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Abstract

In this work, we investigate the K-sample clustering of populations subject to contamina-
tion phenomena. A contamination model is a two-component mixture model where one
component is known (standard behaviour) and the second component, modeling a depar-
ture from the standard behaviour, is unknown. When K populations from such a model are
observed we propose a semiparametric clustering methodology to detect which populations
are impacted by the same type of contamination, with the aim of faciliting coordinated
diagnosis and best practices sharing. We prove the consistency of our approach under
the assumption of the existence of true clusters and demonstrate the performances of our
methodology through an extensive Monte Carlo study. Finally, we apply our methodol-
ogy, implemented in the admix® R package, to a European countries COVID-19 excess of
mortality dataset, aiming to cluster countries similarly impacted by the pandemic across
different age groups.

Keywords: Admixture, Clustering, Hypothesis Testing, Semiparametric Mixture.

1 Introduction

Let us consider the two-component mixture model with the cumulative distribution function

L(z) = (1 - p)G(z) + pF(z), (1)

for all z € R, where G is a known cumulative distribution function modeling a standard
behavior, and the unknown parameters are the mixture proportion p €]0,1[ along with
the cumulative distribution function of the unknown component F', modeling a departure
from the standard behaviour. This model, usually called contamination model, has been
extensively studied over the last decades and is related to various applications, see Shen et al.

1. See https://CRAN.R-project.org/package=admix for more information about the package on CRAN.
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(2018), for a comprehensive survey on this topic. This model is of particular interest when
considering generic situations distorted by an unexpected event, such as: i) the mortality
excess due to the COVID-19 crisis, see Milhaud et al. (2024); ii) the presence of diseased
tissues in microarray analysis, see McLachlan et al. (2006) and Benjamini and Hochberg
(1995) for the related multiple testing problem, iii) variables observation, such as metallicity
and radial velocity of stars, in the background of the Milky Way, see Walker et al. (2009);
iv) trees diameters modeling in the presence of extra varieties, see Podlaski and Roesch
(2014).

In this paper, the data of interest is made of K > 2 independent and identically dis-
tributed samples X = (Xfi), e Xr(l?), for i = 1,..., K, each having the respective cu-
mulative distribution function

Li(z) = (1 — pi)Gi(x) + piFi(), (2)

for all x € R, where the p;’s are the unknown mixture proportions and the F;’s are the
unknown cumulative distribution function component associated with the ith sample. In
practice, the G;’s correspond to a well-known population. For instance, in the real-life
application of mortality excess due to COVID-19 discussed in Section 7.1, G; represents the
historical national mortality profile for a given country, while the unknown F;’s correspond
to a new subpopulation, such as the specific mortality profile associated with the pandemic.
Generally speaking, the F;’s represent emerging phenomena not previously modeled, making
this model particularly interesting for generic crisis or population transformation modeling.

The aim of this paper is to provide a clustering methodology to detect subgroups among
the K existing samples that may have similar unknown, sometimes called nodular, com-
ponents. This is of obvious interest for coordinated diagnosis and best practices sharing,
based on the type of contamination impacting each population. To address this original
problem, we will adopt a testing approach in which samples will be grouped together if an
ad hoc test at a significance level 0 < o < 1 (to be determined) cannot reject the equality
of their unknown components. More formally, we assume the existence of N true clusters
denoted by G5, 1 < s < N < K and defined by

Gs={isn <j<K: Fj=F,,}, (3)
where F;_ ; denotes the first representative of group G, indexed increasingly through {1,..., K'}
in the family of nodular components N' = {F;, i=1,...,K}. For convenience we de-
note by ng the cardinality of Gg, allowing us to number the elements of Gs as G; =
{is1,1s2,-,isn,}. Clearly, we have the following partition
{1,..., K} =UNG,, GNGy=0, (1<s#s <N), (4)

with the below group separation assumption.

(GS) There exists real-sets A, o C R with p(Ayy) # 0 such that for all z € A, g
Fis,l(x)#ﬂs/l(x)y (1SS#S/SN),

where p denotes a reference measure on the support of the F;’s (e.g. Lebesgue measure
over R, counting measure over N). Given the above framework, our clustering strategy will
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consist in identifying recursively over s € {1,..., N} the first representative Fs; of group
Gs along with the whole group itself. In this work, similarly to Patra and Sen (2016) or
Milhaud et al. (2024), we will consider situations where the G;’s and F;’s distributions are:
either i) absolutely continuous with respect to the Lebesgue measure, supported over R,
RT or intervals of R; or ii) finite discrete or N-discrete distributions such as Poisson or
Binomial. All our results will be still valid in such setups provided that the G;’s are all
distinct. If certain pairs (G;,Gj), 1 < i # j < K, are possibly equal a distinct procedure
will then be implemented (see Appendix D of the Supplement in Milhaud et al. (2024) for
details). Given the above cluster modelling, we first adress the basic statistical problem

Hy: FF=---=F, against Hy: F;# Fjforsomel1<i#j<k, (5)

without assigning any specific parametric family to the F;’s. Our clustering methodology
will be grounded on the above k-sample testing problem, with the value of k£ potentially
evolving from 1 to K along an algorithmic scheme. When k = 2, the above problem has
been addressed in Milhaud et al. (2022) under restrictive shape constraints such as the
zero-symmetry of the F;’s. More recently the two-sample testing problem has been revis-
ited by Milhaud et al. (2024), who propose the so-called IBM (Inversion-Best Matching)
testing approach requiring very relaxed identifiability and regularity conditions making this
methodology much more suitable for real-life applications. When data is directly observed,
i.e. there is no uncertainty about the component label for each observation, there exists
empirical distribution clustering method such as the EP-MEANS introduced in Hender-
son et al. (2015) or the method introduced in Paul et al. (2022), see also recent references
therein, in the high dimensional case. The issue with adapting these methods to the semi-
parametric mixture model (1) is twofold. First, the most general and flexible estimation
method proposed by Patra and Sen (2016), needed to recover at a pre-stage the hidden
contaminant distributions to be clustered, can provide unstable and sometimes inaccurate
results in challenging cases, see for example Figure 8 in Pommeret and Vandekerkhove
(2019) related to the Carina dataset (Milky Way radial velocities). Second, these clustering
methods are always based on distance choices or test statistics which can respectively be
discussed or require at least identified y/n-asymptotic distributions to derive proper testing
procedure which is not the case when considering Patra and Sen (2016). These reasons mo-
tivate the creation of the concept of true clusters, as defined in (3), at the contaminated but
unlabeled populations level. This framework provides a clear view of the problem we aim
to address and allows us to develop useful asymptotic results for our k-sample testing-based
clustering strategy despite the lack of identifiability specific to the semiparametric mixture
model (1), as detailed in Section 3 of Milhaud et al. (2024).

Our contribution is twofold: i) on the one hand we aim to generalize the work of Milhaud
et al. (2024) to the k-sample case, when k is greater than 2; ii) on the other hand our
objective is to derive a handy clustering algorithm grounded on the previous k-sample
testing procedure, as described in (3) and (4). For that purpose we develop a data-driven
methodology, inspired from Schwarz (1978) or Kallenberg and Ledwina (1995), allowing to
select the most different populations pairs among all the possible pairs. More precisely we
introduce the following set of pair indices: S(k) = {(i,7) € N%;1 < i < j < k}. Clearly
S(k) contains d(k) = k(k — 1)/2 elements that can be lexicographically ordered as follows:
we denote (i,7) < (¢/,j") if i« < ¢, or if i = ¢ and j < j/, and we denote by 74[(7, )]
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the associated rank of (7,7) in the set S(k). This ordering will be used to sum the test
statistics over all the pairs of populations, and can be considered as the natural ordering
over the elements of an upper triangle £ x k£ matrix. For instance we have across the first
row 7[(1,2)] = 1, m[(1,3)] = 2, etc., when across the second row we have 7[(2,3)] = k,
r1[(2,4)] = k+1, and so on. For (4, j) € S(k) we denote by T; ; the two-sample statistic used
in Milhaud et al. (2024) to compare populations ¢ and j, for 1 < ¢ # j < k. For simplicity
matters, we drop the dependence on n since the statistic T; ; stands for 7;, defined in the
paragraph following expression (12) in Milhaud et al. (2024).

We can then build-up a sequence of statistics by slicing the set of index as follows:
for slices s numbered from 1 to k — 1, we define couples of index delimiters (b;,bf) =
(14 (s—1)k— @), sk — @) with b | = b 4 1. This enables to define the sequence
of embedded statistics U,., the n-dependence dropped again for simplicity matters, as follows

slice 1: U, = ZTLlJriv (b =1<r<k—-1=0b)),
i=1

r—(k—1)
slice 2: Up = Upr+ Y, Toopis (b =k <r<2k-3=0)),
i=1
(6)
r—(bs —1)
' : = . - +
slices: U, = Ubj,l + z_; Ts s+ (by <r<b)),

slicek—1: Uy = Uy +Thorw,  (r=d(k)).

