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Introduction 1.Models

Several models arising in a variety of physical applications (micromagnetics, smectic liquid crystals, blistering) have in common that, as a characteristics length scale ε tends to 0, bounded-energy configurations converge to two-dimensional vector fields m : Ω → R 2 satisfying the eikonal equation

|m| = 1 a.e. in Ω, ∇ • (1 Ω m) = 0 in R 2 . ( 1 
)
Here Ω ⊂ R 2 is a smooth, simply connected bounded domain, and the divergence constraint on the trivially extended field 1 Ω m amounts to ∇ • m = 0 in Ω and m • n ∂Ω = 0 on ∂Ω, where n ∂Ω is the exterior unit normal (and the last condition makes sense whenever m admits a strong trace on ∂Ω). Examples of such models include:

• The Aviles-Giga functional, introduced in [START_REF] Aviles | A mathematical problem related to the physical theory of liquid crystal configurations[END_REF] as a simplified model for smectic liquid crystals and proposed as a model for thin film blisters in [START_REF] Ortiz | The morphology and folding patterns of buckling-driven thin-film blisters[END_REF] (see the introduction of [START_REF] Jin | Singular perturbation and the energy of folds[END_REF] for other applications),

E AG ε (m; Ω) = ε 2 ˆΩ |∇m| 2 + 1 2ε ˆΩ(1 -|m| 2 ) 2 , (2) 
m : Ω → R 2 , ∇ • (1 Ω m) = 0 in R 2 .
Note that the Aviles-Giga functional is more often expressed in terms of u such that ∇ ⊥ u = m in Ω and u = 0 on ∂Ω, however in a simply connected domain the two formulations are equivalent.

• A micromagnetics model studied in [START_REF] Rivière | Limiting domain wall energy for a problem related to micromagnetics[END_REF][START_REF] Rivière | Compactness, kinetic formulation, and entropies for a problem related to micromagnetics[END_REF],

E RS ε (m; Ω) = ε 2 ˆΩ |∇m| 2 + 1 2ε ˆR2 |H| 2 , (3) 
m : Ω → S 1 ⊂ R 2 , H : R 2 → R 2 ,
∇ × H = 0 and ∇ • (H + 1 Ω m) = 0 in R 2 .

• A more general micromagnetics model studied in [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF],

E ARS ε (m; Ω) = ε 2 ˆΩ |∇m| 2 + 1 2ε ˆR2 |H| 2 + 1 2c ε ˆΩ |m 3 | 2 , (4) 
m : Ω → S 2 ⊂ R 3 , 0 < c ε ≤ ε 1+δ , H : R 2 → R 2 , ∇ × H = 0 and ∇ • (H + (m 1 , m 2 )1 Ω ) = 0 in R 2 .
For all these models, sequences of bounded energy as ε → 0 are precompact in L 2 (Ω) [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF][START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF][START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF][START_REF] Rivière | Limiting domain wall energy for a problem related to micromagnetics[END_REF], and limits of converging subsequences satisfy the eikonal equation [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF]. (In the case of ( 4) the limit satisfies m 3 = 0 so we can identify it with an R 2 -valued map.) A large literature is devoted to understanding the behavior of minimizers m ε of E AG ε (•; Ω) as ε → 0. In particular it is conjectured in [START_REF] Ortiz | The morphology and folding patterns of buckling-driven thin-film blisters[END_REF] that the minimizers m ε converge to m * = ∇ ⊥ dist(•, ∂Ω) when Ω is convex (counterexamples in nonconvex domains are given in [START_REF] Ignat | Entropy method for line-energies[END_REF]Theorem 7]). A positive answer is obtained in [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] when Ω is a disk, and in [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF] for some special domains including ellipses (under the additional boundary constraint m ∂Ω = -in ∂Ω ). For E RS ε much more is known: that conjecture has been verified [START_REF] Rivière | Compactness, kinetic formulation, and entropies for a problem related to micromagnetics[END_REF], and limits of non-minimizing sequences also have a well-understood structure [START_REF] Marconi | Rectifiability of entropy defect measures in a micromagnetics model[END_REF].

In [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] the authors characterize zero-energy states, that is, limits of sequences with energy (2) converging to 0 as ε → 0. In addition to the eikonal equation [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF], zero-energy states satisfy the kinetic equation

e is • ∇ x 1 m(x)•e is >0 = 0
in Ω, for all s ∈ R.

