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On Lebesgue points of entropy solutions to the eikonal equation

We consider entropy solutions to the eikonal equation |∇u| = 1 in two space dimensions. These solutions are motivated by a class of variational problems and fail in general to have bounded variation. Nevertheless they share with BV functions, several of their fine properties: we show in particular that the set of non-Lebesgue points has co-dimension at least one.

Introduction

We consider an open set Ω ⊂ R 2 and m : Ω → R 2 a solution of the eikonal equation |m| = 1 a.e., and ∇ • m = 0 in Ω.

(
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We are interested in particular in solutions that arise as limits as ε → 0 of vector fields m ε with equi-bounded energy sup ε>0 F ε (m ε , Ω) < ∞, where

F ε (m; Ω) = ε 2 ˆΩ |∇m| 2 + 1 2ε ˆΩ(1 -|m| 2 ) 2 , (2) 
m : Ω → R 2 , ∇ • m = 0,
are the functionals introduced by Aviles and Giga in [START_REF] Aviles | A mathematical problem related to the physical theory of liquid crystal configurations[END_REF]. We refer to the introduction of [START_REF] Jin | Singular perturbation and the energy of folds[END_REF] for a description of several physical applications. The notion of entropy, borrowed from the field of conservation laws, plays a fundamental role in the study of the singular limit as ε → 0 of these functionals. We say that a compactly supported function Φ ∈ C ∞ (R 2 , R 2 ) is an entropy for [START_REF] Adams | Function spaces and potential theory[END_REF] if for every open set U and every smooth m : U → R 2 solving ∇ • m = 0 and |m| = 1 it holds ∇ • Φ(m) = 0. It is shown in [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF][START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] that functions with equi-bounded energy as ε → 0 are pre-compact in L 2 (Ω) and any limit is an entropy solution of (1): namely for every entropy Φ ∈ C ∞ (R 2 , R 2 ) the distribution ∇ • Φ(m) is a finite Radon measure. Remarkably, the same class of entropy solutions to [START_REF] Adams | Function spaces and potential theory[END_REF] contains the asymptotic domain of other families of functionals: see [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF][START_REF] Rivière | Limiting domain wall energy for a problem related to micromagnetics[END_REF] for two micromagnetics models.

It is shown in [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF] that m is an entropy solution if and only if the following kinetic equation (introduced in [START_REF] Jabin | Compactness in Ginzburg-Landau energy by kinetic averaging[END_REF]) is satisfied:

e is • ∇ x 1 m(x)•e is >0 = ∂ s σ, σ ∈ M loc (Ω × R/2πZ). (3) 
We denote by ν ∈ M loc (Ω) the entropy dissipation measure given by

ν(A) = |σ|(A × R/2πZ), A ⊂ Ω. ( 4 
)
It is known [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF] that H 1 -a.e. point x ∈ Ω at which ν(B r (x))/r → 0 as r → 0 + is a vanishing mean oscillation (VMO) point of m, that is,

Br(x) m - Br(x) m -→ 0 as r → 0 + . It is conjectured in [7, Conjecture 1 (b')] that H 1 -a.
e. such point is in fact a Lebesgue point. Our main result states that this conjecture is true under the additional assumption that ν(B r (x))/r decays algebraically to 0.

Theorem 1. Let m : Ω → R 2 be an entropy solution (3) of the eikonal equation [START_REF] Adams | Function spaces and potential theory[END_REF].

Then H 1 -a.e. x ∈ Ω such that lim r→0 + ν(B r (x))/r 1+a = 0 for some a > 0 is a Lebesgue point of m. In particular, the set of non Lebesgue points of m has Hausdorff dimension at most 1.

