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UNIFORM PERFECTNESS FOR INTERVAL EXCHANGE TRANSFORMATIONS WITH OR WITHOUT FLIPS

), Arnoux proved that the group G of all Interval Exchange Transformations with flips is simple.

We establish that every element of G has a commutator length not exceeding 6. Moreover, we give conditions on G that guarantee that the commutator lengths of the elements of G 0 are uniformly bounded, and in this case for any g ∈ G 0 this length is at most 5.

As analogous arguments work for the involution length in G, we add an appendix whose purpose is to prove that every element of G has an involution length not exceeding 12.

1. Introduction.

An interval exchange transformation (IET) of J is a right continuous bijective map f : J → J defined by a finite partition of J into half-open subintervals I i and a reordering of these intervals by translations. We denote by G J the group consisting in all IET of J.

An interval exchange transformations with flips (FIET) on J is a bijection f : J → J for which there exists a subdivision a = a

) is a continuous isometry. Note that f is not necessarily right continuous since the orientation of some intervals can be reversed, and there exists a flip-vector

It is worth noting that several authors consider FIET as piecewise isometries of J with a finite number of discontinuity points reversing at least one of the intervals of continuity. This is not our case, so an IET is an FIET. d d d d d d • • • •

We say that two FIET on J, f and g are equivalent if the set {x ∈ J : f (x) ̸ = g(x)} is finite (see Figure 1). We denote by G J the corresponding quotient set. Note that G J is the quotient group of the FIET group by its normal subgroup consisting of elements which are trivial except possibly at finitely many points. By abuse of terminology, elements of G J are also called FIET. The map U is still well defined on G J and the set of all elements of G J such that U (f ) ⊂ {1} m is identified with G J .

Let f be an IET or an FIET on J. The continuity intervals of f are the maximal connected subsets of J on which f is continuous and they are denoted by I 1 , • • • , I m . The associated permutation π = π(f ) ∈ S m is defined by f (I i ) = Jπ(i), where the J j 's are the ordered images of the I i 's. By convention, f is not continuous at the left endpoint of J and we define BP (f ) to be the set of the discontinuity points of f . Note that BP (f -1 ) = f (BP (f )) and BP (f • g) ⊂ BP (g) ∪ g -1 (BP (f )).

Let m be a positive integer, we denote by G m [resp. G m,π ] the set of all elements of G having at most m discontinuity points [resp. whose associated permutation is π ∈ S m ].

From now on, without mention of the defining interval J, an IET or an FIET is defined on I = [0, 1) and G I and G I will be denoted by G and G respectively.

Remark 1. The group G J [resp. G J ] is conjugated by the direct homothecy that sends J to I to the group G [resp. G]. The subgroup of G [resp. G] consisting of elements with support in J can be identified, by taking restriction, with G J [resp. G J ].

Since the late seventies, the dynamics and the ergodic properties of a single interval exchange transformation were intensively studied (see e.g. Viana survey [START_REF] Viana | Ergodic theory of interval exchange maps[END_REF]). A natural extension is to consider the dynamics in terms of group actions. The most famous problem was raised by Katok: does G contain copies of F 2 , the free group of rank 2 ? Dahmani, Fujiwara and Guirardel established that such subgroups are rare ([DFG13] Theorem 5.2).

More generally, one can ask for a description of possible subgroups of G. According to Novak there is no distortion in G ([Nov09] Theorem 1.3) and as a standard consequence any finitely generated nilpotent subgroup of G is virtually abelian (see e.g. [START_REF] Guelman | Reversible Maps and Products of Involutions in Groups of IETS[END_REF]).

Among many things, Dahmani, Fujiwara and Guirardel proved that any finitely generated subgroup of G is residually finite ([DFG13] Theorem 7.1), G contains no infinite Kazhdan groups ([DFG13] Theorem 6.2), any finitely generated torsion free solvable subgroup of G is virtually abelian ([DFG17] Theorem 3) and provide examples of non virtually abelian solvable subgroups of G ([DFG17] Theorem 6). Thus, finding torsion free finitely generated non virtually abelian subgroups of G seems very difficult, especially as works of Juchenko, Monod ( [START_REF] Juschenko | Cantor systems, piecewise translations and simple amenable groups[END_REF]) suggest that G could be amenable as it is conjectured by Cornulier.

The group G shares many of the properties of the group of piecewise affine increasing homeomorphisms of the unit interval, P L + (I). For instance these two groups are not simple but have simple derivated subgroups (see [START_REF] Epstein | The simplicity of certain groups of homeomorphisms[END_REF] for the PL case). As noted in Remark 1.2 of [START_REF] Novak | Interval exchanges that do not occur in free groups[END_REF], they satisfy no law (i.e. there does not exist ω ∈ F 2 \ {e} such that ϕ(ω) = Id for every homomorphism ϕ : F 2 → G), their nilpotent subgroups are virtually abelian (see [START_REF] Farb | Groups of homeomorphisms of one-manifolds. III. Nilpotent subgroups. Ergodic Theory Dynam[END_REF] for the PL case) and the main result of [START_REF] Dahmani | Free groups of interval exchange transformations are rare[END_REF] can be seen has a generic version of the Brin and Squier theorem [START_REF] Baumslag | Some two-generator one-relator non-Hopfian groups[END_REF] which asserts that P L + (I) does not contain non abelian free subgroups. It's however still unknown whether P L + (I) is amenable.

Considerably less is known about G. However, due to their connections with non oriented measured foliations on surfaces and billiards, the dynamics and ergodic properties of a single FIET were firstly explored by Gutierrez ([Gut78]) and Arnoux ([Arn81b]).

Dealing with irreducible permutations, Keane ([Kea75]) proved that almost all IET are minimal and Masur ([Mas82]) and Veech ([Vee82]) that almost all are uniquely ergodic. For FIET that reverse orientation in at least one interval, Nogueira ([Nog89]) proved that almost all have periodic points so are nonergodic. He also exhibited an example of a minimal uniquely ergodic one (see also [GLM + 09] and [START_REF] Bas | Minimal interval exchange transformations with flips[END_REF]). Recently, Skripchenko and Troubetzkoy gave bounds for the Hausdorff dimension of the set of minimal maps ( [START_REF] Skripchenko | On the Hausdorff dimension of minimal interval exchange transformations with flips[END_REF]) and Hubert and Paris-Romaskevich described all the minimal maps having 4 continuity intervals (see [START_REF] Hubert | Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and rauzy gasket[END_REF] Theorem 6 p 39-40).

The decomposition into minimal and periodic components was first studied for measured surfaces flows by Mayer ([May43]) and restated for IET by Arnoux ([Arn81a]) and Keane ([Kea75]). For FIET that reverse orientation in at least one interval of the m continuity intervals, Nogueira, Pires and Troubetzkoy proved that the sum of number of periodic components and twice the number of minimal components is bounded by m ([NPT13]).

