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Abstract
Using microphone pairs is a standard method to measure the acoustic properties

of a waveguide such as the reflection coefficient at the outlet. This method is used in
many experimental works before and discussed in many scientific papers. In this study,
the measurement of the reflection coefficient with microphone pairs method is simulated
using a numerical model that represent exactly the experimental protocol in order to
provide numerical results and support the experimental measurements.

The plane mode reflection in waveguides is largely described in literature, and many
theoretical models are developed in this particular case which could be used to validate the
experimental results, however the multi-modal reflection coefficient is more complicated
to derive theoretically. Therefore, this study aims to provide a basis of comparison for the
experimental measurements especially for the Multi-modal reflection coefficient of higher
modes. The simulations are covering open-end pipes with three different termination
geometries: a pipe ended with an infinite baffle, a pipe ended with a finite flange and a
pipe ended with sharp edge (unbaffled).

The simulations are performed through the four major steps of a standard simu-
lation: Pre-processing, sensitivity calculations and benchmark tests, computation and
finally post-processing. In the end the numerical results are compared to experimental
measurements conducted by Zhiping QIU [1] during his PhD study.

Résumé
Les mesures acoustiques par antennerie microphonique est devenue une méthode

standard pour la détermination des propriétés acoustiques des guides d’ondes comme le
coefficient de réflexion à l’extrémité du guide. Cette méthode est traitée dans plusieurs
travaux expérimentaux et par plusieurs papiers scientifiques. Dans le cadre de ce stage,
cette méthode est simulée par un model numérique qui reproduit exactement son protocole
expérimental afin d’appuyer les mesures expérimentales par des résultats numériques.

La réflexion du mode plan est décrite dans plusieurs études théoriques, et cela donne
une référence pour les mesures expérimentales. Par contre le développement d’un modèle
théorique pour le coefficient de réflexion des modes supérieurs est plus compliqué d’où le
but de notre étude est de fournir une base de comparaison pour les mesures du coefficients
de réflexion des modes supérieurs en utilisant un modèle numérique. Les simulations dans
cette étude couvrent trois types d’extrémités de guide d’ondes : guide avec un plan infini
à l’extrémité, guide avec une bride à l’extrémité et un guide avec une extrémité sans
épaisseur.

Les simulations sont partagées en quatre grandes étapes : le prétraitement, calculs de
sensibilités, lancement des calculs et finalement le post traitement. A la fin les résultats
numériques sont comparés avec les mesures effectuées par Zhiping QIU [1] durant son
PhD.
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I Introduction:

I.1 Motivation:

Acoustic waveguides are used in many industrial applications from aeronautics to music in-
dustry, and in general waveguides are open end ducts because in real life waveguides are finite
and infinite ducts are just an idealization for theoretical purposes. The acoustic propagation
in infinite waveguides is relatively fully described in literature, however for open waveguides it
is more complicated to derive theoretical equations that describe what occurs at the open end.
Because of the sudden change of the geometry at the open-end of the finite waveguide and
under the action of the surrounding fluid, the acoustic impedance at the outlet of the pipe is
different from the impedance inside the pipe which leads to a reflection phenomenon. This
phenomenon becomes more complicated in multimodal propagation case, which is the case in
the most industrial applications.
Actually, the reflection occurs outside the waveguide at a small distance δ from the exit [3].
This distance is called the length correction or end correction because it should be taken into
account as an additional length to the physical length of the duct (geometric length). The
acoustic characteristics of the waveguide such as resonance frequencies are impacted by this
length correction. For example the calculation of resonance frequencies of an open pipe of
length L is more accurate if performed with a length of L + δ thus fr = (2n+1)c0

4(L+δ)
instead of

fr =
(2n+1)c0

4L
.

Therefore a good understanding of this phenomenon is required in order to improve the design of
the systems used in everyday life like aircraft jet engines, exhaust mufflers, music instruments...

In jet engines:

The acoustic instabilities could lead to combustion instabilities in the combustion chamber,
therefore the acoustic behaviour should be known at the inlet and the outlet of the engine that
could be considered as a large waveguide.

In ventilation duct:

One of the most important factors to take into account in the design of ventilation ducts is noise
control. The noise of the ventilation system should be as quiet as possible, especially in quiet
confined places like offices, because being exposed to a constant noise created by ventilation
fans for an extended period of time could negatively impact our health.

In music instruments:

Acoustic wave propagation in waveguides is largely used in the music industry, for example in
the design of music instruments like the flute and the trumpet where a shift of a couple hertz
in the sound frequency makes a big difference in the sound quality of the instrument.

I.2 Objectives:

The main goal of this study is the calculation of the multimodal reflection coefficient using
numerical simulations in order to support the experimental results found by Zhiping QIU
during his PhD [1]. Using an experimental approach, Zhiping gives the multimodal reflection
coefficients and the multimodal correction length in open end circular ducts. He also considers
3 different pipe exits: baffled pipe, flanged pipe and unbaffled pipe. The experimental results
for the plane wave are in good agreement with the theoritical expressions given by Norris and

MSc. thesis 4
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Sheng [6], however for higher modes we need to provide some numerical results in order to
verify the accuracy of the measurements.
Zhiping’s results are summarized in figure 1 and figure 2:

Figure 1 – Experimental results of multimodal reflection coefficients modulus: red curves cor-
respond to the unbaffled pipe, green curves correspond to the baffled pipe and the blue ones
correspond to the flanged pipe. The vertical bars marks the regions where the measurements
are more sensitive to noise.
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Figure 2 – Experimental results of multimodal length correction: red curves correspond to the
unbaffled pipe, green curves correspond to the baffled pipe and the blue ones correspond to
the flanged pipe. ”a” is the radius of the pipe. The vertical bars marks the regions where the
measurements are more sensitive to noise.
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II Background on multimodal propagation in waveguides:

II.1 Multimodal propagation in circular ducts:

With linear acoustics assumptions, the acoustic waves propagation is governed by Helmholtz
equation:

∂2p

∂t2
− c20∆p = 0 (1)

Where p and c0 are respectively the pressure fluctuation and sound speed. Using separation
of variables method in cylindrical coordinates, the solutions of Helmholtz equation in circular
duct and in a harmonic regime of pulsation ω = 2πf (f is the frequency) have the following
form [2]:

p(r, θ, z, t) = ψ(r, θ)
︸ ︷︷ ︸
transverse

[P+e−iγz + P−eiγz]
︸ ︷︷ ︸

axial

eiωt (2)

Where (r, θ, z) are the cylindrical coordinates, γ is the axial component of the wavenumber
and (P+,P−) are the pressure wave amplitudes of waves traveling respectively toward +z and
−z. In cylindrical coordinates the Laplacian operator is:

∆ =
∂2

∂r2
+

1

r2
∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
= ∆rθ +

∂2

∂z2
(3)

Where ∆rθ is the Laplacian in the section of the pipe. From equations 1 and 2 the wave equation
becomes:

∆rθψ + [k2 − γ2]
︸ ︷︷ ︸

k2
rθ

ψ = 0 (4)

Where k = ω
c0

is the total wavenumber and krθ is the transverse wavenumber. Using separation
of variables, the in-plane pressure field function ψ can be written as ψ(r, θ) = f(r)g(θ) and in
this case equation 4 becomes:

r2

f
(
∂2

∂r2
+

1

r

∂

∂r
)f + k2rθr

2 = −
1

g

∂2g

∂θ2
(5)

The left side of the equation 5 depends on r and the right side depends on θ then both sides
are constant:

r2

f
(
∂2

∂r2
+

1

r

∂

∂r
)f + k2rθr

2 = −
1

g

∂2g

∂θ2
= m2 (6)

then:
∂2g

∂θ2
+m2g = 0 (7)

r2(
∂2

∂r2
+

1

r

∂

∂r
)f + [k2rθr

2 −m2]f = 0 (8)

The general solution of equation 7 is:

gm(θ) = Aeimθ +Be−imθ (m ∈ N) (9)

or
gm(θ) = Ame

imθ (m ∈ Z) (10)

By introducing the variable ξ = krθr in equation 8 we obtain the following equation:

ξ2(
∂2

∂ξ2
+

1

ξ

∂

∂ξ
)f + [ξ2 −m2]f = 0 (11)

MSc. thesis 7
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The general solutions of the equation 11 are Bessel functions (Jm) of the first kind and the mth

order.
The rigid wall boundary condition on the pipe r = a (a is the radius of the pipe) can be written
as:

Vn =
∂p

∂n
=
∂p

∂r
= 0 (for r = a)

Then
∂f

∂r
=
∂Jm(ξ)

∂r
= J ′m(ξ) = 0 (for r = a ⇐⇒ ξ = akrθ)