By construction U; compares the first two populations (1,2), Us compares simultane-
ously the first two pairs of populations (1,2) and (1,3), and more generally U, with r
in slice of index s compares simultaneously the populations from 1 to s — 1 with popula-
tions of upper ranks pairwizely through Ubj_l and population s with upper ranks lying in

{s+1,...,s+r—(b;y — 1)} through Z:;l(bs b T s+i- Clearly, since the test statistics 7; ;
are positive, each statistic U, is a sum of such r positive quantities and we have with prob-
ability 1 that Uy < --- < Uyy). We then propose a penalized rule inspired from Schwarz
criteria (1978) to select the most sensitive rank r given by S(n) in expressions (9) or (10)
of Section 3.1 . Under the null, we prove that the asymptotic limit distribution of our pro-
cedure coincides with the one obtained in the two-sample case given by the less penalized
statistic T7 2. It is also shown that our test statistic goes to infinity with n under the alter-
native. Our procedure is then adapted to construct a data-driven clustering algorithm able
to classify the populations with equal unknown components. In order to pre-select a natural
cluster to be tested by the k-sample test, we investigate the “closest” populations based on
their pairwise associated (distance-based) statistics. We propose in addition a self-tuning
method for the penalisation term involved in our k-sample test statistic that yields to an
automated and easy-to-implement clustering procedure. The only required parameter is the
asymptotic test level used to accept or not a cluster. This method is illustrated through an
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extensive Monte Carlo experiment including very diverse situations and applied to a real
life dataset dealing with the post COVID-19 mortality rates across a panel of 29 European
countries.

The paper is organized as follows: In Section 2 we review recent results about the two-
sample case, making the paper self-contained. Section 3 is devoted to the penalized testing
rule and contains the main results of the paper. In Section 4 we develop a tuning method
that allows our approach to be data-driven. The clustering algorithm is described in Section
5. Section 6 is devoted to an extensive simulation study covering the empirical level and
power behaviour of our k-sample test procedure along with the numerical performances of
our test-based clustering method. This latter section also includes a comparison with a
natural Patra and Sen (2016) based k-means clustering competitor method. Section 7 ends
the paper with a study dealing with the excess of mortality due to COVID-19 over a panel
of European countries during the early times of the pandemic. The proofs of our theoretical
results are relegated in Appendix.

2 Mathematical background

The tools and results presented in this section are recent developments in the semiparametric
mixture models theory for which basically no parametric distribution family is assigned to
the mixture components. This new way has been considered first in the two-component
d-variate case, with d > 3, by Hall and Zhou (2003), and extended with two separate
approaches by Hunter et al. (2007) and Bordes et al. (2006b), to the two-shifted symmetric
components case, with d = 1. Shortly after the first semiparametric approach dealing
with the contamination model (1) was proposed by Bordes et al. (2006a) under moments
and symmetry conditions. We recommend the reading of Xiang et al. (2019) and Gassiat
(2019), which are both two excellent surveys about semiparametric mixtures and hidden
Markov Models, to have a global view about the advances made these recents years on
semiparametric missing data models.

In this section along with Section 3 we consider k, 2 < k < K, samples among
the K original samples still denoted for simplicity and without loss of generality X () =
XD x{), for i = 1,...,k. In the spirit of Milhaud et al. (2024), we consider
n = minj<j<xn;, and define x; > 1 such that n; = kyn, for all ¢ = 1,...,k. For
i #j € {l,...,k}, we denote 0;; = (p;,p;) € ©;; = ©; x ©; the pair of unknown pro-
portions associated to the ith and jth populations, respectively.

(A0) Assume that ©; is a [d1,02]-type compact set satisfying 0 < d; < 1 < d9, for all
i=1,... k.

Similarly to Milhaud et al. (2024), we notice that the unknown component associated with
sample 7 can be recovered under the correct parameter p; by using, for all z € R, the
following inversion formula

File, Lipi) = 28 = (1pfpi)Gi(x), (i=1,....k). (7)
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To compare populations ¢ and j we define the sub-(7, j) testing problem
Ho(i,j) : FZ:F] against Hl(’L,]) : Fl#FJ y

and consider the following discrepancy measure and its empirical counterpart
2
05 = [ (o L) = Fio, L) dti(a)
~ ~ 2
a6y = [ (P Tup) — B L)) dH(a),

for 0;; = (ps, pj) fixed in ©;; = ©; x ©;, where H is a positive measure over R that allows
to weight the square of the difference between F; and F} along the real line, and El denotes
the empirical cumulative distribution function associated to the sample X, In practice we
choose for H a uniform distribution when the support of the L;’s is bounded or a probability
distribution having a density supported by R in the unbounded case, see also Appendix F
of the Supplement in Milhaud et al. (2024) for further discussion about the choice of H.
In the discrete case we simply choose for H the counting measure over the observations
support.

We introduce now two assumptions connected to the identifiability and definite positive-
ness of the d-Hessian matrix. These assumptions are based on a cross-model identifiability
condition inspired from the identifiability Theorem 1 in Teicher (1963).

(A1) Under Ho(i,j) (F; = Fj = Fjj), there exists at least three points (x1[i, j], 227, j], 3[4, j]) €
R3 such that

(A2) Under Hy (3, ) (F; # F}) , there exists at least four points (z1[i, j], x2[i, j|, z3[4, 5], z4[i, j]) €
R* such that

Gi(x1[i,j]) Gj(zi[i, j]) Fi(zili, j])  Fj(z[i, j])

qot | Gila2lisgl) Gj(aalisjl) - Fi(wali,j]) - Fj(wa[i, j]) 20
Gi(wzsli, j]) Gj(zsli, g])  Fi(zsli,j])  Fj(xsi, j])
Gi(zali, j])  Gj(zalisj])  Fi(zali, j])  Fj(zald, j])

The above pairwise-model conditions are stated and discussed in Milhaud et al. (2024).
For all i # j € {1,...,k} we consider

(é\(l) /9\(2)) = arg min dn[%]](ew)v

0
v v 61‘]'691"7'

which is the estimated pair of parameters (p;, p;) that makes the unknown components F;
and Fj look the more similar according to the d discrepancy measure, which is then basically
evaluated by

~ ~ 2
dali, 101, 01)) = /R (A Lu0) = Fy(@, L;,05))) dH ().
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Remark 1. There exists covariance between 5(.) and 0 (see Milhaud et al. (2024), The-

5(1) 0 and §.))

orem 2). If j change to j while i remains fized, then and A(] (similarly,

are not the same estimators. Indeed, they do not share the same distribution, even though
p(1) n(2)
0;;" and 0;;

they are both unbiased. That is why we use the notation i instead of p; and pj.

Remark 2. Milhaud et al. (2024) prove under Hy(i,j) that (gfj),@(f)) — 05 = (p;‘,p;)
almost surely, with d(Hjj) = 0, where p; and p; are respectively the true value of the propor-
tions involved in the X and XU) models, see expression (2). In contrast under Hi(i,j),
(02(;), gsz)) —0f = (98), 92(?)) almost surely, a local minima of 6 +— d(6) with d(65;) > 0 and
generally 07, # 07

We recall here the main result of Milhaud et al. (2024), see Theorem 2, that we use to

construct our k-sample test. For (i,j) € S(k) we consider

the estimator of the n-discrepancy measure between populations ¢ and j.
Lemma 3. Assume that (A1-2) hold. Then,

i) Under Ho(i,j), the statistic T; j = UL(i, ) converges in distribution towards U°(i, j),
asn — 400 , where the limiting random variable U (i, §) is fully identified (closed form
stochastic integral) and tabulated.

i) Under Hy(i,j), the statistic T; j = UL(i, j) + V,} (i, 5), where UL(i,j) converges in dis-
tribution towards U'(i, j), as n — 400, where the limiting random variable U (i, 7) is
fully identified and tabulated and V,}(i,§) = A[i, j] X n + 04.5.(n) is a drift term, where

i, j] = /R (F (2, Li,0)) — Fy(a, L],ij)))zdﬂ(x) > 0.

Remark 4. In order to get our n-asymptotic results, we need to slightly adapt the matrices
involved in the identification of the covariance matriz Xw i, j| = M;, (Hw, )3 M (9”, )T,
1 <i<j <k, of Theorem 2 in Milhaud et al. (2024). In the k sample setup involving
multiple n;-sample sizes, we must define

Yi(x,y)  O3x3

Zi,j(x7y) = 033 Ej(ﬂz,y) , and M7]<91J7 ) = ,]( ,QU) ‘] (0 )Ci,j’
where, since nt/? = (Ki n)1/2/@;1/2 = n;/2/<ci_1/2, i1=1,...,K, we can denote (; = /ii_l/Q and
get
G 0 0 0 —¢ 0 )
10 =G 0 =G 0 0| , . [dijl#) Oz
Ci 0O 0 1 0 0 o0’ Ji(0) = [ O2x2  Idaxa]’
0 0 0 O 0 1
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and
1 0 0 O
=) L0 moteo o _a

This way any sample size departures between samples can be automatically handled.