Remark 2. After this work was submitted, we became aware that the bound on the Hausdorff dimension can also be obtained as a consequence of classical capacity estimates [START_REF] Adams | Function spaces and potential theory[END_REF]Theorem 6.21] and of the regularity m ∈ B 1/3 3,∞ [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF] (which implies m ∈ W s,3 for any s < 1/3). Note however that the information provided by Theorem 1 is stronger, in that it directly relates oscillations at a point x to the local energy dissipation ν(B r (x)). Also note that, as will be clear from the proof, the assumption of algebraic energy decay ν(B r )/r = O(r a ) can be relaxed to ν(B r )/r = O(| ln r| -14 ). Via a covering argument this implies that non Lebesgue points are finite for the Hausdorff measure defined by the function r → r| ln r| -14 (see e.g. [1, § 5.1]), a fact which does not follow directly from capacity estimates.

Analogs of Theorem 1 have been obtained previously in [START_REF] Lamy | On the regularity of weak solutions to Burgers' equation with finite entropy production[END_REF] for Burgers' equation, and in [START_REF] Marconi | On the structure of weak solutions to scalar conservation laws with finite entropy production[END_REF] for general scalar conservations laws. To prove Theorem 1 we follow the scheme laid out in [START_REF] Marconi | On the structure of weak solutions to scalar conservation laws with finite entropy production[END_REF], where it is shown that oscillations of averages ffl Br(x) u of the solution u are controlled by the entropy dissipation. This, together with the VMO property, implies the Lebesgue point property. However, a key feature for the argument of [START_REF] Marconi | On the structure of weak solutions to scalar conservation laws with finite entropy production[END_REF] is that the solution u takes values in the ordered set R. Here our solution m takes values in S 1 , and adapting the argument of [START_REF] Marconi | On the structure of weak solutions to scalar conservation laws with finite entropy production[END_REF] is not enough to conclude (see Proposition 4). Our proof of Theorem 1 relies instead on the following dichotomy: either the oscillations of ffl Br(x) m are controlled by the entropy dissipation ν, or m takes very different values in large subsets of B R (x) -this second alternative is ruled out by the VMO property. That dichotomy is made quantitative in the next statement.

Proposition 3. Assume B 1 ⊂ Ω. Let r ∈ (0, 1/2) and h = h(r) = max x 1 ,x 2 ∈B 2r Br(x 1 ) m - Br(x 2 )
m .
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There exist absolute constants c, δ > 0 such that, if

R = 32r δh 2 ≤ 1, then either ν(B R ) ≥ c h 11 r, (6) 
or there exist s 0 ∈ R such that

B R ∩ m • e is ≥ - 1 2 ≥ c R 2 for dist(s, {s 0 , s 0 + π}) ≤ π/4. (7) 
Here and in the rest of the article, we denote by |A| the Lebesgue measure of a measurable set A ⊂ R d . Theorem 1 is a rather direct consequence of Proposition 3, as we explain now.

Proof of Theorem 1. Let x ∈ Ω be a VMO point of m such that ν(B r (x))/r 1+a → 0 for some a > 0. Translating and rescaling we assume without loss of generality that x = 0 and B 1 ⊂ Ω. We claim that h(r) = O(r b ) for b = a/(13 + 2a) > 0. This, together with the fact that 0 is a VMO point of m, implies that 0 is a Lebesgue point (see [START_REF] Marconi | On the structure of weak solutions to scalar conservation laws with finite entropy production[END_REF]Lemma 4.6]). (Note, in connection with Remark 2, that h(r) = O(| ln r| -1-ε ) for some ε > 0 would imply the same conclusion.) To prove that h(r) = O(r b ) we argue by contradiction and assume that h(r)/r b → ∞ along a sequence r → 0 + . Then, along the same sequence,