So ξ corresponds to αmn the roots of the first derivative of Bessel function Jm of the first kind,
then ξmn = αmn where (m) is the order of the Bessel function and (n) is the rank of the root.
Then the function f can be written as:

f(r) = Jm(
αmn

a
r) (12)

The following table gives the first roots of the first derivative of Bessel function of the first
kind:

αmn n=0 n=1 n=2
m=0 0.0 3.831 7.015
m=1 1.841 5.331 8.536
m=2 3.054 6.706 9.969

Finally the transverse pressure field ψmn(r, θ) has the following form:

ψmn(r, θ) = f(r)g(θ) = Amne
imθJm(

αmn

a
r) (m ∈ Z) (13)

According to the general form of the transverse pressure field ψmn, the transverse pressure
is composed of modes (m,n). Knowing that ξmn = akmn

rθ and k2 = γ2mn + (kmn
rθ )2 then we can

express the axial wavenumber as following:

γmn =

√

k2 − (
αmn

a
)2 (14)

γmn is null at f = fmn
c where fmn

c is called the cutoff frequency of the mode (mn):

fmn
c =

αmnc0
2aπ

(15)

Depending on the value of k = 2πf
c0

(the frequency), γmn could be an imaginary or a real
number. If f > fmn

c γmn is real and the mode (mn) propagates, contrary if f < fmn
c the mode

can not propagate and its pressure amplitude decreases exponentially in the pipe, it is called
an evanescent mode.

Finally the pressure field in the pipe is a combination of the axial and the transverse fields
of each mode (mn), then the total pressure field is the infinite sum of these modes:

p(r, θ, z, ω) =
+∞∑

m=−∞

+∞∑

n=0

[P+
mne

−iγmnz + P−mne
iγmnz]Jm(

αmn

a
r)ei(mθ+ωt) (16)

MSc. thesis 8
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II.2 Reflection coefficient and length correction:

II.2.1 Reflection of a plane mode (mn = 00):

At the open end of a rigid pipe, the impedance Z imposed by the surrounding fluid (air) sends
back a part of the incoming wave in the opposite direction. Thus a wave traveling along a rigid
open end duct is a superposition of two waves, the incoming wave and the reflected wave. And
of course the reflection coefficient is directly related to the impedance Z.
For simplification purposes we consider in our theoretical derivation only plane waves (mode
00) propagation in infinitely baffled and rigid pipe.

Figure 3 – Geometry and parameters of the problem

One can consider a rigid semi infinite pipe baffled with an infinite rigid wall at the outlet
as depicted in figure 3. In this configuration the pressure wave in the duct is the sum of the
incoming Pi and the reflected Pr wave:

P = Pi + Pr

According to the calculations in paragraph II.1 and with the assumption of the plane wave
propagation in the harmonic regime, the pressure fields in the pipe are:

Pi = P+e−ikz and Pr = P−eikz

Where P+ and P− are respectively the incoming and reflected waves amplitudes, k = ω
c0

= γ00
is the wave number, ω is the pulsation of the wave and c0 is the sound speed. By definition the
reflection coefficient is [3]:

R =
P−

P+
(17)

thus:
P = P+[eikz +Re−ikz] (18)

Using Euler equation ρ∂V
∂t

= −∇P the velocity field is:

V =
P+

ρc
[eikz −Re−ikz] (19)

MSc. thesis 9
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Where ρ is the mass density of the fluid (air).

The impedance at the outlet of the pipe (z = 0) is Z = P (z=0)Σ
V (z=0)

, where Σ = πa2 is the area of
the pipe cross section. From equations 18 and 19 we get the following expression:

Z = ρc
1 +R

1−R
Σ (20)

The equation 20 shows the relationship between the reflection coefficient and the impedance
at the outlet of the duct, in this case we can deduce the reflection coefficient by measuring,
simulating or calculating theoretically the impedance Z.

For the plane mode, the velocity is the same in each point of a given cross section of the
pipe, so one can consider the section at the outlet of the pipe (z = 0) as a vibrating baffled
piston at a constant velocity amplitude Vp. Rayleigh integral gives the pressure at an observer
location ~r outside the pipe by:

P (r) = −
2i k ρ c

4π
Vp

∫∫

Σ

eik ŕ

ŕ
dσ (21)

Where ŕ is the distance between the observer location and the integration point on the
piston. Knowing the pressure field, one can calculate the force applied on the piston by:
F =

∫∫

Σ
P (σ)dσ which means that F is a quadruple integral over the pipe cross section. So

the impedance expression is:

Z =
F

Vp
= −

2i k ρ c

4π

∫∫∫∫

Σ

eik ŕ

ŕ
dσ (22)

The calculation of this integral is done by Rayleigh (1896) [4] and Pierce (1989) [5], and the
final expression of the impedance at the outlet of the pipe is:

Z = ρ c π a2[1−
J1(2ka)

ka
− i

S1(2ka)

ka
] (23)

Where J1 and S1 are respectively Bessel and Struve functions of the first kind. In low
frequency range (ka << 1) Bessel and Struve functions could be approximated by: 1− J1(2ka)

ka
=

(ka)2

2
and S1(2ka)

ka
= 8ka

3π
. The real part of the impedance Z represent the radiated part of the

wave and the imaginary part of Z is equivalent to a vibrating mass:

Im(Z) = −ρa2π

(
8a

3π

)

︸ ︷︷ ︸

δ≃0.85a

ω (24)

Actually the reflection phenomenon occurs outside the pipe at a small distance δ from the
open end [3]. The moving mass is equivalent to a cylinder with the same cross section as the
pipe and a height of δ ≃ 0.85a, thus the reflection phenomenon occurs at a point located at a
distance δ outside the pipe, δ is called ”length correction”.

More elaborated calculation, done by Norris and Sheng [6] gives an approximation of the
reflection coefficient and the length correction for ka < 3.8:

|R| =
1 + 0.323ka− 0.077(ka)2

1 + 0.323ka+ (1− 0.077)(ka)2
(25)

δ = a
0.82159− 0.49(ka)2

1− 0.46(ka)3

We can verify that the expression of Norris and Sheng gives a length correction of δ(ka = 0) ≃
0.82a which is close to the value 0.85a given by Rayleigh [4]. The results of the expressions
given by Norris and Sheng are summarized in figure 4:

MSc. thesis 10
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Figure 4 – Reflection coefficient magnitude and length correction according to Norris and Sheng
expressions

II.2.2 Reflection of higher modes:

The reflection coefficient is defined as the ratio of the pressure amplitude of the wave traveling
toward −z and the one traveling toward +z (P− and P+). These amplitudes depend on the
propagating mode in the pipe, which means that the reflection coefficient depends also on the
mode [3]:

Rmn =
P−mn

P+
mn

(26)

The multimodal length correction δmn is directly related to the phase of the reflection coefficient
Rmn [3]:

Rmn(z = 0) = −|Rmn|e
−2iγmnδmn (27)

Where z = 0 is the coordinate of the open end. The calculation of the multimodal reflection
coefficient is derived in the next paragraph.

II.2.3 Modal decomposition of the pressure field in circular ducts:

II.2.3.1 Calculation of the reflection coefficient Rm0 for the azimuthal modes:

As shown in the previous section, a mode could propagates in the pipe if the frequency of
excitation is higher than its cutoff frequency. Therefore the modes appear in the same order of
their cutoff frequencies, provided that the boundary conditions allow their propagation. Then
all the modes of a cutoff frequency lower than the frequency of excitation could propagate freely
in the pipe, which means that in general the pressure field is a mixture of many propagating
modes as depicted in figure 5.

In this section we discuss the calculation of the reflection coefficient Rmn, using the total
pressure amplitude of the mode Pmn = P+

mn(ω, z) + P−mn(ω, z). For simplification purposes, we
consider only the first azimuthal modes (m0).

Let’s consider two different positions on the pipe axis (z0,z1) where the pressure amplitudes
of the mode (m0) are [2]:

Pm0(ω, z0) = P+
m0(ω)e

−iγm0z0 + P−m0(ω)e
iγm0z0

Pm0(ω, z1) = P+
m0(ω)e

−iγm0z1 + P−m0(ω)e
iγm0z1

(28)

MSc. thesis 11
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Figure 5 – Order of appearance of the modes in circular waveguides

The unknowns P+
m0(ω) and P

−

m0(ω) could be calculated from this system of equations if the two
equations are independent, which means that the determinant of the matrix system is not nil
[7]:

det

∣
∣
∣
∣

e−iγm0z0 eiγm0z0

e−iγm0z1 eiγm0z1

∣
∣
∣
∣
6= 0

⇒ s = z1 − z0 6=
nπ

γm0

; (n ∈ N)
(29)

For the following calculations, we assume that the modal pressure amplitude Pm0 is measured
or calculated at positions (z0,z1) that fulfill the condition (29).