(

) 5 
This is also valid for zero-energy states of (3) [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] and of (4) [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF] (see Appendix A). It is shown in [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] that, if a smooth bounded simply connected domain Ω admits a zero energy state, that is, a solution of (1) and [START_REF] Aviles | The distance function and defect energy[END_REF], then Ω must be a disk Ω = B R (x 0 ), and m must be a vortex m(x) = ±i(x -x 0 )/|x -x 0 |, or equivalently m = ±∇ ⊥ dist(•, ∂Ω). Various generalizations can be found in [START_REF] Bochard | Kinetic selection principle for curl-free vector fields of unit norm[END_REF][START_REF] Lamy | On a generalized Aviles-Giga functional: compactness, zero-energy states, regularity estimates and energy bounds[END_REF][START_REF] Lamy | Rigidity of a non-elliptic differential inclusion related to the Aviles-Giga conjecture[END_REF][START_REF] Lorent | Regularity of the eikonal equation with two vanishing entropies[END_REF].

Main results

The main purpose of this work is to provide a quantitative version of the characterization of zero-energy states from [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF]: estimate how much Ω differs from a disk and m from a vortex, in terms of the energy of an approximating sequence m ε → m. Previous results in this direction are proven in [START_REF] Lorent | A simple proof of the characterization of functions of low Aviles Giga energy on a ball via regularity[END_REF][START_REF] Lorent | A quantitative characterisation of functions with low aviles giga energy on convex domains[END_REF]. Under the assumption that Ω is a C 2 convex domain renormalized to satisfy diam(Ω) = 2, it is shown in [START_REF] Lorent | A quantitative characterisation of functions with low aviles giga energy on convex domains[END_REF] that there exists x * ∈ R 2 such that

|Ω∆B 1 (x * )| + ˆΩ m + i x -x * |x -x * | 2 dx ≤ CE AG ε (m; Ω) δ , (6) 
whenever ∇ • m = 0 in Ω and m • τ = -1 on ∂Ω, for some absolute constants C > 0, δ = 2 -9 , and τ = in ∂Ω a unit tangent to ∂Ω. Note that the boundary condition m • τ = -1, commonly imposed in the study of the Aviles-Giga functional (see e.g. [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF][START_REF] Aviles | The distance function and defect energy[END_REF][START_REF] Conti | Sharp upper bounds for a variational problem with singular perturbation[END_REF][START_REF] Jin | Singular perturbation and the energy of folds[END_REF]), is more restrictive than the condition m • n ∂Ω = 0 enforced in [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF] (which is natural in micromagnetics models).

Our goal is to obtain an estimate similar to [START_REF] Bochard | Kinetic selection principle for curl-free vector fields of unit norm[END_REF], but with a sharp exponent δ, in the limit ε → 0. To present our results in a unified setting, we consider the energy functional

F ε (m; Ω) = ε 2 ˆΩ |∇m| 2 + 1 2ε ˆR2 |H| 2 + 1 2ε ˆΩ(1 -|m| 2 ) 2 + 1 2ε ˆΩ |m 3 | 4 , (7) 
m : Ω → R 3 , H : R 2 → R 2 , ∇ × H = 0 and ∇ • (H + (m 1 , m 2 )1 Ω ) = 0 in R 2 .
This functional satisfies

F ε ≤ E AG ε , E RS ε , E ARS ε (for F ε ≤ E ARS ε
, note that any m ∈ S 2 satisfies |m 3 | 4 ≤ |m 3 | 2 ) and the compactness proof of [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] applies (see Appendix A) to show that any sequence (m ε ) with bounded energy F ε (m ε ; Ω) ≤ C is precompact in L 2 (Ω), and its limits m = lim m ε are R 2 -valued and satisfy the eikonal equation [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF]. We obtain a sharp bound for the L 2 -distance between the unit normal to ∂Ω and the unit normal to a disk, in terms of the limit of F ε (m ε ; Ω). Theorem 1.1. Let Ω ⊂ R 2 be a simply connected open set of class C 1,1 with H 1 (∂Ω) = 2π and sup ∂Ω |κ| ≤ K for some K > 0, where κ denotes the curvature of ∂Ω. There exists c > 0 depending only on K such that

inf x * ∈R 2 ˆ∂Ω n ∂Ω (x) - x -x * |x -x * | 2 dH 1 (x) ≤ c lim inf ε→0 inf H 1 (Ω;R 3 ) F ε (•; Ω), (8) 
where F ε is the functional defined in [START_REF] Conti | Sharp upper bounds for a variational problem with singular perturbation[END_REF].

