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SOLVABILITY RESULTS FOR THE TRANSIENT ACOUSTIC SCATTERING BY AN
ELASTIC OBSTACLE

MARC BONNET, STÉPHANIE CHAILLAT, ALICE NASSOR

Abstract. The well-posedness of the linear evolution problem governing the transient scattering
of acoustic waves by an elastic obstacle is investigated. After using linear superposition in the
acoustic domain, the analysis focuses on an equivalent causal transmission problem. The pro-
posed analysis provides existence and uniqueness results, as well as continuous data-to-solution
maps. Solvability results are established for three cases, which differ by the assumed regularity in
space on the transmission data on the acoustic-elastic interface Γ. The first two results consider
data with “standard” H−1/2(Γ) and improved H1/2(Γ) regularity in space, respectively, and are
established using the Hille-Yosida theorem and energy identities. The third result assumes data
with L2(Γ) regularity in space and follows by Sobolev interpolation. Obtaining the latter result
was motivated by the key role it plays (in a separate study) in the justification of an iterative
numerical solution method based on domain decomposition. A numerical example is presented
to emphasize the latter point.

Keywords: Transient acoustic-elastic scattering, Fluid-solid interaction, well-posedness

1 Introduction.

Mathematical models for the scattering of waves by penetrable obstacles play a key role in
many applications arising in geophysics, health sciences, aerospace and naval industry, among
others. This study addresses the solvability of the transient acoustic-elastic scattering problem,
where an elastic solid immersed in an unbounded acoustic fluid scatters a given incident acoustic
wave. It is motivated by applications to fluid-structure interaction (FSI), specifically by our
ongoing research activities in the context of naval engineering [22, 24] where accurately assessing
the potential effects of remote underwater explosions on submarines rests on computationally
solving the acoustic-elastic problem. Those studies have highlighted the importance of efficient
numerical algorithms and that of rigorous mathematical studies to derive and justify them.

Following a previous stage [22] which focused on transient acoustic scattering by a rigid hull,
our ongoing efforts towards solving acoustic-elastic scattering arising in fluid-structure interac-
tion problems (FSIPs) involve defining coupling algorithms, where the unbounded fluid medium
is modelled using boundary integral equations (BIEs) with the time variable dealt with using
a convolution quadrature based approach while finite elements and classical time-stepping algo-
rithms are used for the elastic solid. It turns out that the knowledge of data-to-solution mappings
for the continuous transient FSIP, and also for initial-boundary value problems (IBVPs) involved
in a domain decomposition approach, is esssential in designing coupling algorithms. For example,
available results on the solvability of transient Neumann IBVPs [17, 18, 27, 28] show that the
Sobolev interior regularity of the solution is about 1/2 above that of the Neumann data, with same
regularity in time for both (whereas the corresponding regularity gain is 3/2 for time-harmonic
Neumann BVPs), which precludes their use in transient coupling schemes as solution iterates
cannot remain in the same function space. In our ongoing computational work [5], we formulate
a coupling scheme for the transient FSIP based on Robin-Robin iterations, inspired by a related
work [10] on frequency-domain acoustic-acoustic coupling, and prove its convergence to the FSIP
solution assuming the latter exists and belongs to the requisite function space.

The goal of this work is thus to provide solvability results for the continuous transient acoustic-
elastic scattering problem, in such a way that those results in particular complete the convergence
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proof of our coupling iterative approach given in [5]. Generally speaking, a mathematical problem
(such as the FSIP model studied here) is well-posed if its solution (a) exists, (b) is unique and
(c) depends continuously on the problem data. In our context (where in particular the FSIP is
linear), requirement (c) typically leads to the data g and the solution ϕ verifying ∥ϕ∥X ≤ C∥g∥D
for specified pairs D,X of data and solution spaces and some constant C, and multiple data-to-
solution mappings may be established. Knowing such data-to-solution mappings is very important
for proving that computational coupling algorithms are well-behaved.

The well-posedness of the time-harmonic acoustic-elastic scattering is established in [3] in a
standard variational setting (where in particular, Lipschitz regularity for the fluid-solid interface
is found to be sufficient). While mathematical methods and results for the analysis of transient
IBVPs are available since over a half-century [21], investigations on the solvability of the transient
acoustic-elastic coupled problem are scarcer and recent. Solvability results for the 2D transient
FSIP in variational form are given in [2], the 2D setting there resulting mainly from the chosen
viewpoint of solving for the total field and using a 2D Dirichlet-to-Neumann map for domain
truncation purposes. A solvability result for the 3D problem is given in [19] by extending the
framework of [12, Chap. 7] based on the convergence of Galerkin approximations for IBVPs.

This paper aims at contributing solvability results for the transient acoustic-elastic scattering
problem that fit in the framework of our coupling methodology [5]. The analysis of the latter
in continuous form results in the convergence in L2([0, T ], L2(Γ)) norm of iteration residuals
written in terms of velocities and conormal derivative of fluid and solid quantities on the shared
interface Γ, T being the chosen finite analysis duration. Our present goals thus include establishing
solvability results such that the relevant parts of the solution have the above regularity on Γ, while
keeping regularity requirements on the data as low as possible to allow severe loadings potentially
undergone in practice by submerged structures.

We reformulate the acoustic-elastic scattering problem using the total elastic field but the
scattered acoustic field, which are governed by a PDE system with transmission data on Γ and
initial-rest conditions; as a result, the fluid-structure response for a finite analysis time is com-
pactly supported. Our main contribution then consists of three solvability results for the latter
problem. The first one assumes “standard” H−1/2(Γ) space regularity of the transmission data,

whereas improved H1/2(Γ) space regularity for that data is assumed for the second one. Those
two results in turn yield a third solvability result by Sobolev interpolation, where the transmission
data has L2(Γ) regularity in space. The latter result is the one most useful for the justification
of our coupling method under current development. For the first two results, we follow a proof
methodology whose basic steps are well established, namely:

• First consider data with sufficient regularity in time to allow classical time derivatives wher-
ever needed.

• Recast the FSIP as a first-order in time system with values in an appropriate time-independent
function space, then check that the Hille-Yosida theorem applies (see e.g. [7, Chap. 7], [13],
[15, Sec. 3]), yielding a strong (in time) solution by semigroup theory arguments.

• Derive an energy identity where a weaker norm of the above solution is controlled by a weaker
norm of the data.

• Using density arguments, extend the foregoing solvability results to a mild (in time) solution.

The space regularity setting for the first result corresponds to the mainstream variational treat-
ment of second-order linear PDEs. By contrast, the second result, which emphasizes extra reg-
ularity in space for the transmission data and the solution, is of a kind for which the available
literature on transient IBVPs appears much scarcer. Elliptic regularity arguments cannot be
readily invoked due to insufficient regularity of the accelerations, so that carrying out the above
proof steps entails modifying the operator domain and image spaces, showing that the former is a
dense subspace of the latter, and revisiting the subsequent energy identity. Then, the third result
relies on a Rellich integral identity in addition to invoking available space interpolation results.
In addition, since we consider transmission problems with interfacial data, whereas semigroup
methods for evolution PDEs usually assume homogeneous BCs and body sources and nonzero
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initial data or body sources, proofs rely on a prior recasting of the transmission problem to the
canonical format (homogeneous BCs, inhomogeneous body data) by lifting the interfacial data
and formulating a problem for the complementary fields involving body sources and homogeneous
BCs (as done in e.g. [14, Sec. 8.2] for the Neumann acoustic IBVP).

This article is organized as follows. In Section 2, the main FSIP and its weak formulation
are described. The main solvability results are then given (as Theorems 1 to 3) in Section 3.
Section 4 then presents a numerical illustration on a 2D test case wich highlights the effect of
data regularity on the solution. The ensuing Sections 5 to 7 give the proofs of Theorems 1 to 3,
respectively, with the help of auxiliary results whose proofs are deferred to Section 8.

2 FSI problem formulation.

We first define the setting for the considered fluid-structure interaction (FSI) problems, intro-
duce notation and outline goals. Boldface letters, e.g. x,u,σ, denote points, vectors or tensors
in the physical space Rd (d=2, 3).

2.1 Setting and governing equations. A bounded elastic solid (mass density ρs, elasticity tensor

C) occupying the domain Ωs ⊂ Rd is submerged in an acoustic fluid (mass density ρ, acoustic
wave velocity c) occupying the unbounded fluid region Ω := Rd \Ωs (where d = 2 or d = 3 is
the spatial dimension), see Figure 1. We denote by Γ := ∂Ω = ∂Ωs the Lipschitz continuous
boundary separating the solid and fluid domains, and by n the unit outward normal to Γ with
respect to the solid domain. The elasticity tensor C is elliptic, the other coefficients ρ, c, ρs being
positive and bounded away from 0. Our goal is to compute over a finite time interval [0, T ] the
scattering of a given acoustic wave by the elastic solid.

We choose the velocity potential ϕ, assumed to satisfy the wave equation

−∆ϕ+
1

c2
ϕ′′ = 0 in Ω× [0, T ],

as the main variable describing the fluid motion, the velocity and pressure being then respectively
given by v=∇ϕ (by definition of ϕ) and p = −ρϕ′, with the prime symbol denoting time deriva-
tives throughout. The primary excitation consists in an incident wave which would propagate
undisturbed in the absence of the submerged solid (i.e. in an infinite fluid domain Rd), defined
by the given velocity potential ϕinc solving at all times the homogeneous wave equation in Rd:

−∆ϕinc+
1

c2
ϕ′′inc = 0 in Rd×R. (1)

Moreover, ϕinc is assumed to verify ϕinc(·, t) = 0 in a neighborhood D of Ωs for any t≤ 0, so that
the immersed elastic solid causes no disturbance before t=0 (i.e. ϕ=ϕinc in Ω× (−∞, 0]).

The main variable describing the solid motion is taken as the displacement u, verifying the
elastic wave equation

−∆su+ρsu
′′ = 0 in Ωs× [0, T ],

n

φinc

Ω(ρ, c)

Ωs(ρs,C)

Figure 1. FSI configuration: geometry and notation
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where ∆s is the Navier differential operator such that ∆su= div (C :∇su). The fluid-structure
interaction (FSI) then occurs due to the kinematical and dynamical transmission conditions

(a) ∂nϕ = u′ ·n, (b) ρϕ′n = t[u] in Γ× [0, T ], (2)

which express the continuity across Γ of (a) the normal velocity and (b) the traction vector, given
for the solid by

t[u] := (C :∇u)·n.
Since the excitation triggering the FSI originates in the fluid and ϕinc(·, t) needs not be com-

pactly supported, we set

ϕ = ϕinc+ϕsc,

where the scattered field ϕsc is causal and compactly supported at any finite time by virtue of
the foregoing assumptions. The total fields are retained in Ωs. The transmission conditions (2)
expressed in terms of ϕsc then read

(a) ∂nϕsc = u
′ ·n− ∂nϕinc, (b) t[u] = ρ(ϕ′sc+ϕ

′
inc)n on Γ× [0, T ]. (3)

The FSI problem is thereafter formulated in terms of ϕsc as the main unknown for the fluid
response; we omit from now on the superscript “sc”, all fluid variables (e.g. ϕ) being understood
to pertain to that contribution (the complete fluid motion being recovered by adding back the
appropriate “inc” quantities). With this convention, the complete FSI problem for (ϕ,u) consists
of the initial value transmission problem (IVTP) defined by (a) the acoustic wave equation and
initial rest conditions in Ω, (b) the elastic wave equation and initial rest conditions in Ωs, and (c)
the kinematic and dynamic transmission conditions (3).