3 The k-sample test
3.1 Main results

Let us remind that we aim to test condition (5) based on the observation of any k samples,
X0 = (X{i), e ,X,(L?), i=1,...,k, picked from the original K-sample.

To solve this problem we propose to generalize the two-sample case by considering series
of embedded statistics defined by (8), each new of them including a new pair of populations
to be compared. To choose automatically the appropriate number of pairs of populations we
introduce the following penalization procedure, in the spirit of the Schwarz (1978) criteria
procedure. The principle of the penalized rule consists in selecting the rank s for which
the penalized statistic Us is the greatest. We introduce more specifically a sensitive rank
defined by

S(n) = min { argmax | U, —r Z n (i, ) gy (i) =r} ’ (9)
1<r<d(k) (i,5)€S (k)

where £,,(i, j) is a penalty term, and L, (; j)—, is 1 if 7 (4, j) = r and 0 otherwise, indicating
that we consider only the pair (i, ;) associated to the order r. In the sequel we consider
a penalty term independent from the population, i.e. ¢,(i,j) = £, for all i,7 = 1,... k.
Finally, the data driven selection can simply be rewritten as

S(n) = min {arg max (U, — rﬁn)} ) (10)
1<r<d(k)

each statistic U, being penalized by ¢, and by the number r, as a scale factor, of pairs
of populations in it, according to the standard parsimony principle introduced by Schwarz
(1978). In this sense, the sensitive rank S(n) will select automatically the rank associated to
the most significant group of 7T} ;s statistics incorporated cumulatively in Ug,), see slicing
scheme (6). We assume now that

(B) ¢, =n°, with0<e < 1.

Since under the null each test statistic is a Op(1) when ¢,, — +00, as shown in Lemma
3, it is expected that only the first statistic will be kept. The following result shows that
under the null as defined in problem (5), the penalty effectively allows to select the first
element of S(k) asymptotically.

Theorem 5. Assume that (A1-2) and (B) hold. Under Hy, S(n) converges in probability
towards 1, as n — +o00.
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Theorem 6. Assume that (A1-2) and (B) hold. Under Hy, Ug(y,) converges in distribution
towards U°(1,2) given in Lemma 8, as n — +00.

Then our data driven test statistic is

Un = Us(n)- (11)

From Theorem 6, the asymptotic distribution of U, under Hj is exactly the null limit dis-
tribution studied in the two-sample case and given in Lemma 3 i). We can use a tabulation
of the random variable U°(1,2) which corresponds to a parametrized closed form stochas-
tic integral, see Theorem 2 in Milhaud et al. (2024), that can be easily and consistently
sampled, see Section 5 in Milhaud et al. (2024). By considering an empirical sample based
(1 — a)-quantile, denoted q1—_q, of the stochastic integral we decide to consider the following
Hy-rejection rule

ﬁn >qi-a« = Hjyis rejected. (12)

3.2 Alternatives
We consider the following series of alternative hypothesis
Hi(1) @ F\ # I,
Hi(r) : Fy=Fjforrg(i,j)<r and F;#F; for ri(i,j)=r,

with 1 < r < d(k). The hypothesis H;(r) means that the ith and jth populations such that
r,(i,7) = r are the first (in the S(k) ordering sense) with different unknown components.

Theorem 7. Assume that (A1-2) and (B) hold. Under Hi(r), S(n) converges in proba-
bility towards r, as n — +oo, and Uy, goes to +00 in probability, that is, P(U, < &) — 0 for
all £ > 0.

4 Real world and finite samples: test statistic tuning

Experiments show that using (12) with small samples often leads to unsatisfactory results.
We thus present here additional tools to improve the quality of our testing procedure in
cases where the asymptotic regime is clearly not achieved.

4.1 About the penalty term /¢,

Since all our results are asymptotic we can replace Assumption (B) by
lh(C)=0Cn, with0<e <1,

where C' > 0 is any positive constant that will be used as a tuning parameter to adjust
the test level (type-I error). The choice of € is important for small and moderate sample
sizes. Indeed a value € close to 1 will favour a smaller S(n) value and a smaller value of the
test statistic, with a lower rejection rate, while a value close to 0 will clearly empower the
test. In fact, in the latter case, the divergence of (7” is less likely to be compensated by the
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penalty term. The limit case ¢ = 0 coincides with a constant penalty which is the Akaike
procedure, see Akaike (1974). Following Inglot and Ledwina (2006), we propose a rule to
select € based on the data itself. To introduce this rule, consider first the two-sample case:

Fi(2,L1,08) — Fo(x, L,0)) = (Fi(x,L1,0%) — Fi(x, L1,0%))
—(Fa(x,12,0\2) — Fy(w, Ly,0%))
—|—(F1(.'L', le 0%?) - F2($7 L2? 9%2)))
= A(z) - B(z) + C(),

where, because we have only two sample to compare, 67, = 6 = (Gg), Gg)) is the minimizer
of the contrast d(-), see (10) and (11) in Milhaud et al. (2024), with the property (9%), Hg))
equal to the true value of the weight parameters 6* = (pj,p3) , under Hy which makes
C(z) =0, for all z € R, under the null. For all € R, a straightforward expansion of A(x)
is

_ 1 L om0 (3
A@) = 5 (Do) = 1) + iy (0 = 08)) (Fato) = Ga(@))
12 12 Y12

where (Hg),gg)) € [61,02)%, see Assumption (A0) about the parametric space to which
the proportion parameters belong, and Li, respectively G, are cumulative distribution

functions which difference in modulus is bounded by 1. We then obtain

ilelg (n1/2|A(:p)|> < 51122% (n1/2 ‘El(l‘) — Ll(l’)D + 51% ‘nl/Q (5%) — 992))‘
= A+ As.

By the law of the iterated logarithm for empirical processes, see Shorack and Wellner (1986),
we have A; = Op((loglog(n))'/?) and by Theorem 1 of Milhaud et al. (2024), which estab-
lishes the central limit theorem of gg) towards 9%12), we have that Ay = op((loglog(n))/?).
Similarly we obtain sup,cg(n'/?|B(z)|) = Op((loglog(n))'/?). Tt follows that under the
null we have

IN

sup (n1/2 ‘E(%flﬁ(é)) - Fz(xaf2ﬂzz))‘>

sup vsup (w2 4@)]) +sup (121 B(2)])

zeR

= Op ((loglog(n))l/z) .

Under Hi(1) there exists at least a real z such that C(z) # 0. In that case we have for all
~v > 0 and for all positive sequence b, such that b, — +o0

P(sup<bn|c<x>r>gw) S0

zeR

In particular, choosing b, = n'/?(log(n))~!, it follows that under H;(1) we have

P (sup <n1/2 )Fl(x,fl,gg)) - Fg(%,fg,gg))’) < ’ylog(n)) — 0,
z€R

10
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as n — —+o00, while this probability goes to 1 under Hy.
To generalize this principle to the k-sample case we can consider

Si,j = sup ( V2IF,
Tz€R

Fi(e, Li,0))) - Fy(w, L;,05)]). (13)
Therefore, the expected conclusion is that small values of max; ;) S; j, over (i,j) € S(k),
indicate that the unknown distributions over the considered k-sample is close to the null
hypothesis while large values indicate an H;(r)-type alternative. To take into account this
information we set

I(7) =1 S; i <l 14
(7) {(i’ggg(k) j < ~log(n)}, (14)

for some positive constant v > 0. Under the null, from the above computations we can see
that S; ; = Op(1) for all (4,7) € S(k). Under Hi(r) as seen previously P (S; ; < ylog(n)) —
0 for 74(i,7) = r. We can deduce, as n — +o0o, the convergence in probability

I,(y) »1 , under Hy, (15)
I,(y) =0 , under Hi(r).
We then define a new penalty term by
(n(C, ) = C(In(y) n*° + (1 = In(7)) n™), (16)

where g &~ 1 and ¢ is small enough in order to keep acceptable test levels even in the case of
a wrong I,,(7) selection, favoring respectively the null or the alternative. The corresponding
new selection rule is

1<r<d(k)

S(n) = mln{arg max {U, — fn(c,y)}}. (17)

In practice we have obtained very good performances with the following values eg = 0.99
and g1 = 0.75. At this stage, it now remains to explain how to pick appropriate tuning
parameters C' and . To do this we will use the information given both by (15) and by
Theorem 5.

