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A Fast Spatial-Spectral NMF for Hyperspectral
Unmixing

Taner Ince, Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE

Abstract—This letter proposes a fast yet efficient method to
solve the hyperspectral unmixing problem in the challenging un-
supervised context, i.e., when the endmember spectral signatures
are unknown. First, a coarse approximation of the hyperspectral
image is computed by spatially averaging neighboring pixels,
which significantly reduces the amount of pixels to be handled.
This reduced set of hyperspectral pixels is unmixed to derive
coarse solutions of the unmixing problem, i.e., coarse estimates of
the endmember signatures and the corresponding low-resolution
abundance maps. Then, the plain resolution abundance maps are
estimated from the corresponding hyperspectral image based on
the coarse endmember signatures. A sparsity promoting prior
exploiting the low resolution map complements the conventional
data fitting term to promote spatial smoothness while mitigating
the loss of details in the edge areas. Finally, a least square
optimization problem is solved to obtain the actual endmember
signatures from the hyperspectral image and the abundance maps
of plain resolution estimated in the previous step. Numerical
experiments show that the proposed method is fast and performs
well compared to state-of-the-art approaches from the literature.

Index Terms—Hyperspectral unmixing, non-negative matrix
factorization, edge preserving spatial regularization.

I. INTRODUCTION

IMAGING the Earth surface using a hyperspectral (HS) sen-
sor at many narrow wavelengths is known as HS imaging.

It is widely used to detect and identify objects of interest in
the imaged scene for specified purposes such as surveillance,
precision agriculture and environmental monitoring. Although
HS sensors offer a high spectral resolution, identifying the
materials in the scene remain challenging. One reason lies in
the fact that the spatial resolution of the HS sensors does not
permit to discriminate subpixel structures, which limits the
analysis of the scene in particular when the several materials
are mixed in a unique pixel. Spectral unmixing (SU) aims
at remedying this issue by computationally recovering the
spectral signatures of the elementary materials (also referred
to as endmembers) and their corresponding proportions (or
abundances) in each image pixel [1].
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The observation models for SU are generally classified as
linear or nonlinear, e.g., based on the light scattering in the
scene [2]. Although nonlinear mixing models are more realistic
than the linear ones, in general the simplicity of the linear
mixing model (LMM) makes it easy to be implemented and
is known to provide a reasonable first approximation of the
composition of the scene. LMM assumes that the observed
spectra are linear combinations of the endmember spectral
signatures weighted by the corresponding fractions. It does
not account for the spectral variability which results from
atmospheric effects or multiple scattering. Several algorithms
have been developed to identify the endmember spectral sig-
natures and estimate the abundances. Geometrical approaches
first identify the endmembers as extremal points in the pixels
and the abundances are subsequently estimated using a least-
square approach [3]–[5]. If a spectral library is available before
the analysis, it is possible to find the active endmembers
actually involved in the observed mixtures. This problem is
known as sparse unmixing and many efficient methods have
been designed [6]–[10]. Since the spectral library is composed
of a large number of endmember candidates compared to the
active ones, the resulting optimization problem are generally
granted with a sparsity-promoting prior.

Another solution to the unmixing task consists in for-
mulating SU as a nonnegative matrix factorization (NMF)
problem [11] exploiting the fact that the endmember and
abundance matrices are composed of nonnegative entries.
However, NMF is known to be a nonconvex optimization
problem and the recovered solution may dramatically be
impacted by noise [12] or the initialization of the iterative
algorithm. Therefore, additional constraints and/or penaliza-
tions can be considered, e.g., by promoting the sparsity or
the spatial homogeneity of the abundance maps. Sparsity
promoting norms include the ℓ1- [13] or ℓ1/2-norms [14].
Further enhancements relying on a sparsity measure have
been conducted using local spatial information. For instance,
spatial group sparsity regularized NMF (SGSNMF) [15] en-
forces sparsity of local regions extracted using superpixel
segmentation. In [16], graph-regularized L1/2-NMF (GLNMF)
minimizes the spectral correlation between pixels by construct-
ing an adjacency matrix. Furthermore, to tackle the problem
of sparse noise, robust instances of NMF also relying on
an ℓ1-norm term have been proposed, see, e.g., [17], [18].
Besides, total variation (TV) has been extensively advocated as
a regularization to preserve edges in the estimated abundance
map. TV regularized reweighted sparse NMF (TV-RSNMF)
combines TV and ℓ1-norm regularizations simultaneously [19].
However, combining several regularizers leads to practical
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issues when one should adjust their respective weights in the
overall objective function. The corresponding hyperparameters
may be difficult to adjust and may dramatically impact the
quality of the recovered solution. To overcome this issue,
one solution consists in designing dedicated prior able to
jointly capture the spatial and spectral properties of the HS
image. Spectral-spatial weighted sparse NMF (SSWNMF)
combines spatial and spectral constraints by spectrally and
spatially weighting the ℓ1-norm based sparse regularization
[20]. Recently, spectral-spatial joint sparse NMF S2-NMF has
been proposed to exploit the local and global similarities in
the data by using a K-means and a superpixel segmentation
[21]. Although exploiting the spectral and spatial properties of
HS data into a single regularizer yields encouraging results, the
corresponding optimization problems generally become harder
to solve, resulting in significant increases of the computational
burden.