We will in fact focus on an equivalent non-dimensional version of the FSI problem, obtained
by expressing the coordinates x, t, field variables ϕ,u, t and material parameters C, ρs as

x̂ = bx̂, t = bt̂/c, ϕ = bcϕ̂, u = bû, t = ρc2t̂, C = ρc2Ĉ, ρs = ρρ̂s (4)

(where b is a characteristic length, e.g. 2b = diam(Γ)). Our main objective will hence be to
investigate the solvability of the dimensionless IVTP defined by

−∆ϕ+ϕ′′ = 0 in Ω×]0, T [, ϕ(0) = ϕ′(0) = 0 in Ω,

−∆su+ ρsu
′′ = 0 in Ωs×]0, T [, u(0) = u′(0) = 0 in Ωs,

∂nϕ = u′ ·n+υ, t[u] = ϕ′n+h in Γ×]0, T [

(5)

(having dropped all hat symbols), with (4) allowing recovery of the dimensional variables. Generic
transmission data in the form of arbitrary prescribed values of the discontinuities υ of normal
velocity and h of traction across Γ is considered in problem (5) for greater generality, the target
FSI problem corresponding to

υ=−∂nϕinc, h=ϕ′incn. (6)

Incident plane wave. The case of an incident plane wave field ϕinc of the form

ϕinc(x, t) = f
(
t− 1

c p̂·x
)
, (7)

where the unit vector p̂ defines the direction of propagation and the univariate function t 7→ f(t)
specifying the time modulation of the propagating pulse is assumed to have a compact support,
is of frequent practical interest. Any plane wave of the form (7) solves (1) in Rd ×R. The
transmission data (6) is then given by

υ = 1
cf

′(t− 1
c p̂·x

)
p̂·n, h = f ′

(
t− 1

c p̂·x
)
n. (8)

in particular, both quantities involve the derivative of the incident pulse. See also Remark 6.
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2.2 Variational formulation of the FSIP. Before stating and proving well-posedness results for
problem (5), we need to specify the underlying mathematical framework. Our goal being to obtain
solvability results under the least restrictive assumptions on the data, we adopt the common
mathematical setting for transient PDEs whereby time-dependent fields are treated as functions
of time with values in a Sobolev space (see e.g. [12], Chap. 7 or [21], Chaps. 3-5). The solvability
analysis will as a result largely consist in proving the well-posedness of a variational form of the
FSIP. In this section, we hence specify the framework (function spaces, bilinear forms, relevant
Green identities, variational FSI problem) that underlies the subsequent analysis.

We denote by
(
v, w

)
Γ
or

(
v,w

)
Γ
the L2(Γ) scalar product. The variational formulation of

problem (5) involves the bilinear forms a, b (for the fluid domain) and A,B (for the solid domain)
defined by

a(ϕ, ϕ̃) :=

∫
Ω
∇ϕ ·∇ϕ̃ dV, b(ϕ, ϕ̃) :=

∫
Ω
ϕ ϕ̃ dV,

A(u, ũ) :=

∫
Ωs

∇su :C :∇sũ dV, B(u, ũ) :=

∫
Ωs

ρsu·ũ dV.

(9)

where ∇su := 1
2

(∇u+ (∇u)T ) is the linearized strain tensor associated with a displacement
u in Ωs, and C and ρs are the dimensionless material parameters of the solid introduced in (4).
In addition to the standard Sobolev spaces L2(Ω), L2(Ωs) := L2(Ωs;Rd), H1(Ω) and H1(Ωs) :=
H1(Ωs;Rd), we will use the spaces H1

∆(Ω) and H
1
∆(Ωs) defined by

H1
∆(Ω) =

{
ϕ∈H1(Ω), ∆ϕ∈L2(Ω)

}
, H1

∆(Ωs) =
{
u∈H1(Ωs), ∆su∈L2(Ωs)

}
.

The Green identities for both the fluid and the solid media (e.g. [25, Thm. 4.4]) for Lipschitz

domains Ωs and Ω are given by: for any (ϕ, ϕ̃) ∈ H1
∆(Ω)×H1(Ω), it holds

a(ϕ, ϕ̃) = −b(∆ϕ, ϕ̃)−
(
∂nϕ, ϕ̃

)
Γ

(10a)

and for any (u, ũ) ∈H1
∆(Ωs)×H1(Ωs), we have

A(u, ũ) = −B(ρ−1
s ∆su, ũ) +

(
t[u], ũ

)
Γ
. (10b)

The differing signs in front of the last term of (10a,b) result from the chosen orientation convention

for Γ. The (co)normal derivatives ∂nu and t[u] are elements of H−1/2(Γ) and H−1/2(Γ), respec-

tively, with the notation
(
·, ·

)
Γ
understood as the H−1/2(Γ), H1/2(Γ) duality pairing extensions

of the L2(Γ) scalar product. All functions involved in this work are real-valued.
By the classical process of applying the Green identities (10a,b) to weighted-residual forms

of the PDEs and using the transmission conditions in the resulting interfacial integrals, the FSI
problem (5) can be recast in variational form: find (ϕ,u) ∈ C0

T (H
1) ∩ C1

T (L
2) such that

(a) a
(
ϕ(t), ϕ̃

)
+ b

(
ϕ′′(t), ϕ̃

)
+A

(
u(t), ũ

)
+B

(
u′′(t), ũ

)
+ I

(
u′(t), ϕ̃

)
+ Is

(
ϕ′(t), ũ

)
=

(
h(t), ũ

)
Γ
−
(
υ(t), ϕ̃

)
Γ

in D′([0, T ]) for all (ϕ̃, ũ) ∈ H1,

(b) (ϕ,u)(0) = 0 in H1, (ϕ′,u′)(0) = 0 in L2,

 (11)

where we have abbreviated as Cm
T (X) the space Cm

(
[0, T ];X

)
of m times continuously differen-

tiable functions f : [0, T ] → X with values in a Hilbert space X, equipped with the norm

∥ϕ∥Cm
T (H) =

m∑
k=0

(
sup

t∈[0,T ]
∥∂kt ϕ(t)∥H

)
.

The bilinear forms a, b, A,B are as defined in (9), the coupling occurs through the additional
bilinear forms

I
(
v, ϕ̃

)
:=

(
n·v, ϕ̃

)
Γ
, Is

(
ψ, ũ

)
:= −

(
ψ,n·ũ

)
Γ
, (12)

and the shorthand notations L2,Hs (s∈R) refer for convenience to the product spaces

L2 := L2(Ω)×L2(Ωs), Hs := Hs(Ω)×Hs(Ωs).
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We also use similar notation for product spaces of pairs of interfacial traces or transmission data:

Hs(Γ) := Hs(Γ)×Hs(Γ)
(
L2(Γ) := H0(Γ)

)
.

The equality (11a) is to be satisfied in the sense of distributions in the time variable with
support in [0, T ] (i.e. in D′([0, T ]), as indicated there).

The FSI problem (5) and the variational problem (11) are equivalent in the following sense
(see proof in Sec. 8.1):

Proposition 1 (ϕ,u) ∈ C0
T (H

1) ∩ C1
T (L

2) solves the IVTP (5) if and only if (ϕ,u) solves the
variational problem (11).

3 Solvability results.

We now state the solvability results which constitute the main focus of this work. For the
reasons discussed in the Introduction, they consist in two primary solvability results (Theorems 1
and 2) and a subsequent result obtained by invoking interpolation theorems for the previous
solvability mappings (Theorem 3). Those results are formulated in terms of spaces of functions
f : [0, T ] → X with values in a Hilbert space X, which are taken as either Cm

T (X) (see Section 2.2)
or L2([0, T ];X), Hm([0, T ];X) (often abbreviated as L2

T (X), Hm
T (X), respectively hereafter)

equipped with the respective norms

∥ϕ∥2L2([0,T ];H) =

∫ T

0
∥ϕ(t)∥2H dt, ∥ϕ∥2Hm([0,T ];H) =

m∑
k=0

∫ T

0
∥∂kt ϕ(t)∥2H dt.

3.1 Primary solvability result, data with H−1/2(Γ) space regularity. For this first result, proved
in Section 5, we consider transmission data with the “standard” space regularity for variational
problems.

Theorem 1 Let Γ be a Lipschitz closed surface.

(i) Let (υ,h) ∈ H1
T (H

−1/2(Γ)) with (υ,h)(0) = (0,0). Then, the transmission problem (5)
admits a unique solution (ϕ,u), with

(ϕ,u) ∈ C0
T (H

1), (ϕ′,u′) ∈ C0
T (L

2).

(ii) If (υ,h) ∈ H2
T (H

−1/2(Γ)) with (υ,h)(0) = (υ′,h′)(0) = (0,0), we have

(ϕ,u) ∈ C0
T (H

1
∆), (ϕ′,u′) ∈ C0

T (H
1), (ϕ′′,u′′) ∈ C0

T (L
2).

with H1
∆ := H1

∆(Ω)×H1
∆(Ωs).

3.2 Primary solvability result, data with H1/2(Γ) space regularity. Motivated in particular by
the later objective of applying Sobolev interpolation, we now consider cases where the data has
identical regularity in time but improved regularity in space (relative to Theorem 1). Taking
advantage of this to obtain corresponding improvement on the solution space regularity is not
straightforward. For instance, elliptic regularity arguments cannot be readily invoked due to
insufficient regularity of the accelerations, while energy estimates obtained for proving Theorem 1
also do not directly adapt to data with extra spatial smoothness (see Remark 4). This called for
substantial modifications of the main steps of the proof method used for Theorem 1, allowing to
obtain by the same general approach the following additional set of primary solvability results,
proved in Section 6:

Theorem 2 Let Γ be a C1,1 closed surface.

(i) If (υ,h) ∈ L2
T (H

1/2(Γ)) with (υ,h)(0) = (0,0). Then, the transmission problem (5) admits
a unique solution (ϕ,u), with

(ϕ,u) ∈ C0
T (H

1), (ϕ′,u′) ∈ C0
T (L

2).
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(ii) If (υ,h) ∈ H1
T (H

1/2(Γ)) with (υ,h)(0) = (υ′,h′)(0) = (0,0), we have

(ϕ,u) ∈ C0
T (H

2), (ϕ′,u′) ∈ C0
T (H

1), (ϕ′′,u′′) ∈ C0
T (L

2).

3.3 Interpolation solvability result. Finally, the design and convergence study of domain decom-
position algorithms applied to the IVTP (5) make it convenient to consider transmission data

whose space regularity is L2(Γ) rather than H1/2(Γ) or H−1/2(Γ). Motivated by this, we apply
interpolation space arguments (see e.g. [21, Chaps. 1, 4]) to mappings given in Theorems 1 and 2
(or other similar pairs of results), which yields additional solvability mappings. In the following
theorem, proved in Section 7, we give mappings for which the data has L2(Γ) space regular-
ity while the solution has Neumann traces ∂nϕ, t[u] and boundary traces of velocities ϕ′,u′ in
L2
T (Γ). Such mappings are very useful as they provide supporting arguments in the analysis and

justification of coupling algorithms based on iteratively solving IBVPs in each domain [5].