4.2 Data-driven choice for the parameter ~

Assume that we want to test the equality of k& populations. From (15)—(16), a small value
of v yields a smaller penalty and thus a more powerful test. But, in parallel, we also want
under the null

In(V) =1, (18)

which is more likely achieved for large values of v. Thus to optimize the power of the test we
search for the smallest v which guarantees (18) under Hy. For this we create a dummy Ho-
setup as follows: by splitting a population in two we obtain two identical sub-populations.
Since such sub-populations are identically distributed the v associated to their test statistic
should satisfy (18). To optimize the power we choose the smaller v satisfying this equality.
We repeat this procedure b times and we obtain Algorithm 1. In practice, we set b = 6.

11
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Algorithm 1: Tuning of the parameter ~.

1fori=1,....kdo
2 Split randomly the ith sample X into two subpopulations, namely X (1) and

X (2) | of equal size n;/2.

3 | Compute gf = supep ((n5/2)Y2 |y (2, Ly, 011)) = Fialw, Lig, 82, ) where
index i1 (resp. i) refers to subsample X () (resp. X(2)). /% eq. (13) =/
4 Repeat b times steps 2 and 3 to get b subpopulations under the null, and b
values of ¢ for each sample X (@), Write g; the mean of the ¢; over the b
repetitions.

5 Now, we have obtained k mean values for ¢/, i =1,..., k. Since all ¢/ are obtained
under the null, based on (14)-(15) we estimate v by: 7 = max;<;<x(q;/log(n;/2)).

4.3 Data-driven choice for the parameter C

While the tuning of v is based on the property (15), the tuning of the parameter C' will use
the result given by Theorem 5. From (16), a smaller value of C' coincides with a smaller
penalty yielding a larger test statistic and finally a larger power. Moreover, from Theorem
5 under the null we would expect

S(n) = 1. (19)

We then use this property by choosing the larger C' such that (19) is satisfied. In this
way we can split a population into &’ sub-populations, creating an artificial null hypothesis
for which we modify C in order to get Condition (19) satisfied. The simplest choice of &’
is k¥ = 3, which gives d(k') = 3 and seems to tune correctly the test procedure given in
Algorithm 2.

Algorithm 2: Tuning of the parameter C.

1fori=1,....kdo

2 Split randomly the ith sample X () into k' subpopulations, of equal size n; / k.
We obtain k new k’-sample problems under the null.

3 | forj=1,...,d(K) do

L Compute U ]’f, where ¢ refers to the ith population and j plays the role of r

in (6).
5 Choose C? such that U — C*(n; /k')% > U; —jCi(n; /K)o, for j=1,...,d(K).
/* Choose C! such that S(n) =1 in every case */
6 Equivalently, we have C* = max; U; ~ Ui for j =1 d(k")
’ TG =D (i/k ) ) s

Finally, choose O = ming<j<p C".

~

12
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In a nutschell, we first tune v and C', which allows us to build-up the penalty term ¢,
defined in (16). This way, we get the corresponding order S(n) through Equation (17).
Finally, the test statistic given by Equation (11) is used in the test procedure (12).

Remark 8. The technique employed here, which involves splitting a given sample into mul-
tiple (at least two) subsamples, creates an artificial Hy framework. This framework differs
markedly from real-life scenarios where F; would be equal to F; when considering two dis-
tinct samples. Specifically, the known component G; of the ith contamination model should
generally differ from Gj. However, this technique results in G; = G, since the observa-
tions originally come from the same sample. This discrepancy affects the estimation process
and, consequently, the testing procedure, as discussed in Appendiz D of the Supplement in
Milhaud et al. (2024). Therefore, it is crucial to verify whether this artificial procedure
significantly impacts the choice of parameters v and C, compared to those selected by the
tuning process in a real-life scenario under the null hypothesis. To address this, we repeat
the following simulation scheme 100 times under Hy: (i) simulate four samples (popula-
tions) following contamination/admizture models, (ii) use Algorithms 1 and 2 to obtain the
distributions of v and C under the artificial Hy setting, and (iii) apply simplified versions
of Algorithms 1 and 2 (omit step 2 and consider the samples themselves, since we are under
the null) to get the distributions of v and C without the technique. Finally, we compare
the obtained distributions. As evidenced in many other frameworks, Figure 1 demonstrates
that our tuning process, incorporating this technique, remains consistent. Although the dis-
tributions of the parameters v and C are slightly different, they appear similar, with modes
closely aligned.

1500

Framework 1000

Dummy HO
True HO

Framework

Dummy HO
True HO

density
density

500

0.4 0.6 0.8 1.0 0.0005 0.0010 0.0015 0.0020
gamma C

(a) Tuned ~ distribution. (b) Tuned C distribution.

Figure 1: Distributions of selected tuning parameters obtained from Algorithms 1 and 2
over 100 repetitions, under the dummy Hy framework and the true one.
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5 Clustering strategy

In the sequel we propose to adapt the previous test procedure to obtain a data-driven
method to cluster K populations into N subgroups characterized by a common unknown
nodular component. The novelty here lies in the fact that we will be able to cluster un-
labeled behaviours presenting similar distributions, contrary to classical existing clustering
strategies that are based on directly/fully observed phenomenons. Moreover it is worth to
notice that the number N of clusters is not assumed at the beginning but is automatically
deduced at the end of the procedure.

Assume that we observe K independent samples X () = (Xfi)7 ... ,Xfl?), 1=1,..., K,
made separately of independent and identically distributed observations. To build the first
cluster we consider the two closest populations, i.e. leading to the smallest T; ;-statistic,
i # j€{l,...,K}. Two populations are thus proposed to be merged to create the first
group Gi. We test their equality according to the testing procedure (12) to confirm the
construction of such a cluster. We continue to add populations to the group until the
test rejects equality. Once this first cluster G; is fully identified: close the cluster, remove
clustered populations from the initial collection of samples, and create a new cluster Gs.
Then look for still unclustered neighboors from the last studied sample that led to reject
Hy. Again we select the biggest collection of samples, among the remaining pool, that is
tested to share a common unknown component with the latter. This creates our second
cluster. One can iterate this several times until every sample is associated with a cluster.
Algorithm 3 describes our so-called KCMC (K-sample Contamination Model Clustering)
algorithmic clustering strategy, with S = {1,..., K} the set of population indices, ¢ the
cluster id and S, the members of cluster c.

Algorithm 3: K-sample Contamination Model Clustering (KCMC).
1 Initialization: create the first cluster to be filled, i.e. ¢ = 1. By convention, Sy = 0.
2 Select (z,y) = argmin{nd,[i, j] (5(1) 5(2));z' #je€S\Us—1 Sm-1}-

ij 2 Yij

3 Test Hy between z and y (two-sample test). /* using (12) */
a if Hy is not rejected then
5 L S1 ={z,y} /* £ill in the first cluster */
6 else
7 L S1 ={z}, Sex1 ={y} and thenc=c+1 /* close, open new one */
8 while S\ U, _; Sm # 0 do

/* seek unclustered neighboors, select the closest one x/
9 Select u = argminj{ndn[i,j](ag), 51(]2)),2 €Se,7€S\Ur—q Sm}

10 Test Hy the simultaneous equality of all the F}, j € S :
11 if Hy not rejected then

12 L put S = Sc J{u}

13 else

14 LSchl:{u}andc:c—i—l

14
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The procedure stops when all populations are merged or when all populations have
been considered by the algorithm. Note that since the first two populations selected are
the closest, if the test rejects their equality then the algorithm stops and returns as many
clusters as populations. The procedure is straightforward since the parameters v and C
are data-driven (up to the prior choice of b and k’, see Algorithms 1 and 2 in Section 4.2).
Furthermore, we deduce from Theorem 7 the following property.

Proposition 9. With a probability that tends to 1 as n — +o00, the number N* of groups
detected by Algorithm 3 satisfies 1 < N < N* < K, where N denotes the true unknown
number of groups (or clusters).

From Proposition 9 the number of clusters obtained from the KCMC algorithm is
potentially greater than N. Moreover, from Theorem 7, asymptotically all distributions of
each clusters are equal. Thus the only possible error is that a real group has been splitted
into several other groups, which can happen because we have an asymptotic test level
a = 5%, see testing rule (12). This parameter clearly reflects the threshold for accepting
the creation of a group. One way to check the stability of the clusters is to change this
threshold, for example by decreasing « to see if the groups merge then. We illustrate this
point in our real world application, see Section 7. The tuning strategy of Sections 4.2 and 4.3
allows us to achieve very good performances across our simulation study. In particular the
detected number N* of clusters often does not exceed the actual number N.

