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UNIFORM SIMPLICITY FOR SUBGROUPS OF PIECEWISE
CONTINUOUS BIJECTIONS OF THE UNIT INTERVAL.

NANCY GUELMAN AND ISABELLE LIOUSSE WITH AN APPENDIX BY PIERRE ARNOUX

Abstract. Let I = [0, 1) and PC(I) [resp. PC+(I)] be the quotient group of the group of
all piecewise continuous [resp. piecewise continuous and orientation preserving] bijections
of I by its normal subgroup consisting in elements with finite support (i.e. that are trivial
except at possibly finitely many points). Arnoux’s thesis states that PC+(I) and certain
groups of interval exchanges are simple, and the proofs of these results are the purpose of
the Appendix. We prove the simplicity of the group A+(I) of locally orientation preserving,
piecewise continuous, piecewise affine maps of the unit interval. These results can be im-
proved. Indeed, a group G is uniformly simple if there exists a positive integer N such that
for any f, ϕ ∈ G \ {Id}, the element ϕ can be written as a product of at most N conjugates
of f or f−1.

We provide conditions which guarantee that a subgroup G of PC(I) is uniformly simple.
As corollaries, we obtain that PC(I), PC+(I), PL+(S1), A(I), A+(I) and some Thompson
like groups included the Thompson group T are uniformly simple.

1. Introduction

The algebraic study of groups consisting in continuous transformations of a topological
space was initiated by Schreier and Ulam in 1934 ([SU34]) and the question of the simplicity
of such groups was raised.

Definition 1.1.
• A group G is simple if any normal subgroup of G is either trivial or equal to G.
• A group G is perfect if G coincides with G′ = [G,G] the normal subgroup generated by

its commutators [a, b] = aba−1b−1 with a, b ∈ G.

Remark 1.2. In particular, a simple group G is perfect.

In [UvN47], Ulam and Von Neumann proved that the identity component in the group
of homeomorphisms of the circle or the 2-sphere is a simple group. In the seventies lots
of (smooth) transformation groups were studied by Epstein, Herman, Thurston, Mather,
Banyaga, and proved to be simple (see the books [Ban97] or [Bou08]).

In [Ula64], Ulam explained that [UvN47] establishes a sharper theorem: "for every f and
ϕ non-trivial and isotopic to identity homeomorphisms of the circle or the 2-sphere, there
exists a fixed number N of conjugates of f or f−1 whose product is ϕ". This number does not
exceed 23 and Ulam raised the question of finding the optimal bound. The issue was taken
up again in updated versions of the Scottish book (see [Mau15], Problem 29) in relation
with Nunnally’s work ([Nul66]) which states that N is less than 3 for certain groups of
homeomorphisms. This leads to the following

Definition 1.3. Let N be a positive integer.
A perfect group G is N−uniformly perfect if any product of commutators in G can be

written as a product of at most N commutators in G.
A non-trivial group G is N−uniformly simple if for any pair {f, ϕ} of non-trivial ele-

ments of G, one can express ϕ as a product of at most N conjugates of f or f−1 in G.
1
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Note that uniform simplicity implies simplicity. In this context, Nunnally’s work establishes
the 3-simplicity for certain groups of homeomorphisms. But Nunnally’s techniques fail when
requiring groups to preserve additional structures (e.g. smooth, PL or area). Tsuboi ([Tsu09])
showed the uniform simplicity of the identity component Diff r(Mn)0 of the group of Cr-
diffeomorphisms (1 ≤ r ≤ ∞, r ̸= n+1) of a compact connected n-dimensional manifold Mn

with handle decomposition without handles of index n
2
. As a corollary and under the same

assumption on r, he obtained that Diff r(Sn)0 is 12-uniformly simple.

Remark 1.4. Uniform simplicity is related to conjugacy-invariant lengths on G, that is
L : G → R+ such that L(gh) ≤ L(g) + L(h), L(g−1) = L(g) = L(hgh−1) and L(g) = 0 iff
g = Id. Namely, if G is N -uniformly simple then for every conjugacy-invariant length L on
G and for any pair {f, ϕ} of non-trivial elements of G, one has L(ϕ) ≤ NL(f).

Given a group G and a non-empty subset S of G \ {Id} which is closed under inversion
and conjugation, if G is N -uniformly simple then any g ∈ G can be expressed as a product
of at most N elements of S. In particular, S can be the set consisting of involutions, finite
order elements, commutators or reversible maps. Recall that g ∈ G is said to be reversible
if g is conjugate in G to its inverse. In the O’Farell and Short survey on reversibility ([OS15]
p.35), the authors raised the related questions: "Given G a group, does there exist a positive
integer n [resp. m] such that G coincides with In = { h1 · · · hn with h2

i = Id } [resp. with
Rm = { r1 · · · rm with ri reversible }] ?" Clearly, for uniformly simple groups containing
involutions both questions have a positive answer.

In this paper, we do not further assume that transformations are continuous and we focus
on dimension one. The groups we are interested in are described by the following

Definition 1.5. Let I = [0, 1) be the unit interval.

• A piecewise continuous bijection of I is a bijection f of I that is continuous
outside a finite subset of I called discontinuity set and denoted by Disc(f). The
support of f is the set Supp(f) = {x ∈ I | f(x) ̸= x}.

• Let P̂C(I) be the group of piecewise continuous bijections of I. We denote by PC(I)
the quotient group of P̂C(I) by its normal subgroup consisting of elements with fi-
nite support and the subgroup of PC(I) consisting of classes of piecewise increasing
elements is referred as PC+(I).

By taking the unique right continuous representative for all f in PC+(I), the group PC+(I)
can be identified with the group of right continuous and piecewise increasing bijections of I.
But such a representative may not exist for some elements of PC(I).

Definition 1.6. Let f ∈ PC(I). We say that a representative of f is good if it minimizes
the number of discontinuity points among the elements of the class f .

Note that this minimizing condition does not guarantee uniqueness, but all the good repre-
sentatives of a given element of PC(I) have the same discontinuity point set, the same image
of the discontinuity point set and they coincide on their common continuity set. However, it
is possible to require more properties in order to exhibit "canonical" representatives.

More precisely, let f ∈ PC(I) and f̃ be a good representative of f with discontinuity points
ai where 0 = a1 < · · · < an < 1. We consider σ the finitely supported bijection which sends
f̃(ai) to bj the left endpoint of f̃((ai, ai+1)) with the convention that an+1 = 1. Note that σ

is well-defined since the set of all f̃(ai) is equal to the set of all bj.
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The map σf̃ is a good representative of f and it satisfies σf̃([ai, ai+1)) = [bj, bj+1), with
the convention that bn+1 = 1. Clearly σf̃ is the unique good representative of f that has this
property. Then we give the following

Definition 1.7. Let f ∈ PC(I). We define the best representative f̂ of f to be the unique
good representative of f such that f̂([ai, ai+1)) is a right-open and left-closed interval, where
ai, 1 ≤ i ≤ n are the discontinuity points of f̂ and an+1 = 1.

The best representativeGood representatives

Remark 1.8.
• If f ∈ PC+(I) then f̂ is the right-continuous representative of f . More generally,

for f ∈ PC(I), f̂ is the good representative of f that is right continuous at the left
endpoints of the continuity intervals where f̂ is orientation preserving and for the
continuity intervals where f̂ is orientation reversing, f̂ sends their left endpoints to
the left endpoints of their images.

• Note that the map f 7→ f̂ is not a morphism (i.e. there exist f and g such that
f̂ ◦ g ̸= f̂ ◦ ĝ).

