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) sur le nombre de classes de conjugaison d'éléments d'ordre fini dans le groupe de Thompson T . D'après [Lio08], le groupe de Brown-Thompson Tr,m ne contient pas d'élément d'ordre q lorsque pgcd(m -1, q) ne divise pas r. Nous montrons que si pgcd(m -1, q) divise r alors il y a exactement ϕ(q).pgcd(m -1, q) classes de conjugaison d'éléments d'ordre q dans Tr,m, où ϕ est la fonction phi d'Euler. Comme corollaire, nous obtenons que le groupe de Thompson T n'est isomorphe à aucun des groupes Tr,m avec m = 2 et tout morphisme de T dans Tr,m, avec m = 2 et r = 0 mod (m -1), est trivial.

Abstract (Number of conjugacy classes of torsion elements in Brown-Thompson groups)

We extend a result of Matucci ([Mat08]) on the number of conjugacy classes of finite order elements in the Thompson group T . According to [Lio08], if gcd(m -1, q) is not a divisor of r then there does not exist element of order q in the Brown-Thompson group Tr,m. We show that if gcd(m -1, q) is a divisor of r then there are exactly ϕ(q).gcd(m -1, q) conjugacy classes of elements of order q in Tr,m, where ϕ is the Euler function phi. As a corollary, we obtain that the Thompson group T is isomorphic to none of the groups Tr,m, for m = 2 and any morphism from T into Tr,m, with m = 2 and r = 0 mod (m -1), is trivial.

Classification mathématique par sujets (2000).

 [START_REF] Cannon | Introductory notes on Richard Thompson's groups[END_REF], [START_REF] Stein | Groups of piecewise linear homeomorphisms[END_REF]). En 1987, K. Brown ([Bro87]) a défini une famille T r,m ⊂ V r,m englobant T et V et les groupes V r,m sont isomorphes aux groupes G r,m de Higman ([Hig74]).

Plus précisément, soit r un entier strictement positif, on note S r le cercle R/rZ de longueur r. Le cercle de longueur 1 est S 1 , nous le noterons plus classiquement S 1 .

Définition. -Un homéomorphisme f du cercle S r est affine par morceaux s'il existe une subdivision finie 0 < a 1 < a 2 < • • • < a p = r de l'intervalle [0, r] et un relevé f de f à R tels que f|[a i ,a i+1 ] (x) = λ i x + β i , λ i , β i ∈ R.

Les points a i sont appelés points de coupure de f et les nombres λ i , pentes de f . Le groupe des homéomorphismes affines par morceaux de S r préservant l'orientation est noté P L + (S r ).

Définition. -Soient r et m ≥ 2 deux entiers strictement positifs. On définit le groupe de Brown-Thompson T r,m comme l'ensemble des éléments f de P L + (S r ) tels que :

-les pentes de f appartiennent à m = {m s , s ∈ Z}.

-les points de coupure de f appartiennent à Z[ 1 m ] = {N.m s |N, s ∈ Z}, -les images par f de 0 et des points de coupure de f appartiennent à

Z[ 1 m ]. Le groupe de Thompson T est T 1,2 .
De nombreux auteurs se sont intéressés aux invariants et à la question d'isomorphicité pour ces groupes de type Thompson ( [START_REF] Bieri | On groups of PL-homeomorphisms of the real line[END_REF], [START_REF] Matthew | The chameleon groups of Richard J. Thompson : automorphisms and dynamics[END_REF], [START_REF] Matthew | The ubiquity of Thompson's group F in groups of piecewise linear homeomorphisms of the unit interval[END_REF], [START_REF] Brin | Automorphisms of generalized Thompson groups[END_REF], [START_REF] Brown | Finiteness properties of groups[END_REF], [START_REF] Higman | Finitely presented infinite simple groups[END_REF], [START_REF] Liousse | Rotation numbers in Thompson-Stein groups and applications[END_REF], [START_REF] Matucci | Algorithms and classification in groups of piecewiselinear homeomorphisms[END_REF]