6 Simulation study

All our numerical experiments were performed thanks to the R package admix?, especially
developed for estimation, test and clustering of populations generated from admixture mod-
els. To begin with, we test the influence of the number of populations under consideration,
to check whether or not this impacts the quality of our k-sample testing procedure. For
this purpose, we let k vary from 2 to 10. The populations are drawn from different distribu-
tions supported by various types of real-sets. We provide here the results for distributions
supported over R (Gaussian mixtures), but simulations were extended to other supports
such as N (Poisson mixtures) or RT (Gamma mixtures) with very similar conclusions. The
proportions of the unknown components are fixed all along the simulation scheme for easier
comparisons. To evaluate the empirical level (and power) of the k-sample test, we use a
Monte Carlo approach where each of the B experiments is performed in the same way.
We also make the sample size vary to illustrate the asymptotic properties of our results.
Unless otherwise stated, all our simulations were performed with fixed values ¢y = 0.99
and €1 = 0.75 in (16) and (17), meaning that we use the tuning process described in Sec-
tions 4.1, 4.2 and 4.3. As expected, the tuning process reveals to be decisive to improve
the power of the test, but has no real influence under the null. This is in line with common
sense, since tuning parameters v and C' are estimated under the null. Once the quality of
the k-sample test validated, we derive extra simulations to assess the performance of our
clustering algorithm itself.

2. See the package description at https://cran.r-project.org/web/packages/admix/index.html
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6.1 Empirical level of our k-sample testing procedure

We draw k populations from two-component Gaussian mixtures, where the k£ simulated
known components are distributed according to different Gaussian distributions. On the
contrary, those k populations share the same unknown component distribution (namely a
standard normal distribution). For each simulation being part of the Monte Carlo procedure,
we implement the following steps: (i) generate the k populations, each one following an
admixture model; (ii) perform the k-sample test; (iii) retrieve which penalty rule (similarly
which €, either ¢ or €1) and which rank S(n) have been selected, along with the p-value of
the test. We repeat this simulation scheme B = 100 times in order to estimate the empirical
level of our test procedure (12). Table 1 reports the parameters involved in each simulated
population for three different sample sizes (about 400, 1000 and 3000 observations), along
with the results related to the main indicators assessing the efficiency of our procedure.
More comprehensively, Table 1 stores in its last four columns how often the right penalty
rule (16) has been chosen (in percent), the 90%-percentile of the distribution of the selected
order S (n) defined in (17), the mean of the 100 p-values obtained when testing, and finally
the empirical level of the test.

Given that the selected sample-based quantile considered in (12) was fixed as the 95%-
percentile of the tabulated distribution, it is expected that the empirical level of the test
(last column) stays close to 5%. Looking at the results, our test procedure looks to perform
globally well. Most of the time, the right penalty rule and the right testing rank have been
selected. Indeed, in more than 90 out of 100 experiments, the selected order S(n) has the
correct value (equal to 1, since we are under Hp). Moreover, the number k of populations
involved in the k-sample test does not seem to impact our testing procedure. Even when

Table 1: k-sample test. Reported S(n) corresponds to the 90%-percentile of the S(n) dis-
tribution over 100 experiments, and p-val is the average of the obtained p-values.

Samples

i 1 2 3 4 5 6 7 8 9 10
i 0.3 0.8 0.6 0.4 0.9 0.2 0.4 0.15 0.7 0.5 Pen. Emp.
G N(2,07) N@A1L1) N(3,08) N(—1,03) N(=3,02) N(=5,04) N(35,01) N(—-4,0.7) N(-25,1) N(1.503)  rule S Pl
n; 347 449 308 382 126 372 440 447 474 424 (%) value  (1072)

F F F3 Fy Fs5 Fs F24 Fy Fy Fio
k=2 N(0,1) N(0,1) 100 1 053 5
k=4 N(0,1)  N(©0,1)  N(0,1)  N(©1) 98 1 074 3
k=6 N(0,1) N(©0,1) N0,1)  AN(O0,1)  N(0,1)  N(0,1) 96 1 076 4
k=8 N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) 92 1 0.83 6
k=10 AN(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) 95 1 0.9 5
n; 1011 1027 1077 1019 903 942 971 1065 1071 1068

3l F Fs Fy Fs Fs Fr Fy Fy Fio
k=2 N(0,1) N(0,1) 00 1 04 7
k=4  N(0,1)  N(O,1)  N(0,1)  N(O1) 00 1 077 2
k=6 N(0,1) N(0.1) N(0,1)  N(0,1) N(0,1) N(0,1) 00 1 08 4
k=8  N(0,1)  N(0,1) N(O,1)  N(0,1) N(0,1) N(0,1) N(@©,1) N(@©,1) 87 1 08 8
k=10 AN(0,1)  N(0,1) N(O,1)  N(0,1) N(0,1) N(0,1) N(@©,1) N(@©,1) N(@©,1) N(©,1) 8 1 08 6
n; 3187 2847 3189 3175 3042 2989 3184 2868 2998 3193

13 Fy F Fy F Fs Fy Fy Fy Fio
k=2 N(0,1) N(0,1) 100 1 048 6
k=4  N(0,1)  N(0,1)  N@O,1)  N(0,1) 00 1 o073
k=6 N(0,1)  N(0,1) N(0,1)  N(0,1) N(0,1) N(0,1) 98 1 078 4
k=8  N(0,1) N(0,1) N(0,1)  N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) 93 1 081 6
k=10 AN(0,1) N(0,1) N(0,1)  N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) 94 1 092 3
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some populations have overlapping components, the quality of the test remains satisfactory.
Also, the same simulations were performed without using the tuning process, with almost
no impact on test levels. In that latter case, we have set ¢ = 0.87 for the penalty given
by Assumption (B) in (10), as this value lies exactly in the middle of [e1, o] = [0.75,0.99].
Setting € to way lower values led to seriously deteriorate the test levels in finite sample
size applications, which validates the need to keep a strong penalty under the null. Of
course, this global picture may change depending on the chosen parameters to conduct the
simulation study. For instance, much higher variances for the mixture components would
clearly affect our results.

Remark 10. We observed higher empirical levels when the population to test is strongly
under-represented. If the product n;p; is low, say below 50 for our experiments, the es-
timation of the mixture proportion p; deteriorates. This spreads out to the computation
of supremum in (13), which mechanically increases and leads to the wrong choice in the
penalization rule, i.e. taking 1 instead of €.

6.2 Empirical power

Now, we aim to study the power of our testing strategy, meaning how our k-sample test
performs in detecting that (at least) two of the k populations have different unknown
component distributions. For ease of comparison, we keep the same known and unknown
component distributions as previously. The parameters involved in Gaussian mixtures are
stored in Table 2, showing that some considered frameworks correspond to critical situations
where mixture components can be highly overlapping, see for instance when & = 2. As
already mentioned, the tuning process is essential here to correctly detect the alternative.
Indeed, the penalty term should not compensate the explosion of the test statistic, which
means that taking e = 0.75 (i.e. € = ¢1) instead of € = 0.87 leads to very distinct results.
Let us focus here on the case k = 10, and emphasize various possibilities depending on the
number of different unknown component distributions involved across those k populations.
Table 2 leads to several interesting conclusions.

First, the power of the test is much more sensitive to sample size than its level. This
is not surprising, as detecting deviations from the null hypothesis requires substantial evi-
dence that the two unknown component distributions differ. This can be challenging when
dealing with mixtures with overlapping components and moderate sample sizes. However,
once the product n;p; reaches a sufficiently large value, say around 100, the power of the test
approaches 1. With small sample sizes, selecting the appropriate penalty rule can be chal-
lenging in most cases (except when k = 2). In practice, £¢ is often chosen over 1. This is
because dividing the population at the beginning of Algorithm 1 reduces the original sample
size, likely increasing the variability of S; ;. Consequently, the quantity max(S;;)/log(n)
increases, leading to a higher value of ~, as detailed in Algorithm 1. This highlights the
impact of sample size in (16), which generally raises the penalty term in (17), potentially
compensating for the growth of the contrast function that typically signals a departure from
the null hypothesis. Thus, the testing procedure tends to indicate we are more likely under
the null, as seen in the 90%-percentile of S(n), which sometimes equals 1 when k& = 10.

Challenging our methodology with moderate sample sizes improves the overall quality
of our testing procedure. Indeed, both the penalty rule and the correct order tend to be ap-
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Table 2: k-sample test under Hi, with emphasis on different settings when K = 10. Same
interpretation as Table 1 for last columns (n.a. stands for not applicable).