In this paper, we propose a fast method for unsupervised
unmixing. The proposed method consists of three steps. In a
first step, the HS image to be unmixed is spatially degraded to
a produce a spatially correlated coarse approximation of the
data with a significantly lower number of pixels. This reduced
set of pixels are unmixed following an NMF formulation
using multiplicative updates to derive coarse estimations of
the endmembers and abundances. The second step capitalized
on the estimated coarse abundance maps to design a sparsity-
promoting regularization to recover abundance maps at full
spatial resolution. In a last step, the final estimate of the
endmember spectra are derived from the estimated abundance
maps and HS image at full resolution. Experiments conducted
on simulated and real data sets illustrate the relevance of the
proposed method and demonstrate it it performs better than
state-of-the-art unmixing procedures from the literature.

The main contributions reported in this paper are:
• A low-cost NMF-based spatial-spectral blind unmixing

method is designed. Despite its small computational
burden, it competes favorably with respect to state-of-
the-art methods from the literature.

• NMF is a nonconvex problem whose attained solution
highly depends on the initialization. Therefore, this paper
reports a simple yet efficient initialization procedure by
exploiting the spectral similarities between the pixels.

• A spatial regularization is designed to ensure spatial
smoothness while preserving details in the edge areas.

The sequel of the paper is organized as follows. The
proposed method is detailed in Section II. Experimental results
and comparisons are reported in Section III. Section IV
concludes the paper.

II. PROPOSED METHOD

Let Y = [y1, . . . ,yN ] ∈ RL×N denote the set of L-band
spectra associated with N pixels composing an hyperspectral
image. Each column of the matrix Y represents the spectrum
of each pixel. according to the LMM, the observation matrix
is assumed to be decomposed as Y = MA + E where
M ∈ RL×K and A ∈ RK×N represent the endmember
and abundance matrices, respectively, characterized by K end-
members. The matrix E accounts for the measurement noise

and any mismatch model. The objective of SU is to recover
the endmember and abundance matrices M and A from the
collected data Y. The main steps of the proposed spatial-
spectral NMF-based approach is detailed in the following
paragraphs.

A. Coarse approximation of endmembers and abundances

A coarse counterpart Ȳ ∈ RL×N̄ of low spatial resolution
of the observed image Y is produced by applying a spectrally-
and spatially-invariant averaging filter of size d× d pixels on
each band of the original image with a subsequent subsampling
of factor d, i.e.,

Ȳ = YBSd (1)

where B stands for the average filtering acting on each band
and Sd is a binary matrix for uniform downsampling of
factor d in both directions. The N̄ spatially correlated pixels
composing this coarse HS image are then jointly unmixed
using a vanilla instance of NMF. More precisely, coarse
estimations M̄ and Ā of the endmembers and abundance maps
are derived by solving the optimization problem

min
M̄,Ā

1

2
∥Ȳ − M̄Ā∥2F s.t M̄ ≥ 0, Ā ≥ 0 (2)

Several algorithms can be advocated to solve this archetypal
NMF problem [22]. In this work, without loss of generality,
we adopt multiplicative update rules [23] defined as

M̄← M̄ · ȲĀT

M̄ĀĀT
Ā← Ā · M̄T Ȳ

M̄TM̄Ā
(3)

It is worth noting that the problem (2) is non-convex, which
makes the iterative algorithm defined by (3) very sensitive
to the initialization. A dedicated initialization procedure is
detailed in the Appendix. Finally the coarse approximation
of the abundance map Ǎ ∈ RK×N at full resolution is built
from the coarse abundance map Ā at low resolution as

Ǎ = ĀST
d B

T . (4)

This coarse approximation is subsequently used to design a
dedicated regularization, as detailed in the next step.