Since the maps we deal with, are only piecewise continuous, the interval [0, 1) can be
identified with the unit circle S1 and it is equivalent to consider a piecewise continuous
bijection as a map S1 → S1 (see [Cor21]). We refer as "continuous versions" of a subgroup G
of PC(I) the subgroups of G consisting in classes of continuous elements of either the interval
or the circle. The continuous versions of PC+(I) are Homeo+(I) and Homeo+(S1) and their
simplicity was shown by Epstein ([Eps70]).

Arnoux ([Arn81b]) proved that PC+(I) and certain groups of interval exchanges, defined
below, are simple. Unfortunately, these works are unpublished and we express our gratitude
to P. Arnoux for reproducing and joining them as an appendix.

Definition 1.9. Let f ∈ P̂C(I).
• The map f is an affine interval exchange transformation (AIET) if there exists a

finite subdivision 0 = a1 < a2 < · · · < ap < ap+1 = 1 of [0, 1] such that for any i = 1, · · · , p
f|[ai,ai+1)(x) = λix+ βi, λi ∈ R+∗, βi ∈ R.

We define the group A+(I) to be the set of all AIET.
• The map f is an affine interval exchange transformation with flips (FAIET) if

there is a finite subdivision 0 = a1 < a2 < · · · < ap < ap+1 = 1 of [0, 1) such that for any
i = 1, · · · , p

f|(ai,ai+1)(x) = λix+ βi, λi ∈ R, λi ̸= 0, βi ∈ R.
The numbers λi are called the slopes of f and their set is denoted by Λ(f).
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We denote by Â(I) the group of all FAIET and we define A(I) to be the group of all
classes of FAIET.

• An interval exchange transformation (IET) is f ∈ A+(I) with Λ(f) = {1}. We
define the group G+(I) to be the set of all IET.
• An interval exchange transformation with flips (FIET) is f ∈ Â(I) with Λ(f) ⊂

{1,−1}. We define the group G(I) to be the set of all classes of FIET.

The continuous versions of A+(I) are PL+(I) and PL+(S1), the groups of piecewise affine
homeomorphisms (commonly referred as PL-homeomorphisms) of the unit interval and
the circle respectively.

For interval exchange transformations, Arnoux ([Arn81b], [Arn81a]) and Sah ([Sah81])
established that [G+(I),G+(I)] is a simple group and an unpublished part of [Arn81b] (III
Proposition 1.4) showed that G(I) is simple. In [Eps70], Epstein proved that PL+(S1) and
[PL+(I),PL+(I)] are simple. In Section 6, we prove

Theorem 1. The group A+(I) is simple.

It was not proven in [Arn81b] that A+(I) is simple, however the tools of [Arn81b] provide
a different proof which is detailed in the appendix. Recently, Lacourte ([Lac22] Theorem 1.4)
proved that PC(I) and A(I) are simple.

Note that groups of piecewise affine bijections are particularly known because of the pop-
ularity of Thompson’s groups and their generalizations.

Definition 1.10. Let Λ ⊂ R+∗ be a multiplicative subgroup and A ⊂ R be an additive
subgroup which is closed under multiplication by Λ and such that 1 ∈ A.

• The Bieri-Strebel groups are:
– VΛ,A the subgroup of A+(I) consisting of elements with slopes in Λ, discontinuity

points and their images in A,
– TΛ,A the intersection subgroup of PL+(S1) with VΛ,A and
– FΛ,A the intersection subgroup of PL+(I) with VΛ,A.

• In the case that A = Z[1/m] and Λ = ⟨m⟩ with m ∈ N∗, we get the Higman-Thompson
group Vm and the Brown-Thompson groups Tm and Fm.

• Let 1 < n1 < · · · < np be p integers generating a rank p free abelian multiplicative
subgroup Λ = ⟨n1, n2, ..., np⟩ ⊂ Q+∗. The Stein-Thompson groups are TΛ,A and FΛ,A with
A = Z[Λ]. They are denoted by T{n1,n2,...,np} and F{n1,n2,...,np}.

It was shown by Thompson that T2 and V2 are simple (see e.g. [CFP96]). Generalizing a
result of Brown ([Bro87]), Stein ([Ste92]) proved that T{n1,n2,...,np} and F{n1,n2,...,np} are finitely
presented and T"

{n1,n2,...,np} is simple. In Section 7, we prove

Theorem 2. The Stein-Thompson groups T{n1,n2,...,np} with n2 = n2k
1 − 1 are simple.

From now on, we focus on uniform simplicity. Burago and Ivanov in [BI08] implicitly show
that the group [PL+(I),PL+(I)] is uniformly simple.

Cornulier communicated to us that [G+(I),G+(I)] and G(I) are not uniformly simple.
Indeed, if the support of an IET or FIET f has length less than 1

N
then any product of N

conjugates of f or f−1 can not have full support. However, in [GL22], we prove that G(I) is
6-perfect.
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Before stating our main result, we give necessary related notions.

Definition 1.11. Let a ∈ [0, 1).
• Let δ > 0, we set Vδ(0) = [0, δ) ∪ (1 − δ, 1) and Vδ(a) = (a − δ, a + δ), for δ small

enough.
• When identifying [0, 1) with S1, an arc contained in S1 \ Vδ(a) for some positive δ is

referred as a-proper interval.
• Let g ∈ P̂C(I), the fixed-point-set of g is the set Fix(g) = {x ∈ I | g(x) = x}.
• We denote BP̂C(I)a = {g ∈ P̂C(I) | ∃δ > 0 : Vδ(a) ⊂ Fix(g)} and we define
BPC(I)a to be the image of BP̂C(I)a in PC(I) by the quotient morphism.

Let G be a subgroup of PC(I).
• We set BGa = G ∩BPC(I)a.
• The regular G-orbit of a is the set Greg(a) consisting of points x ∈ I for which

there exists g ∈ G such that ĝ is continuous at a and ĝ(a) = x, with the convention
that ĝ is continuous at 0 if lim

x→0+
ĝ(x) = lim

x→1−
ĝ(x).

Remark 1.12. Note that f ∈ BPC(I)a if and only if its best representative f̂ ∈ BP̂C(I)a.

Now we introduce the conditions that will guarantee that a perfect subgroup of PC(I) is
uniformly simple.

Definition 1.13. Let a ∈ I = [0, 1) and G be a subgroup of PC(I).
• We say that G is a-LBS (a-Locally Boundedly Supported) if for every g ∈ G and

every a-proper interval J such that ĝ is continuous on J and ĝ(J) is a-proper, there
exists ga ∈ BGa such that ĝ|J = ĝa|J .

• Let J be a subinterval of I, we say that G is (a, J)-proximal if for every a-proper
interval K there exists k ∈ G such that k̂(K) ⊂ J .

• We say that G is a-proximal if for every subinterval J of I, the group G is (a, J)-
proximal.

• We say that G is NCI (Non Commuting Involution) if for any involution i ∈ G,
there exists h ∈ G such that i and hih−1 do not commute, it means that i ◦ (hih−1)
is not an involution.

Remark 1.14.
• If G is infinite and simple then G is NCI. This follows by contradiction as the simplicity

of G implies that G coincides with its normal subgroup generated by {hih−1, h ∈ G}
which is abelian, but abelian simple groups are cyclic of prime order. More formally:

• For an arbitrary group, NCI means that G has no normal subgroup of exponent 2,
therefore non-abelian simple groups are NCI.

• If G is perfect and non-trivial then G contains elements that are not involutions. This
follows from the fact that a group in which g2 = 1 for all g is abelian.

Inspired by ideas of Dennis-Vaserstein ([DV89]) and Burago-Ivanov ([BI08]), we obtain the
following results on uniform simplicity.