As mentioned by Paris-Romaskevich in [START_REF] Paris-Romaskevich | Notes on Tilling billiards : Some thoughts and questions[END_REF], one can interest ourselves in the dynamics of FIET from the point of view of geometrical group theory: describe the possible groups that can be realized as groups of FIET or establish algebraic properties of the whole group.

Here we shall be concerned solely with the structure of the whole groups G and G. This is also motivated by the algebraic study of other transformation groups, particularly groups of homeomorphisms of low dimensional manifolds, that was initiated by Schreier and Ulam in 1934 ( [START_REF] Schreier | Eine bemerkung über die gruppe der topolischen abbildungen der kreislinie auf such selbst[END_REF]) who were interested in the simplicity of such groups.

We recall that, given G a group,

• a commutator in G is an element of G of the form [f, g] = f gf -1 g -1 with f, g ∈ G. • G is perfect if G = [G, G]
the subgroup of G generated by its commutators.

• G is simple if any normal subgroup of G is either G or trivial. In the seventies, lots of homeomorphisms or diffeomorphisms groups were studied by Epstein, Herman, Thurston, Mather, Banyaga, and proved to be simple; these works are survey in the books [START_REF] Banyaga | The structure of classical diffeomorphism groups[END_REF] or [START_REF] Bounemoura | Simplicité des groupes de transformations de surfaces, volume 14 of Ensaios Matemáticos[END_REF]. For interval exchange transformations, it has been shown by Arnoux ([Arn81b] III §2.4), Sah ([Sah81]) and Vorobets ([Vor17]) that the subgroup G 0 of G generated by its commutators is simple. In [START_REF] Arnoux | Un invariant pour les échanges d'intervalles et les flots sur les surfaces[END_REF] (III §1.4), Arnoux proved that G is simple, this unpublished result has been recently recovered by Lacourte ([Lac20b]). In order to sharpen this property, it is convenient to give Definition 1.1. Let G be a group and g ∈ [G, G], the commutator length of g, denoted by c(g), is the least number c such that g is a product of c commutators. We set c(G) = Sup{c(g), g ∈ [G, G]} and we say that G is uniformly perfect if c(G) is finite.

The main theorems of this paper are Theorem 1. c(G) ≤ 6.

For the group G we are not able to decide if c(G) is finite. However, in the affirmative case, we give an explicit bound in the following Theorem 2. If G is uniformly perfect then c(G) ≤ 5.

In section 6, we will prove stronger results, Theorems 3 and 4, which only require that commutator lengths are bounded when prescribing the number of discontinuity points or the arithmetic, that is when the elements considered belong to Γ α := {g ∈ G : BP (g) ⊂ ∆ α }, where ∆ α is the abelian subgroup of R generated by p real numbers α 1 , • • • , α p and 1.

Our proofs are based on an adaptation of a result of Dennis and Vaserstein giving a criterion for uniform perfectness ( [START_REF] Dennis | Commutators in linear groups[END_REF]). This is explained in Section 4.

It is plain that a simple group G is generated by any subset S which is invariant under conjugation. In particular, S can be the set consisting of commutators, involutions or finite order elements. Group invariants are therefore provided by considering S-lengths that is the least number l S such that any element can be written as product of l S elements of S. These lengths can be simultaneously considered by using the following Definition 1.2. A group G is uniformly simple if there exists a positive integer N such that for any f, g ∈ G \ {id}, the element g can be written as a product of at most N conjugates of f or f -1 .

Ulam and Von Neumann ([UvN47]

) showed that the group of homeomorphisms of S 1 is uniformly simple. Burago and Ivanov ([BI08]) obtained implicitely the same conclusion for P L + (S 1 ) and [P L + (I), P L + (I)] (see also [START_REF] Gal | Uniform simplicity of groups with proximal action[END_REF] Theorem 1.1). The question of the uniform simplicity of [G, G] and G is formulated in [START_REF] Paris-Romaskevich | Notes on Tilling billiards : Some thoughts and questions[END_REF]. However, Cornulier communicated us that [G, G] and G are not uniformly simple. Indeed, if the support of an IET or FIET f has length less than 1 N then any product of N conjugates of f or f -1 can not have full support. In a forthcoming paper we will prove the uniform simplicity of A, the group of affine interval exchange transformations of I, i.e. bijections I → I defined by a finite partition of I into half-open subintervals such that the restriction to each of these intervals is a direct affine map. More generally, we will give conditions on groups of piecewise continuous bijective maps on I that ensure uniform simplicity. This study and the work of [START_REF] Gal | Uniform simplicity of groups with proximal action[END_REF] suggest that most simple transformation groups are uniformly simple. The group G provides an example of a non uniformly simple group with bounded commutator length. As far as we know it is an open problem to determine whether G has bounded involution length. Recently, O. Lacourte ([Lac20a]) defined the analogues of Γ α in G, namely Γ α . He proved that [Γ α , Γ α ] are simple and it would be relevant to study their uniform perfectness.
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Preliminaries.

The aim of this section is to fix notations and terminology, to collect a few results and to prove some basic results to be used in the sequel.

2.1. Restricted rotations and periodic IET. Definition 2.1.

An IET with two continuity intervals is called a rotation and it is denoted by R a , where a is the image of 0.

An IET g whose support, supp(g

) = {x ∈ I : g(x) ̸ = x}, is J = [a, b) ⊂ [0, 1
) is a restricted rotation if the direct homothecy that sends J to [0, 1) conjugates g |J to a rotation. We denote it by R α,J where α is given by R α,J (x) = x + α (mod |b -a|) for x ∈ J.

An element g of G [resp. G] is periodic if every g-orbit is finite.

By [Arn81b] (III p.3), [ Nov09 
] (Lemma 6.5) or [Vor17] (Lemma 2.1), any interval exchange transformation is a product of restricted rotations (see also our Lemma 3.2 for a proof). For periodic IET, Novak showed a sharper statement.

Lemma 2.1. ([Nov09] Proof of Corollary 5.6) Any periodic element g of G is conjugated in G to a product of finite order restricted rotations with disjoint supports. In particular, any periodic IET has finite order.

Basic properties on commutators

. Definition 2.2. Let G be a group. An element a ∈ G is reversible in G if there exists h ∈ G such that a = ha -1 h -1 .
Properties 2.1. Let G be a group and let a, b, a ′ , b ′ and h be elements of G.

(1) If a and b commute with both a ′ and b

′ then [a, b][a ′ , b ′ ] = [aa ′ , bb ′ ]. (2) If a ′ = ha -1 h -1 then aa ′ = [a, h]. ( 3 
) If a is reversible in G then a 2 is a commutator. (4) h[a, b]h -1 = [hah -1 , hbh -1 ].
Proof.