We can take z0 = 0 and z1 = s, then the previous system of equations becomes:

Pm0(ω, 0) = P+
m0(ω) + P−m0(ω) (30)

Pm0(ω, s) = P+
m0(ω)e

−iγm0s + P−m0(ω)e
iγm0s

Thus the amplitudes of the outgoing wave and the reflected one are:

P−m0(ω) =
Pm0(ω, 0)e

−iγm0s − Pm0(ω, s)

e−iγm0s − eiγm0s

P+
m0(ω) =

Pm0(ω, s)− Pm0(ω, 0)e
iγm0s

e−iγm0s − eiγm0s

(31)

The reflection coefficient should be calculated at the outlet of the pipe at a given position on
the axis z = L (L 6= s), therefore the phase of the pressure amplitudes changes and become:

P−m0(ω, L) =
Pm0(ω, 0)e

−iγm0s − Pm0(ω, s)

e−iγm0s − eiγm0s
eiγm0L

P+
m0(ω, L) =

Pm0(ω, s)− Pm0(ω, 0)e
iγm0s

e−iγm0s − eiγm0s
e−iγm0L

(32)

Then the reflection coefficient at the outlet of the pipe is [8]:

Rm0(ω, L) =
P−m0(ω, L)

P+
m0(ω, L)

=
Pm0(ω, 0)e

−iγm0s − Pm0(ω, s)

Pm0(ω, s)− Pm0(ω, 0)eiγm0s
e2iγm0L (33)

Finally if Pm0 is known, Rm0 could be deduced using the formula 33. In the next paragraph,
the calculation of the modal pressure amplitudes Pm0 using finite number of measurement points
is presented.

MSc. thesis 12
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Figure 6 – Microphone positioning on the circumference of the pipe section

II.2.3.2 Decomposition of azimuthal modes Pm0:

According to the equation 16 the pressure field in the pipe depends on the position (r, θ, z) and
the frequency:

p(r, θ, z, ω) =
+∞∑

m=−∞

+∞∑

n=0

Pmn(ω, z)Jm(
αmn

a
r)eimθ (34)

Using the same simplifications as before, we consider only azimuthal modes (n = 0):

p(r, θ, z, ω) =
+∞∑

m=−∞

Pm0(ω, z)Jm(
αmn

a
r)eimθ (35)

One can consider only the pressure on the circumference of the section where (z = z0 and r = a
the radius of the pipe):

p(a, θ, z0, ω) =
+∞∑

m=−∞

Pm0(ω, z0)e
imθ (36)

We can see that the pressure field on the circumference of the section is the discrete Fourier
transform of the modal pressure amplitude Pm0, therefore Pm0 could be calculated using the
inverse Fourier transform of the pressure field on the circumference p(a, θ, ω). In a real
experiment (or a simulation), it would be more practical to measure (or calculate) the pressure
field on a finite number of points on the circumference using microphones (or numerical probes).
Let’s consider N microphones (or numerical probes) placed on the circumference of the section
with a uniform spacing between each two microphones of 2π

N
as depicted in figure 6. In this

case the discrete inverse Fourier transform of the measured pressure field is [9]:

Pm0(z0, ω) =
1

N

N−1∑

q=0

p(a, θq, z0, ω)e
−2im qπ

N (37)

In the following sections, equations 33 and 37 will be used to calculate the multi-modal
reflection coefficient of the first azimuthal modes (0,0), (1,0) and (2,0) using numerical simula-
tions.
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III Numerical setup and methodology:

The main goal of this study is the calculation of the reflection coefficient and the length correc-
tion for open end waveguides using numerical simulations in order to support the experimental
results found by Zhiping QIU [1] during his PhD. The software used is Comsol Multiphysics,
a multi-physics simulation software which includes geometry building and meshing modules. A
3D model of the domain is build in Comsol environment considering the requirements described
in the following paragraphs.

III.1 Preprocessing and preparation of the model:

III.1.1 Building the numerical model:

The simulation problem is defined by 4 major elements: the domain, the boundary conditions,
the equation to solve (and the algorithm used) and finally the excitation.

The domain:

A rigid wave-guide with a circular cross section is considered. The radius and the length of the
pipe are respectively a and l. At the outlet of the pipe the infinite space is represented with a
half of sphere or a complete sphere, depending on the exit geometry. For a baffled exit we use
a half of sphere however we use a complete sphere for the unbaffled and the flanged pipe. The
radius of the sphere R should verify the far field condition, because the waves should impinge
on the spherical surface at the far field where they could be considered as spherical waves. The
minimum radius of the sphere is defined after a sensitivity analysis in section IV. The used
fluid is air (C = 340ms−1 and ρ = 1.23kgm−3). Figure 7 shows the geometry of the studied
domain.

The boundary conditions:

Three types of boundary conditions are used in the simulations: rigid wall, non-reflection
condition and imposed acceleration. The rigid wall condition is used on the pipe walls and the
baffle and the flange surfaces. Rigid wall boundary condition consists on forcing the normal
velocity of the fluid to zero (~V .~n = Vn = 0) where ~n is the normal to the surface. Otherwise, and
using Euler equation, this condition could be rewritten as: ∇P.~n = 0. The second boundary
condition is the non-reflection condition, this condition is used on the spherical surface in order
to model the boundary between the modeled domain and the infinite domain. This condition
minimizes the reflections when the waves leave the modeling domain. According to Comsol
User′s Guid [11] after Bayliss, Gunzburger and Turkel [12] the expression of non-reflection
boundary condition in spherical geometry is:

−~n.(−
1

ρ
∇p) + (i k +

1

r
)
p

ρ
= (i k +

1

r
)
pi
ρ
+ ~n.(

∇pi
ρ

) (38)

Where pi is the incoming pressure wave.
The last type of boundary conditions used in the simulations is the imposed acceleration. This
condition is used to model the vibration of the loudspeaker, and the expression of this condition
is given by Euler equation: ρV̇ = ρ∂V

∂t
= −∇P .

The excitation:

In the simulations, the loudspeakers are modeled with a small vibrating portion of the pipe wall
at the bottom of the model, in the same configuration used by Q.Zhiping [1] in his experiment.
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(a) Geometry used for the baffled pipe

(b) Geometry used for the
flanged and unbaffled pipe

Figure 7 – Geometry of the domain

Figure 8 shows all the boundary conditions used in our simulations.
To simulate a semi-infinite pipe the boundary condition on the bottom of the pipe should

be a non-reflection condition, but in the simulations we use a rigid wall condition in order to
keep the same configuration used in the test bench of Q.Zhiping [1].

The dimensions of the model will be presented in section IV.

III.1.2 Solving Helmholtz equation using BiCGSTAB algorithm:

The problem is studied in the time-harmonic regime under linear acoustic assumptions, thus
the equation used is Helmholtz wave equation [11]:

∇[
1

ρ
∇p] +

k2

ρ
p = 0 (39)

The algorithm used to solve the matrix problem based on this equation is the Biconjugate
Gradient Stabilized algorithm ”BiCGSTAB”. This algorithm is used to solve a linear algebra
problem A x = b without any symetry conditions on the matrix A, the algorithm proceeds as
following [10]:

• Give an arbitrary initial value to the vector x = x0;

• Calculate r0 = b− A x0;

• Choose an arbitrary vector r̂0 such that r̂0 and r0 are not orthogonal;
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Figure 8 – Boundary conditions used in the simulations

• start a loop i=0,1,2,...:

– αi =< r̂0, ri > / < Api, r̂0 > where < ., . > is the scalar product;

– si = ri − αiApi;

– ωi =< Asi, si > / < Asi, Asi >;

– xi+1 = xi + αipi + ωisi;

– ri+1 = si − ωiAsi;

– if ||ri+1|| < ǫ0, break the loop. Where ǫ0 is the maximum accepted error (threshold);

– βi = (αi/ωi) < ri+1, r̂0 > / < ri, r̂0 >;

– pi+1 = ri+1 + βi(pi − ωiApi);

• set x = xi+1;

III.2 Modal decomposition and Post-processing:

Comsol includes a post-processing module that allow to plot the acoustic pressure and velocity
fields which is very useful to verify some details in the model like the boundary conditions
by analyzing the global behavior of the waves. However this module shows the total pressure
field and it could not extract the modes, the reason why we used a Matlab code for the modal
extraction.

III.2.1 Modal decomposition code:

It is possible to export the pressure field data from Comsol model using Export Postprocessing
data on a finite number of points in the model (probes). These probes represent the micro-
phones in the experiment of Q.Zhiping [1]. We kept the same number of microphones used
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in the experiment (N = 8 microphones) placed with a π
4
angular gap between each couple of

microphones as described in section II.2.3.2.

In our model, the microphones are defined as a group of 3 probes with a gap of ±2deg
between each two probes as depicted in figure 9 and the pressure on the the microphone is the
average of the pressure calculated on these 3 probes.