R = 32r δh 2 = 32 δ r 1-2b r b h 2 → 0 because b < 1 2 , and R 1+a h 11 r = 32 1+a δ 1+a r b h 13+2a → 0.
Therefore, applying Proposition 3 along the sequence R → 0, the condition ( 6) cannot be satisfied because ν(B R )/R 1+a → 0, so we have [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF]. This contradicts the VMO property: for all small enough R, the projection

z R ∈ S 1 of ffl B R m onto S 1 satisfies |B R ∩ {|m -z R | ≥ π/12}| ≤ c 2 R 2 . ( 8 
)
But one can choose s ∈ R such that dist(s, {s 0 , s 0 + π}) ≤ π/4 and

z • e is ≥ - 1 2 =⇒ |z -z R | ≥ π/12, for any z ∈ S 1 (if z R = e is R , any s ∈ [s R +3π/4, s R +5π/4
] has that property). According to [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF] The proof of Proposition 3 has two main ingredients. The first ingredient consists in adapting the arguments of [START_REF] Marconi | On the structure of weak solutions to scalar conservation laws with finite entropy production[END_REF] to prove a dichotomy similar to Proposition 3, but where the second option ( 7) is replaced by a statement which is not strong enough to conclude.

this implies |B R ∩ {|m -z R | ≥ π/12}| ≥ cR 2 ,
Proposition 4. Let r ∈ (0, 1/2) and h be as in Proposition 3. There exist absolute constants

c, δ > 0 such that, if R = 32r/(δh 2 ) ≤ 1, then we have either ν(B R ) ≥ ch 11 r, or B R/2 ∩ m • m 0 ≥ 1 2 ≥ chr 2 and B R/2 ∩ m • m 0 ≤ - 1 2 ≥ chr 2 , ( 9 
)
for some m 0 ∈ S 1 .

The main idea behind the argument in [START_REF] Marconi | On the structure of weak solutions to scalar conservation laws with finite entropy production[END_REF] is that a large value of h implies the existence of a configuration which would be impossible in the absence of entropy dissipation. In the presence of dissipation, such configuration provides a lower bound on the dissipation, and there is no dichotomy. Here instead, not all configurations created by large values of h can be ruled out in the absence of dissipation: in particular the vortex solution m(x) = x ⊥ /|x| has zero dissipation but the values of h(r) around the origin are not vanishing. This is reflected in the second alternative (9) of the dichotomy.

The second ingredient in our proof of Proposition 3 consists in using the methods developed in [START_REF] Marconi | Rectifiability of entropy defect measures in a micromagnetics model[END_REF][START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF][START_REF] Contreras Hip | Generalized characteristics for finite entropy solutions of Burgers' equation[END_REF][START_REF] Lamy | Stability of the vortex in micromagnetics and related models[END_REF] in order to pass from (9) to [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF].

Proposition 5. Let m 0 = e is 0 ∈ S 1 , and R > 0 such that B R ⊂ Ω. Then we have either

ν(B R ) ≥ c R min(|X + |, |X -|), X ± = B R/2 ∩ {±m • m 0 ≥ 1/2}, ( 10 
)
or ν(B R ) ≥ cR, or [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF], for some absolute constant c > 0.

Proposition 3 follows readily from Proposition 4 and Proposition 5. Thanks to Proposition 4, we know indeed that either ν(B R ) ≥ ch 11 r, in which case we are done, or estimate (9) is valid. But according to Proposition 5, if ( 9) is satisfied, then we have either ν(B R ) ≥ chr 2 /R ≥ ch 11 r, or ν(B R ) ≥ cR ≥ ch 11 r, or [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF]. In all cases, Proposition 3 is verified.

The proofs of Proposition 4 and Proposition 5 are presented in Section 2 and Section 3.

Notations.

We denote by |A| the Lebesgue measure of a set A ⊂ R d . We use the symbol to signify inequality up to an absolute multiplicative constant.

Proof of Proposition 4

Let x 1 , x 2 attain the maximum in the definition (5) of h, and define, for j = 1, 2, ρ j (s) as the proportion of points x ∈ B r (x j ) at which m(x) lies in the semi-circle of direction e is , that is, for every s ∈ R/2πZ, we set

ρ j (s) = 1 |B r | B r (x j ) ∩ m • e is > 0 = 1 |B r | ˆBr(xj) 1 Em (x, s)dx,
where

E m = (x, s) ∈ Ω × R/2πZ : m(x) • e is > 0 . ( 11 
)
Note that |ρ j | ≤ 1 and, since for every

x ∈ Ω it holds |D s 1 Em (x, •)|(R/2πZ) = 2, then ρ j ∈ BV (R/2πZ) with |Dρ j |(R/2πZ) ≤ 2.
Moreover, by Fubini theorem, these functions satisfy the identities ˆR/2πZ e is ρ j (s) ds = ˆR/2πZ Br(x j ) 1 Em (x, s)e is dxds = 2

Br(x j ) m(x) dx.