, [Ste92] • • • ).
Dans cet article, nous nous concentrons sur les obstructions à l'isomorphicité entre groupes T r,m issues des éléments d'ordre fini et de leurs classes de conjugaison. Le calcul du nombre de ces classes fût effectué pour G r,m par Higman ([Hig74], section 6), pour T par Matucci ([Mat08]) puis ultérieurement par Geoghegan-Varisco ([GV14]) et Fossas ([Fos16]). Comme dans [START_REF] Matucci | Algorithms and classification in groups of piecewiselinear homeomorphisms[END_REF] et [START_REF] Geoghegan | On Thompson's group T and algebraic Ktheory[END_REF], nous utilisons la représentation comme groupe d'homéomorphismes affines par morceaux du cercle et disposons ainsi d'un invariant dynamique suplémentaire : le nombre de rotation de Poincaré. Nous indiquons sa définition et ses premières propriétés (voir [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF] ou [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF]).

Définition. -Soit f un homéomorphisme du cercle S r , on définit le nombre de rotation sur S r de f par :

ρ(f ) = lim n→∞ ( f n (0)/rn) (mod 1) ∈ S 1 .
Ce nombre ne dépend pas du choix du relevé f et satisfait les propriétés classiques :

Propriétés. - -ρ(R α ) = α r où R α (x) = x + α (mod r), -ρ(f n ) = n ρ(f ) pour tout n ∈ Z, -si f est d'ordre fini q ∈ N >1 alors ρ(f ) = p q avec p < q et p ∧ q = 1, -soit h : S r → S r un homéomorphisme préservant l'orientation alors ρ(h • f • h -1 ) = ρ(f ).
Commençons par cette observation : tout élément d'ordre q est conjugué dans P L + (S 1 ) à une rotation d'angle p q avec p ∧ q = 1, une conjugante est construite par moyennisation (voir par exemple [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF], Proposition 11.2.2). Comme deux rotations d'angles différents ne sont jamais C 0 -conjuguées, le nombre de classes de conjugaison d'éléments d'ordre q dans P L + (S 1 ) est exactement le nombre d'entiers p < q premiers avec q c'est à dire ϕ(q) (la fonction phi d'Euler).

Le Théorème 7.1.5 de [START_REF] Matucci | Algorithms and classification in groups of piecewiselinear homeomorphisms[END_REF] (voir aussi [START_REF] Geoghegan | On Thompson's group T and algebraic Ktheory[END_REF] et [START_REF] Fossas | On the number of conjugacy classes of torsion elements on Thompson's group T[END_REF]) exprime qu'il est encore vrai pour le groupe de Thompson T : "dans T , tout rationnel de S 1 est réalisé comme nombre de rotation d'une unique classe de conjugaison d'éléments d'ordre fini".

Ici, nous établissons que cette propriété n'est plus satisfaite par les autres groupes T r,m :

Théorème 1. -Soient r ≥ 1, m ≥ 2 et q ≥ 2 des entiers.
A. Si pgcd (m -1, q) ne divise pas r alors il y a 0 classes de conjugaison d'éléments d'ordre q dans T r,m .

B. Si pgcd(m -1, q) divise r alors il y a pgcd(m -1, q) classes de conjugaison d'éléments d'ordre q et de nombre de rotation p q dans T r,m , pour tout entier p premier avec q.

C. Si pgcd(m -1, q) divise r alors il y a ϕ(q).pgcd(m -1, q) classes de conjugaison d'éléments d'ordre q dans T r,m . Ce corollaire contraste avec le résultat d'ubiquité de F montré par Brin ([Bri99]). Notre approche diffère de celles de [START_REF] Matucci | Algorithms and classification in groups of piecewiselinear homeomorphisms[END_REF], [START_REF] Geoghegan | On Thompson's group T and algebraic Ktheory[END_REF] et [START_REF] Fossas | On the number of conjugacy classes of torsion elements on Thompson's group T[END_REF] au sens où elle est essentiellement basée sur un critère dû à Bieri et Strebel [START_REF] Bieri | On groups of PL-homeomorphisms of the real line[END_REF].