B. Estimation of abundances at full resolution

The abundance map at high resolution is computed by
solving the following penalized least-square problem

minA
1
2∥Y − M̄A∥2F + λ∥W ⊙ (A− Ǎ)∥1 (5)

s.t A ≥ 0 1T
KA = 1T

N

In (5), the regularization term promotes a sparse difference
between the abundance map A and its coarse counterpart Ǎ.
The spatial weight factor W is calculated using the coarse
abundance map assumed to captures the interpixel spatial
structure

wi,j =
1

|ǎi,j |+ ϵ

where ϵ a small constant introduced to numerical instabilities.
This strategy allows not only to promote spatial smoothness
in homogeneous regions but also to preserve the details and
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crisp structures in the final estimated maps [24], contrary to
the conventional TV regularization which does not account for
edge details.

The resolution of (5) can be efficiently conducted by resort-
ing to an alternate direction method of multiplies (ADMM)
after introducing two auxiliary variables, i.e.,

min
A,V1,V2

1

2
∥Y − M̄A∥2F + λ∥W ⊙V1∥1 + ι+(V2) (6)

s.t. V1 = A− Ǎ; V2 = A.

Algorithm 1 Estimation of the full resolution abundance map
Input: Y, M̄, Ǎ, λ, µ > 0, ϵ
Initialization: k = 0, V(0)

1 , V(0)
2 , D(0)

1 , D(0)
2

1: Λ = M̄TM̄+ 2µI
2: while not converged do
3: A(k+1) = Λ−1(M̄TY + µ(V

(k)
1 +V

(k)
2 +D

(k)
1 +D

(k)
2 ))

4: V
(k+1)
1 = soft(A(k+1) − Ǎ−D

(k)
1 , (λ/µ)S)

5: V
(k+1)
2 = max(0,A(k+1) −D

(k)
2 )

6: D
(k+1)
1 = D

(k)
1 − (A(k+1) − Ǎ−V

(k+1)
1 )

7: D
(k+1)
2 = D

(k)
2 − (A(k+1) −V

(k+1)
2 )

8: k ← k + 1
9: end while

Output: A = A(k)

The main steps of the optimization are summarized in
Algo. 1. The operators abs(·), soft(·) and max(·) as well
as the inversion ·−1 should be understood as component-
wise. The soft-thresholding operator in line 5 is defined as
soft(t, δ) = sign(t)max{|t| − δ, 0}.

C. Estimation of the endmembers
After obtaining the high resolution abundance map A, the

actual endmember matrix M can be computed by solving the
following least-square problem

min
M

1

2
∥Y −MA∥2F (7)

whose solution is explicit and easy to compute.

III. EXPERIMENTAL RESULTS

This section report several experiments to assess the effec-
tiveness of the proposed fast NMF-based unmixing method,
hereafter coined as FNMF. In particular, it is compared to
state-of-the-art unmixing methods, namely SSWNMF [20],
SGSNMF [15], TV-RSNMF [19], RNMF [17], GLNMF [16],
WRNMF [12] and VCA-FCLS [5]. All methods are initialized
using VCA [5], as preconized in the corresponding papers. The
initializations of the methods under compar The performance
of the compared algorithms is evaluated using the average
spectral angle distance (aSAD) between the actual mk and
estimated endmembers m̂k

aSAD =
1

K

K∑
k=1

arccos

(
⟨mk, m̂k⟩
∥mk∥∥m̂k∥

)
(8)

while the accuracy of the estimated abundances is measured
using the average mean-square error (aMSE)

aMSE =
1

N

N∑
n=1

∥an − ân∥2 (9)

TABLE I
SD1: ASAD AND AMSE AVERAGED OVER 10 MONTE CARLO RUNS.