For s ∈ R and ρ > 0 we denote by I ρ (s) the segment

I ρ (s) = [s -ρ, s + ρ].
For a small enough absolute constant δ ∈ (0, 1), the subset S ⊂ R/2πZ given by

S = s ∈ R/2πZ : (|Dρ 1 | + |Dρ 2 |)(I δh 2 (s)) ≥ h 4π ,
satisfies |S| ≤ h/2 (as follows e.g. from a Besicovitch covering argument). Thus we have

h = 1 2 ˆR/2πZ e is ρ 1 (s) ds - ˆR/2πZ e is ρ 2 (s) ds ≤ 1 2 ˆR/2πZ |ρ 1 (s) -ρ 2 (s)| ds ≤ 1 2 ˆ(R/2πZ)\S |ρ 1 (s) -ρ 2 (s)| ds + h 2 .
We may therefore find s ∈ R/2πZ such that s / ∈ S and |ρ 1 (s) -ρ 2 (s)| ≥ h/2π. We assume without loss of generality that ρ 1 (s) -ρ 2 (s) ≥ h/2π, and by definition of S we deduce inf

I δh 2 (s) ρ 1 -sup I δh 2 (s) ρ 2 ≥ h 4π .
In particular, setting s 0 = s -π/2 -3δh 2 /4, we have inf

I δh 2 /4 (s 0 +π/2) ρ 1 - sup I δh 2 /4 (s 0 +π/2+δh 2 ) ρ 2 ≥ h 4π , inf I δh 2 /4 (s 0 +π/2+δh 2 )
ρ 1 -sup

I δh 2 /4 (s 0 +π/2) ρ 2 ≥ h 4π .
As ρ j (s + π) = 1 -ρ j (s) for a.e. s ∈ R/2πZ, this implies ess inf

I δh 2 /4 (s 0 +π/2) ρ 1 + ess inf I δh 2 /4 (s 0 -π/2+δh 2 ) ρ 2 ≥ 1 + h 4π , (12) 
ess inf

I δh 2 /4 (s 0 +π/2+δh 2 )
ρ 1 + ess inf

I δh 2 /4 (s 0 -π/2) ρ 2 ≥ 1 + h 4π . (13) 
The relevance of ( 12)-( 13) comes from the following geometric observation. Given two directions s 1 ∈ I δh 2 /4 (s 0 + π/2) and s 2 ∈ I δh 2 /4 (s 0 -π/2 + δh 2 ) and two points

y 1 ∈ B r (x 1 ) ∩ {m • e is 1 > 0}, y 2 ∈ B r (x 2 ) ∩ {m • e is 2 > 0}, we have |s 1 -s 2 | ≥ δh 2
, and the two lines y j + Re is j intersect at a point z ∈ B 8r/(δh 2 ) . In the absence of dissipation, one would have m(z) • e is j > 0 for j = 1, 2, and therefore m(z)

• e is 0 ≥ cos(2δh 2 ) ≥ 1/2.
The last lower bound is valid provided δ ≤ π/24, since |h| ≤ 2. The same argument with

s 1 ∈ I δh 2 /4 (s 0 + π/2 + δh 2 ) and s 2 ∈ I δh 2 /4 (s 0 -π/2) implies instead m(z) • e is 0 ≤ -1/2.
Thanks to the techniques in [START_REF] Marconi | On the structure of weak solutions to scalar conservation laws with finite entropy production[END_REF], in the presence of dissipation this can be made quantitative. The main idea is that (3) provides an estimate on the difference between the 'epigraph' E m defined in [START_REF] Jin | Singular perturbation and the energy of folds[END_REF] and its free transport FT(E m , t), where the free transport operator FT(•, t) is defined for t ∈ R by