Theorem 3. Let a ∈ I and G be a perfect a-proximal subgroup of BPC(I)a.
• If G does not contain any involution then G is 8-uniformly simple.
• If G has the NCI property then G is 16-uniformly simple.
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Theorem 4. Let a ∈ I and G be an a-LBS subgroup of PC(I) such that
(1) the regular G-orbit of a is infinite and
(2) the subgroup BGa is perfect and a-proximal.
• If G does not contain any involution then G is 12-uniformly simple.
• If G has the NCI property then G is 24-uniformly simple.

The hypotheses of Theorem 3 are closely related to the ones of Theorems 1.1 and 5.1
of Gal and Gismatullin in [GG17]. However, their theorems that concern either boundedly
supported order preserving actions or full group actions on a Cantor set do not apply directly
to all subgroups of PC(I). The proof of [GG17] and our proof use the idea of f -commutator
of Burago-Ivanov. Here, for proving uniform perfectness, we add ideas of Dennis-Vaserstein:
this is explained in Section 2.

Consequences of Theorem 4 are

Corollary 1. The groups PC(I) and PC+(I) are uniformly simple.

Corollary 2. The groups PL+(S1), A(I) and A+(I) are uniformly simple.

Theorems 3 and 4 apply to certain Thompson like groups. They imply that the commutator
subgroups of the Brown-Thompson groups Fn and the Higman-Thompson groups Vn are
uniformly simple. This was proved in [GG17] with smaller bounds. Moreover, Theorem 4
applies to some Stein-Thompson groups T{n1,n2,...,np}, in particular to the Thompson group
T2. The uniform simplicity of these groups cannot be obtained by Gal and Gismatullin’s
results.

Corollary 3. The Thompson group T2, the Stein-Thompson groups T{n1,n2,...,np} with n2 =
n2k
1 − 1 and in particular, T{2,3,··· }, are uniformly simple.

Remark 1.15.
Theorem 4 does not apply to subgroups of Homeo+(I), since its Hypothesis (1) implies

that a ̸= 0 and the a-proximality excludes the possibility that 0 might be a global fix point.
In addition, a simple subgroup G of Homeo+(I) that contains an f having support in some

[c, d] with 0 < c < d < 1 is a subgroup of BHomeo+(I)0 and might satisfy the hypotheses of
Theorem 3. Indeed, let G be a simple group and f ∈ G having support in some [c, d] with
0 < c < d < 1, then any g ∈ G belongs to the normal closure of ⟨f⟩, that is g is the product
of p conjugates kif

±1k−1
i of f or f−1. Therefore g has support in [min

i
ki(c),max

i
ki(d)] so

g ∈ BHomeo+(I)0.
In conclusion, Theorems 3 and 4 do not apply to simple subgroups of Homeo+(I) whose

elements have dense supports.

Finally, going back to the O’Farell and Short questions mentioned above, if G is one of the
groups considered in Corollaries 1, 2 and 3, then there exists a finite positive integer n such
that G = In = Rn.

Acknowledgements. We express our gratitude to P. Arnoux for writing the appendix. We
thank E. Ghys for communicating us, a long time ago, how Proposition 1 of [DV89] allows
to conclude that certain groups of homeomorphisms are uniformly perfect. His argument is
reproduced in Section 2. We thank O. Lacourte for for several stimulating discussions during
this work. We gratefully acknowledge Yves Cornulier for bringing the question of uniform
simplicity to our attention and for fruitful further exchanges. We are deeply indebted to the
anonymous referees whose comments and suggestions substantially improved this work, in
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particular for indicating some related contents and for a more elegant construction of the full
support involution in Section 6.3.

We acknowledge support from the MathAmSud Project GDG 18-MATH-08, the Labex
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2. Uniform perfectness

2.1. Uniform perfectness for subgroups of BPC(I)a.

Definition 2.1.
• Two subsets S1 and S2 of a group G centralize each other or are commuting if any

α ∈ S1 commutes with any α′ ∈ S2.
• Given J a subset of I, we denote P̂C(J) = {g ∈ P̂C(I) : Supp(g) ⊂ J} and we define

PC(J) to be the image of P̂C(J) in PC(I) by the quotient morphism.

In this section, inspired by the proof of Proposition 1 of Dennis and Vaserstein ([DV89]),
we establish

Proposition 2.2. Let a ∈ I and G be a subgroup of BPC(I)a. Suppose that there exist
f ∈ G and a subinterval J ⊂ (0, 1) such that J , f̂(J) and f̂−1(J) are pairwise disjoint and
G is (a, J)-proximal then any element of [G,G] is the product of 2 commutators in G.

Proof. As Dennis and Vaserstein have noted, it suffices to prove that any product of 3 com-
mutators is the product of 2 commutators.

Let g = γ1γ2γ3 with γi = [ai, bi]. By definition of BPC(I)a, there exists an a-proper
interval K which contains the support of all âi, b̂i and by (a, J)-proximality, there exists k in
G such that k̂ sends K into J . Thereby, conjugating by k, we can suppose that the supports
of âi, b̂i are included in J . For γ, h ∈ G, we denote by Ch(γ) = hγh−1.

Note that P̂C(J), P̂C(f̂(J)) and P̂C(f̂−1(J)) are pairwise commuting subgroups of P̂C(I)
since J , f̂(J) and f̂−1(J) are pairwise disjoint. Thus, for any w0, w1, w2 ∈ ⟨ai, bi⟩, it holds
that w0, Cf (w1) and Cf−1(w2) are pairwise commuting. Therefore

g = γ1γ2γ3 = γ1 Cf (γ2) Cf−1(γ3) Cf−1(γ−1
3 ) Cf (γ

−1
2 ) γ2γ3 = C1C2, where

• C1 = γ1 Cf (γ2) Cf−1(γ3) is a commutator. As the supports of ai and bi are disjoint from
the supports of Cf (ai) and Cf (bi) and all these supports are disjoint from those of Cf−1(ai)
and Cf−1(bi), we get that the product of these commutators is a commutator.

• C2 = Cf−1(γ−1
3 ) Cf (γ

−1
2 ) γ2γ3 = Cf−1(γ−1

3 )γ2 Cf (γ
−1
2 )γ3.

Noticing that Cf (γ
−1
2 )γ3 = Cf

(
γ−1
2 Cf−1(γ3)

)
= Cf

(
(Cf−1(γ−1

3 )γ2)
−1
)
, we conclude that C2

is a commutator as a product of an element by a conjugate of its inverse. □

2.2. Uniform perfectness for subgroups of PC(I).
In this section, we prove a lemma that will make the link between the uniform perfectness

of G < PC(I) and the one of its subgroups BGa.

Lemma 2.3.
If G < PC(I) is 0-LBS then for any g ∈ G and a ∈ I \

(
Disc(ĝ) ∪ {0, ĝ−1(0)}

)
, there exist

g0 ∈ BG0 and ga ∈ BGa such that g = g0ga.
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Proof. Let g ∈ G. As a ̸= 0, ĝ(a) ̸= 0 and a /∈ Disc(ĝ), there exists δ > 0 such that ĝ is
continuous on Vδ(a), where Vδ(a) and ĝ(Vδ(a)) are 0-proper intervals.

Since G is 0-LBS, there exists g0 ∈ BG0 such that ĝ|Vδ(a) = ĝ0|Vδ(a), thereby
(ĝ0

−1 ◦ ĝ)|Vδ(a) = Id|Vδ(a) and then ga := g−1
0 ◦ g ∈ BGa. □

3. The Burago and Ivanov method (adapted from Lemma 3.6 and 3.8 of [BI08])

Definition 3.1. Let G be a group and f ∈ G. An f-commutator is an element of the form
[f̃ , h] for some h ∈ G and some f̃ conjugate to f or f−1.

Remark 3.2. Any conjugate of an f -commutator is an f -commutator. All elements of the
form [h, f ] and [h, f−1] are f -commutators. Any f -commutator is product of 2 conjugates of
f or f−1.