SNR FNMF SSWNMF SGSNMF TV-RSNMF RNMF GLNMF WRNMF VCA-FCLS

aS
A

D

20 0.0072 0.0240 0.0080 0.0228 0.0223 0.0210 0.0215 0.0330
30 0.0032 0.0090 0.0047 0.01103 0.0077 0.0084 0.0075 0.0086
40 0.0015 0.0031 0.0059 0.0034 0.0025 0.0034 0.0039 0.0025

aM
SE

20 0.0081 0.0771 0.0160 0.0680 0.0734 0.0676 0.0586 0.0961
30 0.0045 0.0109 0.0046 0.0088 0.0096 0.0089 0.0098 0.0129
40 0.0026 0.0026 0.0033 0.0024 0.0024 0.0022 0.0023 0.0026

TABLE II
SD2: ASAD AND AMSE AVERAGED OVER 10 MONTE CARLO RUNS.

SNR FNMF SSWNMF SGSNMF TV-RSNMF RNMF GLNMF WRNMF VCA-FCLS

aS
A

D

20 0.0105 0.0244 0.0111 0.0242 0.0251 0.0234 0.0236 0.0345
30 0.0068 0.0095 0.0069 0.0102 0.0095 0.0100 0.0079 0.0122
40 0.0045 0.0059 0.0078 0.0061 0.0058 0.0064 0.0053 0.0076

aM
SE

20 0.0144 0.0540 0.0183 0.0544 0.0601 0.0561 0.0465 0.0636
30 0.0038 0.0053 0.0048 0.0053 0.0059 0.0059 0.0051 0.0077
40 0.0010 0.0013 0.0045 0.0014 0.0014 0.0014 0.0012 0.0024

The lower values of aSAD and aMSE imply better estimates
of endmember matrix and abundance maps, respectively.

A. Simulated data sets

Two simulated data sets denoted SD1 and SD2 have been
generated to compare the algorithms. The two HS images SD1
and SD2 are of spatial size 100 × 100 pixels and have been
created according to the LMM by randomly selecting K = 9
spectral signatures from the digital spectral library (splib06)
[25] with a spectral ranges between 0.4 and 2.5µm. The two
data sets differ by their spatial content. The HS image SD1 is
mostly composed of flat and smooth regions whereas SD2
has mostly crisp regions. The generated images have been
corrupted by an additive Gaussian noise with 3 levels of signal-
to-noise (SNR) ratios, i.e., SNR ∈ {20dB, 30dB, 40dB}. The
regularization parameters involved in the compared algorithms
have been adjusted thanks to a grid search to reach the lowest
aSAD and aMSE values. The results have been averaged over
10 Monte Carlo runs. Table I and Table II reports the obtained
results for SD1 and SD2, respectively. We can observe that
FNMF attains the best aSAD and aMSE values in all but one
cases.

Furthermore, as an illustrative purpose, Fig. 1 and Fig. 2
depict the estimated abundance map and the estimated corre-
sponding spectra associated with the endmember #1 for SD1
and SD2, respectively. This results show that the abundance
maps and endmembers estimated by FNMF are more similar
to reference for both data sets.

B. Real data set

Finally, the compared algorithms have been used to unmix
the Cuprite dataset1. The scene of interest is of spatial size
250 × 191 pixels. The HS image is originally composed 224
bands, and the bands with low SNR, e.g., corresponding to
water absorption, have been removed. Since this data set is not
accompanied by ground truth for Cuprite, K = 12 reference
spectral signatures signatures have been manually collected

1http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Reference FNMF SSWNMF SGSNMF TV-RSNMF RNMF GLNMF WRNMF VCA

Fig. 1. SD1 (SNR= 20dB): estimated abundance maps (top) and corresponding estimated (blue) and reference (red) spectra for endmember #1 (bottom).

Reference FNMF SSWNMF SGSNMF TV-RSNMF RNMF GLNMF WRNMF VCA

Fig. 2. SD2 (SNR= 20dB): estimated abundance maps (top) and corresponding estimated (blue) and reference (red) spectra for endmember #1 (bottom).

TABLE III
CUPRITE DATASET: ASAD AVERAGED OVER 10 MONTE CARLO RUNS.