(1) As a ′ commutes with a and b, we have

[a, b][a ′ , b ′ ] = aba -1 b -1 a ′ b ′ a ′-1 b ′-1 = aa ′ ba -1 b -1 b ′ a ′-1 b ′-1 . Repeating this process with b ′ and then a ′-1 , we get [a, b][a ′ , b ′ ] = aa ′ bb ′ a -1 a ′-1 b -1 b ′-1 = aa ′ bb ′ a ′-1 a -1 b ′-1 b -1 = [aa ′ , bb ′ ]. (2) aa ′ = aha -1 h -1 = [a, h]. (3) a 2 = aha -1 h -1 = [a, h]. (4) [hah -1 , hbh -1 ] = hah -1 hbh -1 ha -1 h -1 hb -1 h -1 = h[a, b]h -1 . □ 2.3. Periodic IET are commutators.
In [START_REF] Guelman | Reversible Maps and Products of Involutions in Groups of IETS[END_REF] Theorem 4, the authors proved that any periodic IET is reversible in G. We recall this argument briefly. Let f be a periodic IET, by the Arnoux Decomposition Theorem (see Proposition page 20 of [START_REF] Arnoux | échanges d'intervalles et flots sur les surfaces[END_REF]), the interval [0, 1) can be written as the union of finitely many f -periodic components M i , i = 1, .., n of period p i . In particular,

M i = ⊔ p i k=1 J k , where J k = f k-1 (J 1 ) are half-open intervals and f is continuous on J k .
Eventually conjugating f by an IET, we can suppose that the J k 's are ordered consecutive intervals so the M i 's are intervals and π = π(f

| M i ) = (1, 2, • • • , p i ).
We consider the IET h, that is defined on each M i by h is continuous on J k and h(J k ) = J τ (k) , where τ ∈ S p i satisfies τ -1 πτ (k) = π -1 (such a permutation exists by Proposition 3.4 of [START_REF] O'farrell | Reversibility in dynamics and group theory[END_REF]). One has that h

-1 •f •h is continuous on J k and h -1 •f •h(J k ) = J τ -1 πτ (k) = J π -1 (k) . Therefore h -1 • f • h = f -1 , meaning that f is reversible in G.
This implies Proposition 2.1. Any periodic IET is a commutator in G.

Indeed, we claim that any periodic IET can be written as the square of another periodic element. To see this, it is enough to consider rotations, by Lemma 2.1. This is obvious since

R α = R 2 α 2
, so any periodic IET is the square of a reversible IET. Finally, the result follows from Properties 2.1 (3).

3. Generalities on commutators in G and G.

3.1. Commutators in G. 3.1.1. Fundamental examples. Let a, b satisfy that 0 ≤ a < b ≤ 1.
We denote by I [a,b] the symmetry of [a, b], i.e. the FIET defined by:

I [a,b] (x) = x if x / ∈ [a, b] and I [a,b] (x) = a + b -x if x ∈ [a, b].
Similarly, we denote by I (a,b) the symmetry of (a, b), i.e. the FIET defined by:

I (a,b) (x) = x if x / ∈ (a, b) and I (a,b) (x) = a + b -x if x ∈ (a, b). I [a,b] | a | b • • d d d I (a,b) | a | b • • d d d S θ,[a,b) | a | θ | b • • • d d d d
Clearly, I [a,b] and I (a,b) are involutions and they represent the same element of G. Therefore, given J a subinterval of I, we define I J to be the element of G represented by

I J . Let θ ∈ [a, b), we define another involution S θ,[a,b) on [a, b) by S θ,[a,b) = I [a,θ] • I (θ,b) .
In particular, S θ,[0,1) = θ -x (mod 1) and it is denoted by S θ .

Property 1.

(1)

S θ • S θ ′ = R θ-θ ′ . (2) R α • S θ • R -1 α = S θ+2α . Lemma 3.1. ([Arn81b] III p.3)
The maps

I (a,b) and R α,[a,b) are commutators in G [a,b)
and then in G.

Proof. Taking restrictions and conjugating by a homothecy as in Remark 1, it is sufficient to prove that I (0,1) et R α,[0,1) are commutators.

It is easy to see that I (0,1) is the product of the involutions f 1 and f 2 described as below:

f 1 | 1 4 | 3 4 d d d d f 2 | 1 4 | 3 4 d d d d As f 2 is conjugated to f 1 = f -1 1 by R 1 2
, Item (2) of Properties 2.1 implies that the map I (0,1) is a commutator.

According to Property 1, any rotation is the product of 2 symmetries that are conjugated by a rotation; thus R α,[0,1) is a commutator. □ 3.1.2. Decomposition in involutions and restricted rotations.

Lemma 3.2. ([Arn81b] III p.3.)

(1) Any f ∈ G can be written as the product of an element of G and an involution that is a commutator. (2) Any g ∈ G m can be written as the product of m -1 restricted rotations.

Proof. (1) Let f ∈ G, we denote by I i the continuity intervals of f and by U = (u i ) its flip-vector. It is easy to check that f • {i | u i =-1} I I i belongs to G. Moreover the I I i 's have disjoint supports, so they commute and then i I I i is an involution and a commutator by Lemma 3.1 and Properties 2.1.

(2) For clarity, given J = [a, b) and K = [b, c) two consecutive half-open intervals, we denote by R J,K the restricted rotation of support J ⊔ K whose interior discontinuity point is b.

Let g ∈ G m,π with continuity intervals

I 1 , • • • I m and let g(I i ) = J π(i) . We consider R 1 = R J,K , where J = J 1 ∪ • • • ∪ J π(1)-1 and K = J π(1) . One directly has that R 1 • g| I 1 = Id and #BP (g 1 ) ≤ m -1, where g 1 = R 1 • g| I 2 ∪•••∪Im .
Starting with g 1 , we define similarly R 2 and we get that

R 2 • g 1 | I 2 = Id and #BP (g 2 ) ≤ m -2, where g 2 = R 2 • g 1 | I 3 ∪•••∪Im .
Repeating the previous argument m -1 times leads to #BP (g m-1 ) ≤ 1 so g m-1 = Id. Extending the restricted rotations R i to [0, 1[ by the identity map, we conclude that

R m-1 • • • • • R 1 • g = Id. □
A direct consequence of Lemmas 3.2 and 3.1 is

Proposition 3.1. ([Arn81b] III §1.4)
The group G is perfect and any g ∈ G m is the product of m -1 commutators in G.

Commutators in G.

In the introduction, we have indicated a few similarities between the groups G and P L + (I). In particular, the simplicity of their derivative subgroups relies on a result of Epstein (see 1.1.Theorem in [START_REF] Epstein | The simplicity of certain groups of homeomorphisms[END_REF]). In the context of finding bounds for the commutator length, a substantial difference between these two groups is that an element f of [P L + (I), P L + (I)] is a map whose support J satisfies J ⊂ (0, 1) and f can not be written as a product of commutators of maps with support in J. This contrasts with Remark 2. Let J be a half-open subinterval of I.