Figure 9 – Modeling a microphone with a 3 points probe

We used two measurement sections as shown in figure 10, the same number of sections used
by Q.Zhiping [1], and since we used 8 microphones on each section and each microphone is rep-
resented with 3 probes we have 48 probes in the model. Using the coordinates of the probes,
we could generate a postprocessing data file containing the complex pressure calculated on
the given points for all the simulated frequencies.

Figure 10 – Measurment sections used in the modal extraction (s = 40mm)

A Matlab code was created to extract the modes from the pressure data. The code contain
3 main parts:

• ”Read txt” is the program used to read the data file generated by Comsol;

• ”Modal extract” is the main program, used for the modal extraction;

• ”Plot curve” is the program used for the post processing and results comparison.
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Read txt:

The program Read txt reads the pressure data file and generates a matrix of complex pressure
for each measurement section, the number of lines of each matrix corresponds to the number
of microphones on each section and the number of columns corresponds to the number of the
simulated frequencies:

Section i f1 f2 ... fn−1 fn
mic1 p11 p12 ... p1 n−1 p1 n

mic2 p21 p22 ... p2 n−1 p2 n

... ... ... ... ... ...

... ... ... ... ... ...
mic8 p81 p82 ... p8 n−1 p8 n

This program generates also the frequency vector used in the simulation and the coordinates
of the microphones.

Modal Extract:

The program Modal Extract imports the matrices generated by Read txt (pressure, frequency
and coordinates) and calculates the inverse Fourier transform using the expression in equation
37 and the parameters of the numerical model. In the end the reflection coefficient and the
length correction are calculated using equation 33 and 27.

Plot curve:

This Program import the matrices generated by Modal Extract (Rm0, δm0, frequency, cutoff
frequencies) in order to plot the results.

Figure 11 summarizes the process of post-processing described above:

Figure 11 – Post-processing diagram

III.2.2 Benchmark tests of the post-processing code:

After building and debugging the programs described above, some benchmark tests have been
performed in order to verify that the programs give the expected results, especially the modal
extraction program.
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III.2.2.1 Synthetic signal test:

In this test a new Matlab code called ”Pressure signal test” is built in order to simulate ”ar-
tificial” pressure signals of the microphones and use these signals in the main program ”Modal
Extract” to verify if the results correspond to the input data. Since the pressure signal is fully
controlled in this case, we can control the reflection coefficient and the length correction, and
we can compare the results of the modal extraction with our input values of the reflection
coefficient and the length correction.

The ”Pressure signal test” code generates a pressure field corresponding to the first higher
mode (1, 0) in a frequency range of [10Hz , 3000Hz]. The cutoff frequency is f 1,0

c = 1132Hz
since the radius of the pipe is a = 88mm (the same radius used by Q.Zhiping [1]). The signal
is generated using the expression in equation 16:

p(a, θmic, zi, ω) = P+
10(ω)[e

−iγ10zi +RA
10e

iγ10zi ]eiθmic (40)

Where P+
10(ω) = 1 pa for all frequencies, zi = 0mm for the first measurements section and

zi = s = 40mm for the second section, θmic is the azimuthal position of the microphone and
γ10 is calculated using equation 14.
The magnitude of the artificial reflection coefficient is forced to a constant value |RA

10| = 3 and
the artificial length correction is a simple function of f and a:

δA10 =
a

1 + f 2
106 (41)

According to equation 27 the total artificial reflection coefficient at the open end of the pipe is:

RA
10 = −3e

−2iγ10δA10 (42)

The program ”Read txt” is not used in this test, because the pressure data generated by
”Pressure signal test” are directly transferred to the program ”Modal extract” since both of
them are built with Matlab. The final result of this test is summarized in figure 12. According
to the curves in figure 12 the post processing program ”Modal extract” gives the exact results
as expected in equations 42 and 41:

III.2.2.2 Matrix conditioning:

As mentioned in paragraph II.2.3.1, the condition in equation 29 should be fulfilled in order
to have an invertible matrix. But even if the matrix is invertible, the solution could be very
sensitive to errors. In order to check the sensitivity of the solutions to errors in the simulation,
the matrix conditioning is calculated for the configuration where the distance s = 40mm
between the two measurement sections. Figures 13 and 14 shows that the matrix conditioning
is very heigh at low frequency range because the wave-number is very small which means that
the elements of the matrix are close to each other. The figures illustrate also the condition
for invertibility mentioned in paragraph II.2.3.1 because we can notice that the conditioning is
very high at particular frequencies called ”forbidden frequencies”. The forbidden frequencies
depends on the distance s and the radius of the pipe a, in our case s = 40mm and a = 88mm
and according to equation 29 the forbidden frequency for the plane mode is 4250Hz and 4398Hz
for the mode (1.0) which correspond to the peaks of the conditionning. In figure 14 there is
another peak located at 1132Hz which is the cut-off frequency of the mode (1.0), M.Abom
gives in his paper [13] a frequency range around the cut-off frequency where the results are
sensitive to errors by:
for mode (1.0):

1 <
f

f10
< 1.033 (43)
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Figure 12 – Comparison between the expected results and the results calculated with the post-
processing code

for mode mode (2.0):

1 <
f

f20
< 1.012 (44)

In order to verify that the measurement or simulation errors don’t have an important impact
on the results, we added noise to the calculated pressure at each microphone and we compared
the results with and without noise. The noise used in this test is a random pressure δp limited
to ±3% of the pressure measured at each microphone. Figure 15 shows that even with a bad
matrix conditioning at low frequency range the noise doesn’t introduce an important error.

In conclusion modal decomposition with two measurement sections method is sensitive to
noise especially in low frequency range and near to modal cut-off frequencies, but it still a
reliable method in our study since we are using numerical simulation and the signals are clean.
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Figure 13 – Matrix conditioning for mode (0.0)

Figure 14 – Matrix conditioning for mode (1.0)
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Figure 15 – The impact of noise on the reflection coefficient and length correction calculations
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IV Sensitivity calculations:

In order to evaluate the sensitivity of our numerical model to the inputs, some sensitivity
calculations have been performed on different parameters. These calculations will allow us to
quantify the error induced by each input, then the choice of the parameters could be justified
in the end.
The boundary conditions used in this paragraph are presented in section III.1.1

IV.1 Sensitivity calculations for the baffled pipe configuration:

All the sensitivity calculations in this paragraph are performed for the baffled guide configura-
tion. In this case the geometry used in all the following calculations of this paragraph is based
on two main parts: a half of a sphere with a radius R and a tube of radius a and length l as
depicted in figure 16.

Figure 16 – Baseline geometry of the baffled guide

IV.1.1 Sensitivity to the sphere radius ”R”:

IV.1.1.1 Numerical model and parameters:

Even with a non-reflection condition on the external surface of the sphere, a small part of the
pressure waves could be reflected toward the simulation domain. So the size of the sphere has an
impact on the amount of the reflected pressure waves, especially in low frequency range, because
in models with bigger spheres the waves are attenuated due to the geometrical spreading then
the amplitude of the reflected waves will be much smaller. Moreover, the far field condition is
well fulfilled in models with big spheres so the outgoing waves have almost the shape of the
sphere when they reach the boundary of the finite/infinite domain. The main purpose of this
sensitivity calculation is finding the minimum size of the sphere which has the minimum impact
on the results. The parameters used in this sensitivity calculation are summarized in table 1.
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Cases R
Case 1 R = 2m
Case 2 R = 1m
Case 3 R = 0.5m
Case 4 R = 0.2m
Case 5 R = 0.1m

Table 1 – Parameters of sensitivity calculations, sensitivity to R: a= 0.088m, l = 1m, mesh
size=0.04m, frequency range[10Hz, 300Hz], solver: BiCGStab

In this sensitivity analysis only low frequencies are simulated because the far field condition
should be fulfilled for big wavelengths. At a low frequency range (<< 1000Hz) only the plane
mode can propagate because the first cut-off frequency in our case is 1132Hz, so by using
the axi-symmetry properties of the problem, this sensitivity analysis is performed in 2D axi-
symmetry geometry in order to reduce the calculation time especially for cases with R > 1m.
Figure 17 shows the different boundary conditions used in this sensitivity calculation:

Figure 17 – Boundary conditions used in the calculations of the sensitivity to the size of the
sphere

IV.1.1.2 Results and discussion:

The criterion of the comparison between the different calculation cases is the pressure at the
pipe outlet of the first calculation case (R = 2m) assuming that the results stay almost the
same for bigger radii (R > 2m). The relative error for a each case is calculated using the
formula:

Errori =

∫

f
|p(R1)− p(Ri)|
∫

f
|p(R1)|

(45)

Where p is the pressure at the exit of the pipe and Ri is the sphere radius in the ith case, for
example: p(R1) is the pressure at the exit of the pipe with a sphere of a radius R1 = 2m.The
errors calculated for these four sensitivity cases are represented in the following bar chart in
figure 18:
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Figure 18 – Relative error calculated with different sphere sizes (see Eq. 45)

According to the bar chart the error is almost null for radii bigger than 0.2m and less than
1% for R = 0.2m however the error exceeds 12% for R = 0.1m. In order to verify that the size
of the sphere doesn’t have an impact on the results for (R > 0.2m), the pressure on the baffle is
depicted on figure 19. According to figure 19, there is a good agreement between the pressure
calculated with different models and the baseline model (R = 2m) at f = 50Hz. Moreover the
curves are completely superimposed at f = 300Hz which means that the external surface of
the sphere is ”transparent” for the outgoing waves.