Proposition 3.3. Let G be a group of bijections of a space X. Let f ∈ G and Ω ⊂ X such
that Ω, f(Ω) and f 2(Ω) are pairwise disjoint. Let g1, g2 and k be elements of G such that
k(Supp(g1) ∪ Supp(g2)) ⊂ Ω then [g1, g2] is a product of two f -commutators.

Proof. Let us recall that Cf (w) = fwf−1. We first prove the following

Lemma 3.4. If Supp(gi) ⊂ Ω for i = 1, 2 then

(⋆) g1g2 Cf (g
−1
1 ) Cf2(g−1

2 ) = [ Cf (g2) g1g2 , f ]

is an f -commutator.

Indeed, [ Cf (g2) g1g2 , f ] = Cf (g2) g1g2 f (g1g2)
−1 Cf (g

−1
2 ) f−1

= Cf (g2) g1g2 Cf ((g1g2)
−1) Cf2(g−1

2 ).

Since g1g2 and Cf (g2) have disjoint supports, they commute and we get

= g1g2 Cf (g
−1
1 ) Cf2(g−1

2 ).

Remark 3.5. Writing (⋆) for g−1
1 and g−1

2 , we get that g−1
1 g−1

2 Cf (g1) Cf2(g2) is also an
f -commutator.

We turn now on to the proof of Proposition 3.3. Let g1, g2 ∈ G and k ∈ G such that
k(∪Supp(gi)) ⊂ Ω. The commutator [g1, g2] can be written as Ck−1([Ck(g1), Ck(g2)]), with
Ck(gi) of support in Ω. So by Remark 3.2, we can suppose w.l.o.g that the gi have support
in Ω and we have:

[g1, g2] = g1g2 Cf (g
−1
1 ) Cf2(g−1

2 ) Cf2(g2) Cf (g1) g−1
1 g−1

2 .

Since g−1
1 g−1

2 , Cf (g1) and Cf2(g2) have pairwise disjoint supports, they all commute and we
get

[g1, g2] = g1g2 Cf (g
−1
1 ) Cf2(g−1

2 ) g−1
1 g−1

2 Cf (g1) Cf2(g2)

Finally, by Lemma 3.4 and Remark 3.5, [g1, g2] is a product of two f -commutators. □
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4. Uniform simplicity, proof of Theorems 3 and 4

We first show two lemmas which ensure that Propositions 2.2 and 3.3 will apply.

Lemma 4.1. Let f ∈ PC(I) such that f 2 ̸= Id, then there exists J = Jf̂ ⊂ (0, 1) such that
J , f̂(J) and f̂ 2(J) are pairwise disjoint subintervals.

Indeed, as f 2 ̸= Id in PC(I), the support of f̂ 2 contains an interval and there exists
a ∈ Supp(f̂ 2) a continuity point of both f̂ and f̂ 2. The required statement follows from a
standard argument of continuity.

The proof of the next lemma follows from the definition and we leave it to the reader.

Lemma 4.2. Let a ∈ I and G be an a-proximal subgroup of BPC(I)a. Then for all g, h ∈ G

and any subinterval J there exists k ∈ G such that k̂(Supp(ĝ) ∪ Supp(ĥ)) ⊂ J .

4.1. Proof of Theorem 3. We recall

Theorem 3. Let a ∈ I and G be a perfect a-proximal subgroup of BPC(I)a.
• If G does not contain any involution then G is 8-uniformly simple.
• If G has the NCI property then G is 16-uniformly simple.

Let G < BPC(I)a and f, ϕ ∈ G \ {Id}.
If f is not an involution, by Lemma 4.1, there exists J ⊂ (0, 1) such that J , f̂(J) and

f̂ 2(J) are pairwise disjoint intervals.
Since G is perfect, ϕ ∈ [G,G]. Thus, G being a-proximal, Proposition 2.2 (changing J for

f̂(J)) implies that ϕ is a product of 2 commutators [gi, hi], i = 1, 2.
In addition, by Lemma 4.2, the interval J and the maps ĝi and ĥi satisfy the hypotheses

of Proposition 3.3, hence their commutator is a product of two f̂ -commutators and applying
the quotient morphism, each [gi, hi] is a product of two f -commutators. Then ϕ is a product
of 4 f -commutators. As any f -commutator is a product of 2 conjugates of f or f−1, we
finally get that ϕ is a product of 8 conjugates of f or f−1.

If f is an involution, the NCI property implies that there exists h ∈ G such that F =
f ◦ (hfh−1) is not an involution. Applying the previous case to F we get that ϕ is the
product of 8 conjugates of F or F−1 that is a product of 16 conjugates of f = f−1.

4.2. Proof of Theorem 4. Let G be a subgroup of PC(I). We begin by proving

Lemma 4.3. If BG0 is perfect and 0-proximal then for every a ∈ I and g ∈ G such that
a = ĝ(0) and ĝ is continuous at 0, it holds that BGa = gBG0g

−1 is perfect and a-proximal.

The continuity of ĝ at 0 implies that BGa = gBG0g
−1 and then, from the fact that perfect

subgroups are taken to perfect subgroups under conjugation, BGa is perfect.
Let J be a subinterval of I, J ′ be a subinterval of ĝ−1(J) and Ka be an a-proper interval.

Therefore, ĝ−1(Ka) ⊂ I \ Vη(0) for some positive η. We conclude from the 0-proximality of
BG0 that there exists k0 such that k̂0(I \ Vη(0)) ⊂ J ′, hence that k̂0 ◦ ĝ−1(Ka) ⊂ J ′ and
finally that ĝ ◦ k̂0 ◦ ĝ−1(Ka) ⊂ ĝ(J ′) ⊂ J with g ◦ k0 ◦ g−1 ∈ BGa.

We turn now to the proof of Theorem 4. We recall

Theorem 4. Let a ∈ I and G be an a-LBS subgroup of PC(I) such that
(1) the regular G-orbit of a is infinite and
(2) the subgroup BGa is perfect and a-proximal.
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• If G does not contain any involution then G is 12-uniformly simple.
• If G has the NCI property then G is 24-uniformly simple.

W.l.o.g. we can suppose that G satisfies the hypothesis of Theorem 4 with a = 0 and let
f, ϕ ∈ G \ {Id}.

By Hypothesis (1), the regular G-orbit of 0 is infinite, therefore it contains some point
a /∈ {0, ϕ̂−1(0)} ∪ Disc(ϕ̂). Since G is 0-LBS, Lemma 2.3 implies that there exist ϕ0 ∈ BG0

and ϕa ∈ BGa such that ϕ = ϕ0ϕa.
We claim that ϕ = g0ba with g0 ∈ BG0 and ba a commutator in BGa.
Indeed, by the definition of BGa, there exist Ka an a-proper interval and δ > 0 such that

Supp(ϕ̂a) ⊂ Ka ⊂ I \ Vδ(a).
According to Lemma 4.3, the group BGa is a-proximal. Then given any 1

2
> η > 0, there

exists ka ∈ BGa such that k̂a(Ka) ⊂ I \ Vη(0). Therefore Supp(Ck̂a
(ϕ̂a)) = k̂a(Supp(ϕ̂a)) ⊂

I \ Vη(0) and then Cka(ϕa) ∈ BG0. Finally

ϕ = ϕ0ϕa = ϕ0Cka(ϕa)Cka(ϕ
−1
a )ϕa = g0ba with

{
g0 = ϕ0Cka(ϕa) ∈ BG0 and
ba = Cka(ϕ

−1
a )ϕa a commutator in BGa.

As BG0 is 0-proximal it is non-trivial. As BG0 is perfect as well it follows from the second
point of Remark 1.14 that it contains some f ′ that is not an involution.