Samples

i 1 2 3 4 5 6 7 8 9 10
i 0.3 0.8 0.6 0.4 0.9 0.2 0.4 0.15 0.7 0.5 Pen. Emp. power
G;  N(2,07) N 1L1)  N(3,08) N(-1,03) N(=3,02) N(=504) N(3501) N(=4,07) N(=251) N(1.5,03) rule S P Tune/NoTune
n; 347 449 308 382 426 372 440 447 474 424 (%) value (1072)

Fy Fy Fy Fy Fs Fg Fr Fy Fy Fio
k=2 N(0,1)  N(0.3,1) n.a. 1 0.24 n.a. / 36
k=4  N(0,1)  N(1,1)  N(0.3,1)  N(0,1) 15 6 046 20 /11
k=7  N(0,1)  N(0,1) N(1,1) N(0,1) N(©O,1)  N(05,1)  N(0,1) 30 21 07 26 /3
k=10 AN(0,1)  N(0,1) N(0,1) N(0,1) N(0,1) N(0,1)  N(05,05)  N(0,1) N(0,1) N(0,1) 30 1 0.8 7/1
k=10 AN(0,1) N(=05,1) AN(0.3,0.5) AN (0,1) N(0,1)  N(0.7,07)  N(0,1) N(0,1) N(©O,1)  N(=02,1) 25 1072 9/1
k=10 AN(0,1) N(=0.5,1) N(0.3,0.5)  N(0,1) N1,1)  N(0.7,07)  N(0,1)  N(=04,1) N(09,3) N(=02,1) 70 45 0.26 63 /2
n; 1011 1027 1077 1019 903 942 971 1065 1071 1068

)2l P By F Fy Fg Fr Fy Fy Fio
k=2 N(0,1)  N(0.3,1) na 1 009 n.a. /74
k=4  N(0,1)  N(1,1)  N(03,1)  N(0,1) 41 6 022 50 / 18
k=7  N(0,1)  N(0,1) N(1,1) N(0,1) N(©0,1)  N(051)  N(0,1) 95 21 0.04 95/ 1
k=10 AN(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1)  N(0.5,05)  N(0,1) N(0,1) N(0,1) 95 45  0.23 72 /1
k=10 N(0,1) N(-0.5,1) N(0.3,0.5)  N(0,1) N(0,1)  N(0.7,0.7)  N(0,1) N(0,1) N(0,1)  N(-0.2,1) 85 45 013 84 /2
k=10  AN(0,1) N(=0.5,1) N(0.3,0.5)  N(0,1) N(1,1)  N(0.7,0.7)  N(0,1)  N(=04,1)  N(0.9,3) N(-0.2,1) 100 45 0 99 /1
n; 3187 2847 3189 3175 3042 2989 3184 2868 2998 3193

o 12 Fy Fy Iy I Iy Iy Fy Fio
k=2 N(0,1)  N(03,1) ma. 1 0009  na /96
k=4  N(0,1)  N(1,1)  AN(03,1)  N(0,1) 99 6 0.001 99 /12
k=7  N(0,1)  N(0,1) N(1,1) N(0,1) N@O,1)  N(05,1)  N(0,1) 100 21 0 98 /1
k=10  AN(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1)  N(05,05)  N(0,1) N(0,1) N(0,1) 100 45 0 100 / 3
k=10 AN(0,1) N(=05,1) AN(0.3,05)  N(0,1) N(©0,1)  N(0.7,07)  N(0,1) N(0,1) N(0,1)  N(-02,1) 100 45 0 99 /1
k=10 AN(0,1) N(=0.5,1) N(0.3,0.5)  N(0,1) N(1,1)  N(07,07)  N(0,1)  N(-04,1) N(0.9,3) N(-0.2,1) 100 45 0 99 /2

propriately selected. As expected, the greater the number of distinct unknown components
among the k populations, the more powerful the test. Note that when k& = 2, Algorithms 1
and 2 are unnecessary since they only influence the penalty rule, which helps detect the
correct number of summands in the test statistics; in this case, there is only one summand
by construction.

Finally, Table 2 shows in its last column the improvement in test power achieved through
the tuning process, confirming that the power of the k-sample test significantly depends on
it. While results may vary with different simulation parameters, we aimed to cover a broad
range of simulation setups to thoroughly test the robustness of our procedure.

6.3 Clustering

Hereafter, we are willing to cluster the unknown components F;’s over K populations under
study, only based on the observation of samples drawn from L;’s admixtures, with known
G;’s and unknown Fj’s. Let start with a close description of our clustering frameworks
before discussing our results.

Clustering schemes description. We dedicated the previous section to the performance
study of our k-sample testing procedure (2 < k < K), since the quality and the robustness
of our clustering algorithm strongly relies on it. Now, we would like to recover simulated
clusters over K = 10 populations. Various frameworks are investigated, from the extreme
cases of one single cluster up to ten clusters. In-between, we also study situations where
we have both, sizewize speaking, unbalanced and balanced clusters. Figure 2 illustrates the
simulated densities in the four considered settings, denoted further from (a) to (d). In the
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Population:

LTI g

Population: Population:

Figure 2: Simulated densities. From top left to bottom right: 1 cluster, 2 clusters
((1,2,5,6,8,9,10); (3,4,7)), 3 clusters ((1,3,4,7), (2,6,9) and (5,8,10)), 10 clusters.

first case (one single cluster) the common unknown component is distributed according to
F, ~N(7,0.5),i=1,..., K, whereas two clusters appears for the second case (grey areas).
The densities of the populations associated with these two clusters are depicted through
different line types (plain and dotted). In the third case, the densities associated to the
three balanced clusters are displayed with different line types and widths. Clustering the
unknown components of these populations just based on the extra knowledge of their known
components, is not straightforward. Indeed, there is sometimes very strongly overlapping
components among the various populations, see for instance the 3rd and 4th populations in
the 1-cluster example. Moreover, some of the clusters can be close from one to another, see
for instance the third case where two of the three clusters are not well separated because
of close means and higher variances. All the parameters involved in those simulations are
stored in Table 3.

Clustering performances. Once again, we use a Monte Carlo approach and perform
the clustering task B times for each of the four cases aforementioned. As the clustering
process is computationally intensive (it requires to perform many k-sample tests), we set
B = 20. However, we also considered B = 50 for some of our examples, which led to minor
modifications of the results without changing the global picture. Given the parameters
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Table 3: Clustering setups: the 2-cluster is made of samples (1,2,5,6,8,9,10) and (3,4,7),
when the 3-cluster is made of samples (1,3,4,7), (2,6,9) and (5,8,10).

Populations i 1 2 3 4 5 6 7 8 9 10
Weight p; 0.3 0.8 0.6 04 0.9 0.2 0.4 0.15 0.7 0.5
Sample size n; 312 271 293 322 289 282 279 230 294 324
1 cluster G; N(16,0.7) N(22,1)  N(6,2) N(8,1.2)  N(2,02) WN(3,0.3) N(=3,04) N(-5,05) N(-1,0.1) N(11,0.7)
G (2&3 clusters) N(16,0.7) N(22,1)  N(6,2) N(8,1.2)  N(2,02) N(3,03) N(4,04)  N(505)  N(6,06) N(7,0.7)
F; (2 clusters) N(7,0.5) N(7,0.5) N(15,1.1) WN(15,1.1) N(7,0.5)  N(7,0.5) N(15,1.1) N(7,05)  N(7,0.5)  N(7,0.5)
F; (3 clusters) N(15,1.1) N(7,05) N(15,1.1) N(15,1.1) WN(17,0.7) N(7,0.5) AN(15,1.1) WN(17,0.7)  N(7,0.5)  N(17,0.7)
Gi (10 clusters)  N(16,0.7)  N(22,1)  N(6,2) N(8,1.2)  N(2,02) N(3,0.3) N(=3,04) N(505) N(-1,01) N(7,0.7)
F; (10 clusters) N(7,0.5) N(6,0.6) N(15,1.1) N(12,0.05) N (3,2) N(—4,0.9) N(=8,1.1) N(0,0.5) N(17,0.4) N(-5,0.2)

of the simulations (see Table 3) in the four studied frameworks (a) to (d), we expect our
procedure to find respectively the following clusters: (1,2,3,4,5,6,7,8,9,10) in the 1-cluster
case; (1,2,5,6,8,9,10) and (3,4,7) in the 2-cluster case; (1,3,4,7), (2,6,9) and (5,8,10) in the
3-cluster case; and finally (1),(2),(3),(4),(5),(6),(7),(8),(9),(10) in the 10-cluster framework.

In practice, there exists many ways for the clustering algorithm to reach wrong conclu-
sions. Either it detects the right number of clusters but does not affect the right populations
to the right clusters (which should not happen asymptotically), or it selects straight out a
wrong number of clusters. In the latter case the algorithm tends to overestimate the correct
number of clusters, leading to clusters with wrong number of elements and isolated pop-
ulations. It is difficult to summarize all possible encountered wrong answers through one
single indicator. In our case, we have chosen to measure the performance of the clustering
algorithm through classification matrices (also called heatmaps). Indeed, it seems to us
that it is an efficient and yet simple indicator.