FT(E, t) = (x, s) ∈ Ω × R/2πZ : (x -te is , s) ∈ E . Lemma 6. Let t ∈ R and ρ > 0 such that B ρ+|t| ⊂ Ω. For all φ ∈ C 1 c (B ρ × R/2πZ) we have ˆΩ×R/2πZ φ(x, s) 1 FT(Em,t) -1 Em dxds ≤ |t| ∂ s φ ∞ + t 2 ∇ x φ ∞ ν(B ρ+|t| ). Proof of Lemma 6. Define χ, χ FT : [-|t|, |t|] × Ω × R/2πZ → R by χ(τ, x, s) = 1 (x,s)∈Em , χ FT (τ, x, s) = 1 (x,s)∈FT(Em,τ ) = χ(x -τ e is , s).
so we have, in the sense of distributions,

∂ τ χ + e is • ∇ x χ = ∂ s σ(x, s), ∂ τ χ FT + e is • ∇ x χ FT = 0.
Setting χ = χ FT -χ, and ψ(τ, x, s) = φ(x+e is (t-τ ), s) which satisfies

∂ τ ψ+e is •∇ x ψ = 0, we deduce ∂ τ [ψ χ] + e is • ∇ x [ψ χ] = -ψ∂ s σ.
Integrating with respect to (x, s) (this is formal but makes sense distributionnally) we deduce

d dτ ˆΩ×R/2πZ ψ χ dxds = ˆΩ×R/2πZ ∂ s ψ dσ(x, s).
Integrating this from 0 to t and recalling ν(A) = |σ|(A × R/2πZ) for A ⊂ Ω, we obtain ˆΩ×R/2πZ φ(x, s) 1 FT(Em,t) -1 Em dxds = ˆt 0 ˆΩ×R/2πZ ∂ s ψdσ dτ

≤ |t| ∂ s ψ ∞ |ν|(B ρ+|t| × R/2πZ). Noting that ∂ s ψ ∞ ≤ ∂ s φ ∞ + |t| ∇ x φ ∞ completes the proof.
Equipped with Lemma 6 we continue the proof of Proposition 4. First we make use of [START_REF] Lamy | Stability of the vortex in micromagnetics and related models[END_REF]. We define ẑ ∈ R 2 as the intersection of the lines x 1 + Re i(s 0 +π/2) and x 2 + Re i(s 0 -π/2+δh 2 ) , that is,

x 1 + t 1 e i(s 0 +π/2) = x 2 + t 2 e i(s 0 -π/2+δh 2 ) = ẑ, for some t 1 , t 2 ∈ R. Since |x 1 -x 2 | ≤ 4r, we have |t 1 |, |t 2 | ≤ 4r sin(δh 2 ) ≤ 8r δh 2 , ( 14 
)
and therefore B r (ẑ) ⊂ B R/2 . We will use Lemma 6 to compare E m with FT(E m , t 1 ) and FT(E m , t 2 ) on B r (ẑ). We define

C 1 = B r (ẑ) × I c (s 0 + π/2), C 2 = B r (ẑ) × I c (s 0 -π/2 + δh 2 ), A 1 = E m ∩ C 1 , A 2 = E m ∩ C 2
with c = δh 3 /128π ≤ δh 2 /4. and their free transport counterparts