In addition, as BG0 is 0-proximal then Lemma 4.1 and Proposition 2.2 (changing J for
f̂ ′(J)) imply that g0 is a product of 2 commutators in BG0. Therefore ϕ is a product of 2
commutators in BG0 and one commutator in BGa for some a ∈ I.

If f is not an involution, applying Lemma 4.2 to BG0 and BGa and Proposition 3.3 to G,
we obtain that each commutator is a product of two f -commutators. As every f -commutator
is a product of 2 conjugates of f or f−1, we finally get that ϕ is a product of 12 conjugates
of f or f−1.

If f is an involution, by the NCI-property, there exists h ∈ G such that F = f ◦ (hfh−1)
is not an involution. Applying the previous case to F , we get that ϕ is the product of 12
conjugates of F or F−1 that is a product of 24 conjugates of f . □

5. Proof of Corollaries.

In this section, we check that many groups satisfy the hypothesis of Theorem 4.
According to Arnoux and Lacourte PC+(I), PC(I) and A(I) are simple (see [Arn81b] III

Proposition 1.7 and [Lac22] Theorem 1.4). In Section 6 we will prove that A+(I) is simple.
Epstein ([Eps70]) established that PL+(S1) is simple and Thompson showed that T2 is

simple (see e.g. [CFP96]) and in Section 7 we will prove that the Stein-Thompson groups
T(n1,n2,...,np) with n2 = n2k

1 − 1 are simple.
All the groups previously mentioned are infinite, hence they are NCI, by Remark 1.14. It

is easy to check that they also are 0-LBS, the regular G-orbit of 0 is infinite and have an
associated BG0 which is 0-proximal.

It remains to prove that the corresponding BG0 are perfect.
If G = PL+(S1) then BPL+(S1)0 = [PL+(I),PL+(I)] is perfect, by Epstein ([Eps70]).
If G = T2 then by Theorem 4.1 of [CFP96] and related comments, (BT2)0 = [F2, F2] is
perfect. If G = T(n1,n2,...,np) with n2 = n2k

1 − 1, this is provided by Lemma 7.2.
Finally, let G ∈ {PC(I),PC+(I),A(I),A+(I)} and f0 in BG0. There exist c, d with

0 < c < d < 1 such that Supp(f0) ⊂ [c, d). The group G([c, d)) of elements of G with support
in [c, d) is isomorphic to G which is a simple group. In particular, G([c, d)) is perfect and we
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get that f0 is a product of commutators of elements in G having support in [c, d), hence of
elements in BG0.

6. A+(I) is simple

6.1. Preliminaries. The aim of this section is to fix notation and terminology, to collect
a few results and to prove some basic results to be used for establishing the simplicity of
A+(I). In particular, we describe the conjugacy classes of involutions in A+(I).

Definition 1.9 can be extended to every half open real interval J (see the appendix by P.
Arnoux) and the corresponding groups are denoted by PL+(J) < PL+(SJ) < A+(J), where
SJ is the circle obtained by identifying the endpoints of J and PL+(J) is identified with the
stabilizer of the left endpoint of J in PL+(SJ). It is plain that PL+(SJ) is isomorphic to
PL+(S1).

Definition 6.1.
• An IET that has at most one interior discontinuity point is called a rotation and it is

denoted by Ra, where a is the image of 0.
• An IET g whose support is a half-open interval J = [a, b) ⊂ [0, 1) is a restricted

rotation if the orientation preserving affine map that sends J to [0, 1) conjugates g|J to a
rotation. We denote it by Rα,J where α is defined by Rα,J(x) = x+α (mod |b−a|) for x ∈ J .

Lemma 6.2.
Every non-trivial involution i ∈ A+(I) is conjugated in A+(I) to either R 1

2
or to RR 1

2
the

order 2 restricted rotation of support [1
2
, 1) that exchanges [1

2
, 3
4
) and [3

4
, 1).

Proof. As i is a non-trivial involution, the interval I can be decomposed into a finite union
of pairwise disjoint half-open intervals: I1, · · · , Ip and J1, · · · , Jq satisfying the following:

(1) The map i is continuous on these intervals.
(2) The integers p and q are such that p = 2k ≥ 2, q ≥ 0 and in the case that q = 0

there is no Jj.
(3) Jj ⊂ Fix(i) and if j ≤ k then i(Ij) = Ij+k.

Let H be the AIET defined by:
• Whenever q ̸= 0, the map H sends affinely Jj to [ j−1

2q
, j
2q
) for j = 1, · · · , q.

• H sends affinely Ij to

{
[ j−1

p
, j
p
) for j = 1, · · · , p if q = 0,

[1
2
+ j−1

2p
, 1
2
+ j

2p
) for j = 1, · · · , p if q ̸= 0.

We can check that H conjugates i to a map with support [0, 1) if q = 0 or [1
2
, 1) if q ̸= 0

which also is an IET (this can be verified by computing the slope of H ◦ i ◦ H−1 on each
H(Ij)). Moreover by definition, H ◦ i◦H−1 sends any two cyclic-consecutive intervals among
the H(Ij), j = 1, · · · , k to cyclic-consecutive ones so it is continuous except at 1

2
if q = 0 and

at 1
2

and 3
4

if q ̸= 0.
In conclusion, H ◦ i ◦H−1 = R 1

2
if q = 0 or H = RR 1

2
if q ̸= 0. □

6.2. The group A+(I) is perfect and generated by its involutions.
We first exhibit generators of A+(I).

Proposition 6.3.
Every f ∈ A+(I) can be written as f = g ◦ h with h ∈ PL+(I) and g an IET.
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Proof. Let f ∈ A+(I), we denote by I1, · · · , Ip the maximal continuity intervals of f and we
denote by Jπ(i) the interval f(Ii). We consider the IET E defined by the partition {Ji} and
the permutation π−1 that tells us how the Ji are rearranged. By construction, the AIET
h = E ◦ f is continuous on I and f = E−1 ◦ h has the required form. □

According to [Arn81b], [Nov09] or [Vor17] (see the appendix for a proof), any interval ex-
change transformation g is a product of restricted rotations. Therefore, we will see below that
Proposition 6.3 insures that every f ∈ A+(I) is a product of commutators [resp. involutions]
if this property holds for any h ∈ PL+(S1).

Indeed, on one side, adding a discontinuity, PL+(S1) can be seen as a subgroup of A+(I)
and PL+(I) is a subgroup of PL+(S1). Hence a map h ∈ PL+(I) that is a product of
commutators [resp. involutions] in PL+(S1) is a product of commutators [resp. involutions]
in A+(I).

On the other side, the map f 7→ f |J sends the restricted rotations of support J into
PL+(SJ) and it is an isomorphism onto its image, the subgroup of PL+(SJ) consisting of its
rotations. In addition, if any h ∈ PL+(S1) is a product of commutators [resp. involutions] in
PL+(S1), then any h ∈ PL+(SJ) is a product of commutators in PL+(SJ) and then in A+(J).
Finally, extending maps by Id on the complement of J , we get that writing a restricted
rotation of support J as product of commutators [resp. involutions] reduces to doing that
for a rotation in PL+(S1).

As Theorem 3.2 of [Eps70] states that PL+(S1) is simple, PL+(S1) is generated by either
its commutators or its involutions, so

A+(I) = ⟨commutators⟩ = ⟨involutions⟩.

6.3. The group A+(I) is simple.
Let N be a non-trivial normal subgroup of A+(I). The problem reduces to proving that N

contains a non-trivial involution τ1 having fix points and a fix point free involution τ2 since
A+(I) = ⟨involutions⟩ will be the normal closure of ⟨τ1, τ2⟩, by Lemma 6.2.

Let f be a non-trivial element of N , then there exists a non empty half-open interval J
such that f(J) ∩ J = ∅ and J and f(J) have length less than 1

2
.