If g ∈ G has support in J then g ∈ [G, G] if and only if g| J ∈ [G J , G J ].
Indeed, according to Theorem 1.1 of [START_REF] Vorobets | On the commutator group of the group of interval exchange transformations[END_REF], there is a morphism SAF J :

G J → R ⊗ Q R such that [G J , G J ] = SAF -1 J (0). More precisely for f ∈ G J , SAF J (f ) = λ k ⊗ δ k
, where the vectors (λ k ), (δ k ) encode the lengths of exchanged intervals and the corresponding translation constants respectively.

Let g ∈ G with support in J. From the previous definition, it is easy to check that

SAF I (g) = SAF J (g| J ). Therefore g ∈ [G, G] if and only if g| J ∈ [G J , G J ].

The adapted Dennis and Vaserstein argument.

In this section, we first we recall Proposition 1(c) of Dennis and Vaserstein ([DV89]).

The original criterion.

Definition 4.1. Two subsets S 1 and S 2 of a group G are commuting if any a ∈ S 1 commutes with any a ′ ∈ S 2 .

Dennis and Vaserstein's criterion. If a group G contains two commuting subgroups H 1 and H 2 such that for each finite subset S of G there are elements

g i ∈ G, i = 1, 2, such that g -1 i Sg i ≤ H i for i = 1, 2, then c(G) ≤ 3.
As an illustrating example indicated by Ghys, the group [P L + (I), P L + (I)] consists in all g of P L + (I) such that g ′ (0) = g ′ (1) = 1. Thus, for any finite collection {g i } in [P L + (I), P L + (I)] there exist 0 < a < b < 1 such that (a, b) contains the support of all the g i . The required groups H 1 and H 2 are obtained as groups of maps with disjoint supports by setting H 1 = ⟨g i ⟩ and H 2 = h⟨g i ⟩h -1 where h is an element of [P L + (I), P L + (I)] that carries (a, b) into ( a 2 , a).

Unfortunately, this argument doesn't apply immediately in [G, G] and G. This is essentially due to the facts that both groups contain maps with full support and that if the length of the support of g ∈ G exceeds 1 2 then it is impossible to find a conjugate of g in G with a disjoint support. To avoid these difficulties, we will compose with suitable periodic maps to obtain an IET with arbitrary small support (see Propositions 5.1 and 6.1) and then we will apply the following iterated version of Dennis and Vaserstein's criterion.

The iterated version

. Let n ∈ N * , we denote by H n [resp. H n ] the subgroup of G [resp. G] consisting of elements whose support is included in [1 -1 n , 1). By Remark 1, H n [resp. H n ] is identified with G [1-1 n ,1) [resp. G [1-1 n ,1)
]. Moreover, Remark 1 and Proposition 3.1 imply that H n is perfect and Remark 2 leads to

H n ∩ [G, G] = [H n , H n ]. Lemma 4.1. (a) If g ∈ H 2 ∩ [G, G] = [H 2 , H 2 ] then c G (g) ≤ 1 2 c H 2 (g) + 3 2 . (b) If g ∈ H 2 then c G (g) ≤ 1 2 c H 2 (g) + 3 2 .
Proof. Proofs of Items (a) and (b) are similar, changing G for G and H 2 for H 2 , so we only prove Item (a).

Let g ∈ H 2 ∩ [G, G].
We write c H 2 (g) = 2p -r with p ∈ N * and r = 0, 1. Therefore

g = (c 1 ...c p )(c p+1 ...c 2p ),
where

c i = [a i , b i ] with a i , b i in H 2
and the last commutator c 2p is eventually trivial.

Let R be the rotation of angle 1 2 . We denote by

f ′ = R • f • R -1 . Note that if f, k ∈ H 2
then f and k ′ have disjoint supports and they commute. We write

g = (c 1 ...c p )(c ′ p+1 ...c ′ 2p )(c ′ p+1 ...c ′ 2p ) -1 (c p+1 ...c 2p ) = (c 1 c ′ p+1 ) ... (c p c ′ 2p ) C, where C = (c ′ p+1 ... c ′ 2p ) -1 (c p+1 ... c 2p
). On one hand, by Properties 2.1 (1), we have that c i c ′ p+i , i = 1, ..., p, are commutators. On the other hand, by Properties 2.1 (2), it holds that C = (c ′ p+1 ...c ′ 2p ) -1 (c p+1 ...c 2p ) is a commutator since it is the product of (c p+1 ...c 2p ) and the conjugate by R of its inverse.

Finally, we have c G (g 

) ≤ p + 1, thus 2c G (g) ≤ 2p + 2 = c H 2 (g) + r + 2 ≤ c H 2 (g) + 3. □ Repeatedly applying Lemma 4.1, we get Proposition 4.1. Let t ∈ N * . (a) If g ∈ H 2 t ∩ [G, G] = [H 2 t , H 2 t ] then c G (g) < 1 2 t c H 2 t (g) + 3. (b) If g ∈ H 2 t then c G (g) < 1 2 t c
c H 2 t-1 (g) ≤ 1 2 c H 2 t (g) + 3 2 .
It is easy to check by induction that for s ∈ {1, • • • , t}, we have

(E s ) c H 2 t-s (g) ≤ 1 2 s c H 2 t (g) + 3 s j=1 1 2 j .
Indeed, for s = 1, (E 1 ) is the first identity.

Fix s ∈ {1, • • • , t -1} and suppose that (E s ) holds. Then according to Remark 1 and Lemma 4.1

C H 2 t-(s+1) (g) ≤ 1 2 C H 2 t-s (g) + 3 2 .
Thus, by induction hypothesis

C H 2 t-(s+1) (g) ≤ 1 2   1 2 s C H 2 t (g) + 3 s j=1 1 2 j   + 3 2 .
Therefore

C H 2 t-(s+1) (g) ≤   1 2 s+1 C H 2 t (g) + 3 s j=1 1 2 j+1   + 3 2 ,
which leads immediately to (E s+1 ).

Finally, noting that H 1 = G and t j=1 1

2 j = 1 -1 2 t < 1, the identity (E t ) leads to c G (g) < 1 2 t c H 2 t (g) + 3. □ 5.
The group G is uniformly perfect.

The aim of this section is to prove Theorem 1.

5.1. Background material. Let g ∈ G m . The combinatorial description of g is (λ(g), π(g)), where λ(g) is an m-dimensional vector whose coordinates are the lengths of I 1 , • • • , I m , the continuity intervals of g and π(g) ∈ S m is the permutation on {1, • • • , m} that tells how the intervals I i are rearranged by g. We denote by a i (g) the discontinuity points of g. If g is continuous on a half-open interval J, we define δ J (g) := g(x) -x, for x ∈ J.