Nous en déduisons le
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. Remarque 1. -Considérons un entier m ∈ N >1 . La réduction modulo m - 1 : Z → Z m-1 = Z/(m -1)Z = {0, ..., m -2}, n → [n] envoie m sur 1. Par conséquent, elle s'étend en un morphisme d'anneaux Z[ 1 m ] → Z m-1 , n m s → [n] qui coïncide avec l'application quotient par l'idéal principal (m -1)Z[ 1 m ]. Maintenant, toute application affine de Z[ 1 m ] dans lui même de la forme x → m k x + N m l passe au quotient par cet idéal et l'application quotient est la translation Z m-1 → Z m-1 , [x] → [x] + [a].
Par récurrence sur le nombre d'intervalles où il est affine et par continuité en ses points de coupure, tout

P L m -homéomorphisme f : [a, b] → [a , b ] induit une application fm : Z m-1 → Z m-1 qui est la translation [x] → [x] + [a -a] et l'application f → fm est compatible avec la composition.
Finalement, les classes de conjugaisons dans T r,m des éléments de torsion de nombre de rotation 1 q sont caractérisées par l'image de 0 dans Z m-1 . D'autre part, un point de Z m-1 est ainsi réalisé si et seulement si il est solution de l'équation de congruence qa ≡ r (voir e.g. ( 2) ⇒ (1) de la Proposition 4). On retrouve essentiellement le Théorème 1 en notant que cette équation n'a pas de solution si r ne divise pas pgcd(q, m -1) et en a pgcd(q, m -1) sinon. 

0 < b 1 < ... < b n-1 < b n = c, b i ∈ Z 1 m , les points de coupure de f et λ i = m k i , k i ∈ Z, la pente de f sur [b i-1 , b i ]. Nous allons montrer que |I| -|I | = (c -a) -(c -a ) ∈ (m -1).Z 1 m . Comme c -a = i (b i -b i-1 ) et c -a = i λ i (b i -b i-1 ), on a (c -a) -(c -a ) = i (1 -λ i )(b i -b i-1 ) et (1 -λ i ) = -(m -1) k i -1 p=0 m p = (m -1)M i avec M i ∈ Z et finalement (c -a) -(c -a ) = (m -1) i M i (b i -b i-1 ) ∈ (m -1).Z 1 m . Réciproquement, supposons |I| -|I | ∈ (m -1).Z 1 m ( * ).
Cas 1 : a < b (0 ≤ b -a ≤ b). L'application f 0 : [0, b] → [0, b + (m -1)a] définie par f 0 (x) = x si x ∈ [0, b -a] m(x -(b -a)) + (b -a) si x ∈ [b -a, b] est l'homéomorphisme P L m cherché. Cas 2 : a ≥ b. Choisissons p ∈ N tel que 0 ≤ m -p a < b. D'après le cas 1, il existe f 0 : [0, b] → [0, b + (m -1)m -p a] ayant les propriétés requises. On définit alors f 1 : [0, b + (m -1)m -p a] → [0, b + (m -1)a] par f 1 (x) = x si x ∈ [0, b] m p (x -b) + b si x ∈ [b, b + (m -1)m -p a]. L'application cherchée est f = f 1 • f 0 .

Conséquence (Isomorphisme de Bieri-Strebel)

Soient m > 1 un entier, si r et r sont deux entiers positifs congrus modulo m -1 alors les groupes T r,m et T r ,m sont isomorphes. Par suite tout T r ,m est isomorphe à l'un des m -1 groupes T r,m , r ∈ 1, ..., m -1.

Remarque 2. -Tous les intervalles dyadiques sont P L 2 -équivalents et par suite tous les groupes T r,2 sont isomorphes à T .

Nombres de rotation des éléments d'ordre fini. -

Proposition 2. -([Lio08]) Soient m ≥ 2, r ≥ 1 et q ≥ 1 des entiers.
1. Si le groupe T r,m contient un élément d'ordre q alors pour tout p ∈ N * , le groupe T r,m contient un élément d'ordre fini de nombre de rotation p q . 2. Le groupe T r,m contient un élément d'ordre q si et seulement si pgcd(m -1, q) divise r.

Démonstration. -Nous supposons q ≥ 2, pour q = 1 le résultat est trivial. Premier item. Supposons qu'existe f ∈ T r,m d'ordre q. On a ρ(f ) = n q où les entiers n et q sont premiers entre-eux. Par Bezout, il existe u et v entiers tels que 1 = un + vq.