Moreover, this estimate is sharp:

Proposition 1.2.
There exist a family of convex domains {Ω N } N ≥3 of class C 1,1 with uniformly bounded curvature such that

c 1 N 2 ≥ inf x * ∈R 2 ˆ∂Ω N n ∂Ω N (x) - x -x * |x -x * | 2 dH 1 (x) ≥ c 2 lim inf ε→0 inf H 1 (Ω;R 3 ) F ε (•; Ω N ) ≥ c 3 N 2 ,
for some absolute constants c 1 , c 2 , c 3 > 0.

Remark 1.3. The estimate [START_REF] Contreras Hip | Generalized characteristics for finite entropy solutions of Burgers' equation[END_REF] is sharp also when replacing inf F ε with any of the (larger) inf

E AG ε , inf E RS ε or inf E ARS ε
, where the infimums are taken over all admissible maps for the corresponding functionals as described in (2), (3) and ( 4). This will be clear from the explicit description of the Ω N 's in § 6.3.

As corollaries of Theorem 1.1 and its proof we obtain two other estimates, which are however probably not sharp. The first corollary provides a bound on the distance of the boundary ∂Ω to the boundary of a disk, which is perhaps a more natural way of measuring how close Ω is to a disk. Corollary 1.4. Let Ω be as in Theorem 1.1. Then

inf x * ∈R 2 dist(∂Ω, ∂B 1 (x * )) ≤ c lim inf ε→0 inf F ε (•; Ω) 1 2 .
for some constant c = c(K) > 0.

The second corollary provides a bound on the distance of a limiting map m from a vortex.

Corollary 1.5. Let Ω be as in Theorem 1.1 and m = lim m ε as ε → 0, where (m ε ) is a sequence of admissible maps for the functional F ε . Then there exists α ∈ {±1} and

x * ∈ R 2 such that ˆΩ m(x) -α i x -x * |x -x * | 4 dx ≤ c lim inf ε→0 F ε (m ε ; Ω) 2 3 ,
for some constant c = c(K) > 0.

Remark 1.6. In comparison with the estimate ( 6) for E AG ε from [START_REF] Lorent | A quantitative characterisation of functions with low aviles giga energy on convex domains[END_REF], we don't require Ω to be convex, and impose only the boundary condition m • n ∂Ω = 0 on limit maps. However, we only obtain bounds in the limit ε → 0, while ( 6) is valid for any fixed ε > 0. Note that the constant c in (8) depends on K, while the constant C in ( 6) is absolute; on the other hand it is not possible to obtain an absolute constant if we drop the assumption of Ω being convex. Indeed if Ω δ = B 1 ((-1+δ, 0))∪B 1 ((1-δ, 0)) (or rather, a mollification of this domain at scale much smaller than δ), then lim inf ε→0 inf F ε (•, Ω δ ) tends to 0 as δ → 0. This can be checked by using the solution of [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF] in Ω δ given by m δ = i∇d δ , where d δ (x) = dist(x, ∂Ω δ ), and the upper bound (see e.g. [START_REF] Conti | Sharp upper bounds for a variational problem with singular perturbation[END_REF][START_REF] Poliakovsky | Upper bounds for singular perturbation problems involving gradient fields[END_REF])

lim inf ε→0 inf F ε (•, Ω δ ) ≤ C ´Jδ |[m δ ]| 3 dH 1 , where J δ is the jump set of m δ .
Our proofs of Theorem 1.1 and its corollaries rely on a generalization of the zero-energy kinetic equation [START_REF] Aviles | The distance function and defect energy[END_REF] to limits m = lim ε→0 m ε of bounded energy sequences:

e is • ∇ x 1 m(x)•e is >0 = ∂ s σ, σ ∈ M(Ω × R/2πZ), (9) 
|σ|(Ω × R/2πZ) ≤ c 0 lim inf ε→0 F ε (m ε ; Ω),
where c 0 > 0 is an absolute constant. This kinetic formulation, inspired by the field of scalar conservation laws [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF], was first obtained in [START_REF] Jabin | Compactness in Ginzburg-Landau energy by kinetic averaging[END_REF] for the Aviles-Giga functional (2) (see also [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF]) and in [START_REF] Rivière | Compactness, kinetic formulation, and entropies for a problem related to micromagnetics[END_REF] for the micromagnetics model [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. It also applies to the more general functional F ε (see Appendix A). It is worth noting that it implies that m admits strong traces along 1-rectifiable subsets (see [START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF] or [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF]), and in particular along ∂Ω. Among the measures σ satisfying (9), we consider the measure σ min with minimal total variation |σ|(Ω × R/2πZ) (the uniqueness of σ min is proven in [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF]), and set