Theorem 3 Let Γ be a C1,1 closed surface. Let (υ,h) ∈ H1
T (L

2(Γ)) with (υ,h)(0) = (0,0).

(i) Then, the transmission problem (5) admits a unique weak solution (ϕ,u), with

(ϕ,u) ∈ C0
T (H

3/2), (ϕ′,u′) ∈ C0
T (H

1/2).

(ii) In addition, the velocities have boundary traces, with ϕ′|Γ ∈ L2
T (Γ) and u

′|Γ ∈ L2
T (Γ), and

we also have ∂nϕ ∈ L2
T (Γ) and t[u] ∈ L

2
T (Γ).

3.4 Discussion.

Remark 1 (Loss of regularity relative to the time-harmonic FSIP) The solvability result of [3] for the
time-harmonic FSIP states that (ϕ,u) ∈ H1 if the incident wave is such that (∂nϕinc, ϕincn) ∈
H−1/2(Γ). By contrast, in the present transient case, a L2

T (H
−1/2Γ) data regularity is not sufficient

for obtaining a L2
T (H

1) solution regularity, which is achieved at the cost of one extra unit of data
regularity either in space (Theorem 1, item (i)) or in time (Theorem 2, item (ii)).

This behavior is essentially the same as that affecting the solvability mappings of Neumann IB-
VPs, thoroughly studied in [17, 18, 27, 28] where the achievable solution regularity is also shown
to be fractionally higher (or the required data regularity fractionally lower) compared to solvability
mappings obtained using the more-classical approach based on strong solutions and energy identi-
ties used in this work. Such considerations are very important for iterative domain decomposition
methods that proceed by generating convergent sequences of IBVP solutions in each domain: it-
erates must remain in a fixed space, a prerequisite that sequences of Robin IBVP solutions [11, 5]
satisfy while sequences of Neumann IBVP solutions do not due to the aforementioned reasons.
Regarding the present context, Theorem 3 implies that both the acoustic and elastodynamic com-
ponents of the FSIP are Robin solutions whose respective Robin data is in L2

T (Γ).

Remark 2 (Interfacial data for incident plane waves) Consider incident plane waves of the form (7).
If f ∈ C2(R), the associated interfacial data (8) has enough regularity for Theorem 3, and a
fortiori for Theorem 1(i). If f ∈ C1(R) only, even Theorem 1(i) does not in general apply.

If f ∈ Hm(R), we have ϕinc|D×[0,T ] ∈ Hp
T (H

q(D)) if p+ q ≤ m, where D ⊂ Rd is a bounded
neigbhoorhood of Ωs. For m=2, the data (8) therefore has adequate regularity for Theorem 2(i),
while m=3 is suitable for Theorem 2(ii).

Remark 3 (Hollow solids) The problem setting of Section 2 assumes for definiteness that the solid
domain Ωs fills the whole region interior to Γ. However, the results of this work apply without
modification to hollow elastic solids Ωs such that ∂Ωs = Γ∪ Γint, where the additional bound-
ary component Γint is interior to (and disconnected from) Γ and supports homogeneous boundary
conditions. The test case configuration of Section 4 uses such a configuration. Similarly, ad-
ditional given excitations applied to Ωs away from Γ may be accounted for with straightforward
modifications.
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Figure 2. Configuration for the numerical test case.

4 Numerical example.

To illustrate the effect of data space-time regularity on the solution of the coupled problem, we
consider a representative 2D test configuration, where Ωs is a hollow solid made of two straight
parallel walls closed by two semicircular parts and immersed in a fluid occupying the unbounded
surrounding region Ω (Figure 2), so that the coupling interface Γ is the outer boundary of Ωs.
We assume translational invariance along e3 and plane strain deformations for the solid, so that
ϕ = ϕ(x1, x2) and u = u1(x1, x2)e1 + u2(x1, x2)e2. The acoustic-elastic IVTP to be solved thus
consists of the two-dimensional form of (5) supplemented with a traction-free (i.e. homogeneous
Neumann) BC on the interior solid boundary. The transmission data υ,h results from the incident
acoustic wave defined by

ϕinc(x, t) = f
(
t− 1

cx1
)
, f(t) =

a
( 2t

Tp

)γ (
2− 2t

Tp

)γ
if t ∈ [0, Tp],

0 otherwise.
(14)

The exponent γ allows to tune the space-time regularity of the modulating pulse f of the incident
plane wave (see Remark 2), since f ∈ Cγ−1(R) by construction. In the numerical results, the
pulse duration and amplitude are set to Tp = 4.675 10−4 s and a = 108, the fluid acoustic velocity
and mass density to cf = 1500 m/s and ρf = 1000 kg/m3, and the elastic mass density and
Young’s modulus to ρmat = 7800 kg.m−3 and E = 210 GPa. The simulation time interval is [0, T ]
with T = 2.3 10−3 s; it is discretised into M = 1118 uniform time steps (∆t = 1.7 10−6 s).

We solve the fluid-structure interaction problem with the convergent iterative global-in-time
method proposed in the companion investigation [5], based on solving IBVPs with Robin bound-
ary conditions in each domain. The latter is implemented, for this proof-of-concept stage, using
an in-house finite element method (FEM) solver based on the programming material provided
in [6] for the elastic body and an in-house boundary element method (BEM) solver, based as
described in [23] on the convolution quadrature method and the Z-transform, for the acoustic
medium. The latter relies on numerically solving a finite set of boundary integral equations in
the complex frequency domain, a task that is accelerated by means of a Hierarchical matrix com-
pression [4, 8] and a high-frequency approximation (HFA) [22]. For each transient BEM solution,
2MHFA = 70 BEM problems corresponding to complex frequencies with modulus below a chosen
cut-off value are solved using GMRES with a relative tolerance of 10−6. Solutions at the remain-
ing 2(M−MHFA) frequencies are approximated by a heuristic HFA. The transient BEM solutions
yielded with or without recourse to a HFA by the inverse Z transform, whose accuracy parameter
is set to 10−5 [23], agree within less than 1% in relative L2

T (Γ) norm. The fluid-solid interface
is discretized into 1778 boundary elements (with piecewise-linear and continuous interpolation),
while the finite element model has 15 400 nodal displacement unknowns.

We solve numerically the above-described problem for three cases defined by setting γ = 1, 2, 3
in the incident wave (14). The interfacial data being given in terms of ϕinc by (6), the case γ = 3
meets the data regularity requirement for Theorem 2, while γ = 1 fails to meet that of Theorem 1.
In Figure 3, we plot the computed time histories at the evaluation point indicated in Fig. 14 of
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Figure 3. Scattering by a 2D cylinder: normalized fluid normal velocities (left) and normalized
fluid pressures (right) obtained for three different load regularities.

(a) the normalized elastic normal velocity and (b) the normalized total fluid pressure, obtained
upon convergence of the coupling iterations. As expected, the discontinuous incident load (6)
having discontinuities for γ = 1, the solution is discontinuous and visibly affected by oscillations.
The loads γ = 2 (with a discontinuous derivative) and γ = 3 produce increasingly better behaved
numerical time histories.

The space-time regularity of the data also influences the convergence rate of the iterative algo-
rithm. To observe this, we evaluate for each solution iterate (ϕi,ui) the dimensionless transmission
residual on Γ given by

er(ϕ
i,ui) :=

∥∥∂nϕ− ∂tu
i ·n− υ

∥∥2
L2
T (Γ)

+
∥∥ti − ∂tϕ

in− h
∥∥2
L2
T (Γ)∥∥υ∥∥2

L2
T (Γ)

+
∥∥h∥∥2

L2
T (Γ)

Plots of er(ϕ
i,ui) against the iteration number i for γ = 1, 2, 3 on Figure 4 show that the

convergence speed improves with the regularity of the incident wave.

Figure 4. Scattering by a 2D cylinder: convergence of the normalized transmission residual
indicator er with the coupling iterations, for three different load regularities.
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5 Proof of Theorem 1.

This section is now devoted to the proof of Theorem 1 by means of the Hille-Yosida theorem.
Its main steps are as follows: (i) recast the IVTP in a first-order form; (ii) define a lifting of
the interfacial data; (iii) apply the Hille-Yosida theorem for the complementary part of the FSI
solution, which obeys a non-homogeneous first-order system with homogeneous interface condi-
tions; (iv) show that a weaker norm of the strong solution is controlled by a weaker norm of the
data; and finally (v) define by density a weak solution satisfying the variational formulation (11).
Many of the ingredients and notations introduced thereafter will be also used for the proofs of
Theorem 2 (Section 6) and Theorem 3 (Section 7).

5.1 First-order form of the FSIP. In preparation to applying the Hille-Yosida theorem, we begin
by recasting the IVTP in first-order form. Setting ψ :=ϕ′ and v :=u′ to treat the velocities as sep-
arate unknowns, the system (5) yields the following first-order system for U(t) := (ϕ,u, ψ,v)T(t):

U′+AU = 0, U(0) = 0, BU = H (15)

having set H := (υ,h)T and with the (unbounded) differential operator A in Ω×Ωs×Ω×Ωs and
boundary operator B in Γ×Γ defined by

AU =


−ψ
−v
−∆ϕ

−ρ−1
s ∆su

 , BU =

{
∂nϕ−n·v
t[u]−nψ

}
. (16)

Let the Hilbert space H be defined by H := H1 × L2 = H1(Ω)×H1(Ωs)×L2(Ω)×L2(Ωs) and

equipped with the scalar product given, for any U, Ũ in H, by

(U, Ũ)H := a(ϕ, ϕ̃) + b(ϕ, ϕ̃) +A(u, ũ) +B(u, ũ) + b(ψ, ψ̃) +B(v, ṽ), (17)

in terms of the bilinear forms (9). Then, let the space HA and its scalar product (·, ·)HA
be defined

by

HA :=
{
U∈H, AU∈H

}
= H1

∆ ×H1, (U, Ũ)HA
= (U, Ũ)H + (AU,AŨ)H,

with the product space H1
∆ as defined in Theorem 1. We set the domain D(A) of the operator A

defined by (16) as D(A) =
{
U ∈ HA, BU = 0

}
, in particular embedding as essential conditions

the interfacial constraints BU=0, i.e.

(a) ∂nϕ−n·v = 0, (b) t[u]−nψ = 0. (18)

The following density property, proved in Section 8.2, is crucial for applying the Hille-Yosida
theorem:

Lemma 1 The space D(A) is a dense subspace of (H, ∥ · ∥H).

We note that the norm ∥ · ∥H arising from (17) is equivalent to the standard Sobolev product
norm of H1(Ω)×H1(Ωs)×L2(Ω)×L2(Ωs) = H. This follows from the fact that relevant Sobolev
norms in Ω or Ωs can be expressed in terms of the bilinear forms (9), the L2(Ω) and H1(Ω) norms
being then given by

∥ϕ∥2Ω = b(ϕ, ϕ), ∥ϕ∥21,Ω = a(ϕ, ϕ)+b(ϕ, ϕ), (19a)

and the L2(Ωs) and H
1(Ωs) norms by

∥u∥2Ωs
= B(u,u), ∥u∥21,Ωs

= A(u,u)+B(u,u). (19b)

The norms given by (19b,b) are equivalent to the usual L2 or H1 norms, for the solid thanks to
Korn’s inequality (e.g. [9, Thm. 6.15-1]) and the assumed properties of the material parameters.
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5.2 Interface data lifting. To put the system (15) in a form allowing invocation of the Hille-Yosida
theorem, we need to define a data lifting and obtain from (15) a first-order system featuring
homogeneous transmission conditions. To this end, let UL satisfy(

µI+A
)
UL = 0, BUL = H, (20)

for some µ∈R, µ ̸=0. The problem (20) is uniquely solvable for UL:

Lemma 2 Let H ∈ X
(
[0, T ];H−1/2(Γ)

)
for some Banach space X. Then, the system (20) has a

unique solution UL ∈X([0, T ];H), verifying ∥UL∥X([0,T ];H) ≤ C∥H∥X([0,T ];H−1/2(Γ)).