The translations of g are δ i (g) :

= δ I i (g), i = 1, • • • , m.
Note that a i (g) and δ i (g) are related to (λ(g), π(g)) by

( * ) a i (g) = i-1 k=1 λ k (g) and δ i (g) = - i-1 k=1 λ k (g) + π(i)-1 k=1 λ π -1 (k) (g).
The map g is said to be rational if all its discontinuity points are rational. It is easy to see that rational IET are periodic.

Definition 5.1. Let m be a positive integer and π ∈ S m , we define a metric on G m,π by

d(f, g) = m i=1 |λ i (f ) -λ i (g)|.
Properties 5.1. Let f and g be elements of G m,π . Then

• d(f -1 , g -1 ) = d(f, g), • |a i (f ) -a i (g)| ≤ d(f, g), • |δ i (f ) -δ i (g)| ≤ 2d(f, g).
Proof.

• The first item is due to the fact that λ π(i) (f -1 ) = λ i (f ).

We deduce the remaining items from ( * ), indeed

• |a i (f ) -a i (g)| = | i-1 k=1 λ k (f ) -λ k (g)| ≤ d(f, g) and • |δ i (f ) -δ i (g)| = | - i-1 k=1 λ k (f ) + π(i)-1 k=1 λ π -1 (k) (f ) -- i-1 k=1 λ k (g) + π(i)-1 k=1 λ π -1 (k) (g) | ≤ 2d(f, g). □
Lemma 5.1. Let g ∈ G m and let l = |F ix(g)| be the Lebesgue measure of the fixed point set of g. Then, there exists h ∈ G m such that

F ix(h • g • h -1 ) = [0, l).
In particular #BP (h

• g • h -1 ) ≤ 3m. Proof. Denote by F 1 , F 3 , • • • , F 2p-1 the p ordered connected components of I \ F ix(g).
We write

F i = [α i , α i+1 ), for i = 2k -1, k = 1, ..., p. Note that α i ∈ BP (g).
Hence the connected components of F ix(g) are the possibly empty intervals

F 0 = [0, α 1 ), F 2p = [α 2p , 1) and F 2k = [α 2k , α 2k+1 ), for k = 1, ..., p -1.
The required map h is the IET whose combinatorial description is (λ, π)

with λ i = |F i |, i = 0, • • • , 2p and π ∈ S({0, ..., 2p}), π(0) = 0, π(2k) = k and π(2k -1) = k + p, k = 1, • • • , p.
Finally we note that h ∈ G m since BP (h) ⊂ {α i } ⊂ BP (g). □

5.2. Proof of Theorem 1. For proving Theorem 1, we need the following Proposition 5.1. Let n be a positive integer and let f ∈ G m . Then there exist two periodic elements p, p ′ ∈ G such that

|supp(p • f • p ′ )| ≤ 1 n and #BP (p • f • p ′ ) ≤ 5m.
Proof. Let n be a positive integer and f ∈ G m,π . We set

BP (f ) = {a i , i = 1 • • • m}, I i = [a i , a i+1 ) and BP (f -1 ) = {b i , i = 1, • • • , m}. Fix 0 < ϵ < 1 2n small enough (ϵ ≪ |I i |). We consider p ∈ G m,π -1 a rational IET such that d(f -1 , p) ≤ ϵ 2m and BP (p) = {b ′ i , i = 1, • • • , m} satisfies b i -ϵ 2m < b ′ i ≤ b i . This map p is periodic. Claim. By construction, f ϵ = p • f satisfies #BP (f ϵ ) ≤ 2m, it is continuous on [a i , a i+1 - ϵ 2m ) and ∂ i := δ [a i ,a i+1 -ϵ 2m ) (p • f ) satisfies |∂ i | ≤ ϵ m . Indeed, obviously #BP (f ϵ ) ≤ #BP (f ) + #BP (p) ≤ 2m. For every x ∈ [a i , a i+1 -ϵ 2m ), one has f (x) = x + δ I i (f ) and f (x) ∈ [b π(i) , b π(i)+1 - ϵ 2m ) ⊂ [b ′ π(i) , b ′ π(i)+1 ), then p • f (x) = x + δ I i (f ) + δ [b ′ π(i) ,b ′ π(i)+1 ) (p). Since d(f -1 , p) ≤ ϵ 2m , one has: ϵ m ≥ |δ [b ′ π(i) ,b ′ π(i)+1 ) (p) -δ [b π(i) ,b π(i)+1 ) (f -1 )| = |δ [b ′ π(i) ,b ′ π(i)+1 ) (p) + δ I i (f )|, therefore |∂ i | = |p • f (x) -x| = |δ I i (f ) + δ [b ′ π(i) ),b ′ π(i)+1 ) (p)| ≤ ϵ m .
This ends the proof of the claim which is summarized by the following picture.

[ a i [ a i+1 -ϵ 2m [ a i+1 [ b π(i) [ b ′ π(i) [ b π(i)+1 -ϵ 2m [ ↙ b ′ π(i)+1 • [ b π(i)+1 f T [ [ • p T •
We turn now on to the proof of Proposition 5.1. Let i ∈ {1, • • • , m}.

If ∂ i = 0, we set R i = Id.
In the case that ∂ i > 0, we define R i to be the finite order restricted rotation of support [ a i , a i + r i ∂ i ) and of angle ∂ i , where r i is the greatest integer such that a

i + r i ∂ i ≤ min{ a i+1 -( ϵ 2m -∂ i ) , a i+1 }. By definition, R i and f ϵ coincide on [a i , a i + (r i -1)∂ i ) and |[ a i + r i ∂ i , a i+1 )| ≤ ϵ m . Indeed, f ϵ is continuous on [a i , a i + (r i -1)∂ i ), since a i + (r i -1)∂ i = a i + r i ∂ i -∂ i ≤ a i+1 -( ϵ 2m -∂ i ) -∂ i = a i+1 - ϵ 2m .
In addition, by the maximality of r i , either a i + (r i + 1)∂ i is greater than

a i+1 -( ϵ 2m -∂ i ) thus |[a i + r i ∂ i , a i+1 )| = a i+1 -(a i + r i ∂ i ) < ∂ i + ( ϵ 2m -∂ i ) = ϵ 2m or a i+1 so |[a i + r i ∂ i , a i+1 )| = a i+1 -(a i + r i ∂ i ) < ∂ i ≤ ϵ m .
The same argument remains valid for negative ∂ i by using non positive integers r i .

Finally, the map g

:= f ϵ • m 1 R i -1 satisfies #BP (g) ≤ 5m because #BP (R i ) ≤ 3. Since supp(R i ) ⊂ [a i , a i+1
), the supports of the R i 's are disjoints and p ′ = ( m 1 R i ) -1 is periodic and it is also a commutator in G, according to Proposition 2.1.