ν = (p x ) |σ min |, (10) 
where p x : Ω × R/2πZ → Ω denotes the standard projection. In particular we have

ν(Ω) = |σ min |(Ω × R/2πZ) ≤ c 0 lim inf ε→0 F ε (m ε ; Ω). (11) 
With these notations we may reformulate our main estimate as follows.

Theorem 1.7. Let Ω ⊂ R 2 be a simply connected open set of class C 1,1 with H 1 (∂Ω) = 2π and sup ∂Ω |κ| ≤ K for some K > 0, where κ denotes the curvature of ∂Ω. If there exists m : Ω → R 2 solving the eikonal equation (1) and the kinetic formulation (9), then

inf x * ∈R 2 ˆ∂Ω n ∂Ω (x) - x -x * |x -x * | 2 dH 1 (x) ≤ c ν(Ω), (12) 
for some constant c > 0 depending only on K.

Theorem 1.7 implies Theorem 1.1 thanks to [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF]. Similarly, Corollaries 1.4 and 1.5 will be consequences of the estimates

dist(∂Ω, ∂B 1 (x * )) ≤ c ν(Ω) 1 2 , ( 13 
) ˆΩ m(x) -α i x -x * |x -x * | 4 dx ≤ c ν(Ω) 2 3 , (14) 
for some x * ∈ R 2 and α ∈ {±1}. Next we briefly describe our strategy to prove Theorem 1.7.

Strategy of proof

A basic geometric argument

At the heart of our estimates is the following basic geometric argument. Assume m is a zero-energy state, that is, a solution of ( 1) and ( 5), and assume moreover that m = -τ on ∂Ω. Suppose there are three boundary points x k ∈ ∂Ω, k = 1, 2, 3, and three directions e iα k with the following properties:

1. the three lines x k + e iα k R intersect at a point z 0 ∈ Ω, 2. the direction e iα k points in the half-cirle determined by the direction m = -τ at x k , i.e. e iα k • τ (x k ) < 0, 3. the three directions e iα k are not contained in the same half-circle.

Such configuration is made impossible by the kinetic equation ( 5), because 1 m•e iα k >0 must be constant along the line x k + Re iα k . By the second property, its constant value must be one for k = 1, 2, 3, which implies that m(z 0 ) has positive scalar product with the three directions e iα k , which is impossible by the third property. (To make this rigorous actually requires a bit of care and 'almost everywhere' statements, as in [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF].) So there are no triplets of points satisfying that condition, and this can be seen to imply that ∂Ω must be a circle, as it forces the normal lines at any three boundary points to be concurrent.

A quantitative version

Our strategy is to make that basic geometric argument quantitative. Let a(x 1 , x 2 , x 3 ) ≥ 0 quantify the above properties: a > 0 if there are three lines from x k with directions e iα k intersecting well inside Ω, with e iα k • τ (x k ) ≤ -a and the three directions are not contained in the a-neighborhood of any half-circle. Note that this is a purely geometric quantity, defined without any reference to a map m. Let m satisfy the eikonal equation ( 1) and kinetic equation ( 9) with a non-zero dissipation measure ν(Ω) = |σ min |(Ω × R/2πZ). Compared to the above basic geometric argument, the assumptions on m are relaxed in two ways: ν(Ω) > 0, and the trace m ∂Ω can take values into {±τ }. Then we show that

ˆ∂Ω 3 a(x 1 , x 2 , x 3 ) 2 d(H 1 ) ⊗3 ≤ c ν(Ω) + c H 1 ({m ∂Ω = τ }), (15) 
provided Ω is a priori close enough to a disk. This a priori condition will be satisfied if ν(Ω) is small enough thanks to a compactness argument and the characterization of zero-energy states [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF]. To deal with the trace issue, [START_REF] Ignat | Optimal lifting for BV(S 1 , S 1 )[END_REF] needs to be complemented with the estimate

H 1 ({m ∂Ω = τ }) ≤ c ν(Ω), (16) 
provided the left-hand side is a priori small enough. Again, this a priori condition can be obtained by means of a compactness argument and the characterization of zero-energy states. (The compactness argument tells us that, for small ν(Ω), one of the complementary subsets {m ∂Ω = τ } or {m ∂Ω = -τ } is small, here we consider without loss of generality only the first case.) Finally Theorem 1.1 is obtained by estimating the deviation of n ∂Ω from the disk's normal with the geometric quantity a, which relies on purely geometric considerations (that is, independent of the map m).