Proof. Writing UL =
(
ϕL,uL, ψL,vL

)T
and eliminating ψL and vL, the remaining equations of

system (20) are

−∆ϕL+µ
2ϕL = 0 in Q, −∆su+ ρsµ

2uL = 0 in Qs,

∂nϕL−µuL ·n = υ, t[uL]−µϕLn = h in Σ.

They define for each t∈ [0, T ] a transmission problem, which is set in weak form as

Find (ϕ,u)(t)∈H1, A
(
ϕ(t),u(t); ϕ̃, ũ

)
= Ft(ϕ̃, ũ) for all (ϕ̃, ũ)∈H1 (21)

with

A
(
ϕ,u; ϕ̃, ũ

)
= a(ϕ, ϕ̃) + µ2b(ϕ, ϕ̃) +A(u, ũ) + µ2B(u, ũ) + µ

(
u·n, ϕ̃

)
Γ
− µ

(
ϕn, ũ

)
Γ

Ft(ϕ̃, ũ) =
(
h(t), ũ

)
Γ
−
(
υ(t), ϕ̃

)
Γ

We note that
(
u ·n, ϕ̃

)
Γ
−

(
ϕn, ũ

)
Γ
= 0 if (ϕ̃, ũ) = (ϕ,u). Together with definitions (9), this

implies A
(
ϕ,u; ϕ,u

)
≥ C∥(ϕ,u)∥2

H1 , i.e., that the bilinear form A is coercive on H1. Moreover,

the linear functional Ft is continuous on H1 by assumption on (υ,h). Problem (21) is therefore
uniquely solvable in H1 by Lax-Milgram’s theorem. The remaining equations of (20) then give
(ψL,vL) = µ(ϕL,uL) ∈ H1. Finally, we have ∥UL(t)∥H ≤ C∥H(t)∥H−1/2(Γ) for each t ∈ [0, T ],

hence the claimed space-time estimate. □

We can now reformulate the FSI system (15) using the new unknown Uc := U−UL. Since U
and UL respectively verify (15) and (20) and introducing the generic system

Z′ + AZ = F, BZ = 0, Z(0) = 0 t ∈ [0, T ] (22)

with unknown Z and datum F, it follows that Uc solves system (22) with F := µUL−U′
L. This

reformulation of the initial IVTP as a non-homogeneous first-order system with homogeneous
interface conditions allows now to apply the Hille-Yosida theorem.

5.3 Application of the Hille-Yosida theorem. The format of (22), together with the density prop-
erty of Lemma 1, allow its solvability to be decided for any right-hand side F having appropriate
regularity, if it satisfies the conditions of the Hille-Yosida theorem [13]. In the present context,
we need to verify that there exists λ∈R such that Aλ :=A+λI : D(A) → H is maximal monotone,
i.e., satisfies

(AλU,U)H ≥ 0 for any U∈D(A) (Aλ monotone),

for any F∈H, there exists U∈D(A) such that (Aλ+ I)U = F (Aλ+ I surjective).

Proving that the above conditions are indeed met will be facilitated by the following lemma:

Lemma 3 For any U∈D(A), we have

(a) (AU,U)H = −b(ψ, ϕ)−B(v,u), (b) 2|(AU,U)H| ≤ ∥U∥2H.

Proof of Lemma 3. Using the Green identities (10a,b) in (AU,U)H and the essential conditions (18)
yields (a). Then, (b) results from applying Young’s inequality to the right-hand side of (a) and
recalling the definition (17) of ∥U∥2H. □
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The proof of the monotonicity and surjectivity then follows.

1. Monotonicity. Using definitions (16) of A and (17) of the scalar product in H and appling
Lemma 3a, we obtain after rearrangement

(AU,U)H + λ(U,U)H = λa(ϕ, ϕ) + λA(u,u) + 1
2b
(
ϕ−ψ, ϕ−ψ

)
+ 1

2B
(
u−v,u−v

)
+ (λ− 1

2)
[
b(ϕ, ϕ)+b(ψ,ψ)

]
+ (λ− 1

2)
[
B(u,u)+B(v,v)

]
, (23)

implying that (AU,U)H+λ(U,U)H ≥ 0, i.e. monotonicity holds, for any λ≥ 1
2 .

2. Surjectivity. Now, for µ = λ + 1, we investigate whether the equation (A+ µI)U = F is

solvable for U =
(
ϕ,u, ψ,v

)T ∈ D(A) given F =
(
f,f , g, g

)T ∈ H. Eliminating ψ and v via
ψ = µϕ−f and v = µu−f with the first two equations, the problem on ϕ,u reads

(b) µ2ϕ−∆ϕ = g+µf in Ω,

(d) µ2u− ρ−1
s ∆su = g+µf in Ωs,

(e) ∂nϕ−µu·n = −f ·n on Γ,

(f) t[u]−µϕn = −fn on Γ,

and is set in variational form as

Find (ϕ,u)∈H1
∆, A

(
ϕ,u; ϕ̃, ũ

)
= F(ϕ̃, ũ) for all (ϕ̃, ũ)∈H1 (24)

where A is the bilinear form in problem (21) and

F(ϕ̃, ũ) =
(
g+µf, ϕ̃

)
+
(
f ·n, ϕ̃

)
Γ
+
(
g+µf , ũ

)
−
(
fn, ũ

)
Γ
.

The bilinear form A is already known to be coercive on H1, and the linear functional F is
continuous on H1 for any F ∈ H. Problem (24) is hence uniquely solvable by the Lax-Milgram
theorem. Elliptic regularity then shows that (ϕ,u) ∈H1

∆, whereupon reconstructing (ψ,v) with
the remaining equations yields (ψ,v) ∈ H1. The system (A+ µI)U = F is therefore uniquely
solvable in D(A) for any F∈H.

3. Conclusion. Choosing µ = λ+1, items 1, 2 above show that A+λI : D(A) → H is maximal
monotone for any λ≥ 1

2 . The Hille-Yosida theorem hence applies to the generic system (22):

Proposition 2 [13, Chap. II, Theorem 1.3] Assume that either F ∈ C1
T (H) or F ∈ C0

T (D(A)).
Then, the system (22) has a unique solution Z ∈ C1

T (H) ∩ C0
T (D(A)).

At this point, we have shown that the system (22) has a unique solution for any F with sufficient
regularity. We now aim at finding a strong solution U of the first-order form IVTP (15) under
weaker regularity assumption on H (which corresponds to our data). According to Lemma 2,

we know that if H ∈ C2
T (H

−1/2) with H(0) = 0, we have UL ∈ C2
T (H) with UL(0) = 0. Hence,

system (22) with F = µUL−U′
L has a unique strong solution Uc. Moreover, by Lemma 4, the FSI

strong solution is given by U = UL+Uc and U ∈ C1
T (H) ∩ C0

T (D(A)).

5.4 Energy estimates. To show the energy estimates and then define the weak solution for
problem (11), we need in fact to show that U admits another representation. We will need the
following Lemma:

Lemma 4 Let Z solve (22) for given F. If F(0) = 0 and either F ∈ C2
T (H) or F ∈ C1

T (D(A)), we
have Z ∈ C1

T (D(A)), and its time derivative Z′ ∈ C1
T (H) ∩ C0

T (D(A)) solves (i) (Z′)′+AZ′ = F′

and BZ′ = 0 in [0, T ], (ii) Z′(0) = 0.

Proof of Lemma 4. The system (22) may be differentiated in time (since all quantities are C1 in
time with values in the requisite spaces); moreover, Z′(0) = F(0)−AZ(0) = 0. □

Using the Lemma 4 and introducing Z that solves (22) with F = UL, we have that

U = UL + µZ− Z′. (25)

We now establish estimates for the strong solution given by (25) to show that a weaker norm
of the strong solution is controlled by a weaker norm of the data.
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Lemma 5 For any H ∈ C2
T (H

−1/2(Γ)) with H(0) = 0, the strong solution U of the FSI system (15)
verifies the estimate

sup
t∈[0,T ]

∥U(t)∥2H ≤ C∥H∥2
H1

T (H−1/2(Γ))
. (26)

If H ∈ C3
T (H

−1/2(Γ)) with H(0) = H′(0) = 0, we have the higher-regularity estimate

sup
t∈[0,T ]

∥U(t)∥2HA
≤ C∥H∥2

H2
T (H−1/2(Γ))

. (27)

The constant C > 0 in each estimate depends on T and Γ but not on H.

Proof of Lemma 5. We recall the representation (25) of U. Testing the system Z′ +AZ = UL

against Z, we have (Z′,Z)H = (UL,Z)H−(AZ,Z)H which, using Lemma 3 for U = Z∈C1
T (D(A)),

gives
2
(
Z′(τ),Z(τ)

)
H ≤ 2

(
UL(τ),Z(τ)

)
H + ∥Z(τ)∥2H

Integrating over τ ∈ [0, t], we thus obtain

∥Z(t)∥2H ≤ 2

∫ t

0
∥Z(τ)∥2H dτ + ∥UL∥2L2

T (H) t∈ [0, T ]. (a)

The same derivation applies to Z′ (by testing against Z′ the system (Z′)′+AZ′ = U′
L obeyed by

Z′, see Lemma 4), to obtain

∥Z′(t)∥2H ≤ 2

∫ t

0
∥Z′(τ)∥2H dτ + ∥U′

L∥2L2
T (H), t∈ [0, T ]. (b)

As usual, Gronwall’s lemma plays a key role in the derivation of such estimates. The following
version [11, Chap. 18] is used:

Lemma 6 (Gronwall) Let the univariate function Φ ∈ L∞([0, T ]) verify Φ(t) ≥ 0 a.e. in [0, T ].
Assume in addition that the inequality

Φ(t) ≤ C1

∫ t

0
Φ(s) ds+ C2

holds a.e. in [0, T ] for some constants C1, C2 ≥ 0. Then:

Φ(t) ≤ C2 exp(C1t).