Let i ∈ A+(I) be an involution with support Supp(i) = J . Therefore Supp(f ◦ i ◦ f−1) =
f(Supp(i)) = f(J) is disjoint from Supp(i). Consequently f ◦ i ◦ f−1 and i commute, hence
τ1 = [f, i] = f ◦ i ◦ f−1 ◦ i is an involution of support J ∪ f(J) and it belongs to N . Then we
have proved that N contains a non-trivial involution τ1 having fixed points.

For constructing a fix point free involution in N , we consider h1, h2 in A+(I) such that

(⋆) h1(J) = [0,
1

4
), h1(f(J)) = [

1

2
,
3

4
), h2(J) = [

1

4
,
1

2
) and h2(f(J)) = [

3

4
, 1).

The map i1 = h1 ◦ τ1 ◦ h−1
1 [resp. i2 = h2 ◦ τ1 ◦ h−1

2 ] is an involution, it belongs to N and
its support is h1(J ∪ f(J)) = [0, 1

4
) ∪ [1

2
, 3
4
) [resp. h2(J ∪ f(J)) = [1

4
, 1
2
) ∪ [3

4
, 1)].

Therefore i1 and i2 have disjoint supports and τ2 = i1◦ i2 ∈ N is an involution of full support.
Then we have also proved that N contains a fix point free involution τ2.

7. Simplicity of certain Stein-Thompson groups

In this section, we prove Theorem 2, using results of Stein ([Ste92]) and Bieri-Strebel’s
Lemma C12.8 and Theorem C12.14 of [BS16] that, in our context, can be stated as
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Theorem C12.14 of [BS16].
The group (BT{n1,n2,...,np})0 = {f ∈ T{n1,n2,...,np} : f(0) = 0, f(1) = 1, Df(0) = Df(1) = 1} is
perfect provided that the following properties (i) and (ii) hold.

(i) (1− Λ)A = A, where (1− Λ)A = {
∑

(1− λi)ai , λi ∈ Λ = ⟨ni⟩, ai ∈ A = Z[Λ] },
(ii) Λ contains a rational number n

q
> 1 so that n2 − q2 ∈ Λ.

Lemma 7.1. Let Λ = ⟨n1, · · · , np⟩, A = Z[Λ] and d = gcd(ni − 1). Then (1− Λ)A = dA.

Proof.
First, we prove the inclusion (1− Λ)A ⊂ dA.

By the definition of (1 − Λ)A, it suffices to show that (1 − λ)a ∈ dA, for any a ∈ A and
λ = ns1

1 ...n
sp
p ∈ Λ. By converting the fractions to have the same denominator, there exist

qi, ti ∈ N and a′ ∈ A such that

(1− λ)a = (1− ns1
1 ...nsp

p )a = (nq1
1 ...n

qp
p − nt1

1 ...n
tp
p )a

′.

By replacing the ni’s by kid+1 and calculating, we obtain (1−λ)a = (dN)a′ with N ∈ N.
Next, we show that dA ⊂ (1− Λ)A.

From Bezout’s identity, we obtain d = u1(n1 − 1) + · · ·+ up(np − 1) with ui ∈ Z.
Thus, for any a ∈ A, we have da =

∑
(ni − 1)(uia) ∈ (1− Λ)A. □

Lemma 7.2. (BT{n1,n2··· ,np})0 is perfect provided that n2 = n2k
1 − 1.

Proof. We check that (BT{n1,n2,...,np})0 satisfies the properties (i) and (ii) of Bieri and Strebel’s
Theorem. Indeed, by Lemma 7.1, the property (i) is equivalent to that d = gcd(ni − 1) = 1.

As n1 is congruent to 1 modulo n1 − 1, we know that n2k
1 is congruent to 1 modulo n1 − 1

so n2k
1 − 2 is congruent to −1 modulo n1 − 1 and then gcd(n1 − 1, n2k

1 − 2) = 1. This implies
that Property (i) of Lemma 7.1 is satisfied.

Moreover, considering
n

q
=

nk
1

1
yields n2−q2 = n2k

1 −1 ∈ Λ, so (ii) holds for (BT{n1,n2,...,np})0.

□

Lemma 7.3. If (BT{n1,n2,...,np})0 is perfect then T{n1,n2,...,np} is perfect.

Proof. Let f ∈ T{n1,n2,...,np}. As T{n1,n2,...,np} is a 0-LBS group, Lemma 2.3 with a ∈ A \
{0, f−1(0)} implies that f = f0fa with f0 ∈ (BT{n1,n2,...,np})0 and fa ∈ (BT{n1,n2,...,np})a.

It is a simple matter to prove that (BT{n1,n2,...,np})a = Ra(BT{n1,n2,...,np})0R
−1
a (see the proof

of Lemma 4.3) and Lemma 7.2 now implies that both (BT{n1,n2,...,np})0 and (BT{n1,n2,...,np})a
are perfect. We conclude that f = f0fa is a product of commutators in T{n1,n2,...,np} and
finally that T{n1,n2,...,np} is perfect. □

We turn now on to the proof of the simplicity of T{n1,n2,...,np}. According to [Ste92], the
group T"

{n1,n2,...,np} is simple and T"
{n1,n2,...,np} = T{n1,n2,...,np} by the previous lemma, so we

have that T{n1,n2,...,np} is simple.

Appendix A. Simplicity of groups of interval exchange transformations

by Pierre Arnoux

In this appendix, we prove the simplicity of some groups of piecewise continuous maps.
Recall the definitions:
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Definition 1. An interval exchange transformation on an interval J = [a, b) is a bijection
of J which is everywhere right continuous, and, except on a finite number of points, contin-
uous and derivable with derivative 1; alternatively, it can be defined as a permutation by
translations on a finite collection of semi-open subintervals of J .

More generally, an affine (resp. generalised) interval exchange transformation is a bijection
defined by a finite partition of half open intervals, such that the restriction of the map
to each interval is an orientation preserving affine map (resp. an orientation preserving
homeomorphism).

An interval exchange transformation with flips is a bijection on J , except maybe for a finite
set, which is derivable except for this finite set, with derivative +1 or −1. As noted in the
introduction, it is defined up to a finite set.

From now on, we fix an interval J . As before, we denote by G+(J) the group of interval
exchange transformations on the interval J , by A+(J) [resp. PC+(J)] the group of affine
[resp. generalised] interval exchanges transformations and by G(J) the group of classes of
interval exchange transformations with flips.

The simplicity of [G+(J),G+(J)], PC+(J) and G(J) was obtained in [Arn81b], but are not
easily available.

The simplicity of A+(I) in not established in [Arn81b], however its tools provide a different
proof and this is detailed here.

Namely, in this appendix, we prove the following:

Proposition 2. The groups A+(J),PC+(J) and G(J) are simple. The group G+(J) is not
simple, but its commutator subgroup is simple.

The proof of the proposition consists, using a lemma due to Epstein, in proving first that
the commutator subgroup of all these groups is the smallest normal subgroup, and then, for
the first three, in proving that they are perfect.

A.1. A condition implying that every normal subgroup contains the commutator
subgroup. Recall that two transformations with disjoint support commute.

Remark that, if H is a normal subgroup of a group G, and h ∈ H, then for all a ∈ G,
[a, h] = aha−1h−1 is in H, as product of two elements of H: aha−1 which is a conjugate of h,
hence in H by normality, and the inverse of h. Remark also that, if a commutes with c, then
[a, bc] = abca−1c−1b−1 = [a, b]. We will use these properties to prove the following lemma,
due to Epstein [Eps68]

Lemma 3. Let G be a group of transformations of a manifold endowed with a measure µ.
Suppose that G satisfies the two conditions:

(1) For all ϵ > 0, any element of G is the product of a finite number of elements whose
support has measure less than ϵ.