Soit p ∈ N * , on définit un élément d'ordre fini de T r,m par g = f up . On a ρ(g) = ρ(f up ) = upρ(f ) = upn q = p(1-vq) q = p q -pv = p q (mod1). Deuxième item. Condition nécessaire. Supposons que r soit un multiple de pgcd(q, m-1). D'après Bezout, r = uq + v(m -1), donc r = uq modulo (m -1). L'isomorphisme de Bieri-Strebel implique que les groupes T uq,m et T r,m sont isomorphes. De plus, le groupe T uq,m contient la rotation x → x + u d'ordre q et de nombre de rotation 1 q . Condition suffisante. Par hypothèse et d'après le premier item, il existe

f ∈ T r,m d'ordre q et ρ(f ) = 1 q . Fixons f un relevé de f à R et identifions f à f (mod r). La f -orbite de 0 est ordonnée comme suit 0 < f (0) < .... < f q-1 (0) < r. Les q intervalles I i := [f i-1 (0), f i (0)], i = 1, • • • , q, sont tous P L m - équivalents, donc d'après le critère de Bieri-Strebel, |I i | = |I 1 | mod (m - 1).Z 1 m et |I 1 | = f (0). Par conséquent r = |I 1 | + • • • + |I q | = qf (0) mod (m - 1).Z 1 m .
On en déduit qu'il existe des entiers u, v, s tels que r -qf (0) = (m -1) v m s et f (0) = u m s . Ainsi, m s r -qu = (m-1)v, autrement dit m s r = qu+(m-1)v. Ceci implique que m s r est un multiple du pgcd(q, m -1). Les entiers (m -1) et m s étant premiers entre-eux, on conclut que r est un multiple de pgcd (q, m -1).

Critère de Conjugaison

P L m . - Proposition 3. -Soient f 1 et f 2 deux éléments de T r,m d'ordre fini q et de nombre de rotation 1 q , on note f i (0) = N i m s i , i = 1, 2.
Les propriétés suivantes sont équivalentes :

1. f 1 et f 2 sont P L m -conjugués (dans T r,m ), 2. N 2 -N 1 est un multiple de m -1, 3. f 1 (0) -f 2 (0) ∈ (m -1).Z[ 1 m ] (autrement dit, les intervalles [0, f 1 (0)] et [0, f 2 (0)] sont P L m -équivalents). Démonstration. - Lemme 1. -Soit a = Na m sa ∈ Z[ 1 m ], tout homéomorphisme f ∈ T r,m d'ordre q, de nombre de rotation 1 q et vérifiant f (0) = a est P L m -conjugué à la rotation R Na de S qNa . Démonstration. -L'intervalle [0, r[ s'écrit q i=1 I i , où I i = [f i-1 (0), f i (0)].
On considère l'application affine H 1 :

I 1 = [0, a] → [0, N a ], x → m sa .x et on définit par récurrence H i : I i → [(i -1)N a , iN a ] par H i+1 = R Na • H i • f -1 .
On vérifie facilement que l'application H : S r → S qNa définie par

H |I i = H i est un P L m -homéomorphisme qui conjugue f à R Na .
(1) =⇒ (2). D'après le lemme précèdent, f i est P L m -conjuguée à la rotation R N i de S qN i . Il nous reste à étudier à quelles conditions deux telles rotations sont P L m -conjuguées.

Soit h :

S qN 1 → S qN 2 une P L m -conjugaison entre R N 1 et R N 2 , quitte à composer au but h par la rotation R -h(0) de S qN 2 , on peut supposer que h(0) = 0. Les intervalles [0, N 1 ] et [0, N 2 ] étant P L m -équivalents, l'entier N 2 -N 1 ∈ (m -1).Z[ 1 m ] et par suite N 2 -N 1 est un multiple de m -1. (2) =⇒ (1). Si N 2 -N 1 est un multiple de (m -1) alors [0, N 1 ] et [0, N 2 ]
sont P L m -équivalents et on peut reprendre la preuve du lemme précédent avec pour H 1 l'homéomorphisme de Bieri-Strebel qui échange ces 2 intervalles.

(2) ⇐⇒ (3) résulte du calcul suivant :

f 1 (0) -f 2 (0) = N 1 m s 1 -N 2 m s 2 = N 1 (m -s 1 -1) -N 2 (m -s 2 -1) + (N 1 -N 2 ) = (N 1 -N 2 ) mod (m -1).Z[ 1 m ].