A FT 1 = FT(E m , t 1 ) ∩ C 1 , A FT 2 = FT(E m , t 2 ) ∩ C 2 .
We estimate

|A FT 1 | = |E m ∩ FT(•, t 1 ) -1 (C 1 )| ≥ |E m ∩ (B r (x 1 ) × I c (s 0 + π/2))| -|FT(•, t 1 ) -1 (C 1 ) \ (B r (x 1 ) × I c (s 0 + π/2))| = ˆs0 + π 2 +c s 0 + π 2 -c ρ 1 (s)ds -|FT(•, t 1 ) -1 (C 1 ) \ (B r (x 1 ) × I c (s 0 + π/2))|. Moreover |FT(•, t 1 ) -1 (C 1 ) \ (B r (x 1 ) × I c (s 0 + π/2))| = ˆs0 + π 2 +c s 0 + π 2 -c |B r (ẑ -t 1 e is ) \ B r (x 1 )|ds ≤ 2r ˆs0 + π 2 +c s 0 + π 2 -c |ẑ -t 1 e is -x 1 |ds ≤ 2r ˆs0 + π 2 +c s 0 + π 2 -c |t 1 ||e i(s 0 +π/2) -e is |ds ≤ 32 c 2 r 2 δh 2 ,
where in the last inequality we used [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF]. Therefore we have

|A FT 1 | ≥ ˆs0 + π 2 +c s 0 + π 2 -c ρ 1 (s)ds -32 c 2 r 2 δh 2 , ( 15 
)
and similarly

|A FT 2 | ≥ ˆs0 -π 2 +δh 2 +c s 0 -π 2 +δh 2 -c ρ 2 (s)ds -32 c 2 r 2 δh 2 . ( 16 
)
From ( 12) we know that

ρ 1 s 0 + π 2 + s + ρ 2 s 0 - π 2 + δh 2 + s ≥ 1 + h 4π for all |s| ≤ δ 4 h 2 .
Integrating this inequality in s ∈ [-c, c], it follows from ( 15),( 16) that

|A FT 1 | + |A FT 2 | ≥ 2c|B r | 1 + h 4π -64 c 2 r 2 δh 2 ≥ 2c|B r | 1 + h 8π , (17) 
by the choice c = δh 3 /128π. Next we consider two cases, depending on whether A 1 and A 2 satisfy a similar inequality.

Case 1. Assume first that

|A 1 | + |A 2 | ≥ 2c|B r | 1 + h 16π , then |π x (A 1 )| + |π x (A 2 )| ≥ |B r | 1 + h 16π . Moreover, since π x (A 1 ) ∪ π x (A 2 ) ⊂ B r (ẑ), it follows that A := π x (A 1 ) ∩ π x (A 2 ) satisfies |A| ≥ h|B r |/16
. By construction, we have

A = x ∈ B r (ẑ) : ∃s 1 ∈ I c (s 0 + π/2), s 2 ∈ I c (s 0 - π 2 + δh 2 ), m(x) • e is 1 > 0 and m(x) • e is 2 > 0 ⊂ B r (ẑ) ∩ {m • e is 0 ≥ cos(2δh 2 )}, so this implies B R/2 ∩ m • m 0 ≥ 1 2 hr 2 . ( 18 
)
Case 2. Assume now that

|A 1 | + |A 2 | < 2c|B r | 1 + h 16π .
Then using [START_REF] Rivière | Limiting domain wall energy for a problem related to micromagnetics[END_REF] we obtain

|A FT 1 | -|A 1 | + |A FT 2 | -|A 2 | > 2c|B r | h 16π , so either |A FT 1 |-|A 1 | or |A FT 2 |-|A 2 |
is larger than half the right-hand side. We consider without loss of generality only the first case:

|A FT 1 | -|A 1 | > |B r | ch 16π .
This implies a lower bound on the entropy dissipation ν(B R ) thanks to Lemma 6. Specifically, we apply Lemma 6 to

t = t 1 and φ ∈ C ∞ c (B 2r(ẑ) × I 2c (s 0 + π/2)) such that 1 x∈Br(ẑ) 1 s∈Ic(s 0 +π/2) ≤ φ(x, s) ≤ 1 x∈B (1+ε)r (ẑ) 1 s∈I (1+ε)c (s 0 +π/2) ,
and |∂ s φ| ≤ 2/(εc), |∇ x φ| ≤ 2/(εr). We choose ε = h/192π to ensure

B (1+ε)r (ẑ) × I (1+ε)c \ (B r (ẑ) × I c ) ≤ ch 32π |B r |. Since |t 1 | ≤ 8r/(δh 2 ) and B 2r+|t 1 | (ẑ) ⊂ B R , we deduce ν(B R ) δ 3 h 11 r h 11 r.
Similarly, using [START_REF] Lamy | On the regularity of weak solutions to Burgers' equation with finite entropy production[END_REF] we have two cases: either

B R/2 ∩ m • m 0 ≤ - 1 2 hr 2 , (19) 
or ν(B R ) h 11 r. So gathering all cases, we see that either both (18) and ( 19) are satisfied, or ν(B R ) h 11 r, which is exactly the dichotomy of Proposition 4.