Lemma 6 is applicable to inequalities (a) and (b) with, respectively, Φ(t) = ∥Z(t)∥2H and
Φ(t) = ∥Z′(t)∥2H. Consequently there exists C > 0 such that

∥Z(t)∥2H ≤ C∥UL∥2L2
T (H), ∥Z′(t)∥2H ≤ C∥U′

L∥2L2
T (H) t∈ [0, T ]. (c)

Since UL ∈ C2
T (H), estimate (26) follows by using (c) in the solution representation (25) and

Lemma 2.
If H in fact verifies the given higher-regularity assumptions and initial conditions, the esti-

mates (26) apply to both U (with datum H) and U′ (with datum H′). Since U′(t) = AU(t) holds
in H, we similarly obtain estimate (27) from

∥U(t)∥2HA
= ∥U(t)∥2H + ∥AU(t)∥2H = ∥U(t)∥2H + ∥U′(t)∥2H ≤ C∥H∥2

H2
T (H−1/2(Γ))

t∈ [0, T ]. □

5.5 Existence and uniqueness of a weak solution. Estimate (26) shows that the strong solution

U with data H ∈ C2
T (H

−1/2) found in Section 5.3 in fact has its weaker C0
T (H) norm controlled

by the weaker H1
T (H

−1/2(Γ)) norm of H. This allows to obtain a solvability result for the FSIP
in variational form, under weaker regularity assumptions on H (which is the main goal of this
contribution).
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To this aim, let H ∈ H1
T (H

−1/2(Γ)) with H(0) = 0 be some transmission data. By a den-

sity argument1 there exists a sequence Hn ∈ C2
T (H

−1/2(Γ)) with Hn(0) = 0 such that ∥Hn −
H∥H1

T (H−1/2(Γ)) → 0, and a lifting Un
L can be associated using (20) to each Hn. Using Proposi-

tion 2, the FSI system (15) has for each datum Hn a unique solution Un ∈ C1
T (H) ∩ C0

T (D(A)),
given by (25) with Z solving (22) for F=Un

L. Applying (by linear superposition) the estimate (26)
to the data Hn−Hm and corresponding solution Un−Um, we readily find that (Un) is a Cauchy
sequence in C0

T (H). Upon taking the limit n → ∞ in that estimate, the limit U ∈ C0
T (H) of Un

satisfies
sup

t∈[0,T ]
∥U(t)∥2H ≤ C∥H∥2

H1
T (H−1/2(Γ))

,

and defines the expected solution of the variational problem (11). We now need to prove that
this is actually the case, and that U is the only such solution.

1. U defines a solution of the variational problem (11). Let (ϕ̃, ũ) ∈ H1 be a pair of time-

independent functions, and let φ ∈ C∞
0 ([0, T ]). Testing against ϕ̃φ and ũφ, respectively, the

wave equations verified (by virtue of (15)) in L2(Ω× [0, T ]) by each ϕn and in L2(Ωs× [0, T ]) by
each un, we have∫ T

0

(
−∆ϕn+ϕ

′′
n, ϕ̃

)
Ω
φ(t) dt+

∫ T

0

(
−∆sun + ρsu

′′
n, ũ

)
Ωs
φ(t) dt = 0.

We first apply the Green identities (10a,b) (which is valid since each (ϕn,un) belongs to C
0
T (H

1
∆))

and express ∂nϕn and t[un] by means of the transmission conditions (which they verify in the

L2
T (H

−1/2(Γ)) sense), to obtain∫ T

0

[
a
(
ϕn, ϕ̃

)
+ b

(
ϕ′′n, ϕ̃

)
+A

(
un, ũ

)
+B

(
u′′
n, ũ

)
+ I

(
u′, ϕ̃

)
+ Is

(
ϕ′, ũ

)]
φ(t) dt

=

∫ T

0

[(
hn(t), ũ

)
Γ
−
(
υn(t), ϕ̃

)
Γ

]
φ(t) dt,

in terms of the bilinear forms a, b, A,B defined by (9) and I, Is by (12). Then, all time derivatives
are transferred to φ via integrations by parts, yielding (since φ ∈ C∞

0 ([0, T ]))∫ T

0

[
a(ϕn, ϕ̃) +A(un, ũ)

]
φ(t) dt+

∫ T

0

[
b(ϕn, ϕ̃) +B(un, ũ)

]
φ′′(t) dt

−
∫ T

0

[
I(un, ϕ̃) + Is(ϕn, ũ)

]
φ′(t) dt =

∫ T

0

[(
hn(t), ũ

)
Γ
−
(
υn(t), ϕ̃

)
Γ

]
φ(t) dt.

Since Hn → H in L2
T (H

−1/2(Γ)) (by assumption), which implies Un → U in L2
T (H), and using

the continuity of the bilinear forms a, b, A,B, I, Is, taking the limit n→ ∞ in the above identity
gives∫ T

0

[
a(ϕ, ϕ̃) +A(u, ũ)

]
φ(t) dt+

∫ T

0

[
b(ϕ, ϕ̃) +B(u, ũ)

]
φ′′(t) dt

−
∫ T

0

[
I(u, ϕ̃) + Is(ϕ, ũ)

]
φ′(t) dt =

∫ T

0

[(
h(t), ũ

)
Γ
−
(
υ(t), ϕ̃

)
Γ

]
φ(t) dt

for any φ ∈ C∞
0 ([0, T ]). The components of U therefore satisfy the variational formulation (11)

as an equality in D′([0, T ]).

2. Uniqueness. Assume that the variational formulation (11) has, for the same datum H,
two distinct solutions U1 and U2 satisfying initial-rest conditions. By linearity, the components
of W := U1 − U2 must then solve the variational problem (11) with H = 0. The function

1Take any g ∈ H1
T (H

−1/2(Γ)) with g(0) = 0. Letting ĝ(t) = g(T )t/T , we have g− ĝ ∈ H1
0

(
[0, T ];H−1/2(Γ)

)
and ĝ ∈ C2

T (H
−1/2(Γ)) ⊂ H1

T (H
−1/2(Γ)). Since C2

c
(
[0, T ];H−1/2(Γ)

)
is dense in H1

0

(
[0, T ];H−1/2(Γ)

)
, see e.g. [7,

Sec. 8.3], approximating sequences gn of g exist as claimed.
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Z(t) :=
∫ t
0 W(s) ds is also at initial-rest and (by integration over the time interval [0, t]) solves the

same homogeneous variational problem. Moreover, due to the integration in time, Z ∈ C0
T (D(A))∩

C1
T (H), i.e., is a strong solution of the homogeneous evolution problem. By Proposition 2, we

must hence have Z = 0, implying W = 0. This proves the uniqueness of the weak solution. The
proof of the first part of Theorem 1 is complete.

3. Data with higher time regularity. If in fact H ∈H2
T (H

−1/2(Γ)) with H(0) = H′(0) = 0, the

previous analysis applies to both H and H′, so that (ϕ,u) ∈ C1
T (H

1) and (ϕ′,u′) ∈ C1
T (L

2). In

particular, (ϕ′′,u′′) ∈ C0
T (L

2). Since, in addition, each (ϕn,un) in the limiting process verifies

the homogeneous wave equation, the limit (ϕ,u) satisfies (∆ϕ,∆su) ∈ C0
T (L

2). Hence (ϕ,u) ∈
C0
T (H

1
∆), and the claimed regularity for the second part of Theorem 1 follows.

6 Proof of Theorem 2.

The proof method for Theorem 2 relies on the general steps previously used for Theorem 1.
The first-order form (15) of the IVTP, which reads

U′+AU = 0, U(0) = 0, BU = H (28)

(repeated for convenience), again serves as the point of departure. To account for the assumed
additional regularity in space of the data H, A is now considered as an operator on D(A) with
domain D(A2), where

D(A2) :=
{
U∈D(A) such that AU∈D(A)⊂HA

}
, ∥U∥2D(A2) := ∥U∥2HA

+ ∥AU∥2HA
. (29)

The main modifications in the proof steps, relative to Section 5, then result from replacing the
spaces H and D(A) with D(A) and D(A2), respectively, in the application of the Hille-Yosida
theorem to the system (28) (i.e., in Proposition 2). We note that the space D(A2) embeds
not only the interfacial constraints BU = 0 given by (18), but also the additional higher-order
constraints B(AU) = 0, i.e.

(a) ∂nψ−ρ−1
s n·∆su = 0, (b) t[v]−n∆ϕ = 0, (30)

as essential conditions. The following counterpart of the density property of Lemma 1, proved
in 8.3, is verified by D(A2):

Lemma 7 The space D(A2) is a dense subspace of both (HA, ∥ · ∥HA
) and (D(A), ∥ · ∥HA

).

6.1 Interface data lifting. Towards applying the Hille-Yosida theorem, problem (28) needs as
before to be recast as a first-order system with homogeneous transmission conditions. We define
again the lifting UL of H by the system (20). The extra regularity in space of H directly translates
into corresponding extra regularity for UL: adapting Lemma 2 and using elliptic regularity at
each t, if H ∈ X

(
[0, T ];H1/2(Γ)

)
for some Banach space X, the system (20) has a unique solution

UL ∈X([0, T ];HA), verifying ∥UL∥X([0,T ];HA) ≤ C∥H∥X([0,T ];H1/2(Γ)).

6.2 Application of the Hille-Yosida theorem. We apply again the Hille-Yosida theorem to the
generic problem (22) using the unknown Uc := U− UL and the data F := µUL − U′

L. The
definition (29) of D(A) is such that the Hille-Yosida theorem still applies to A : D(A2) → D(A), via
a direct transposition of the arguments of Section 5 and with the help of the following adaptation
of Lemma 3:

Lemma 8 For any U∈D(A2), we have

(a) (AU,U)HA
= −b(ψ, ϕ)−B(v,u)− b(∆ϕ, ψ)−B(∆su,v), (b) 2|(AU,U)HA

| ≤ ∥U∥2HA
.

Proof. Lemma (8) is obtained by using identity (a) of Lemma 3 with U replaced by AU. □
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Then we can verify that all conditions of the Hille-Yosida theorem are satisfied:

1. Monotonicity. Thanks to Lemma 8, identity (23) also holds for AU instead of U, replacing
all components of U by those of AU in the right-hand side. The monotonicity of Aλ := A+λI :
D(A2) → D(A) follows in the same way, still subject to λ≥ 1

2 .

2. Surjectivity. The solvability in D(A2) of (A+µI)U = F for given F∈D(A) is still decided by
the variational problem (24). The regularity assumption F∈D(A) implies the desired smoothness
of its unique solution U, namely U,AU,A2U being in H, by elliptic regularity. This regularity in
turn allows each component of the equality AU+ηU = F to hold in H1/2(Γ), and we use those
relations to compute

t[vL]− (∆ϕL)n = gn− t[f ] = 0, ∂nψL − (ρ−1
s ∆suL)·n = g ·n− ∂nf = 0 on Γ,

since the constraints (18) are satisfied by both U (by the definition of problem (24)) and F ∈ D(A).
Concluding, (A+µI)U = F has a unique solution U∈D(A2) for any F∈D(A).

3. Conclusion. Choosing µ = λ+1, A+λI : D(A2) → D(A) is maximal monotone for any λ≥ 1
2 .

The Hille-Yosida theorem hence applies to the generic system (22). Proposition 2 on its strong
solvability now holds with H,D(A) replaced by D(A),D(A2).

Following the same arguments as in Section 5, the FSI solution U = UL+Uc is unique and the
FSI system (15) then admits a unique solution U ∈ C1

T (D(A)) ∩ C0
T (D(A2)).

6.3 Energy estimates. To derive energy estimates, we start by observing that for any F ∈
C1
T (D(A)), the solution Z ∈ C0

T (D(A2)) of the generic system (22) verifies

(a) sup
t∈[0,T ]

∥Z(t)∥2HA
≤ C∥F∥2L2

T (HA)
, (b) sup

t∈[0,T ]
∥Z′(t)∥2HA

≤ C∥F′∥2L2
T (HA)

. (31)

Both inequalities stem from repeating the proof of Lemma 5 leading to inequalities (c) there,
with H, D(A) replaced by HA, D(A2) and invoking the improved Green identity of Lemma 8.