Material FNMF SSWNMF SGSNMF TV-RSNMF RNMF GLNMF WRNMF VCA-FCLS
Alunite 0.1222 0.0977 0.1514 0.0975 0.0976 0.0976 0.0979 0.0917

Andradite 0.1452 0.1592 0.1342 0.1552 0.1561 0.1559 0.1606 0.1569
Buddingtonite 0.0894 0.0837 0.0944 0.0817 0.0834 0.0833 0.0831 0.0969
Dumortierite 0.0673 0.1343 0.1326 0.1338 0.1341 0.1341 0.1368 0.1200
Kaolinite-1 0.1080 0.1134 0.1107 0.1145 0.1144 0.1143 0.1151 0.1078
Kaolinite-2 0.0916 0.0805 0.0736 0.0811 0.0805 0.0810 0.0843 0.0907
Muscovite 0.0667 0.0824 0.1035 0.0804 0.0812 0.0811 0.0829 0.0788

Montmorillonite 0.0620 0.0598 0.0592 0.0585 0.0590 0.0590 0.0596 0.0692
Nontronite 0.1212 0.1025 0.1032 0.1172 0.1094 0.1096 0.1040 0.1020

Pyrope 0.1001 0.1151 0.1204 0.1151 0.1158 0.1159 0.1156 0.1038
Sphene 0.1074 0.0644 0.0637 0.0666 0.0652 0.0653 0.0656 0.0884

Chalcedony 0.0617 0.1560 0.0676 0.1710 0.1582 0.1585 0.1542 0.1382

Mean SAD 0.0952 0.1041 0.1012 0.1060 0.1046 0.1046 0.1051 0.1037

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Fig. 3. Abundance maps estimated by FNMF: (a) Alunite. (b) Andradite. (c) Buddingtonite. (d) Dumortierite. (e) Kaolinite-1. (f) Kaolinite-2. (g) Muscovite.
(h) Montmorillonite. (i) Nontronite. (j) Pyrope. (k) Sphene. (l) Chalcedony.

in the areas identified in [5]. To identify the materials, the
estimated endmembers are compared to spectral signatures
in the library splib06. Table III reports the obtained aSAD
averaged for 10 Monte Carlo runs. These quantitative results
show that that FNMF generally leads to the best results and,
in particular, the best mean aSAD. The estimated abundance
maps for all minerals are depicted in Fig. 3. Abundance maps
recovered by FNMF appear to be spatially consistent.

The computation times required by all algorithms under
comparison are reported in Table IV. Interestingly, FNMF is
shown to have the lowest computation time, comparable to

VCA-FCLS.

IV. CONCLUSION

This paper proposed a fast unsupervised unmixing method
using the spatial and spectral properties of the hyperspectral
data. It consisted in a three stage procedure. The first step
solved a NMF problem formulated for a coarse counterpart
of the image to extract the coarse endmember and abundance
maps. In the second stage, the coarse abundance maps were
used to design a relevant spatial regularization able to pro-
mote spatial smoothness in homogeneous regions but also to
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TABLE IV
COMPUTATION TIMES OF THE COMPARED ALGORITHMS (SECONDS).

FNMF SSWNMF SGSNMF TV-RSNMF RNMF GLNMF WRNMF VCA-FCLS
SD1 2.2 13.08 16.8 60.5 64.7 15.2 29.07 2.64
SD2 1.9 11.8 79.6 58.7 62.4 17.9 33.79 2.47

Cuprite 16.3 67.2 239.4 256.2 222.2 92 193.11 11.1

preserve the details and crisp structures. In final step, the final
endmember estimated were computed. Thanks to extensive
experiments conducted on simulated and real data sets, this
strategy was shown to yield competitive unmixing results with
a significantly lower computational cost when compared to
state-of-the-art algorithms.

APPENDIX
INITIALIZATION OF THE 1ST STEP

This appendix details the initialization step of the multi-
plicative updates (3). Spectrally similar pixels in the observed
image Y are identified by conducting an unsupervised clus-
tering using K-means with an Euclidean distance. A coarse
counterpart Ỹ of the data is then computed by averaging the
pixels within each cluster, i.e.,

ỹn =
1

|Kn|
∑
k∈Kn

yk (10)

where Ki denotes the set of indices of the pixels belonging to
the nth cluster. A geometrical endmember extraction algorithm
(e.g., vertex component analysis) [5] is applied to the Ñ pixels
composing Ỹ. The recovered endmember spectra M̃ are used
to initialize the iterative procedure (3). The corresponding
initialization of the abundance matrix Ã is obtained by solving
a fully constrained least square (FCLS) [26] applied to the
the spatially coarse HS image Ȳ. Note that this step can be
implemented on the principal components of the observed data
Y identified by a subspace identification method, i.e., principal
component analysis or HySime [27].
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