Proof of Proposition 5

In order to prove Proposition 5, we briefly recall from [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF] the notion of Lagrangian representation of an entropy solution m of the eikonal equation. In [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF][START_REF] Marconi | Rectifiability of entropy defect measures in a micromagnetics model[END_REF] the second author shows the existence of a finite non-negative Radon measure ω on the set of curves

Γ = (γ, t - γ , t + γ ) : 0 ≤ t - γ ≤ t + γ ≤ 1, γ = (γ x , γ s ) ∈ BV((t - γ , t + γ ); Ω × R/2πZ), γ x is Lipschitz ,
with the following three properties:

• for every t ∈ (0, 1), the pushforward of ω, restricted to the section Γ(t) = {(γ, t - γ , t + γ ) ∈ Γ : t - γ < t < t + γ }, by the evaluation map e t : γ → γ(t) (a rightcontinuous representative of γ s is always considered), is uniform on the 'epigraph'

E m = {m(x) • e is > 0}, that is, (e t ) [ω Γ(t)] = 1 m(x)•e is >0 dx ds; (20) 
• the measure ω is concentrated on curves (γ, t - γ , t + γ ) ∈ Γ solving the characteristic equation, γx (t) = e iγs (t) for a.e. t ∈ (t - γ , t + γ );

• the entropy dissipation measure (4) disintegrates along the Lagrangian curves as

ν(A) = ˆΓ µ γ (γ -1 x (A)) dω(γ) for all measurable A ⊂ Ω, (22) 
where µ γ = |D t γ s |, with the convention that a jump of γ s from s -to s + at time t 0 ∈ (t - γ , t + γ ) contributes dist R/2πZ (s -, s + )δ t=t 0 to the jump part of µ γ (see [14, Proposition 2.5]).

Moreover, the Lagrangian property (20) implies that ω is concentrated on curves γ such that γ x (t) is a Lebesgue point of m with m(γ x (t)) • e iγs(t + ) > 0, for a.e. t ∈ (0, 1) [14, Lemma 2.7]. We denote by Γ g ⊂ Γ the full-measure subset of Lagrangian curves which satisfy that property together with the characteristic equation (21).

The proof of Proposition 5 is based on two main tools. The first, Lemma 7, is a dichotomy stating that either Lagrangian curves passing through a given set create a lot of dissipation, or one can find an almost-straight Lagrangian curve passing through that set. The second ([12, Lemma 5.2], a slightly more precise version of [14, Lemma 3.1], itself adapted from [START_REF] Marconi | Rectifiability of entropy defect measures in a micromagnetics model[END_REF]Lemma 22]) is another dichotomy: given an almost-straight Lagrangian curve, either the density of points at which m lies in the semi-circle indicated by the s-component of that curve is high, or a lot of dissipation must be created. The succession of these two dichotomies is reflected in the three alternatives in the conclusion of Proposition 5. We first state and prove the first tool, and then proceed to the proof of Proposition 5.