(2) For all h ∈ G \ {Id}, there exist E ⊂ Supp(h) such that h(E) ∩ E = ∅, and ϵ > 0
such that, if g1 and g2 are two elements of G whose support has measure less than ϵ,
we can find f ∈ G such that f(Supp(gi)) ⊂ E for i = 1, 2.

Then [G,G] is the smallest normal subgroup of G.

Proof. Let H be a normal subgroup of G; we want to prove that any commutator belongs to
H. Let h be a non-trivial element of H, and let E and ϵ be as in Condition (2).
We claim that Condition (1) implies that for all ϵ > 0, any element of [G,G] is the product
of a finite number of conjugates of commutators of elements with support of measure less
than ϵ.
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Indeed, let ε > 0 and g, k ∈ G.
We first prove that [g, k] is a product of conjugates of [a, k] with µ(Supp(a)) ≤ ε.

By the condition (1), g can be written as g = g1 · · · gp where µ(Supp(gi)) ≤ ε.
We argue by induction on p, supposing that for any f ∈ G that is a product of at most
p− 1 elements whose support has measure less than ϵ, the commutator [f, k] is a product of
conjugates of [a, k] with µ(Supp(a)) ≤ ε.

A straightforward calculus leads to [g1 · · · gp, k] = g1[g2 · · · gp, k]g−1
1 [g1, k] and by induction

hypothesis, it holds that [g2 · · · gp, k] =
∏

hi[ai, k]h
−1
i .

It remains to prove that any [a, k] decomposes in commutators of elements with support
of measure less than ϵ. This follows from the fact that [a, g] = [g, a]−1 and the previous
argument shows that [g, a] has the required decomposition.

By condition (1) and the previous claim, it is enough to prove that the commutator of two
elements g1, g2 with support of measure less than ϵ belongs to H.

Let f be as in condition (2), and h′ = f−1hf . We have h′ ∈ H by normality. If Si, for
i = 1, 2, is the support of gi, one checks that h′(Si) ⊂ f−1(h(E)) is disjoint from S1 ∪ S2 ⊂
f−1(E). This implies that g1 and the conjugate h′g−1

2 h′−1 of the inverse of g2 have disjoint
support, hence commute. This fact, and the remarks above, imply that

[g1, g2] = [g1, g2h
′g−1

2 h′−1] = [g1, [g2, h
′]] ∈ H

We have proved that the commutator of any element with small support belongs to H;
since any element of [G,G] is the product of a finite number of conjugates of commutators
with small support and H is normal we have that [G,G] ⊂ H. □

A.2. Interval exchange transformations are product of transformations with small
support. We will prove that, in all the considered groups of interval exchange transforma-
tions, any element can be written as a product of a finite number of elements with a support
of arbitrarily small size.

Now, we list some definitions and properties that are easily available in [GL22] and we add
proofs for sake of completeness.

Definition 4. Let α, β ∈ J = [a, b] and 0 ≤ θ < β − α.
The symmetry of [α, β), denoted by I[α,β), is the element of G(J) represented by the

FIET i = Î[α,β) given by i(x) = x if x /∈ (α, β) and i(x) = α + β − x if x ∈ (α, β).
A distinguished involution is a product of finitely many symmetries having disjoint

supports.

Remark 5. Let θ ∈ [0, 1), set Rθ = Rθ,[0,1) and Sθ = I[0,θ) ◦ I(θ,1), it is easy to check that
Sθ ◦ Sθ′ = Rθ−θ′ and Rα ◦ Sθ ◦R−1

α = Sθ+2α.

Î[α,β)

a
|
b

|
α

|
β

•

•

•

�
�
��

@
@@

�
�� Î[α,b)

a
|

α
|
b

•

•

�
�
��

@
@

@
@
@

Ŝθ

0
|
θ

|
1

•

•
@

@
@
@
@

@
@

@
@

Lemma 6. Every element of G+(J) is the product of a finite number of restricted rotations.
Every element of G(J) is the product of a distinguished involution and an element of G+(J).
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Proof. For clarity, given K = [c, d) and L = [d, e) two consecutive half-open intervals, we
denote by RK,L the restricted rotation of support K ⊔ L whose interior discontinuity point
is d. Let g ∈ G+(J) with continuity intervals I1, · · · Im and let g(Ii) = Jπ(i). We consider
R1 = RK,L, where K = J1 ∪ · · · ∪ Jπ(1)−1 and L = Jπ(1). One directly has that R1 ◦ g|I1 = Id
and g1 := R1 ◦ g|I2∪···∪Im has at most m− 1 continuity intervals.

Starting with g1, we define similarly R2 and we get that R2 ◦ g1|I2 = Id and g2 := R2 ◦
g1|I3∪···∪Im has at most m− 2 continuity intervals.

Repeating the previous argument m− 1 times leads to a gm−1 having at most 1 continuity
interval, so gm−1 = Id.

Extending the restricted rotations Ri to J by the identity map, we conclude that
Rm−1 ◦ · · · ◦R1 ◦ g = Id and then g is a product of a finitely many restricted rotations.

Let f ∈ G(J), we denote by I1, · · · Im the continuity intervals of f and by

F = {i ∈ {1, ...m} : f is orientation reversing on Ii} .
It is easy to check that f ◦

∏
i∈F IIi belongs to G+(J) and that the IIi ’s have disjoint supports,

so
∏

i∈F IIi is a distinguished involution and the second item of Lemma 6 directly follows. □

Lemma 7. (Proposition 6.3) Every element of A+(J) (resp. PC+(J)) is the product of an
element of G+(J) and an orientation preserving PL-homeomorphism of J (resp. homeomor-
phism of J)

Proposition 6.3 is only stated for A+(J), but the proof is exactly the same for PC+(J).

Lemma 8. For any ϵ > 0, any restricted rotation can be written in G+(J) as the product of
elements of G+(J) with support of measure less than ϵ.

Proof. It suffices to prove it for a rotation on [0, 1). Let Rα be a rotation on [0, 1). We can
construct an element f ∈ G+(J) with support on [0, 1

4
)∪Rα[0,

1
4
], which coincides with Rα on

[0, 1
4
). The measure of Supp(f) is less than half the measure of Supp(Rα). Let g = f−1Rα;

it is by construction the identity on [0, 1
4
), hence the measure of its support is at most 3

4
that of the support of Rα. Hence we have written Rα = fg, where f and g have a support
whose measure is at most 3

4
that of the support of Rα. Since they are elements of G+(J),

we can again decompose them in restricted rotations, which can be similarly decomposed.
By iteration, we can write a rotation as a finite product of elements with arbitrarily small
support. □

Lemma 9. For any ϵ > 0, any distinguished involution can be written as the product of
elements of G(J) with support of measure less than ϵ.

Proof. It is enough to prove it for the involution I : x 7→ 1− x on [0, 1). Let n be such that
1
n
< ϵ, and let fi be such that fi(x) = 1− x if x ∈ [ i

2n
, i+1

2n
) ∪ (1− i+1

2n
, 1− i

2n
], and fi(x) = x

otherwise. It is clear that all the fi have support of measure 1
n
< ϵ, and by construction

I = f0f1 . . . fn−1. □

Lemma 10. For any ϵ > 0, any homeomorphism (resp. PL-homeomorphism) of [0, 1) can
be written as the product of homeomorphisms (resp. PL-homeomorphisms) whose support
are contained in intervals of measure less than ϵ.

Proof. We do the proof for a homeomorphism, it works, mutatis mutandis, for a PL- homeo-
morphism.

Let h be such a homeomorphism; without loss of generality, we can suppose that h(1
2
) < 1

2
.