In conclusion, a model with a sphere radius bigger than R = 0.2m is enough to model the
semi-infinite space at the exit of the pipe.

IV.1.2 Sensitivity to the distance ”LB” between the measurements section and
the pipe open end:

IV.1.2.1 Numerical model and parameters:

There are two waves in the pipe: waves propagating toward the open end of the duct P+, and
the reflected waves propagating toward the bottom of the pipe P−. As mentioned in section
II.1, evanescent modes are attenuated exponentially in the pipe which means that evanescent
modes could be present at the measurement section if the traveling distances are not sufficient

and since the reflection coefficient is by definition Rmn = P−mn

P+
mn

it could be affected in this case.

The reflected waves travel the distance ”L” between the loud speaker and the microphones and
two times the distance ”LB” between the open end of the pipe and the microphones section as
depicted in figure 20, however the incoming waves travel only the distance L. The sensitivity
analysis is performed on the distance ”LB” and the distance ”L” is set to L = 1m.

The parameters used in the different sensitivity cases for ”LB” are summarized in table 2

Cases LB
Case 1 LB = 0.35
Case 2 LB = 0.6
Case 3 LB = 1.35

Table 2 – Parameters of sensitivity calculations, sensitivity to LB: R = 0.5m, a= 0.088m,
L = 1m, mesh size=0.04m, frequency range[700Hz, 1900Hz], solver: BiCGStab.
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Figure 19 – The pressure along the baffle for models with R = 2m, R = 0.5m, R = 0.2m.

Figure 20 – The distances traveled by the waves inside the pipe
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This sensitivity analysis is performed using the first higher mode (1,0). For the geometry
used in this case the cut-off frequency of the mode (1,0) is f = 1132Hz, and since this mode
has no axi-symmetry properties, the calculations are performed in 3D geometry using the same
boundary conditions as the previous section [IV.1.1] except for the axi-symmetry condition.

IV.1.2.2 Results and discussion:

Figure 21 shows a comparison of the reflection coefficient modulus for the different cases.
The reflection coefficient is calculated using ”Modal Extract” code (see description in section
III.2.1):

Figure 21 – Reflection coefficient of the mode (1,0) for different LB values (0.35m, 0.6m, 1.35m)

Figure 21 shows that for LB = 0.35m and LB = 0.6m the mode (1, 0) is detected at fre-
quencies lower than its theoretical cut-off frequency, which means that the reflected waves are
not sufficiently attenuated when they reach the microphones at the measurement section. For
LB = 1.35 the reflection coefficient modulus is non null only about 30Hz before the cut-off
frequency and the slope change is much sharper. However after the cutoff frequency all the
curves are superimposed.

In conclusion:

• Before the cutoff frequency: a distance LB = 1.35m between the microphones and the
open end is enough to keep only the propagating modes and reject the evanescent ones.

• After the cutoff frequency: The results are not sensitive to the distance LB because the
mode signature is very strong (high modal pressure amplitude). The differences between
the results of the length correction are located near to the cut-off frequency where the

MSc. thesis 27



IV. Sensitivity calculations:

Numerical simulation of multi-modal
reflexion in large acoustic waveguides

with different terminations

sensitivity to errors is higher. Then since we are interested only in propagating modes
(after the cutoff frequency) we can choose small distances for LB. In the experiments
done by Zhiping QIU [1] the distance LB varies between 0.11m and 0.28m depending on
the configurations (flanged, baffled or unbaffled pipe).

IV.1.3 Sensitivity to the boundary condition at the bottom of the pipe:

IV.1.3.1 Numerical model and parameters:

Theoretically the pipe is a semi-infinite duct, which means that the bottom of the pipe should
be modeled with a non-reflection condition in order to keep only the reflections on the pipe
walls and the open end of the pipe. But due to technical difficulties, the experiments done
by Zhiping QIU [1] in his PhD are performed with a closed pipe (rigid bottom). The purpose
of this paragraph is performing simulations with a closed pipe and non-reflection condition at
the bottom of the pipe in order to show the impact of the bottom boundary condition on the
results. The parameters used in this sensitivity analysis are summarized in the table 3

Cases R L LB a
BC at the
bottom of the pipe

frequency range Mesh size

Case 1 0.3m 0.83m 0.12m 0.088m Rigid [10Hz, 1500Hz] λmin

6

Case 2 0.3m 0.83m 0.12m 0.088m Anechoic [10Hz, 1500Hz] λmin

6

Table 3 – Parameters of sensitivity calculations, sensitivity to the boundary condition at the
bottom of the pipe

IV.1.3.2 Results and discussion:

Figure 22 shows the presence of resonances in the closed pipe. The following expression gives
approximated values of resonance frequencies:

fr =
(1 + 2N)c0
4L+ 0.8a

(46)

Where N ∈ N and L is the pipe length.
for higher modes (mn) the resonance frequencies are given by the expression [1]:

fmn
r =

c0
2π

√

(
(2N + 1)π

2L
)2 + (

αmn

a
)2 (47)

Figure 23 shows that the boundary condition at the bottom of the pipe has almost no
impact on the reflection coefficient even though resonances appear in the closed pipe, because
the reflection coefficient is defined as a ratio of two waves amplitudes.
In conclusion, a rigid wall boundary condition changes the pressure field in the pipe but does
not affect the reflection coefficient, and since the experiments of Zhiping QIU [1] are performed
with finite pipe, a rigid bottom will be used in the following simulations.

IV.1.4 Sensitivity to the mesh grid:

IV.1.4.1 Numerical model and parameters:

The calculation time for a simulation is related to its number of degrees of freedom which is
directly related to the mesh size and the geometry of the elements. The mesh grid has an
impact not only on the calculation time but also on the accuracy of the results, the reason why
its mandatory to perform a trad-off analysis to find a good compromise between the accuracy
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(a) Case 2, anechoic Bc ”semi-infinite pipe” (b) Case 1, rigid Bc ”finite pipe”

Figure 22 – Modal pressure |P10| in semi-infinite pipe and finite pipe

Figure 23 – Reflection coefficient of the mode (1,0) for a closed pipe and semi-infinite pipe
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(a) The entire domain is meshed
with Tetrahedral elements

(b) Pipe meshed with Triangular Prism elements
and sphere meshed with Tetrahedral elements

Figure 24 – Geometries of the mesh grid used in the analysis of the sensitivity to the mesh grid

and the calculation time of our numerical model. Of course the maximum mesh size should
be less than the minimum wavelength λmin, in this sensitivity analysis mesh sizes of h = λmin

3
,

h = λmin

6
and h = λmin

12
are used with two different elements’ geometry ”Tetrahedral” and a

mix of ”Triangular Prism” plus ”Tetrahedral”, figure 24 shows an example of these two mesh
geometries.

The parameters used in this sensitivity analysis are summarized in table 4

Cases Mesh size Mesh grid
Number of
elements

Case 1 λmin

3
Mix 2 499

Case 2 λmin

6
Mix 25 017

Case 3 λmin

6
Tetrahedral 35 096

Case 4 λmin

12
Mix 132 845

Case 5 λmin

12
Tetrahedral 188 874

Table 4 – Parameters of sensitivity calculations, sensitivity to the mesh: R = 0.3m, a= 0.088m,
L = 0.83m, LB = 0.12m, frequency range [1130Hz, 1500Hz], solver: BiCGStab.

IV.1.4.2 Results and discussion:

We can notice that by using a mixed mesh (Triangular Prism and Tetrahedral) the number of
elements is reduced by about 28%. The figure 25 shows that the mesh grid has a minor impact
on the reflection coefficient, however we can notice that a mesh size of h = C

6 fmax
or less gives

better results. In conclusion, all simulations in this study will be performed using a mixed mesh
with maximum elements size of h = C

6 fmax
.