Figures 3 and 4 display examples of such matrices for different sample sizes across
our simulation setups. The reading of heatmaps is pretty straightforward. First, they are
symmetric, with errors stored in the off-diagonal terms (of course a given population is
always clustered with itself). For these non-diagonal terms, one counts how many times
(among the B experiments) the clustering algorithm clustered each population with the
other ones. Then, comparing this to the expected clusters, it is straightforward to deduce
the percentage of correct classifications. To make the reading easier, we also report within
each cell those percentages and use a colour gradient illustrating the quality of clustering
(intense dark brown refers to best results).

To simplify, our heatmaps are organized by blocks, each block corresponding to an
expected cluster. This means that a perfect clustering has 100% of right classifications
for every blocks. This is the case for instance in Figure 3 in the fourth setting, see case
(d). In the three other frameworks, the KCMC algorithm is sometimes mistaking, but
results show that these errors remain reasonable most of time despite small sample sizes
(n; = 300, i =1,..., K). The worst case seems to be the 8th population which is very often
isolated over the 1, 2 or 3-cluster settings, see cases (a), (b) and (c). The reason for this,
is very likely to be the quality of the estimation of the unknown proportion pg (the lowest
weight, equal to 0.15), which deteriorates the estimation of the unknown component Fg
to be clustered (see further Figure 5, where the corresponding decontaminated estimated
density fs, obtained from (7), appears to be wrongly bimodal). Figure 4 illustrates the
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phenomenon that was already observed when studying the performance of the k-sample
test. Increasing the sample size has a strong beneficial influence on the clustering efficiency.
Indeed, all the clusters are correctly identified under most of our simulations settings when
the sample size reaches about 800 (n; ~ 800, i = 1,..., K). As already mentioned, what
matters the most in reality is the value of the product n;p;, which should remain large
enough to guarantee the asymptotic properties of our procedure (in this case, n;p; ~ 120
at the lowest).

The reader must keep in mind that using this clustering method can be tricky in ap-
plications having a low number of observations. Indeed, our Monte Carlo approach allows,
through our B experiments, to recover the right clusters with a majority voting procedure,
which would not be feasible in a one shot real life application. Finally, once the clusters
are recovered, useful information can be deduced. For instance, knowing that the unknown
weights are consistently estimated inside each cluster, one can retrieve the estimated weights
of the unknown perturbation impacting the original populations. Table 4 provides such
results based on our simulation parameters (not applicable with 10 clusters since weights
are not consistently estimated when there are no similar unknown components) and reports
the mean of estimated proportions. Indeed, a cluster containing populations ¢, 7 and k
would lead to estimators (/0\,5;),55)), (55;),/9;(2)) and (éﬁ),@ﬁ)) (see Remark 1). One can

b

then compute the mean of 6.’ and é\f}? as an estimator of p;, the mean of é}f) and é\(i) for

ij J
pj, and the mean of gfi) and éﬁ) for pi. Then, the corresponding decontaminated densities

can be nicely illustrated, see Figure 5.

1 1
2 2
3 5
4 6
5 8
6 9
7 10
8 3
9 4
10 7
(b) 2 clusters.
1 1
3 0 2
4 [ 3
7 0 0 4
2 0 o0 5
6 [ 6
9 0 0 7
5 [ 8
8 o o 9
10 [ 10
- N M < D © N~ 0O O e
(c) 3 clusters. (d) 10 clusters.

Figure 3: Heatmap describing the efficiency of our clustering algorithm (n ~ 300, see Ta-
ble 3), with proportion of right predictions in each cell (value 0 means no error).
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Figure 4: Heatmap with n ~ 800. Same interpretation as Figure 3.

0,0

Table 4: Mean of estimated unknown weights ( i Ois ) over all pairs (4, j) of populations
belonging to the same identified cluster (n = 300)

i 1 2 3 4 5 6 7 8 9 10
Real weight p; 0.3 0.8 0.6 0.4 0.9 0.2 0.4 0.15 0.7 0.5

Mean estimated weights
Case of 1 cluster  0.271 0.798 0.669 0.424 0.894 0.159 0.378 0.174 0.676 0.390
Case of 2 clusters  0.291 0.829 0.603 0.417 0.884 0.253 0.395 0.147 0.701 0.752
Case of 3 clusters 0.367 0.821 0.581 0.441 0.903 0.216 0.448 0.151 0.740 0.494

Comparison with a k-means competitor. The novelty of this work, which involves
clustering unobserved distributions, precludes direct comparison of our results with exist-
ing techniques. Nonetheless, we implemented a natural competing algorithm that we call
KMBD (k-means based densities). This method clusters estimated unknown densities by
first estimating the unknown proportion as proposed by Patra and Sen (2016), and then
applying the inversion formula (7) for densities, which is:

bi(x) — (1 — pi)gi(z)

fiz) = b ., (i=1,...,K).

More specifically, we consider the density estimators ﬁ obtained by:

~

Filwy = 0= (%i_@)g"(x), (i=1,...,K),
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(c) 3 clusters.

Figure 5: Decontaminated densities (recovered unknown components).

where ZZ is a Gaussian kernel estimator based on the observations, using the Silverman rule
(Silverman, 1986) for bandwidth selection, and p; is obtained as per Patra and Sen (2016).
As an illustration, Figure 6 shows 10 densities for the case where K = 10 with one single
cluster, i.e., fi =--- = fio (and n; = 300, 1 =1, ..., K).

Notably, significant variations among these curves are evident, attributable to the in-
herent instability of the estimators p;. To mitigate this instability, we employ a smoothing
technique, summarizing each density with an M-vector representing mean values across
a partition of size M of their support. Thus, we obtain K M-dimensional vectors, each
representing a density. We then apply a k-means procedure to these vectors to cluster
the densities. The GAP statistic (Tibshirani et al., 2001) is used to determine the opti-
mal number of clusters. The choice of M is arbitrary and partitioning the supports is not
straightforward. Due to the high variability illustrated in Figure 6, we experimented with
several values of M using uniform partitioning to improve the KMBD algorithm. The re-
sults are shown in Figures 7 and 8 for all cases studied in Table 3. For small sample sizes
(n =~ 300), we managed to calibrate M to obtain clusters similar to our KCMC algorithm.
However, as n increases, the KMBD approach’s performance does not improve, and the
results are markedly inferior to those obtained by the KCMC algorithm. This phenomenon
reveals the competitor’s weakness. Specifically, we lack the asymptotic guarantees for the
estimators obtained by Patra and Sen (2016), unlike our approach, which leverages the
convergence results given in Theorems 5 and 6, performing much better with moderate and
large sample sizes. Furthermore, our method is automatic, whereas the proposed KMBD
competitor requires a non-trivial partitioning of the density support.
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Figure 6: Estimation of densities fi to fio (from top left to bottom right, 1 run simulation)

30

in the 1-cluster case, based on Patra and Sen (2016)’s estimator for the p;’s.

It is worth noting that we also explored k-means clustering based on cumulative distribu-
tion function (cdf) estimations. Each estimated cdf was represented by M values computed
from a grid spanning their shared support and then subjected to k-means clustering. How-
ever, the resulting clustering performance was inferior to that of the KMBD method. Again,
the considerable disparity among cdf estimations underscores the challenge of accurately
estimating unknown unobserved distributions and choosing a suitable partitioning of the

support for both density and cdf in clustering applications.
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Figure 7: Performance of the KMBD concurrent clustering algorithm, with n ~ 300.
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Figure 8: Performance of the KMBD concurrent clustering algorithm, with n = 1500.
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7 Real world Application

7.1 Excess of mortality during pandemics

In Milhaud et al. (2024), a pairwise comparison of COVID-19 excess of mortality has
been investigated. This is aimed at identifying countries experiencing similar impact of
the COVID-19 pandemic on the mortality. More precisely, the age distribution of death
is considered and is supposed to exhibit a common component over periods at the country
level. This would correspond to the known component in model (1). The COVID-19
effect component is assumed to be unknown. For instance, the mortality change between
2019 and 2020 is considered as a baseline and serves to assess the excess of the mortality
due to COVID-19. The current paper follows the same line as Milhaud et al. (2024) and
proposes to cluster countries given the inherent impact of the COVID-19. The datasets
of interest came from the Short-Term Mortality Fluctuations (STMF) data series compiled
by the Human Mortality Database (HMD). It contains death records aggregated over age
groups: 0-14, 15-64, 65-74, 75-85 and 85+. Here, we restrain our study to the four last
age classes (given that experts agree to consider that the first one 0-14 was clearly not
affected by the pandemic). First, we apply our clustering procedure to the same group
of countries as considered in Milhaud et al. (2024) for the first wave. Formally, we study
the similarities in terms of the changes for France, Belgium, Germany, Italy, Netherlands
and Spain. The known distributions are multinomial ones with four categories here and we
compare the unknown multinomial distributions caused by the COVID-19. We report the
resulted clusters In Table 5.