One can then construct a homeomorphism g with support in [0, 3
4
) such that g(h(1

2
)) = 1

2
.
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The homeomorphism gh fixes the point 1
2
; hence it can be naturally decomposed in a product

f1f2, where Supp(f1) ⊂ [0, 1
2
] and Supp(f2) ⊂ [1

2
, 1]. We have written h = g−1f1f2 as the

product of 3 elements whose supports have measure at most 3
4

that of h. By iterating this
construction, we can make the support of the maps contained in intervals as small as we
want. □

If h is a transformation in any of the groups G+(J), G(J) and A+(J) which is not the
identity, we can find an interval E which is disjoint from h(E). Let ϵ be less than half the
length of this interval. Since the support of an element of G+(J), G(J) and A+(J) is a finite
union of intervals, if one has two elements g1, g2 with support of measure less than ϵ, it is
clear that we can find an element of G+(J) which sends the supports of g1, g2 into E.

All these lemmas imply the following :

Proposition 11. The groups G+(J), G(J) and A+(J) satisfy the conditions of Lemma 3.

Things are slightly more complicated for the group PC+(J), since the support of a homeo-
morphism does not need to be a finite union of intervals. However, the reader will check that
the proof of Lemma 3 is still valid if we reformulate condition (1), by asking the support to be
contained in a finite union of intervals with total measure less than ϵ, and change accordingly
the condition (2). This is precisely the condition proved in Lemma 10. Hence the group
PC+(J) also satisfies the conclusion of Lemma 3.

A.3. Commutators in groups of interval exchange transformations. We now want
to prove that specific elements are commutators.

Lemma 12. Distinguished involutions and restricted rotations are commutators in G(J).

Lemma 13. Let α, β ∈ J .
The maps I[α,β) and Rθ,[α,β) are commutators in G

(
[α, β)

)
and then in G(J).

Proof. Conjugating by a homothety, it is sufficient to prove that I[0,1) and Rθ,[0,1) are com-
mutators in G([0, 1)) and it is easy to see that I[0,1) is the product of the involutions f1 and
f2 whose best representatives are described as below:

f̂1

0
|
1
4

|
3
4

|
1

•

•

•

�
�

@
@
@@

�
�

f̂2

0
|
1
4

|
3
4

|
1

•

•

•

@
@

�
�

��

@
@

As f2 is conjugated to f1 = f−1
1 by r = R 1

2
, one has I[0,1) = f1rf

−1
1 r−1 is a commutator.

In addition, according to Remark 5, any rotation is the product of 2 involutions that are
conjugated by a rotation; thus Rθ,[0,1) is a commutator. □

Since any element of G(J) is a product of a distinguished involution and restricted rotations,
this implies that any element of G(J) is a product of commutators; and since we have proved
that the commutator subgroup is the smallest normal subgroup of G(J), we have proved

Proposition 14. The group G(J) is simple.

Let us now consider the group A+(J). Conjugating by a homothety, it is sufficient to
consider the group A+([0, 1)).
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Lemma 15. Every element of [PL+([0, 1]),PL+([0, 1])] is a product of commutators.

Proof. This result is proved in [Eps70]; for completeness, we give the main point of the
argument. Any element of [PL+([0, 1]),PL+([0, 1])] can be written as a product of maps
which are the identity out of an interval [a, b], and which are affine on 2 intervals [a, c] and
[c, b]. It suffices to write such a map as a commutator.

Denote by σa the piecewise affine homeomorphism of [0, 1] which fixes 0 and 1, sends 1
2

to
a, and is affine on [0, 1

2
] and [1

2
, 1]. If we choose a, b with 0 < a < b < 1

2
, it is easily checked

that the commutator σ−1
a σ−1

b σaσb is a PL map which is the identity out of the interval 1
2
, 3−4a
4−4a

,
and which is linear on 2 intervals. A simple study shows that, up to conjugacy, one obtains
in this way any piecewise affine map on 2 intervals. □

Lemma 16. Any rotation is a product of commutator in A+([0, 1))

Proof. The group PL+(S1) of piecewise affine homeomorphisms of the circle can be embedded
in A+([0, 1)) as piecewise affine transformations of the interval [0, 1). But (see [Eps70]) this
group is simple; hence any rotation of [0, 1) can be written as a product of commutators. □

Hence any element of A+(J) is a product of commutators, and we prove as above:

Proposition 17. The group A+(J) is simple.

Remark 18. The proof that rotations are product of commutators is fundamentally different
in A+(J) and G(J); and indeed, the property is false in their intersection G+(J).

We end with the proof of the simplicity of PC+(J) reduced to that of PC+([0, 1)).

Lemma 19. Any rotation and any orientation preserving homeomorphism of [0, 1] is a prod-
uct of commutators in PC+([0, 1)).

Proof. The proof given for rotations in A+([0, 1)) is still valid in PC+([0, 1)), since this group
contains A+([0, 1)).

We proved above that any homeomorphism of [0, 1] is a product of homeomorphisms whose
supports are contained in small intervals; conjugating by a rotation, we can consider a home-
omorphism h of [0, 1] whose support is included in [1

4
, 1
2
].

Define ϕ on [0, 1] by ϕ(x) = x
2

if x < 1
2
, ϕ(x) = 3x

2
− 1

2
if x > 1

2
. We define a sequence of

functions fi by f1 = ϕhϕ−1, fi+1 = ϕfiϕ
−1 for i > 1. The sequence fi converges uniformly to

the identity, and they have disjoint support; hence the sequence gn = f1f2 . . . fn converges
to a function g which is a homeomorphism of [0, 1] and verifies ϕ−1gϕ = hg; hence h is a
commutator. □

As above, this proves that PC+(J) is simple.
It is well-known that the group G+(J) is not simple, and not equal to its commutator

subgroup, this is provided by the following

Theorem 5. (Arnoux-Fathi-Sah 1981 [Arn81a]) Let λ be the Lebesgue measure on [0, 1),

the application saf :

 G+(J) → R⊗Q R
f 7→ saf(f) =

∑
α∈R

α⊗ λ((f − Id)−1({α}))

is a morphism and its kernel is the commutator subgroup of [G+(J),G+(J)].

But we have:

Proposition 20. The group [G+(J),G+(J)] is simple.
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Proof.
The group G+(J) satisfies the conditions of Lemma 3, which implies that its group of com-

mutator is the smallest normal subgroup. Since the commutator subgroup of [G+(J),G+(J)]
is normal in G+(J), the group [G+(J),G+(J)] is perfect.

It remains to prove that the commutator subgroup satisfies also the conditions of Lemma
3. Let f ∈ [G+(J),G+(J)]. The saf-invariant of an involution, being equal to its own
opposite, is zero so any involution is a product of commutators, and eventually composing
with an involution which exchanges a small interval and its image by f , we can assume
that Supp(f) ̸= [0, 1). By section A.2, f can be decomposed as f = g1 . . . gn, a product
of interval exchange transformations with small support included in Supp(f). There is no
reason for gi to be a product of commutators; but in that case, its invariant saf(gi) is not
0, and we can find maps hi with small support disjoint from the supports of the gi such that
saf(hi) = saf(gi); hence hi commute with all the gk, and we can write:

f = g1h
−1
1 . . . gnh

−1
n hn . . . h1.

Since f is a product of commutators, saf(f) = 0. By construction, saf(gih−1
i ) = 0, hence

it is a product of commutator; if we define k = hn . . . h1, we have, taking the invariant of
both sides, saf(k) = 0, hence k is a product of commutator, and f = (g1h

−1
1 ) . . . (gnh

−1
n )k is

a decomposition in product of commutators with arbitrarily small size.
This proves the first condition; to prove the second condition we can find involutions

sending a finite union of intervals inside an interval of larger measure. □
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