Lemma 7. For any R > 0 such that B R ⊂ Ω, any measurable set A ⊂ B R × R/2πZ, and any η ∈ (0, 1), we have either

ν(B R ) η R {(x, s) ∈ A : m(x) • e is > 0} , (23) 
or there exists a curve γ ∈ Γ g and a connected component

J of γ -1 x (B R ) such that J ∩ γ -1 (A) = ∅ and µ γ (J) ≤ η.
Proof of Lemma 7. Assume that the second alternative of Lemma 7 is not verified: for every curve γ ∈ Γ g and every connected component

J of γ -1 x (B R ) intersecting γ -1 (A), we have µ γ (J) > η. Then we claim that µ γ (γ -1 x (B R )) η R T (γ), T (γ) = {t ∈ (t - γ , t + γ ) : γ(t) ∈ A} , (24) 
for all γ ∈ Γ g . To prove (24), denote by 

J k = (t - k , t + k ) the connected components of γ -1 x (B R ) which intersect γ -1 (A). We show next that µ γ (J k ) η|J k |/R for all k. On the one hand, if |J k | ≤ 4R then µ γ (J k ) η|J k |/R because µ γ (J k ) > η
|γ x (t 2 ) -γ x (t 1 ) -e iγs(t 1 ) (t 2 -t 1 )| ≤ µ γ ([t 1 , t 2 ])|t 2 -t 1 |,
and we deduce that in any any interval J ⊂ (0, 1) such that γ x (J) ⊂ B R and |J| ≥ 4R, we must have µ γ (J) ≥ 1/2. Therefore, if |J k | ≥ 4R, cutting J k in disjoint subintervals of length between 4R and 8R, we obtain that µ γ (J k ) |J k |/R ≥ η|J k |/R. So we have

µ γ (γ -1 x (B R )) ≥ k µ γ (J k ) η R k |J k |,
which implies (24) since γ -1 (A) ⊂ k J k . From (24) and the fact that ω(Γ \ Γ g ) = 0 we infer

ν(B R ) = ˆΓ µ γ (γ -1 x (B R )) dω(γ) η R ˆΓ T (γ) dω(γ),
where the first equality comes from the disintegration (22). Making use of the Lagrangian property (20) to rewrite the last expression, we see that it is precisely equal to the right-hand side of (23), which concludes the proof of Lemma 7.

Proof of Proposition 5. We recall that m 0 = e is 0 and the sets X ± are defined by x (B R ) intersecting A(ŝ) such that µ γ (J) < η. In that second case, applying [START_REF] Lamy | Stability of the vortex in micromagnetics and related models[END_REF]Lemma 5.2] we deduce that either ν(B R )

X ± = B R/2 ∩ {±m • e is 0 ≥ 1/2}.
η 3 R or |B R ∩ {m • e iŝ ≥ -2η}|
ηR 2 . We fix η = 1/4 and summarize the preceding discussion: for all ŝ ∈ [s 0 -π/4, s 0 + π/4], we have

ν(B R ) |X + | R , or ν(B R ) R, or B R ∩ {m • e iŝ ≥ -1/2} R 2 .
Similarly, for all ŝ ∈ [s 0 + 3π/4, s 0 + 5π/4], we have

ν(B R ) |X -| R , or ν(B R ) R, or B R ∩ {m • e iŝ ≥ -1/2} R 2 .
We conclude that we have either [START_REF] Jabin | Compactness in Ginzburg-Landau energy by kinetic averaging[END_REF], or ν(B R ) R, or

B R ∩ {m • e is ≥ -1/2} R 2 ,
for all s ∈ [s 0 -π/4, s 0 + π/4] ∪ [s 0 + 3π/4, s 0 + 5π/4]. This corresponds exactly to the three alternatives in the statement of Proposition 5.

  by assumption. On the other hand, from the characteristic equation (21) and the definition of µ γ = |D t γ s |, we have the inequality

For

  any ŝ ∈ [s 0 -π/4, s 0 + π/4], we apply Lemma 7 to A(ŝ) = B R/2 × I η (ŝ), whereI η (ŝ) = [ŝ-η, ŝ+η]. If η ∈ (0, π/12) then we have m(x)•e is > 0 for all (x, s) ∈ X + ×I η (ŝ), and therefore{(x, s) ∈ A(ŝ) : m(x) • e is > 0} ≥ η|X + |.So we have either ν(B R ) η 2 |X + |/R, or there exists a curve γ ∈ Γ g and a connected component J of γ -1
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