But

g | R i ([a i , a i +(r i -1)∂ i )) = Id, therefore |supp(g)| ≤ 1 - m i=1 |[a i , a i + (r i -1)∂ i )| ≤ 1 - m i=1 (|[a i , a i+1 )| -(∂ i + ϵ m )) ≤ 2ϵ ≤ 1 n . □
We turn now on to the proof of Theorem 1. We first consider an IET f ∈ G m,π viewed as an element of G. Let t ∈ N * . Applying Proposition 5.1 to f and n = 2 t , we get that there exist two periodic elements p, p ′ ∈ G such that the support of g = p • f • p ′ ∈ G 5m has measure less than or equal to 1 2 t . By Lemma 5.1, the map g is conjugated to an element g ′ of H 2 t for which #BP (g ′ ) ≤ 15m. Since p and p ′ are periodic and g and g ′ are conjugated, we have

c G (f ) ≤ c G (g) + 2 = c G (g ′ ) + 2.
Then by Proposition 4.1 (b),

c G (f ) < 1 2 t c H 2 t (g ′ ) + 5. As #BP (g ′ | [1-1 2 t ,1) ) ≤ #BP (g ′ ), Remark 1 and Proposition 3.1 imply that c H 2 t (g ′ ) ≤ 15m -1.
Finally, for any t ∈ N * one has

c G (f ) < 15m -1 2 t + 5
and choosing t large enough, we obtain

c G (f ) ≤ 5.
Thus we get c G (f ) ≤ 5, for any f ∈ G.

For the general case, we consider F ∈ G. According to Lemma 3.2, the map F can be decomposed as the product of an involution that is a commutator and an element of G. Therefore, we have proved that c G (F ) ≤ 1 + 5 = 6, for any F ∈ G. □ 6. Conditions for uniform perfectness of G.

In this section we give two sufficient conditions for G to be uniformly perfect.

6.1. The commutator length is bounded when fixing the number of discontinuity points. We prove the following statement that directly implies Theorem 2.

Theorem 3. If for any positive integer m, C m (G) := sup{c G (g) , g ∈ [G, G] ∩ G m } is finite, then G is uniformly perfect and c(G) ≤ 5. Proof. Let f ∈ [G, G]
∩ G m and t ∈ N. Proposition 5.1 and Lemma 5.1 with n = 2 t show that that there exist two periodic elements

p ′ , p ∈ G such that g = p • f • p ′ ∈ G 5m is conjugated to an element g ′ of H 2 t ∩G 15m . By Proposition 2.1, p and p ′ are commutators then g ∈ [G, G]. Moreover, [G, G] is normal so g ′ ∈ H 2 t ∩ [G, G].
Therefore, according to Proposition 4.1

c G (f ) ≤ c G (g) + 2 = c G (g ′ ) + 2 < 1 2 t c H 2 t (g ′ ) + 5. As c H 2 t (g ′ ) ≤ C 15m (G), one has for any t ∈ N * c G (f ) < C 15m (G) 2 t + 5.
Choosing t large enough, we get c G (f ) ≤ 5. □ 6.2. The commutator length is bounded when prescribing the arithmetic.

Let p ∈ N * and α = (α 1 , • • • , α p ) ∈ [0, 1) p such that α 1 / ∈ Q. 6.2.1. Background material.
We denote by ∆ α the abelian subgroup of R generated by α 1 , • • • , α p and 1. Note that the condition α 1 / ∈ Q insures that ∆ α is dense in [0, 1). Let J be a half-open interval with endpoints in ∆ α . Definition 6.1.

We set

Γ α := {g ∈ G : BP (g) ⊂ ∆ α } and Γ α (J) := {g ∈ G J : BP (g) ⊂ ∆ α }.
It is plain that any g ∈ G is either periodic or belongs to some Γ α . Indeed, if g is not periodic then its length vector λ has at least one irrational coordinate and α is obtained from λ by permutation.

Note that Γ α (J) is the collection of all maps g ∈ G J whose extensions to I by the identity map belong to Γ α . But Γ α (J) does not coincide with the set obtained by conjugating Γ α through the homothecy that carries J into I.

For J = [c, d), the last set is {g ∈ G J : BP (g) ⊂ c + ∆α d-c }.
For this reason, the properties of Γ α (J) are not direct consequences of the ones of Γ α . Properties 6.1. Let g ∈ Γ α (J) and I i be the continuity intervals of g.

(1) The lengths of the I i and the translations of g are in ∆ α .

(2) Γ α (J) is a subgroup of G J .

(3) The endpoints of the connected components of F ix(g) belong to ∆ α .

Proof. Item (1). The endpoints of the I i are the discontinuity points of g and the left endpoint of J. Therefore if g ∈ Γ α (J) any length λ i = |I i | belongs to ∆ α . The translations of g also belong to ∆ α , as linear combinations of the λ i 's with coefficients in {-1, 0, 1}. Item (2). According to Item (1), any f ∈ Γ α (J) preserves ∆ α . Therefore the relations

BP (f -1 ) = f (BP (f )) and BP (f 1 • f 2 ) ⊂ BP (f 2 ) ∪ f -1 2 (BP (f 1 )) imply that Γ α (J)
is stable by taking inverse and composite. Item (3). From the definition of F ix(g), it follows that every endpoint of a connected component of F ix(g) is a discontinuity point of g. □ Before stating our last theorem, we give Definition 6.2. We say that G has partial uniform perfectness if for any p ∈ N * and α ∈ [0, 1)

p it holds that C α (G) := sup{c G (g) , g ∈ [G, G] ∩ Γ α } is finite.
Theorem 4. If G has partial uniform perfectness then G is uniformly perfect.

A consequence of Theorems 3 and 4 is

Corollary 1. If G has partial uniform perfectness then c(G) ≤ 5.

The main tool for the proof of Theorem 4 is Proposition 6.1. Let n be a positive integer and set s n = [ ln(n) ln(1.25) ] + 1. Let f ∈ Γ α . Then there exist g n ∈ H n ∩ Γ α , a map h ∈ Γ α and s n involutions i j ∈ Γ α , j = 1, 2, ...s n such that

f = i 1 • ... • i sn • (h • g n • h -1 ).
For proving this proposition we use the following Lemma 6.1. Let ϵ ∈ (0, 1) and J be a half-open interval with endpoints in ∆ α .

If f ∈ Γ α (J) then there exists an involution i ∈ Γ α (J) such that

|F ix(i • f )| ≥ |F ix(f )| + |J| -|F ixf | 5 (1 -ϵ). Proof. Let f ∈ Γ α (J) and BP (f ) = {0 = a 1 , • • • , a m }, we set a m+1 = 1. Case 1: F ix(f ) = ∅. Fix δ ∈ ∆ α such that 0 < δ < min{ |J|ϵ m ; |f (x) -x|, x ∈ I}.
For every j ∈ {1, • • • , m -1}, we consider the unique integer n j such that (n j -1)δ ≤ |[a j , a j+1 )| < n j δ. It holds that [a j , a j+1 ) is the union of (n j -1) intervals of length δ and an eventually empty interval F j of length less than δ.