Let now H ∈ C2
T (H

1/2(Γ)) with H(0) = 0, so that UL ∈ C2
T (HA) and UL(0) = 0. Invoking

Lemma 7, there exists a sequence Um
L ∈ C2

T (D(A2)) with Um
L (0) = 0 such that ∥UL−Um

L ∥C2
T (HA)

→
0. Let then Zm ∈ C1

T (D(A))∩C0
T (D(A2)) solve (22) with F = Um

L . The representation (25) of U
solving the FSI system (15) suggests to define the approximating sequence Um given by either

(a) Um = ηZm − Z′
m + UL, (b) Um = (ηI+A)Zm + (UL−Um

L ) (32)

(with case (b) obtained by using in (a) the equality Z′
m = Um

L −AZm in HA).
Applying estimate (31a) with F = Um

L to (32b), we have

sup
t∈[0,T ]

∥Um(t)∥2H ≤ sup
t∈[0,T ]

C∥Zm(t)∥2HA
≤ C∥Um

L ∥2L2
T (HA)

. (33)

Alternatively, estimates (31a,b) with F = Um
L applied to (32a) give

sup
t∈[0,T ]

∥Um(t)∥2HA
≤ C∥Um

L ∥2H1
T (HA)

. (34)

Remark 4 By contrast with the proof of Theorem 1, estimates (33) and (34) cannot be directly
obtained for the FSI solution U from its representation (25), as Z in the latter does not verify
B(AZ) = 0 and thus is not in D(A2), preventing the use of Lemma 8b. Identity (a) in Lemma 8
could of course be augmented with interfacial terms (so as to remove the requirement B(AU) = 0
there) but the resulting appearance of higher-order derivatives in interfacial terms would prove
equally problematic. Hence our recourse, permitted by the density result of Lemma 7, to approxi-
mations (32) of U that have the correct interfacial traces while allowing to invoke Lemma 8.
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6.4 Variational problem. We note that Um ∈ C1
T (D(A))∩C0

T (D(A2)) defined by (32) solves the
system (i) U′

m+AUm = Fm, (ii) Um(0) = 0, (iii) BU = H, with the components (fm,fm, gm, gm)
of Fm given by

fm = µ(ϕmL −ϕL)− (ϕmL
′−ϕ′L), fm = µ(um

L −uL)− (um
L

′−u′
L),

gm = µ(ψm
L −ψL)− (ψm

L
′−ψ′

L), gm = µ(vmL −vL)− (vmL
′−v′L).

Consequently, after eliminating ψm,vm, the remaining unknowns ϕm,um of Um are found to
satisfy the inhomogeneous wave equations

−∆ϕm+ϕ′′m = f ′m + gm in Ω, −∆sum + ρsu
′′
m = ρs(f

′
m + gm) in Ωs.

Proceeding as in Section 5.5, we take weighted residuals of the above equations using the same

test functions ϕ̃φ and ũφ, apply the Green identities (10a,b), use the transmission conditions and
transfer all time derivatives to φ via integration by parts. This results in the identity∫ T

0

{[
a(ϕm, ϕ̃)+A(um, ũ)

]
φ(t)+

[
b(ϕm, ϕ̃)+B(um, ũ)

]
φ′′(t)−

[
I(um, ϕ̃)+Is(ϕm, ũ)

]
φ′(t)

}
dt

=

∫ T

0

[(
h(t), ũ

)
Γ
−
(
υ(t), ϕ̃

)
Γ

]
φ(t) dt+

∫ T

0

[
b
(
f ′m+gm, ϕ̃

)
+B

(
f ′
m+gm, ũ

)]
φ(t) dt. (35)

Either estimate (33) or (34) implies that Um is a Cauchy sequence in C0
T (H), while the last

integral in (35) vanishes as m → ∞ by the definition of Um
L . Taking the limit m → ∞ in (35),

the limit (ϕ,u) ∈ H1 of (ϕm,um)m is as a result found to verify the variational formulation (11)

for any datum H ∈ C2
T (H

1/2(Γ)). Moreover, taking the limit m→ ∞ in estimates (33) and (34),
the limit U verifies the estimates

(a) sup
t∈[0,T ]

∥U(t)∥2H ≤ C∥UL∥2L2
T (HA)

, (b) sup
t∈[0,T ]

∥U(t)∥2HA
≤ C∥UL∥2H1

T (HA)
. (36)

Then, considering some transmission data H ∈ L2
T (H

1/2(Γ)), there exists a sequence Hn ∈
C2
T (H

1/2(Γ)) with Hn(0) = 0 such that ∥Hn −H∥L2
T (H1/2(Γ)) → 0. A lifting Un

L ∈ C2
T (HA) can

be associed to each Hn, leading to Un solving the variational problem (11) for that data. The
estimate (36a) shows that Un defines a Cauchy sequence in C0

T (H), whose limit U ∈C0
T (H) also

satisfies the variational formulation (11) and depends continuously on ∥H∥L2
T (H1/2(Γ).

Similarly, approximating H ∈ H1
T (H

1/2(Γ)) with H(0) = 0 by a sequence Hn ∈ C2
T (H

1/2(Γ))
with Hn(0) = 0, Un is, by the estimate (36b) applied to (Un,Un

L), a Cauchy sequence in C0
T (HA).

Its limit U satisfies the variational formulation (11) and, by taking the limit n → ∞ in (36b),
depends continuously on ∥H∥H1

T (H1/2(Γ). Moreover, we have (ϕ′′,u′′) = (∆ϕ, ρ−1
s ∆su) ∈ C0

T (L
2).

Thanks to the latter and the assumed regularity of Γ, elliptic regularity provides (ϕ,u) ∈ C0
T (H

2).

6.5 Conclusion. The IVTP (5) and the variational problem (11) being equivalent (by Prop. 1),
the proof of Theorem 2 is complete for the two considered cases.

7 Proof of Theorem 3.

(i) Proof of regularity in Ω from interpolation. Interpolating the data and solution spaces given
by Theorem 1 (first case) and Theorem 2 (second case) and invoking the interpolation property
for spaces of continuous functions with Hilbert range (see e.g. [21, Chap. 1, Sec. 14.2]), we deduce
the continuity of the following data-to-solution mappings:

(υ,h) ∈
[
H1

T (H
1/2(Γ)), H1

T (H
−1/2(Γ))

]
1/2

→ (ϕ,u) ∈
[
C0
T (H

2), C0
T (H

1)
]
1/2

→ (ϕ′,u′) ∈
[
C0
T (H

1), C0
T (L

2)
]
1/2
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where [X,Y ]θ denotes the interpolation space with weight θ ∈ [0, 1] (in particular [X,Y ]0 = X
and [X,Y ]1 = Y ). Moreover, we have

H1
T (H

1/2(Γ)), H1
T (H

−1/2(Γ))
]
1/2

= H1
T

([
H1/2(Γ), H−1/2(Γ)

]
1/2

)
= H1

T (L
2(Γ)),[

C0
T (H

2), C0
T (H

1)
]
1/2

= C0
T

(
[H2, H1]1/2

)
= C0

T (H
3/2),

C0
T (H

1), H1
T (L

2)
]
1/2

= C0
T

(
[H1, L2]1/2

)
= C0

T (H
1/2).

Using these equalities in the above mappings yields the claimed continuous mappings:

(υ,h) ∈ H1
T (L

2(Γ)) → (ϕ,u) ∈ C0
T (H

3/2), (υ,h) ∈ H1
T (L

2(Γ)) → (ϕ′,u′) ∈ C0
T (H

1/2).

(ii) Proof of boundary trace of velocity. The above data-to-velocity mapping falls just short
of the applicability of the trace theorem. Useful estimates for boundary traces may however be
obtained using the following lemma, proved in Sec. 8.4:

Lemma 9 (Integral identities on boundary traces) Let the interface Γ be a C1,1 closed surface. Let
θ ∈ C1

c (D;Rd) be an extension in a neighborhood D of Ωs of the unit normal on Γ (such an
extension exists, see [20, Chap. I, Lemma 3.1]). Any pair (ϕ,u) solving −∆ϕ+ϕ′′ = 0 in Q and
−ρ−1

s ∆su+u
′′ = in Qs verifies the integral identity

∥ϕ′∥2Γ,T + ∥u′∥2Γ,T + ∥∂nϕ∥2Γ,T + ∥∂nu∥2Γ,T,Q−1 = ∥∇Sϕ∥2Γ,T + ∥∇Su∥2Γ,T,C + C(ϕ,u;θ), (37)

where ∇Sϕ := ∇ϕ − ∂nϕn is the tangential gradient of ϕ (∇Sϕ is entirely determined by the
boundary trace ϕ|Γ of ϕ, see e.g. [26, Sec. 2.5.6]), Q is the symmetric positive definite (spd)
Christoffel matrix (defined by Qik = Cijkℓnknℓ), ∥f∥2Γ,T,A := (A·f ,f)Γ,T for A spd, and with

C(ϕ,u;θ) =
(
|ϕ′|2−|∇ϕ|2, divθ

)
Ω,T

+ 2
(
(∇ϕ⊗∇ϕ),∇θ)

Ω,T
+ 2

(
ϕ′,∇ϕ·θ

)
Ω

∣∣T
0

+
(
|u′|2−∇u :C :∇u, divθ)

Ωs,T
+ 2

(∇u :C ·∇u,∇θ)
Ωs,T

+ 2
(
u′,∇u·θ)

Ωs

∣∣T
0
. (38)

We then temporarily assume that the data is in H1
T (H

1/2(Γ)), i.e., sufficiently smooth to lead
to a solution smooth enough to justify all integrations by parts producing (37). We first note
that

|C(ϕ,u;θ)| ≤ C∥(υ,h)∥2
H1

T (L2(Γ))
. (a)

This follows directly from the interior regularity result of (i) for the space-time norms, and from
Theorem 1 for the space norms at t= T . We also have

∥∇Sϕ∥2Γ,T + ∥∇Su∥2Γ,T,C ≤ C∥(υ,h)∥2
H1

T (L2(Γ))
(b)

by similar arguments together with:

• available estimates for surface gradients, see e.g. [25, Lemma 4.23]
• the (uniform on Γ) inequality |∂nu|2 ≤ C|∂nu ·Q−1 ·∂nu| ≤ C|∂nu|2 exploiting classical
ellipticity properties of the elasticity tensor C.

Since in addition t[u] = n·C :∇Su+Q·∂nu, we have

∥t[u]∥2Γ,T ≤ C
(
∥∂nu∥2Γ,T + ∥∇Su∥2Γ,T

)
≤ C

(
∥∂nu∥2Γ,T + ∥(υ,h)∥2

H1
T (L2(Γ))

)
(c)

We finally use (a), (b) and (c) in (38) and obtain

∥ϕ′∥2Γ,T + ∥∂nϕ∥2Γ,T + ∥u′∥2Γ,T + ∥t[u]∥2Γ,T ≤ C∥(υ,h)∥2
H1

T (L2(Γ))
.

All claims of (ii) finally follow by the density of H1
T (H

1/2(Γ)) in H1
T (L

2(Γ)).