IV.2 Sensitivity calculations for the unbaffled pipe configuration:

All the sensitivity calculations in this paragraph are performed for the unbaffled guide config-
uration. In this case the geometry used in all the following calculations of this paragraph is
based on two main parts: a complete sphere with a radius R centred on the outlet of the duct
and a tube of radius a and length l as depicted in the figure 26.
The boundary conditions used in this paragraph are presented in section III.1.1.

IV.2.1 Sensitivity to the sphere radius ”R”:

IV.2.1.1 Numerical model and parameters:

The main purpose of this sensitivity calculation is finding the minimum size of the sphere which
has the minimum impact on the results. The parameters used in this sensitivity calculation are
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Figure 25 – Reflection coefficient of the mode (1,0) calculated with different mesh geometries
and sizes

Figure 26 – Baseline geometry of the unbaffled guide
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summarized in table 5.

Cases R
Case 1 R = 2m
Case 2 R = 1m
Case 3 R = 0.5m
Case 4 R = 0.3m
Case 5 R = 0.2m

Table 5 – Parameters of sensitivity calculations, sensitivity to R: a= 0.088m, l = 1m, frequency
range [10Hz, 300Hz], mesh size= 0.04m, solver: BiCGStab.

These sensitivity calculations are performed in 2D axi-symmetry geometry for the same
reasons explained in paragraph IV.1.1. Figure 27 shows the different boundary conditions used
in this sensitivity calculation:

Figure 27 – Boundary conditions used in the calculations of the sensitivity to the size of the
sphere

IV.2.1.2 Results and discussion:

The criterion of the comparison between the different calculation cases is the same criterion
used in paragraph IV.1.1. The errors calculated for these four sensitivity cases are represented
in the following bar chart in figure 28:

According to the bar chart the error is less than 4% for radii bigger than 0.3m, however
it exceeds 8% for R = 0.2m. In conclusion, a model with a sphere bigger than R = 0.3m is
enough to model the infinite space at the exit of the pipe if we accept 4% of error.

IV.2.2 Sensitivity to the geometry of the chamfer :

IV.2.2.1 Numerical model and parameters:

As depicted in figure 26, the unbaffled duct ends with a chamfer that simulate the unbaffled
open end. A sensitivity calculations are performed on the geometrical parameters of the chamfer
in order to show that the geometry of the chamfer doesn’t have an important impact on the
results. The chamfer is characterized by its angle α and width d. This sensitivity analysis is
performed in two steps, firstly the width is set to d = 30mm and the angle α is varied [10◦,20◦,
30◦], secondly the angle α is set to 20◦ and the width is varied [20mm,30mm,40mm]. The
parameters used in this sensitivity analysis are summarized in table 6:
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Figure 28 – Relative error calculated with different sphere sizes (see Eq. 45)

Cases d α
Case 1 30mm 10◦

Case 2 30mm 20◦

Case 3 30mm 30◦

Case 4 20mm 20◦

Case 5 30mm 20◦

Case 6 40mm 20◦

Table 6 – Parameters of sensitivity calculations, sensitivity to the chamfer geometry: R = 0.3m,
a= 0.088m, L = 0.83m, LB = 0.28m, frequency range [1132Hz, 2000Hz], mesh sizeλmin

6
, solver:

BiCGStab.

IV.2.2.2 Results and discussion:

According to figure 29 the angle of the chamfer has an impact on the results and it is more
visible at high frequencies in the reflection coefficient modulus. However the impact on the
length correction is more visible at low frequencies, because the conical surface of the chamfer
acts like a small baffle at high frequencies especially when the angle is important and as a sharp
edge at low frequencies. Figure 30 shows that the width d doesn’t impact the results.

In conclusion, the geometry of the chamfer do have an impact on the reflection coefficient
especially the angle α. In the following calculations and analysis, the geometrical parameters
are set to the same geometry used by Zhiping [1] (α = 20◦, d = 30mm).

IV.2.3 Sensitivity to the mesh grid:

IV.2.3.1 Numerical model and parameters:

In this sensitivity analysis we consider only the region around the chamfer at the outlet of the
pipe in order to represent the small details of the chamfer. Therefore the mesh refinement is
located in a small sphere outside the pipe and a in small cylinder in the inside as depicted
in figure 31. The mesh parameters in the rest of the geometry are the same as the previous
section. Table 7 summarizes the parameters of this sensitivity calculation.
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Figure 29 – Results of sensitivity calculations performed with different chamfer angle

Figure 30 – Results of sensitivity calculations performed with different chamfer width
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Figure 31 – Mesh refinement around the chamfer at the pipe outlet.

Cases Mesh size Mesh grid
Number of
elements

Case 1 λmin

6
Mix 70 293

Case 2 λmin

8
Mix 102 197

Case 3 λmin

12
Mix 161 428

Table 7 – Parameters of sensitivity calculations, sensitivity to the mesh grid: R = 0.3m,
a= 0.088m, L = 0.83m, LB = 0.28m, frequency range [1132Hz, 2000Hz], solver: BiCGStab.

IV.2.3.2 Results and discussion:

Figure 32 shows that the mesh grid at the outlet of the pipe doesn’t impact the reflection
coefficient modulus, and it induces a maximum of 2.7% of error in length correction results
which corresponds to ≈ 0.8mm of difference.

Figure 32 – Reflection coefficient of the mode (1,0) calculated with different mesh sizes at the
outlet of the waveguide.
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IV.3 Sensitivity calculations for the flanged pipe configuration:

The flanged pipe is a baffled duct with a finite screen (a flange). In this case, we used the same
flange geometry in Zhiping’s [1] experiments: a radius of 141mm and 15mm thick. The infinite
space is modelled with a complete sphere with a radius R centred on the outlet of the duct as
depicted in figure 33.

Figure 33 – Baseline geometry of the flanged guide, h = 15mm, rb = 141mm.

IV.3.1 Sensitivity to the sphere radius ”R”:

IV.3.1.1 Numerical model and parameters:

Like the previous configurations, a sensitivity analysis is performed to show the impact of the
sphere size on the results of the calculation. The parameters used in this sensitivity calculation
are summarized in table 8.

Cases R
Case 1 R = 2m
Case 2 R = 1m
Case 3 R = 0.5m
Case 4 R = 0.3m
Case 5 R = 0.2m

Table 8 – Parameters of sensitivity calculations, sensitivity to R: a= 0.088m, l = 1m, mesh
size=0.04m, frequency range[10Hz, 300Hz], solver: BiCGStab
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These sensitivity calculations are performed in 2D axi-symmetry geometry for the same
reasons explained in paragraph IV.1.1. Figure 34 shows the different boundary conditions used
in this sensitivity calculation:

Figure 34 – Boundary conditions used in the calculations of the sensitivity to the size of the
sphere

IV.3.1.2 Results and discussion:

The criterion of the comparison between the different calculation cases is the same criterion
used in paragraph IV.1.1. The errors calculated for these four sensitivity cases are represented
in the following bar chart in figure 35:

Figure 35 – Relative error calculated with different sphere sizes (see Eq. 45)

According to the bar chart the error is less than 3% for radii bigger than 0.5m, however it
exceeds 7% for radii smaller than R = 0.3m.
In conclusion, a model with a sphere bigger than R = 0.5m is enough to model the infinite
space at the exit of the pipe if we accept 3% of error. In our calculations we are limited by
the computer specifications and we can ran simulations with a sphere radius up to 0.3m only,
because if the number of degrees of freedom exceeds 8.105 dof the simulation crashes, the
reason why we used a sphere with a radius of 0.3m for the flanged pipe.
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IV.3.2 Sensitivity to the mesh grid:

IV.3.2.1 Numerical model and parameters:

Like the unbaffled configuration, in this sensitivity analysis we consider only the region around
the flange at the outlet of the pipe. Therefore the mesh refinement is located in a small sphere
outside the pipe and a small cylinder in the inside as depicted in figure 36. The mesh and
geometry parameters are summarized in table 9.

Figure 36 – Mesh refinement around the flange at the pipe outlet.

Cases R L LB a frequency range Mesh size Mesh grid
Number of
elements

Case 1 0.3m 0.83m 0.11m 0.088m [1130Hz, 2000Hz] λmin

6
Mix 69 138

Case 2 0.3m 0.83m 0.11m 0.088m [1130Hz, 2000Hz] λmin

12
Mix 165 832

Table 9 – Parameters of sensitivity calculations, sensitivity to the mesh grid

IV.3.2.2 Results and discussion:

Figure 37 shows that the mesh grid at the outlet of the pipe doesn’t impact the reflection
coefficient.
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Figure 37 – Reflection coefficient of the mode (1,0) calculated with different mesh sizes at the
outlet of the waveguide.
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V Results of reflection coefficient and length correction

calculations:

V.1 Numerical results of Rm0 and δm0:

The simulations are performed with the same geometries used in the experimental work of
Zhiping [1] in order to compare the numerical results to the experimental measurements. The
considered configurations are also the same ones tested in the experimental work: the baffled
pipe, the unbaffled pipe and the flanged pipe. Figure 38 shows the geometrical proprieties of
the three configurations of the final simulation. The parameters of the final simulations are the
same parameters used in sensitivity calculations:

• Software: Comsol Multiphysics;

• Computation algorithm: BiCGSTAB;

• Mesh size: 6 nodes per wavelength (minimum);

• Domain: ρair = 1.23kg/m3 and cair = 340m/s without absorption and without mean
flow;

• Boundary conditions: as described in section III.