Therefore J can be decomposed as a finite union of pairwise disjoint half-open intervals

I 1 , • • • , I n and F 1 , • • • , F m such that
• f is continuous on these intervals,

• |I j | = δ for j = 1, ..., n and |F k | < δ for k = 1, ..., m.

It follows that nδ

+ |F k | = |J|.
Since for any x it holds that |f (x) -x| > δ, one has f (I j ) ∩ I j = ∅. Therefore there exists an involution i 1 of support

I 1 ∪ f (I 1 ) such that i 1 | I 1 = f | I 1 and then i 1 • f | I 1 = Id| I 1 .
Now, we want to construct a similar involution i 2 on a second interval I p 2 so that i 1 and i 2 have disjoint supports. This can be done if and only if (I p 2 ∪ f (I p 2 )) ∩ (I 1 ∪ f (I 1 )) = ∅. This means that

I p 2 ⊂ I \ (I 1 ∪ f (I 1 ) ∪ f -1 (I 1 )).
Consequently, such an interval I p 2 and its corresponding involution i 2 with support I p 2 ∪ f (I p 2 ) exist provided that

(1) I ′ \ (I 1 ∪ D(f (I 1 ) ∪ f -1 (I 1 )) ̸ = ∅,
where

I ′ = I \ ∪F k and D(K) = {k | K∩I k ̸ =∅} I k .
As any half-open interval of length δ meets at most two intervals I k , the condition (1) means that n > 5.

By induction, we can define s involutions i j with disjoint supports I p j f (I p j ) provided that

I ′ \ (I 1 ∪ • • • I p s-1 ∪ D(f (I 1 ∪ • • • I p s-1 ) ∪ f -1 (I 1 ∪ • • • I p s-1 )) ̸ = ∅.
That is n > 5(s -1).

Let s be the largest integer such that n > 5(s -1), we can construct the involutions i j , j = 1, ..., s but n ≤ 5s.

By the definition of i j , the map

g = i s • • • i 1 • f satisfies g| I 1 ∪Ip 2 ∪•••∪Ip s = Id| I 1 ∪Ip 2 ∪•••∪Ip s , then |F ix(g)| ≥ s j=1 |I p j | = s.δ = s n (|J| - |F k |) ≥ 1 5 (|J| - |F k |) ≥ 1 5 (|J| -mδ) ≥ 1 5 (|J| -|J|ϵ).
In conclusion, since i j have disjoint supports, the map i

= i s • • • i 1 is an involution and |F ix(i • f )| ≥ |J| 5 (1 -ϵ)
, this is the desired conclusion for |F ixf | = 0. It remains to prove that i ∈ Γ α . Since the a i and δ are in ∆ α , the endpoints of I i and f (I i ) also belong to ∆ α . Combining this with the fact that the discontinuity points of the involutions i j are endpoints of I i or f (I i ), we get that BP (i j ) ⊂ ∆ α , for j = 1, ..., s. Therefore, by definition, the maps i j ∈ Γ α then so does i.

Case 2: F ix(f ) ̸ = ∅. We set J = [c, d).
As the endpoints of the connected components of F ix(f ) belong to ∆ α , it holds that a = |F ix(f )| ∈ ∆ α . Therefore a slight adaptation of Lemma 5.1 to f ∈ Γ α (J), shows that there exists h

∈ Γ α (J) such that F ix(h • f • h -1 ) = [c, c + a). Let f 1 ∈ Γ α ([c + a, d)) be the restriction of h • f • h -1 to [c + a, d).
By construction, F ix(f 1 ) = ∅ hence Case 1 applies to f 1 and provides an involution

j 1 ∈ Γ α ([c + a, d)) such that |F ix(j 1 • f 1 )| ≥ |J| -a 5 (1 -ϵ).
Let j ∈ Γ α (J) be the involution of J defined by j

(x) = j 1 (x) if x ∈ [c + a, d) and j(x) = x if x ∈ [c, c + a). We have |F ix(j • h • f • h -1 )| ≥ |[c, c + a)| + |F ix(j 1 • f 1 )| ≥ a + |J| -a 5 (1 -ϵ).
In addition, as h preserves lengths, we have

|F ix(j • h • f • h -1 )| = |F ix(h -1 • (j • h • f • h -1 ) • h)| = |F ix((h -1 • j • h) • f )|. Setting i = h -1 • j • h, we get |F ix(i • f )| ≥ a + |J| -a 5 (1 -ϵ),
which completes the proof. □

We turn now on to the proof of Proposition 6.1.

Let ϵ ∈ (0, 1) enough and such that 1

5 (1 -ϵ) ∈ ∆ α . Consider f ∈ Γ α and set L 0 = |F ix(f )|.
Applying Lemma 6.1 to f , there exists an involution i 1 ∈ Γ α such that

|F ix(i 1 • f )| ≥ L 0 + 1 -L 0 5 (1 -ϵ) = ϕ(L 0 ) := L 1 ,
where ϕ(x) := x + 1-x 5 (1 -ϵ) = 4+ϵ 5 (x -1) + 1 is a direct affine map whose fixed point is 1. We now apply this argument again, with f replaced by i

1 • f , to obtain an involution i 2 ∈ Γ α such that |F ix(i 2 •i 1 •f )| ≥ |F ix(i 1 •f )|+ 1 -|F ix(i 1 • f )| 5 (1-ϵ) = ϕ(|F ix(i 1 •f )|) ≥ ϕ(L 1 ) = ϕ 2 (L 0 ).
Repeating this process s times, we get s involutions i k ∈ Γ α such that

|F ix(i s • • • • • i 1 • f )| ≥ ϕ s (L 0 ).
We now prove that ϕ s (L 0 ) ≥ 1 -1 n provided that s ≥ s n = ln(n) ln(1.25) + 1. In order to get this inequality, we are looking for integers s such that

ϕ s (L 0 ) = ( 4 + ϵ 5 ) s (L 0 -1) + 1 ≥ 1 - 1 n , that is -( 4 + ϵ 5 ) s (1 -L 0 ) ≥ - 1 n .
Using that L 0 ≥ 0, it suffices to determine s satisfying for ϵ > 0 small enough.

( 4 + ϵ 5 ) s ≤ 1 n s.ln( 4 + ϵ 5 ) ≤ ln( 1 n ) = -ln(n) s ≥ ln(n) ln( 5 
Finally i s • • • • • i 1 • f ∈ Γ α has
a fixed point set of length at least 1 -1 n so it is conjugated to an element of H n by some h ∈ Γ α , by a slight adaptation of Lemma 5.1 to f ∈ Γ α .