Remark 5 Equalities such as (37), sometimes referred to as Rellich-Nec̆as identities, are the ba-
sis of hidden regularity results (for the scalar wave case, see [20], Theorem 4.1 and Lemma 3.7
in Chap. I and Lemma 1.3 in Chap. III), as they allow in some cases to infer the regularity bound-
ary traces of weak solutions when their right-hand sides remain well-defined. An elastodynamic
identity of this type is given in [16].
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8 Additional proofs.

8.1 Proof of Proposition 1. 1. Space-time Green identities [11, Chap. XVIII]. We recall space-
time Green identities for both the fluid and the solid media, for Lipschitz domains Ωs and Ω
and with the geometrical notations and conventions otherwise as specified in Section 2. Let
ϕ, ψ ∈ H1(Q), with ψ(0) = ψ(T ) = 0 in Ω. If −∆ϕ+ϕ′′ ∈ L2(Q), we have∫ T

0

[
a(ϕ, ψ)− b(ϕ′, ψ′)

]
dt =

(
−∆ϕ+ϕ′′, ψ

)
Q
−
(
∂nϕ, ψ

)
Σ

(39a)

Likewise, let u,v ∈H1(Qs), with v(0) = v(T ) = 0 in Ωs. If in addition −∆su+u
′′ ∈ L2(Qs), we

have ∫ T

0

[
A(u,v)−B(u′,v′)

]
dt =

(
−∆su+ρsu

′′, v
)
Qs

+
(
t[u],s v

)
Σ
. (39b)

2. Let (ϕ,u) ∈ C0
T (H

1) ∩ C1
T (L

2) solve the IPVB (5). Let (ϕ̃, ũ) ∈ H1 be a pair of time-
independent functions, and let φ ∈ C∞

0 ([0, T ]). The space-time Green identities (39a) and (39b)
applied to ϕ,u (which in particular satisfy their respective homogeneous wave equation) and the

space-time test functions ψ(x, t) := ϕ̃(x)φ(t) ∈ H1(Q) and v(x, t) := ũ(x)φ(t) ∈H1(Qs) yield∫ T

0

[
a(ϕ, ϕ̃)φ− b(ϕ′, ϕ̃)φ′ ]dt = −

(
∂nϕ, ψ

)
Σ
=

∫ T

0

[(
u·n, ϕ̃

)
Γ
φ′ −

(
υ, ϕ̃

)
Γ
φ
]
dt,∫ T

0

[
A(u, ũ)φ−B(u′, ũ)φ′ ]dt = (

t[u],v
)
Σ
=

∫ T

0

[
−
(
ϕn, ũ

)
Γ
φ′ +

(
h, ũ

)
Γ
φ
]
dt

each second equality resulting from the transmission conditions of (5). The above equalities hold
for all φ ∈ C∞

0 ([0, T ]), implying (upon introducing the bilinear forms I and Is defined by (12))
that the identities

a(ϕ(t), ϕ̃) + b(ϕ′′(t), ϕ̃) + I(u′(t), ϕ̃) = −
(
υ(t), ψ

)
Γ

for all ϕ̃∈H1(Ω),

A(u(t), ũ) +B(u′′(t), ũ) + Is(ϕ
′(t), ũ) =

(
h(t), ũ

)
Γ

for all ũ∈H1(Ωs),
t∈ [0, T ]

with time-independent test functions ϕ̃, ũ hold in D′([0, T ]). The variational formulation (11)
finally results from summing the above equalities.

3. Conversely, let (ϕ,u) ∈ C0
T (H

1)∩C1
T (L

2) solve the variational problem (11). Taking (ϕ̃, ũ) ∈
C∞
0 (Ω)×C∞

0 (Ωs;Rd) ⊂ H1 in (11) (which cancels all interfacial integrals) and testing the resulting
(distributional in time) equality by φ ∈ C∞

0 ([0, T ]), the distributions (−∆ϕ+ϕ′′) ∈ D′(Q) and
(−∆su+ρsu

′′) ∈ D′(Q′
s) verify〈

−∆ϕ+ϕ′′, ϕ̃(x)φ(t)
〉
= 0 for all ϕ̃ ∈ C∞

0 (Ω), φ ∈ C∞
0 ([0, T ]),〈

−∆su+ρsu
′′, ũ(x)φ(t)

〉
= 0 for all ũ ∈ C∞

0 (Ωs;Rd), φ ∈ C∞
0 ([0, T ]).

Since the set of all linear combinations of tensor-product test functions ϕ̃(x)φ(t) (resp. ũ(x)φ(t))
is dense in C∞

0 (Q) (resp. C∞
0 (Ωs;Rd), the above equalities imply that −∆ϕ+ϕ′′ = 0 (in D′(Q))

and −∆su+ρsu
′′ = 0 (in D′(Qs)), and hence in L2(Q) and L2(Qs) (C

∞
0 (Q) being dense in L2(Q),

and C∞
0 (Ωs;Rd) in L2(Qs)); the respective homogeneous wave equations are therefore satisfied

in the L2 sense:

−∆ϕ+ϕ′′ = 0 a.e. in Q, −∆su+ρsu
′′ = 0 a.e. in Qs. (40)

We now turn to the behavior of (ϕ,u) on Γ, by taking (ϕ̃, ũ) ∈ C∞
0 (Ω)×C∞

0 (Ωs;Rd) ⊂ H1

in (11) and testing the resulting (distributional in time) equality by φ ∈ C∞
0 ([0, T ]); this produces∫ T

0

[
a(ϕ(t), ϕ̃) +A(u(t), ũ)

]
φ(t) dt−

∫ T

0

[
b(ϕ′(t), ϕ̃) +B(u′(t), ũ)

]
φ′(t) dt

=

∫ T

0

[
(h, ũ)Γ − (υ, ϕ̃)Γ

]
φ(t) dt−

∫ T

0

[
(ϕn, ũ)Γ − (u·n, ψ)Γ

]
φ′(t) dt.
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In view of (40), the above left-hand side may be evaluated using the space-time Green identi-
ties (39a,b), yielding∫ T

0

{(
∂nϕ+υ, ϕ̃

)
Γ
φ(t) + (u·n, ϕ̃)Γ φ′(t)

}
dt = 0 for all ϕ̃ ∈ C∞

0 (Ω), φ ∈ C∞
0 ([0, T ]),∫ T

0

{(
t[u]+h, ũ

)
Γ
φ(t) + (ϕn, ũ)Γ φ

′(t)
}
dt = 0 for all ũ ∈ C∞

0 (Ωs;Rd), φ ∈ C∞
0 ([0, T ]),

from which we conclude that the transmission conditions in (5) are verified inD′( [0, T ];H−1/2(Γ)
)
.

8.2 Proof of Lemma 1. We prove the lemma by showing that, given any U∈H and ε > 0, there
exists Uε ∈D(A) such that ∥U−Uε∥H ≤ Cε for some C > 0. The requirement Uε ∈D(A) entails
that Uε satisfies the interfacial constraints (18). We may thus settle the issue by separately seeking
a pair (ϕε,vε) ∈ H1

∆(Ω)×H1(Ωs) that approximates (ϕ,v) ∈ H1(Ω)×L2(Ωs) and satisfies (18a),
and another pair (ψε,uε) ∈ H1(Ω)×H1

∆(Ωs) that approximates (ψ,u) ∈ L2(Ω)×H1(Ωs) and
satisfies (18b).

Construction of (ϕε,vε). We begin by choosing some vε ∈H1(Ωs) such that ∥v−vε∥Ωs ≤ ε
(using the density of H1(Ωs) in L

2(Ωs)), and then some qε ∈Hdiv(Ω) such that ∥qε−∇ϕ∥Ω ≤ ε

and qε ·n = vε ·n in H−1/2(Γ) (e.g. by defining an elliptic lifting ϕ̂ of the boundary condition

∂nϕ̂ = vε·n on Γ, which is inH1
∆(Ω) since vε ∈H1(Ωs), then choosing inHdiv

0 (Ω) an approximation

of ∇(ϕ−ϕ̂)). We recall thatHdiv
0 (Ω), the closure of C∞

0 (Ω) inHdiv(Ω) :=
{
w ∈L2(Ω) | divw ∈

L2(Ω)
}
, is dense in L2(Ω) (see e.g. [1, Thm. 13.1.5]); moreover, the following Green identities

hold for any (w, ϕ̃) ∈Hdiv(Ω)×H1(Ω) and (s, ũ) ∈Hdiv(Ωs)×H1(Ωs):

b(w,∇ϕ̃) + b(divw, ϕ̃) = −(w·n, ϕ̃)Γ, B(s,∇ũ) +B(div s, ũ) = (ρss·n, ũ)Γ (41)

We then define ϕε as the solution of the well-posed variational problem

a(ϕε, ϕ̃) + µb(ϕε, ϕ̃) = µb(ϕ, ϕ̃) + b(qε,∇ϕ̃) for all ϕ̃ ∈ H1(Ω), (42)

(where µ > 0 may be chosen arbitrarily) whose data is such that ϕε ∈ H1
∆(Ω). Now, we use

b(qε,∇ϕ̃) = b
(
qε −∇ϕ,∇ϕ̃

)
+a(ϕ, ϕ̃) in (42) and rearrange terms, to obtain

a(ϕε−ϕ, ϕ̃) + µb(ϕε−ϕ, ϕ̃) = b
(
qε−∇ϕ,∇ϕ̃

)
for all ϕ̃ ∈ H1(Ω).

Setting ϕ̃ = ϕ−ϕε in the above equality, recalling the definition of qε, and invoking the coercivity
of a+µb and the continuity of b, we obtain

∥ϕε−ϕ∥21,Ω ≤ C∥qε−∇ϕ∥Ω ∥ϕε−ϕ∥Ω ≤ Cε∥ϕε−ϕ∥1,Ω
and hence

∥ϕε−ϕ∥1,Ω ≤ Cε

for some constant C > 0. Finally, on applying Green identities (10a) to a(ϕε, ϕ̃) and (41) to

b(qε,∇ϕ̃), the variational problem (42) becomes

−b(∆ϕε, ϕ̃) + µb(ϕε, ϕ̃)− (∂nϕε, ϕ̃)Γ = µb(ϕ, ϕ̃)− b(div qε, ϕ̃)− (vε ·n, ϕ̃)Γ for all ϕ̃ ∈ H1(Ω),

from which ϕε is found to satisfy the desired interfacial condition (18a). Concluding, we have
constructed a suitable approximation (ϕε,vε) ∈ H1

∆(Ω)×H1(Ωs) of (ϕ,v) ∈ H1(Ω)×L2(Ωs).

Construction of (ψε,uε). The proof duplicates the previous steps, up to straightforward trans-
positions due to the roles of the solid and fluid media being reversed; we omit the details.
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8.3 Proof of Lemma 7. Similarly to Section 8.2, our goal is to show that, given any U∈HA and

ε > 0, there exists Uε ∈ D(A2) such that ∥U−Uε∥HA
≤ Cε for some C > 0. The requirement

Uε ∈D(A) includes the interfacial constraints (18) and (30), to be respectively verified in H1/2(Γ)

and H−1/2(Γ). As before, we may separately seek an approximation (ϕε,vε) ∈ H1(Ω,∆)×
H1

∆(Ωs) of (ϕ,v) ∈ H1
∆(Ω)×H1(Ωs) satisfying (18a), (30b) and an approximation (ψε,uε) ∈

H1
∆(Ω)×H1(Ωs,∆s) of (ψ,u) ∈ H1(Ω)×H1

∆(Ωs) satisfying (18b), (30a), where H1(Ω,∆) =
{
ϕ∈

H1(Ω), ∆ϕ∈H1(Ω)
}
and similarly for H1(Ωs,∆s).