Two clusters are the same as those already identified by the authors. Namely, France
shows a proper COVID-19 impact on its mortality whereas Italy and the Netherlands share
the same profile. However, our clustering methodology identifies a third cluster consisting
of Germany, Spain and Belgium. In Milhaud et al. (2024), it is shown that Germany
and Belgium, on one hand, and Belgium and Spain on the other have similar impacts but
the test rejects the null hypothesis for Germany and Spain. This lack of transitivity of the
pairwise testing procedure was already discussed in Milhaud et al. (2024) and the K-sample
procedure offers an interesting yet robust generalization of the latter.

7.2 Europe-wide clustering of COVID-19 excess of mortality

In the following, we explore a larger clustering scheme and consider 29 European countries,
i.e. Austria, Belgium, Bulgaria, Switzerland, Czech Republic, Germany, Denmark, Spain,
Estonia, England and Wales, Finland, France, Greece, Croatia, Hungary, Iceland, Ireland,
Italy, Lithuania, Luxembourg, Latvia, Netherlands, Norway, Poland, Portugal, Scotland,
Slovakia, Slovenia and Sweden. We aim at exploring the impact of the pandemic over these
countries in 2020 and identify the clusters. We adopt the same assumptions as described
above and proceed to clustering the countries with regard to their shared COVID-19 excess

Table 5: Clustering of excess of mortality profile over 2020.

France Italy Netherlands Belgium Germany Spain
Cluster (id) 3 2 2 1 1 1
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of mortality effect. The known and unknown distributions are multinomials with four
categories (the four age classes). The sample sizes are given in the first row of Figure 9 and
range from 1,141 for Iceland to 462,577 for Germany. We should recall that this comparison
focuses on the distribution of the nodular effect of the COVID-19 rather than its dynamics.
Since the countries under study suffered from the impact of the outbreak of the pandemic
at different periods during the year of 2020, we are more concerned here with the impact
(over classes of age) in the population rather than its magnitude (the mixture proportions
p; depending increasingly on the time of exposure to the pandemic). Hence, the following
comparison should be root on the socio-demographic disparities that may exist among the
populations as well as the healthcare capacities, public health measures and many other
factors. The discussion of the implication of such an impact is, however, beyond the scope
of this paper.

First, we set up the level o to 1% and explore the clusters that formed on the basis of
the Hoy-rejection rule. At this level, we are left with 11 clusters, see the last row in Figure 9
and the map in Figure 10.

We can observe that some countries are single isolated clusters. This is the case for
Spain, Iceland, Switzerland, Netherlands and Portugal. On the other hand, we have two
large clusters that represent most countries from center and eastern European countries:
Lithuania, Latvia, Poland, Hungry, Bulgaria, Slovakia and Estonia. This block is isolated
from the geographically adjacent cluster constituted by the Czech Republic and Croatia.
Some of the Northern European countries are gathered on two clusters. The largest is
constituted of Finland, Austria, Germany, Northern Ireland, Scotland, Sweden and England
& Wales. Surprisingly, a common factor, among other things, is the Protestant inheritance.
Numerous studies, e.g. Kaklauskas et al. (2022) among others, validated the similarities
between the English-speaking and the Protestant European clusters due to their closely
related common histories, cultural interactions, similar development levels, and religions.
Another cluster that appears quite clear is the one formed by Lithuania, Latvia, Poland,
Hungry, Bulgaria, Slovakia and Estonia. These countries can be found in Figure 11, which
illustrates the vaccination delays (or potential delays). This group clearly appears to have
experienced a lag in their vaccination campaigns. More precisely, it appears that these
countries have the lower percentages of people who received all doses prescribed by the initial

Populationsize 10042 307605 2161 26928 39334 462577 7628 28146 41928 261626 1145 294612 62614 73827 32433
15% ENW ISL
5% ISL

Populationsize 18383 12878 209032 62346 55686 27103 7169 56903 25157 209431 55458 52715 27224 19712
15% HUN BGR SVK DNK NOR

5% HUN BGR SVK DNK NOR

Level

Level

Figure 9: Clustering of the excess mortality profile (for the 29 countries) due to COVID-19
for different levels of a: 15% (top), 5% (middle) and 1% (bottom).
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Figure 10: Clustering of the excess mortality profile due to COVID-19 during the year 2020
over 29 countries.
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Figure 11: Share of people who received all doses prescribed by the initial COVID-19 vac-
cination protocol. Source: https://github.com/owid/covid-19-data/tree/
master/public/data/vaccinations/locations.csv).
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vaccination protocol at the end of 2021. These 7 countries are among the 8 countries with
the lowest total vaccination coverage (all doses) reflecting a lack of incentive to vaccinate.
Finally, in order to understand more closely the clusters we refer the reader to the plethora
of studies that investigate the factors that influence mortality levels from COVID-19 such
as well-functioning healthcare system, prevention measures (e.g. social distancing), and
population age structure, among others.

Eventually, a way to check the stability of the clusters is to change the threshold of the
test acceptance, for example by increasing « to see if the groups merge then. In Figure 9 we
reported the clusters for different levels, respectively, 1%, 5% and 15%. As noted earlier, this
parameter clearly reflects the threshold for accepting the composition of a group. Indeed,
we see that these three levels lead respectively, to 11, 14 and 15 clusters. From Proposition
9 the number of groups determined by our algorithm is asymptotically greater than the
true (unknown) number of groups. Since the sample sizes are large here we can conclude
that 11 groups is a reasonable choice. If we want to obtain greater detail, a larger value
for o will enable a more refined clustering, but may look artificial if too many groups are
suddenly created.
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Appendix
7.3 Proof of Theorem 5

Let us prove that P(S(n) > 2) vanishes as n — +oo. By definition of S(n) we have

P(S(n)>2)=P(it exists 2 <r < d(k): U —rly, > Uy — {y)
=P(it exists 2<r <d(k): U. —U; > (r — 1){,)

=P | it exists 2 < r < d(k) : Z Ti; > (r—1)¢,
('L?])Es(k) 2§rk(17])§7‘
< P (it exists (4, 7) with 2 < rp(i,5) < d(k) : T;; > £y)

< ) P(T>d),
2<ry (4,5)<d(k)

where the penultimate inequality arises from the fact that if the sum of (r—1) positive terms

is greater than (r — 1)¢, then at least one of the terms is greater than ¢,. From Lemma
3 we know that under Hy, for all ¢ > 0, n™°T; ; = n_endn[i,j](@;),ggf)) that goes to 0 in
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probability, as n — +o0o. Since d(k) = k(k —1)/2 is fixed we then obtain P(S(n) > 2)—0
as n — 400, which proves the wanted result.

7.4 Proof of Theorem 6
From Theorem 5 we have P(S(n) = 1) — 1 as n — +o0, from which we can deduce that

for all £ >0

P(|Us@m) — Uil > &) = P(|Us(ny — U] 2N {S(n) =
P(|Usmy — U1l > €N {S(n) >
P(S(n)>1) =0,

D+ P(Usm) — Ui 2 €N {S(n) > 1})

1
1})

IN

which implies that U S(n) has the same limiting distribution as Uy = T 2, see Lemma 3.

7.5 Proof of Theorem 7

We want to prove that P(S(n) =r) =P(S(n) > r) —P(S(n) > r) tends to 1. Consider the
general case Hj(r) with r > 1, the particular case Hi(1) being similar. We first show that
P(S(n) > r) tends to 1 as n — 4o00. Under Hy(r), we have for all ' < r

P (U —rly > Uy —1'ly) =P (U = Up) > (r —1')0y)

P Z T, > (r—1"),

7/ <rp(i,§)<r

> P (,—Tz,jﬂ{rk(l,j)zr} > (7”‘ - r/)gn) .

When rg(i,j) = r, under Hi(r) we have from Lemma 3 T;; = UL(i, ) + V,1(i, ) where
Vi, 7) = A[i,j] X n + 04.5.(n). From (B) we know that ¢, = n° with ¢ < 1, and we
deduce that P( T; ;I (i j)=r} = (r —7")€y | =1, as n tends to infinity, which proves that
P(S(n) > r) tends to 1.

We now prove that P(S(n) > r) tends to 0. For ri(i,j) = r, since U, > T;;, from
the above we have P U, > (r — r'){, | =1, as n tends to infinity, which implies that

for all & > 0, P(U, — rf, > &) tends to 1 as n tends to infinity. It implies that P(r €
arg max;<s<q(x){Us — $€n}) — 1 which implies that P(S(n) > r) tends to 0.

7.6 Proof of Proposition 9

Let S be a given cluster and consider a wrong candidate population z, that is,  does not
belong to S in reality. Then we want to test Hy : ”{z} U S forms a new cluster”. Let U,
be the associated statistic to such a null hypothesis. From Theorem 7, since ﬁn tends to
infinity, for all (1 — «)-quantile q1_,, > 0 for a level « fixed, there exists n large enough such
that ]P’(l?n < Q1-a) < a and then Hj is rejected.
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