We let the reader check the basic general properties and we only prove the specific ones. The rotation R α of [0, 1) given by R α (x) = x + α (mod 1) is reversible by the symmetry I defined as I(x) = 1 -x. Therefore, a restricted rotation of support J is reversible by I J , the symmetry of J. R J I J It was already proved in [START_REF] Guelman | Reversible Maps and Products of Involutions in Groups of IETS[END_REF] that any periodic iet is strongly reversible. Here, we give a more direct proof.

Let g be a periodic iet and p ∈ N * such that g p = Id. We consider the partition P of the interval [0, 1) into half-open intervals J j defined by the discontinuity points of the maps g, g 2 , ..., g p-1 . In particular, the maps g, g 2 , ..., g p-1 are continuous on each J j and there exists a minimal integer p j ≤ p such that g p j |J j = Id. The partition P can be decomposed as the union of P k = {J k , ..., g p k -1 (J k )} for k ∈ R, where R is an index set for representatives of the g-orbits of the J j 's.

Eventually conjugating g by an iet , we can suppose that for all k ∈ R, the intervals J k ,..., g p k -1 (J k ) are consecutive so that their union is an half-open interval denoted by I k .

Let S p i denote the p i -symmetric group and let π ∈ S p i be the cycle (1, 2, • • • , p i ) that is π(t) = t + 1 (mod p i ). According to [START_REF] O'farrell | Reversibility in dynamics and group theory[END_REF] (Proposition 3.4 page 41), there exists τ ∈ S p i such that τ has order 2 and it satisfies τ -1 πτ (k) = π -1 .

We consider the iet h, that is defined on each I i by h is continuous on g t (J i ), t = 0, ..., p i -1 and h(g t (J i )) = g τ (t) (J i ). One can easily check that h is an involution and h -1 • g • h is continuous on g t (J i ) and h -1 • g • h(g t (J i )) = h -1 g πτ (t) (J i ) = g τ -1 πτ (t) (J i ) = g π -1 (t) (J i ) = g -1 (g t (J i )). Therefore h -1 • g • h = g -1 , meaning that g is strongly reversible in G. Any element of G m is the product of at most m -1 strongly reversible elements in G.

A.1.2. The Dennis-Vasserstein's criterion for strongly reversible maps.

Definition A.1. Let G be a simple group and g ∈ G, the strongly reversible length of g, denoted by R G (g), is the least number r such that g is a product of r strongly reversible elements in G.

Proposition A.2. Let n ∈ N * . If g ∈ H 2 n then R G (g) < 1 2 n R H 2 n (g) + 3. Lemma A.1. If g ∈ H 2 is the product of 4 strongly reversible elements in H 2 then g is the product of 3 strongly reversible elements in G.

Proof. Let g = ρ 1 ρ 2 ρ 3 ρ 4 with ρ i strongly reversible elements in H 2 . Denote by ρ ′ i the map R 1 2 ρ i R1 2 which commutes with the ρ j and is strongly reversible in R1 2 H 2 R 1 2 . We have

g = ρ 1 ρ 2 ρ 3 ρ 4 (ρ ′ 3 ρ ′ 4 ) (ρ ′ 3 ρ ′ 4 ) -1 g = (ρ 1 ρ ′ 3 ) C 1 (ρ 2 ρ ′ 4 ) C 2
(ρ 3 ρ 4 ) (ρ 3 ρ 4 ) -1 ′ .

Therefore R G (g) ≤ 1 2 (R H 2 (g) + 3). Starting from g ∈ H 2 n and iterating this process for the groups H 2 t and H 2 t+1 , for t < n, we get R G (g) ≤ 1 2 (R H 2 (g) + 3) ≤ 1 4 (R H 4 (g) + 9) ≤ ... ≤ 1 2 n (R H 2 n (g) + 3(2 n -1)) .

Finally, it holds that R G (g) < 1 2 n R H 2 n (g) + 3.

A.2. Proof of Theorem 5. Let f ∈ G and m = #Disc(f ). By Proposition 5.1, for all n ∈ N * , there exist p, p ′ periodic, g ∈ H 2 n ∩G 15m and h ∈ G such that f = p•(h

-1 •g •h)•p ′ . Then R G (f ) ≤ R G (p) + R G (h -1 • g • h) + R G (p ′ ).
By Properties A.1, the maps p and p ′ are strongly reversible and then

R G (f ) ≤ 2 + R G (g).
Using Proposition A.2, we get

R G (f ) < 2 + 1 2 n R H 2 n (g) + 3.
As g ∈ G 15m , Remark 1 and Proposition A.1 imply that

R G (f ) < 5 + 15m 2 n .
Finally, letting n → +∞, we get R G (f ) ≤ 5.

In Conclusion: let f ∈ G. By Lemma 3.2 (1), f = i • f with i an involution and f ∈ G m thereby R G (f ) ≤ 1 + 5 = 6.

A.3. Proof of Corollary 2. Let f ∈ G, by Theorem 5, f can be written as a product of 6 strongly reversible elements of G. By Properties A.1, these elements are product of 2 involutions then f is the product of 12 involutions.
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  H 2 t (g) + 3. Proof. As noted earlier, we only prove Item (a). Let t ∈ N * and g ∈ H 2 t ∩ [G, G]. From Remark 1 and Lemma 4.1, we obtain

6.2.2. Proof of Theorem 4. We consider g 1 ∈ Γ α ∩ [G, G] that realizes C α (G). By Proposition 6.1 with n = 2 and thus s 2 = ln(2) ln(1.25) + 1 = 4, there exist

We can now estimate C α (G). By Proposition 2.1 and the normality of [G, G],

According to Lemma 4.1, we have

Using Remark 1, the group H 2 inherits the partial uniform perfectness of G and this implies that for any g

Finally, since any IET g is either periodic or it belongs to some Γ α , we get that c G (g) ≤ 11,

Note on Involution length

In this appendix, we prove Theorem 5.

Any element of G is the product of at most 6 strongly reversible elements in G.

Corollary 2. Any element of G is the product of at most 12 involutions in G.

A.1. Preliminairies.

A.1.1. Strong reversibility in G and G. We list some basic properties on strongly reversible maps.

Properties A.1.

(1) Basic general properties. Let G be a group and

The identity and involutions are strongly reversible and an element is strongly reversible if and only if it is the product of at most 2 involutions. (b) The conjugate of a strongly reversible element is strongly reversible. (c) Let f k be strongly reversible by i k , for k = 1, 2. If {i 1 , f 1 } and {i 2 , f 2 } are commuting then the product f 1 f 2 is strongly reversible by i 2 i 1 . (d) If R is an involution, then f Rf -1 R -1 is strongly reversible by R.

(2) Specific properties.

(a) Restricted rotations are strongly reversible in G.

(b) Any periodic element of G is strongly reversible in G.