Classes de conjugaison d'éléments d'ordre fini dans les groupes de Brown-Thompson.

Lemme 2. -Soient p et q > 1 deux entiers premiers entre-eux et u > 0, v entiers tels que up + vq = 1. Deux éléments f 1 et f 2 de T r,m d'ordre fini q et de nombre de rotation p q sont P L m -conjugués si et seulement si f u 1 et f u 2 (de nombre de rotation 1 q ) sont P L m -conjugués.

La preuve de ce lemme résulte du fait que la P L m -conjugaison se transmet aux puissances et des généralités suivantes :

On a ρ(f u ) = up q = 1-vq q = 1 q et (f u ) p = f 1-vq = f dès que f est d'ordre fini q.

Remarque 3. -Une conséquence de ce lemme est qu'étant donnés p et q deux entiers premiers entre-eux, le nombre de classes de conjugaison d'éléments d'ordre fini q et de nombre de rotation p q ne dépend pas de p.

3.1. Classes de conjugaisons dans T r,2 . -Soit q ∈ N * , d'après l'invariance par conjugaison topologique du nombre de rotation et la remarque précédente, il suffit de déterminer le nombre de classes de conjugaison d'éléments d'ordre q et de nombre de rotation 1 q . La Proposition 2 indique que T r,2 contient un élément f 1 d'ordre q et de nombre de rotation 1 q . Tous les intervalles dyadiques étant P L 2 -équivalents par la Remarque 2, l'item (3) de la Proposition 3 est vérifié pour tout autre f 2 ∈ T r,2 d'ordre q et de nombre de rotation 1 q . On en déduit qu'il y a exactement une classe de conjugaison d'éléments d'ordre q et de nombre de rotation 1 q ; le résultat de Matucci en découle. 

Preuve du

I i := [f i-1 (0), f i (0)[, i = 1, • • • , q, sont tous P L m -équivalents et forment une partition de [0, r[. Par conséquent r = q|I 1 | = qf (0) mod (m -1)Z[ 1 m ]. (2) =⇒ (1). Supposons que r -qa ∈ (m -1)Z[ 1 m ] et considérons la rotation R a : x → x + a sur le cercle de longueur qa ∈ Z[ 1 m ]. Soit h l'homéomorphisme P L m qui vaut l'identité sur [0, a] et qui envoie [a, qa] sur [a, r] (son existence est assurée par le critère de Bieri-Strebel, Proposition 1). Ainsi l'homéomorphisme f a = h • R a • h -1 ∈ T r,m est d'ordre q, de nombre de rotation 1 q et satisfait f a (0) = a.
(2) ⇐⇒ (3) est conséquence du calcul suivant :

r -qa = r -q N a m sa = rm sa -qN a m sa ∈ (m -1)Z[ 1 m ] ⇐⇒
rm sa -qN a = r(m sa -1) + (r -qN a ) est un multiple de m -1 ⇐⇒ r -qN a est un multiple de m -1.

Nous pouvons maintenant calculer le nombre de classes de conjugaison d'éléments d'ordre q de nombre de rotation 1 q dans T r,m . D'après les Propositions 3 et 4, cette quantité est égale au nombre de classes modulo (m -1) d'entiers N tels que r -qN est un multiple de m -1, nous affirmons que c'est d =pgcd(m -1, q). En effet, sous la condition d divise r, le critère d'isomorphisme de Bieri-Strebel nous permet de supposer que r = qu. Posons P = u-N , on a r -qN = q(u -N ) = qP , le problème se ramène à déterminer le nombre de classes modulo (m -1) d'entiers P tels que qP est un multiple de m -1.

Puisque m -1 = m 0 .d et q = q 0 .d avec m 0 ∧ q 0 = 1, l'entier qP est un multiple de m -1 si et seulement si q 0 P est un multiple de m 0 et donc si et seulement si P est un multiple de m 0 . Par conséquent, il y a exactement d tels entiers entre 0 et m -2.

3.2.3.