Figure 39 shows the total pressure field calculated by Comsol Multiphysics without modal
decomposition. The calculated pressure is a combination of different modes, all mixed in one
complex pressure field (see figure 39 a), even though it’s possible to find particular frequencies
where a single mode is dominant (see figure 39 b, c and d). To propagate only one mode,
the excitation should be controlled in order to generate the signature of that mode only. This
method is not used in the main simulations but it’s studied in appendix (B).

Since the objective of this study is the calculation of the multimodal reflection coefficient a
modal decomposition is performed using Matlab codes described in section III.2.1. After the
modal decomposition, the results obtained for the three configurations are depicted in figures
40 and 41. Figure 40 shows the reflection coefficient modulus of the plane (1.0) mode and the
two first higher modes (1.0) and (2.0), and figure 41 shows the correponding length correction
(the phase).
We can notice that the calculated reflection coefficient modulus and the length correction of
the plane mode are in a good agreement with the results given by Norris and Sheng [6]. An-
other remark could be made on the reflection coefficient modulus of the plane mode for the
flanged pipe, in figure 40 we can notice that the blue curve is closer to the reflection coefficient
modulus of the unbaffled pipe at low frequencies since the wavelength is much bigger than the
flange dimensions and at higher frequencies the curve tends to join the curve of the baffled pipe
because the wavelength gets smaller and the flange could be compared to an infinite baffle.
For the length correction, figure 41 shows that the impact of the outlet geometry on length
correction is more visible for the plane mode than the higher modes. We can notice also that
the curves of the length correction of higher modes tend tend to join the plane mode curve at
high frequency range.
The dashed vertical lines mark the region where the results are more sensitive to errors as seen
in paragraph III.2.2.2. However we can notice some fluctuations even in regions where the
results are supposed to be insensitive to noise like the peak at f = 1500Hz. By examining the
modal pressure amplitude of the outgoing wave and the reflected one in figure 42, we can see
that these fluctuations are located at frequencies where the modal pressure amplitudes are at
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Figure 38 – Geometries used for the final simulations: a= 0.088m, L = 1.21m, LB1 = 0.12m,
LB2 = 0.28m, LB3 = 0.11m, R = 0.3m, b = 30mm, d = 53mm, h = 15mm, s = 40mm,
α = 20◦.

Figure 39 – Total pressure field in the baffled pipe without modal decomposition, a: combination
of many modes at 2350Hz, b: plane mode is dominant at 1000Hz, c: mode (1.0) is dominant
at 1760Hz and d: mode (2.0) is dominant at 2250Hz.
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a minimum, which means that the signature of the mode is too weak compared to numerical
errors, the reason why the results are perturbed at these particular frequencies. The modal
pressure amplitude is at a minimum when the loudspeaker doesn’t excite the mode efficiently
which is the case when the excitation is located at a pressure node. Since our pipe is closed
at the bottom, the pressure nodes are located at odd multiples of one fourth of a wavelength
(2n+1)λ

4
as depicted in figure 43, because there is always a maximum pressure at the rigid bot-

tom.
Let’s take for example the minimum pressure of the plane mode. In our case, the loudspeaker
is located at LA = 0.395m from the rigid bottom of the pipe, in this case the loudspeaker is
at a pressure node when f = fmin = (2n+1)c0

4LA
, these frequencies are marked by vertical dashed

lines in figure 42.

Figure 40 – Calculated reflection coefficient modulus: the black solid curve corresponds to the
baffled pipe by Norris and Cheng, the black dashed curve corresponds to the unbaffled pipe by
Norris and Cheng, red curves correspond to the unbaffled pipe, green curves correspond to the
baffled pipe, the blue ones correspond to the flanged pipe and the dashed vertical lines marks
the regions where the results are more sensitive to errors.

Remark 1:

Since the plane mode and the first radial mode (0.1) have the same radial signature on the
circumference of the pipe (r = a) the modal decomposition using only two measurement sections
can’t distinguish between the mode (0.0) and (0.1), the reason why the calculation of the plane
mode is limited to frequencies before the cut-off frequency of the mode (0.1).
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Figure 41 – Calculated length correction: the black solid curve corresponds to the baffled pipe
by Norris and Cheng, the black dashed curve corresponds to the unbaffled pipe by Norris and
Cheng, red curves correspond to the unbaffled pipe, green curves correspond to the baffled pipe,
the blue ones correspond to the flanged pipe and the dashed vertical lines marks the regions
where the results are more sensitive to errors.

Figure 42 – Modal pressure amplitude for the baffled pipe configuration, P+: outgoing wave,
P−: reflected wave.
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Figure 43 – Location of pressure nodes in a closed waveguide.

Remark 2:

By examining the modal pressure amplitude of the plane mode, we noticed that the length
correction could be visualized an measured graphically on the pressure plot because we noticed
that the reflection occurs at a minimum pressure region which means when the real part of the
pressure field is at a minimum (the first minimum outside the pipe). Therefore, by measuring
graphically, in figure 44, the distance between the pipe outlet (black solid vertical line) and the
following first minimum of pressure (black dashed vertical line) we find the corresponding length
correction. In figure 44 this graphical method is tested for two different frequencies 500Hz and
1000Hz, the difference between the graphical measurement and the calculated value of δ00 is
only 4.3% (1.8mm) at 500Hz however the graphical measurement gives the same value as the
calculations at 1000Hz.

Figure 44 – Measuring δ00 graphically: the vertical black solid and dashed lines mark respect-
ively the position of the pipe outlet and the reflection position, solid red and blue curves
correspond respectively to ℑ(P00) and ℜ(P00), the blue dashed curves correspond to |P00| and
blue dotted curve corresponds to the calculated δ00.

MSc. thesis 44



V. Results of reflection coefficient and length correction calculations:

Numerical simulation of multi-modal
reflexion in large acoustic waveguides

with different terminations

V.2 Comparison of numerical results and experimental measure-
ments:

As stated in the introduction, the main goal of the numerical simulations in this study is to sup-
port the results of the experimental work done by Zhiping [1] in his PhD at ”Institut Pprime”
laboratory.
The results of the numerical simulations and the experimental measurements of the reflection
coefficient modulus are depicted in Figure 45. Numerical simulations and experimental meas-
urement are in good agreement. We can make the same remark for the reflection coefficient
of the flanged pipe as seen in the previous paragraph, where the reflection coefficient of the
plane mode for the flanged pipe is closer to the reflection coefficient of the unbaffled pipe at low
frequencies and tends to join the reflection coefficient of the baffled pipe when the frequencies
get higher. We can also notice that the intersections between the reflection coefficient of the
flanged and the baffled pipe (the blue and the green curves) of the numerical simulation are
close to the intersections in the experimental curves (maximum 30Hz apart).

Figure 45 – Comparison of the reflection coefficient modulus results of numerical simulations
(solid lines) and the experimental measurements (dashed lines), red curves correspond to the
unbaffled pipe, green curves correspond to the baffled pipe and the blue ones correspond to the
flanged pipe.

The numerical results and the measurements of the length correction are presented in figure
46. The comparison shows that numerical and the experimental curves are in a good agreement
especially at frequencies far from the cut-off frequencies of the modes however there is a larger
gap between the two results close to the cut-off frequencies. We can notice that all the curves
of all configurations converge toward almost the same value δ/a ≈ 0.25 in high frequency range
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(f > 2000Hz).
Figure 47 gives more detailed plots of length correction curves for each mode.

Figure 46 – Comparison of the length correction results, numerical simulations (solid lines),
experimental measurements (dashed lines), red curves correspond to the unbaffled pipe, green
curves correspond to the baffled pipe and the blue ones correspond to the flanged pipe.
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(a) Length correction for the plane mode (0.0). (b) Length correction for mode (1.0).

(c) Length correction for mode (2.0).

Figure 47 – Comparison of the length correction results, numerical simulations (solid lines), the
experimental measurements (dashed lines), red curves correspond to the unbaffled pipe, green
curves correspond to the baffled pipe and the blue ones correspond to the flanged pipe.
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VI Conclusions:

In this study, numerical models are built in order to simulate the multimodal reflection phe-
nomenon at the outlet of acoustic waveguides. Three models have been considered in order to
cover almost all the possible and existing configurations in the industry: a pipe ended with an
infinite baffle, a pipe ended with a finite flange and a pipe without a baffle.