Construction of (ϕε,vε). We start by choosing some rε ∈ H1(Ω) such that ∥∆ϕ− rε∥Ω ≤ ε
(by the density of H1(Ω) in L2(Ω)), then some stress tensor field sε ∈ Hdiv(Ωs) such that

∥sε−C :∇v∥Ωs ≤ ε and ρssε·n = −rεn in H−1/2(Γ). Then, let (ϕε,vε) be defined as the solution
of the following coupled variational problem: find (ϕε,vε) ∈ H1(Ω)×H1(Ωs) such that

A(vε, ũ) + µB(vε, ũ)− µ(ϕεn, ũ)Γ = B(sε,∇ũ) + µB(v, ũ)− µ(ϕn, ũ)Γ (a),

a(ϕε, ϕ̃) + µb(ϕε, ϕ̃) + (vε ·n, ϕ̃)Γ = µb(ϕ, ϕ̃)− b(rε, ϕ̃) (b)
(43)

(where µ > 0 may again be chosen arbitrarily) for all (ϕ̃, ũ) ∈ H1(Ω)×H1(Ωs). As setting

(ϕ̃, ũ) = (µϕε,vε) and summing (a) and (b) yields in the left-hand side a quadratic form that is
coercive onH1(Ω)×H1(Ωs), the above problem is readily found to be well-posed by Lax-Milgram’s
theorem.

To complete the proof, we need to verify that (ϕε,vε) achieves the sought approximation of
(ϕ,v). We start by recasting problem (43a) in the form

A(vε, ũ) + µB(vε, ũ) =
([
µ(ϕε−ϕ)− rε

]
n, ũ

)
Γ
−B(div sε, ũ) + µB(v, ũ) for all ũ∈H1(Ωs),

which results from applying Green identity (41) to B(sε,∇ũ). As div sε ∈ L2(Ωs), v ∈H1(Ωs)

and (ϕε−ϕ+ rε)|Γ ∈ H1/2(Γ), the above variational equation implies by elliptic regularity that
vε ∈H2(Ωs) ⊂H1

∆(Ωs). Then, Green identity (10b) applied to A(vε, ũ) provides

−t[vε] =
[
µ(ϕ−ϕε)+rε

]
n in H1/2(Γ) (44)

Next, turning to the variational equation (43b), we find that ϕε ∈H2(Ω) (since µϕ−rε ∈ H1(Ω)

and vε ·n ∈ H3/2(Γ)), from which we infer that ∇ϕε ∈ H1
∆(Ω) as the solution of a well-posed

variational problem (found by taking test functions of the form ϕ̃ = divψ with ψ ∈ H1(Ω)
in (43b) and using Geeen identities). Hence ∆ϕε ∈ H1(Ω) and we obtain

∆ϕε = rε + µ(ϕε−ϕ) in H1(Ω), ∂nϕε = vε ·n in H1/2(Γ). (45)

by applying Green identity (10a) to a(ϕε, ϕ̃). The above boundary condition is the interfacial con-
dition (18a), while condition (30b) results from using the trace of the above differential equation
in (44). Now, we may choose some qε ∈Hdiv(Ω) such that ∥qε−∇ϕ∥Ω ≤ ε and qε ·n = vε ·n in

H−1/2(Γ). Setting rε = (rε−∆ϕ)+div (∇ϕ−qε)+div qε in (43b), applying the Green identity (41)

to b(div qε, ϕ̃) and rearranging terms, we find

−b(rε, ϕ̃) = b(∆ϕ−rε, ϕ̃) + b(div qε−∆ϕ, ϕ̃) + (vε ·n, ϕ̃)Γ + b(qε−∇ϕ,∇ϕ̃) + a(ϕ, ϕ̃)

so that (43b) yields, for any ϕ̃ ∈ H1(Ω):

a(ϕε−ϕ, ϕ̃) + µb(ϕε−ϕ, ϕ̃) = b(∆ϕ−rε, ϕ̃) + b
(
div (qε−∇ϕ), ϕ̃

)
− b(∇ϕ−qε,∇ϕ̃). (46a)

In a similar manner, (43a) becomes

A(vε−v, ũ) + µB(vε−v, ũ) = µ
(
(ϕε−ϕ)n, ũ

)
Γ
+B(sε−C :∇v,∇ũ) (46b)

for all ũ ∈ H1(Ωs). Proceeding as in Section 8.2, we select ϕ̃ = ϕε−ϕ in (46a) and ũ = vε−v
in (46b). After using the trace theorem for both factors in the interfacial integral, we successively
obtain

∥ϕε−ϕ∥1,Ω ≤ C
(
∥∆ϕ−rε∥Ω + ∥div (qε−∇ϕ)∥Ω + ∥∇ϕ−qε∥Ω

)
≤ Cε,

∥vε−v∥1,Ωs ≤ C
(
∥ϕε−ϕ∥1,Ω + ∥sε−C :∇v∥Ωs

)
≤ Cε
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Finally, the second estimate above used in (45) provides

∥∆(ϕε−ϕ)∥Ω ≤ ∥rε−∆ϕ∥Ω + µ∥ϕε−ϕ∥Ω ≤ Cε,

and the proof is complete.

Construction of (ψε,uε). The proof, here again, follows the same method up to appropriate
modifications due to the roles of the solid and fluid media being reversed; we omit the details.

8.4 Proof of Lemma 9. Let D be a bounded neighborhood of Ωs in Rd, and let θ ∈ C1(D̄;Rd).
We start from the weighted residual identities(

−∆ϕ+ ϕ′′, ∇ϕ·θ
)
Ω,T

= 0,
(
−∆su+ u′′, ∇u·θ)

Ωs,T
= 0, (WR)

where ϕ and u respectively solve the homogeneous acoustic wave equation in Ω and the homo-
geneous elastic wave equation in Ωs and are smooth enough to allow all integrations by parts to
follow. Using the equality

(2ϕ′′−2∆ϕ)∇ϕ·θ = 2∂t
[
ϕ′(∇ϕ·θ)

]
+ div

[
(|∇ϕ|2−|ϕ′|2)θ − 2(∇ϕ·θ)∇ϕ

]
+ (|ϕ′|2−|∇ϕ|2)divθ + 2(∇ϕ⊗∇ϕ) :∇θ,

which can be checked by inspection (e.g. using component notation), we write

2
(
ϕ′′−∆ϕ, ∇ϕ·θ

)
Ω,T

= 2
(
ϕ′,∇ϕ·θ

)
Ω

∣∣T
0
+
(
|∇ϕ|2−|ϕ′|2, θ ·n

)
Γ,T

− 2
(
∂nϕ,∇ϕ·θ

)
Γ,T

+
(
|ϕ′|2−|∇ϕ|2,divθ

)
Ω,T

+ 2
(
(∇ϕ⊗∇ϕ),∇θ)

Ω,T
. (a)

For the contribution of Ωs in (WR), we similarly find

2
(
u′′−∆su, ∇u·θ

)
Ωs,T

= 2
(
u′,∇u·θ)

Ωs

∣∣T
0
+
(∇u :C :∇u−|u′|2, θ·n

)
Γ,T

− 2
(
t[u],∇u·θ)

Γ,T

+
(
|u′|2−∇u :C :∇u, divθ)

Ωs,T
+ 2

(∇u :C ·∇u,∇θ)
Ωs,T

, (b)

We then substitute (a) and (b) into (WR). In addition, we set |∇ϕ|2 = (∂nϕ)
2 + |∇Sϕ|2 in the

interfacial integral of (a), and likewise introduce the decomposition ∇u = ∇Su+ ∂nu⊗n and
express the traction vector as t[u] = n·C :

(∇Su+∂nu⊗n
)
= n·C :∇Su+Q·∂nu, yielding

∇u :C :∇u− 2t[u]·∂nu = ∇Su :C :∇Su− ∂nu·Q·∂nu,

in the interfacial integrals of (b). These manipulations, and subsequent rearrangement, produce
the identities(

(∂nϕ)
2+ |∇Sϕ|2−|ϕ′|2, θ ·n

)
Γ,T

− 2
(
∂nϕ,∇ϕ·θ

)
Γ,T

=
(
|∇ϕ|2−|ϕ′|2, divθ

)
Ω,T

− 2
(
(∇ϕ⊗∇ϕ),∇θ)

Ω,T
− 2

(
ϕ′,∇ϕ·θ

)
Ω

∣∣T
0
, (c)(∇Su :C :∇Su− ∂nu·Q·∂nu−|u′|2, θ ·n

)
Γ,T

− 2
(
t[u],∇Su·θ

)
Γ,T

=
(∇u :C :∇u−|u′|2, divθ

)
Ωs,T

− 2
(∇u :C ·∇u,∇θ)

Ωs,T
− 2

(
u′,∇u·θ)

Ωs

∣∣T
0
, (d)

from which the claimed identity (38) follows from summing (c), (d) and setting θ equal to a
two-sided extension in D of the unit normal on Γ in the resulting equality.
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Group) for their input and discussions regarding the engineering applications of transient acoustic
scattering solution methods.



TRANSIENT ACOUSTIC SCATTERING BY AN ELASTIC OBSTACLE 23

References.

[1] Aubin J.P. Applied functional analysis (second edition). Wiley (2000).
[2] Bao G., Gao Y., Li P. Time-domain analysis of an acoustic-elastic interaction problem. Arch. Ration. Mech.

An., 229:835–884 (2018).
[3] Barucq H., Estecahandy E., Djellouli R. On the existence and the uniqueness of the solution of a fluid-structure

interaction scattering problem. J. Math. Anal. Appl., 412:571–588 (2014).
[4] Bebendorf M. Hierarchical matrices: a means to efficiently solve elliptic boundary value problems, vol. 63 of

Lecture Notes in Computational Science and Engineering. Springer (2008).
[5] Bonnet M., Chaillat S., Nassor A. Transient, global-in-time coupling of acoustic BEM and elastic FEM. in

preparation (2023).
[6] Bonnet M., Frangi A., Rey C. The finite element method in solid mechanics. McGraw Hill Education (2014).
[7] Brezis H. Functional analysis, Sobolev spaces and partial differential equations. Springer (2011).
[8] Chaillat S., Desiderio L., Ciarlet P. Theory and implementation of H-matrix based iterative and direct solvers

for Helmholtz and elastodynamic oscillatory kernels. J. Comput. Phys., 351:165–186 (2017).
[9] Ciarlet P.G. Linear and nonlinear functional analysis with applications. SIAM (2013).

[10] Collino F., Joly P., Lecouvez M. Exponentially convergent non overlapping domain decomposition methods
for the Helmholtz equation. M2AN Math. Model. Numer. Anal, 54:775–810 (2020).

[11] Dautray R., Lions J.L. Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5:
Evolution problems 1. Springer-Verlag (1988).

[12] Evans L.C. Partial differential equations. American Mathematical Society (1998).
[13] Goldstein J.A. Semigroups of linear operators and applications. Oxford University Press (1985).
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