Preuve de l'item C. -D'après l'invariance par conjugaison topologique du nombre de rotation et la Remarque 3, le nombre de classes de conjugaison d'éléments d'ordre q dans T r,m est ϕ(q).pgcd(m-1, q), si pgcd (m-1, q) divise r et 0 si non. 2. Si m 1 -1 possède un diviseur premier qui ne divise pas m 2 -1 alors il n'existe pas de morphisme injectif T 1,m 2 → T 1,m 1 .

Démonstration. -(1) Puisque pour tout q ∈ N >1 , pgcd(m -1, q) est un diviseur de m -1, le groupe T m-1,m contient des éléments de tout ordre. Réciproquement, si

Corollaire 1 .

 1 -Tout rationnel de S 1 est réalisé comme nombre de rotation d'une unique classe de conjugaison d'éléments d'ordre fini dans T r,m si et seulement si m = 2. Le groupe de Thompson T n'est isomorphe à aucun des groupes T r,m avec m = 2 et tout morphisme de T dans T r,m , avec m = 2 et r = 0 mod (m -1), est trivial.

  Critère de Bieri-Strebel pour les groupes de Brown-Thompson. -Nous reprennons ici le critère général de Bieri-Strebel déterminant à quelles conditions deux intervalles réels sont échangés par une application affine par morceaux avec points de coupure et pentes prescrites (voir le Théorème A 4.1 de [BS16]). Définition. --Un m-intervalle est un intervalle réel dont les extrémités sont dans Z 1 m . -Un homéomorphisme f : I → I est dit P L m s'il est affine par morceaux avec pentes dans m et points de coupure dans Z 1 m . -Deux intervalles I et I sont dits P L m -équivalents s'il existe un homéomorphisme P L m entre-eux. Proposition 1. -([BS16], [Lio08]) Deux m-intervalles I et I sont P L méquivalents si et seulement si |I| -|I | ∈ (m -1).Z 1 m , où |I| représente la longueur de l'intervalle I. Démonstration. -Soient I = [a, c] et I = [a , c ] avec a, a , c, c ∈ Z 1 m . Supposons qu'il existe f un homéomorphisme P L m entre I et I . Notons a = b

  Quitte à composer à la source et au but par des rotations d'angles convenables dans Z 1 m , on peut supposer que I = [0, b] et I = [0, b ] avec b, b ∈ Z 1 m positifs. La condition ( * ) se traduit par le fait qu'il existe a ∈ Z 1 m tel que b = b + (m -1)a et il s'agit de construire un P L m -homéomorphisme f : [0, b] → [0, b + (m -1)a] pour tous a, b ∈ Z 1 m avec b ≥ 0 et b + (m -1)a ≥ 0. L'inverse d'un homéomorphisme P L m entre m-intervalles étant P L m , on peut aussi supposer, quitte à échanger b et b , que a ≥ 0.

  Preuve de l'item A. -Il résulte directement de l'item (2) de la Proposition 2.3.2.2. Preuve de l'itemB. -Par la Remarque 3, il suffit d'établir le résultat pour p = 1. Proposition 4. -Soient q ∈ N >1 et a = Na m sa ∈ Z[ 1 m ]∩]0, r[. Les propriétés suivantes sont équivalentes 1. Il existe f ∈ T r,m d'ordre q, vérifiant f (0) = a et de nombre de rotation 1 q . 2. r -qa ∈ (m -1)Z[ 1 m ]. 3. r -qN a est un multiple de m -1. Démonstration. -(1) =⇒ (2). Comme dans la preuve de la Proposition 2, les q intervalles

4.

  Problèmes d'isomorphisme et de plongement entre groupes de Brown-Thompson. Preuve du Corollaire 1 Proposition 5. -Soit m ∈ N >1 . 1. Parmi les groupes T r,m , pour 0 < r ≤ m -1, seul le groupe T m-1,m contient des éléments d'ordre quelconque. Ainsi, il n'existe pas de morphisme injectif T m-1,m → T r,m , pour 0 < r < m -1.
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1. Introduction et définitions

  En 1965, R. Thompson découvrit les premiers exemples de groupes T ⊂ V de présentation finie, simples et infinis. Le groupe T [resp. V ] se représente comme groupe d'homéomorphismes [resp. échanges d'intervalles] affines par morceaux du cercle (voir
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