
arithmetic),” Ph.D. dissertation, Pierre and Marie Curie University,
Paris, France, 2014. [Online]. Available: https://tel.archives-ouvertes.
fr/tel-01127376

[3] M. A. Najahi, “Synthesis of certified programs in fixed-point arith-
metic, and its application to linear algebra basic blocks. (synthèse de
programmes certifiés en arithmètique à virgule fixe, et son application
à des briques de base d’algèbre linéaire),” Ph.D. dissertation, Univer-
sity of Perpignan, France, 2014.

[4] A. Adjé, D. Ben Khalifa, and M. Martel, “Fast and efficient bit-level
precision tuning,” in Static Analysis - 28th International Symposium,
SAS 2021, ser. Lecture Notes in Computer Science, vol. 12913.
Springer, 2021, pp. 1–24.

[5] S. Bessaı̈, D. Ben Khalifa, H. Benmaghnia, and M. Martel, “Fixed-
point code synthesis based on constraint generation,” in Design and
Architecture for Signal and Image Processing - 15th International
Workshop, DASIP, ser. Lecture Notes in Computer Science, K. Desnos
and S. Pertuz, Eds., vol. 13425. Springer, 2022, pp. 108–120.

[6] R. Dedania and S.-W. Jun, “Very low power high-frequency float-
ing point fpga pid controller,” in International Symposium on
Highly-Efficient Accelerators and Reconfigurable Technologies, ser.
HEART2022. Association for Computing Machinery, 2022, p.
102–107.

[7] S.-A. Li and C. Li, “Fpga implementation of adaptive kalman filter for
industrial ultrasonic applications,” Microsystem Technologies, vol. 27,
no. 4, pp. 1611–1618, 2021.

[8] W. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakrishnan,
and Z. Rakamaric, “Rigorous floating-point mixed-precision tuning,”
in Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL, G. Castagna and A. D. Gordon,
Eds. ACM, 2017, pp. 300–315.

[9] S. Cherubin and G. Agosta, “Tools for reduced precision computation:
A survey,” ACM Comput. Surv., vol. 53, no. 2, pp. 33:1–33:35, 2021.

[10] S. Cherubin, D. Cattaneo, M. Chiari, A. D. Bello, and G. Agosta,
“Taffo: Tuning assistant for floating to fixed point optimization,” IEEE
Embedded Systems Letters, vol. 12, no. 1, pp. 5–8, 2020.

[11] E. Darulova and V. Kuncak, “Sound compilation of reals,” in POPL’14,
S. Jagannathan and P. Sewell, Eds. ACM, 2014, pp. 235–248.

[12] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: tuning
assistant for floating-point precision,” in International Conference for
High Performance Computing, Networking, Storage and Analysis,
SC’13. ACM, 2013, pp. 27:1–27:12.

[13] P. Cousot and R. Cousot, “A gentle introduction to formal verifica-
tion of computer systems by abstract interpretation,” in Logics and
Languages for Reliability and Security, ser. NATO Science for Peace
and Security Series - D: Information and Communication Security,
J. Esparza, B. Spanfelner, and O. Grumberg, Eds. IOS Press, 2010,
vol. 25, pp. 1–29.

[14] D. Cattaneo, M. Chiari, G. Magnani, N. Fossati, S. Cherubin, and
G. Agosta, “Fixm: Code generation of fixed point mathematical
functions,” Sustain. Comput. Informatics Syst., vol. 29, no. Part, p.
100478, 2021.

[15] J. E. Volder, “The cordic trigonometric computing technique,” IRE
Transactions on Electronic Computers, vol. EC-8, no. 3, pp. 330–334,
1959.

[16] A. Volkova, “Towards reliable implementation of digital filters. (vers
une implémentation fiable des filtres numériques),” Ph.D. dissertation,
Pierre and Marie Curie University, Paris, France, 2017.

[17] Y. Xu, K. Shuang, S. Jiang, and X. Wu, “Fpga implementation of a
best-precision fixed-point digital pid controller,” in 2009 International
Conference on Measuring Technology and Mechatronics Automation,
vol. 3, 2009, pp. 384–387.

[18] D. Choi and B. V. Roy, “A generalized kalman filter for fixed
point approximation and efficient temporal difference learning,” in
Proceedings of the Eighteenth International Conference on Machine
Learning, ser. ICML ’01. Morgan Kaufmann Publishers Inc., 2001,
p. 43–50.

[19] D. Ben Khalifa and M. Martel, “Constrained precision tuning,” in
8th International Conference on Control, Decision and Information
Technologies, CoDIT 2022. IEEE, 2022, pp. 230–236.

[20] S. Wakitani, H. Nakanishi, Y. Ashida, and T. Yamamoto, “Study on
a kalman filter based pid controller,” IFAC-PapersOnLine, vol. 51,
no. 4, pp. 422–425, 2018, 3rd IFAC Conference on Advances in
Proportional-Integral-Derivative Control PID 2018.

[21] UM1974 User manual, STM32 Nucleo-144 boards (MB1137), 2023,
STMicroelectronics.

[22] H. Benmaghnia, M. Martel, and Y. Seladji, “Fixed-point code synthesis
for neural networks,” CoRR, vol. abs/2202.02095, 2022.