The modal extraction is based on the method of measurement between microphone pairs,
where the acoustic pressure is measured at two or more sections in order to calculate the un-
known modal pressure amplitudes.

Sensitivity analysis represents a large part of this work, because testing the sensitivity of
the numerical models to the simulation parameters is very important to evaluate the accuracy
and the stability of the solutions. A large number of sensitivity calculation are performed not
only on geometrical modal and its mesh but also on the post-processing codes to ensure that
they represent exactly the numerical solution. Therefore additional codes are created just to
test the post-processing codes using synthetic pressure signals and the conditioning proprieties
of the matrices.

The comparison between the numerical results and the experimental measurements of Zhip-
ing QIU [1] shows a good agreement between the simulations and the experiments. This
comparison is very important for both the numerical and the experimental study especially for
higher modes since the theoretical models are limited to the plane mode reflection.

For further studies, one can use more than two measurement sections in order to extract
radial modes and avoid the interference between the decomposition of the azimuthal and radial
mode as seen for the plane mode (0.0) and the first radial mode (0.1) in section V.1. Another
option for the modal decomposition could be the control of the excitation to generate one mode
at a time using an excitation that generates perfectly the signature of that mode.
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Appendices

A Matlab programs:

Remark:

In this appendix only the important sections of each program are presented and the three dots
(...) indicate that a part of the code is omitted.

Modal extraction code:

(...)

Rmn=zeros(length(modes),length(f)); %Multimodal reflection matrix

PmnP=zeros(length(modes),length(f));%Modal pressure of the outgoing wave

PmnN=zeros(length(modes),length(f));%Modal pressure of the reflected wave

delta_mn=zeros(length(modes),length(f));%Length correction matrix

m=1;

while m<=length(modes)

gamma_mn=(k.^2-(alpha_mn(m)/a)^2).^0.5; %Longitudinal wave-number

Pmn_s=zeros(1,size(P0,2)); %Modal pressure at z=s

Pmn_0=zeros(1,size(P0,2)); %Modal pressure at z=0

mic=0;

while mic <= N-1

Pmn_s=Pmn_s+exp(-2j*pi*modes(m)*mic/N)*Ps(mic+1,:); % inv Fourier

Pmn_0=Pmn_0+exp(-2j*pi*modes(m)*mic/N)*P0(mic+1,:);

mic=mic+1;

end

Pmn_s=Pmn_s/N;

Pmn_0=Pmn_0/N;

%Calculation of the reflection coefficient and length correction:

Rmn(m,:)=((Pmn_s-Pmn_0.*exp(-1j*gamma_mn*s))./

(Pmn_0.*exp(1j*gamma_mn*s)-Pmn_s)).*exp(2j*gamma_mn*LB);

delta_mn(m,:)=(angle(Rmn(m,:))-pi)./(-2*real(gamma_mn))+q*pi./real(gamma_mn);

%Calculation of the modal pressure amplitudes:

PmnP(m,:)=((Pmn_0-Pmn_s.*exp(-1j*gamma_mn*s))./(1-exp(-2j*gamma_mn*s)));

PmnN(m,:)=((Pmn_0-Pmn_s.*exp(1j*gamma_mn*s))./(1-exp(2j*gamma_mn*s)));

m=m+1;

end

(...)
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Read txt code:

(...)

file = fopen(char(link)); %Open the Pressure data file

(...)

lineSplit=strsplit(line); %Read the frequency line

freq=[];

for fi=lineSplit(5:end-1) %Load the frequency line

freqi=str2double(strsplit(char(fi),’=’));%Convert from str to double

freq=[freq freqi(2)]; %Save the value in frequency vector

end

(...)

P_0=[]; %Pressure measured at z=0

P_s=[]; %Pressure measured at z=s

X_0=[]; %Coordinates of the probes at z=0

X_s=[]; %Coordinates of the probes at z=s

while ischar(line)

lineSplit=str2double(strsplit(line));%Load a line

if lineSplit(3)==zmic0 %Check it it’s a probe

P_0=[P_0 ; lineSplit(4:end-1)]; %Save the pressure in the pressure vector

X_0=[X_0 ; real(lineSplit(1:3))];%Save the coordinates of the probe

end

if lineSplit(3)==zmics

P_s=[P_s ; lineSplit(4:end-1)];

X_s=[X_s ; real(lineSplit(1:3))];

end

line = fgetl(file); %Go to the next line

end

fclose(file); %Close the file

ii=1;

Pxz0=[]; %Average pressure over 3 neighboring probes at z=0

Pxzs=[]; %Average pressure over 3 neighboring probes at z=s

X0=[]; %Coordinates of the probes at z=0

Xs=[]; %Coordinates of the probes at z=s

while ii<= size(P_0,1)-2 %Calculate the average pressure

%over each 3 neighboring probes

Pxz0=[Pxz0 ;(P_0(ii,:)+P_0(ii+1,:)+P_0(ii+2,:))./3];

Pxzs=[Pxzs ; (P_s(ii,:)+P_s(ii+1,:)+P_s(ii+2,:))./3];

X0=[X0 ; (X_0(ii,:)+X_0(ii+1,:)+X_0(ii+2,:))./3];

Xs=[Xs ; (X_s(ii,:)+X_s(ii+1,:)+X_s(ii+2,:))./3];

ii=ii+3;

end

(...)
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Pressure signal test:

(...)

k=2*pi*f/c0; %Total wave-number

gamma_mn=(k.^2-(alpha_mn(2)/a)^2).^0.5; %Axial wave-number

cutindix=find(f>=1132,1); %Find the cut-off frequency index

C10=[zeros(1,cutindix-1) ones(1,length(f)-cutindix+1)]; %Max Pessure amplitude

Jm=besselj(1,alpha_mn(2)); %Bessel func

Pmic_0=[]; %Pressure vector at the first section

Pmic_s=[]; %Pressure vector at the second section

delta=a./(1+f.^2); %Length correction function

Rs=-3*[zeros(1,cutindix-1)

ones(1,length(f)-cutindix+1)];%|R| at the reflection pt

R=Rs.*exp(-2j*gamma_mn.*(LB+delta)); %|R| at the first section

(...)

while ii<=8 % Pressure at the first section

Pmic_0=[Pmic_0 ; C10.*(1+R).*exp(1j*m*ii*tetha)];

ii=ii+1;

end

(...)

while ii<=8 % Pressure at the second section

Pmic_s=[Pmic_s ; C10.*(exp(-1j*gamma_mn*s)+

R.*exp(1j*gamma_mn*s))*exp(1j*m*ii*tetha)];

ii=ii+1;

end

(...)
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B Control of the excitation using 16 loudspeakers:

In theory, if the excitation generates perfectly the signature of only one mode only that mode
could propagate in the wave guide. The modal signature are continuous functions (see equation
16) so theoretically the modal signature must be generated using a continuous source. Unfor-
tunately it’s impossible to build such source in Comsol Multiphisics environment, the reason
why we limited our source to a 16 loudspeakers placed on the circumference of the pipe. The
loudspeakers are modeled with half pulsating spheres on the circumference of the pipe (half
of a sphere in a baffle). Using discrete 16 loudspeakers doesn’t generate perfectly the modal
signature however it allows to have only one dominant mode. The loudspeakers are controlled
to generate the first higher mode (1.0) using equation 16. Figure 48 shows how the loudspeakers
are controlled.

Figure 48 – Control of the loudspeakers to generate the first higher mode (1.0).

Figure 49 shows the total pressure field before the modal decomposition. The results using
only 16 loudspeakers are relatively satisfying compared to the results obtained with only one
loudspeaker however we noticed that at some frequencies we still have an interaction with other
modes. We can also notice that the spiral of the longitudinal propagation of the mode is more
visible.

Figure 50 compares the modal pressure amplitude of the plane mode and mode (1.0) using
one loudspeaker and 16 loudspeakers. According to figure 50 (a) modal amplitude of the plane
mode is about 0.1pa and the amplitude of mode (1.0) is about 400pa which confirms that mode
(1.0) is dominating. Contrary in figure 50 (b) we can notice that the two modes have almost
the same amplitude.

In conclusion using multiple discrete sources allow to propagate one dominant mode however
it’s not possible to eliminate completely the other modes which requires a continuous source.
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B. Control of the excitation using 16 loudspeakers:

Numerical simulation of multi-modal
reflexion in large acoustic waveguides

with different terminations

Figure 49 – Total pressure field generated with 16 loudspeakers set to mode (1.0).

(a) Using 16 loudspeakers. (b) Using only one loudspeaker.

Figure 50 – Comparison of the modal pressure amplitude of modes (0.0) and (1.0) obtained
with different excitation.
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