Lagrangian representation

The quantitative estimate (15) is our main new ingredient. It relies on the Lagrangian representation introduced by the second author in [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF][START_REF] Marconi | On the structure of weak solutions to scalar conservation laws with finite entropy production[END_REF], which allows to decompose the dissipation ν(Ω) along Lagrangian trajectories. Roughly speaking, the dissipation created by one trajectory is the amount by which it deviates from being a straight line.

In particular, absence of dissipation (ν = 0) is equivalent to Lagrangian trajectories being straight lines. With this interpretation in mind, the intuition behind the proof of ( 15) can be explained as follows. Assume for simplicity that m ∂Ω = -τ . The basic geometric argument outlined above implies that Lagrangian trajectories meeting three boundary points x k with directions close to e iα k cannot be straight lines if a > 0: they must therefore create dissipation. More precisely, for intervals of directions of order a around each e iα k , at least one of the corresponding three trajectories should deviate of order a from being a straight line, and summing these contributions provides a dissipation of order a 2 , as expressed by [START_REF] Ignat | Optimal lifting for BV(S 1 , S 1 )[END_REF]. Many technical details are however needed to make this intuition rigorous. In particular, trajectories cannot be considered individually, but in 'packets' inside which only a certain amount of trajectories follow that intuition. Similar arguments are used to prove the trace estimate [START_REF] Ignat | Entropy method for line-energies[END_REF].

Plan of the article

The article is organized as follows. In Section 2 we gather purely geometrical estimates, showing in particular that ( 15)-( 16) imply Theorem 1.1 and Corollary 1.4. In Section 3 we prove [START_REF] Ignat | Optimal lifting for BV(S 1 , S 1 )[END_REF], under the a priori assumption that Ω is close to a disk. In Section 4 we present the compactness argument that allows to lift that a priori assumption. In Section 5 we prove the trace estimate [START_REF] Ignat | Entropy method for line-energies[END_REF]. In the short Section 6.1 we gather all previous results to prove Theorem 1.7, Theorem 1.1 and Corollary 1.4. In Section 6.2 we prove Corollary 1.5. In Section 6.3 we prove the sharpness statement of Proposition 1.2. In Appendix A we recall the arguments leading to the kinetic formulation 9, showing in particular that they apply to our generalized functional F ε . In Appendix B we recall some of the analysis of the model (4) from [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF], to emphasize that in that case the total dissipation ν(Ω) provides a sharp lower bound. In Appendix C we present a quantitative proof which allows to bypass the compactness argument of Section 4 under the additional assumption that m = -τ on ∂Ω, an assumption relevant for the Aviles-Giga model (2) but not for the other models considered here.

Notations

We use the symbol to denote inequality up to an absolute multiplicative constant and we write a ∼ b if both a b and b a hold true. We systematically identify R 2 and C, multiplication by i corresponds to rotation by an angle π/2. We denote by g : R/2πZ → ∂Ω a C 1,1 counterclockwise arc-length parametrization of ∂Ω, and by τ (g(s)) = ġ(s), n ∂Ω = -iτ the corresponding unit tangent and normal.

Geometric estimates

Here and in the rest of the article, we fix B R (x 0 ) a maximal disk contained in Ω. As explained in the introduction, the proofs of our main results rely on a geometric quantity a defined for triples of boundary points.

Definition 2.1. Given x = (x 1 , x 2 , x 3 ) ∈ ∂Ω 3 , we define a(x) ≥ 0 as the maximal value a ≥ 0 for which there are α 1 , α 2 , α 3 ∈ R/2πZ such that 1. the lines x k + e iα k R are concurrent in B R/2 (x 0 ), namely there are t 1 , t 2 , t 3 ∈ R such that

x 1 + t 1 e iα1 = x 2 + t 2 e iα2 = x 3 + t 3 e iα3 = z 0 ∈ B R/2 (x 0 ); 2. min(0, τ (x k ) • e iα k ) ≤ -a for k = 1, 2, 3;
3. a ≤ max{l(α 1 , α 2 , α 3 ) -π, 0}, where l(α 1 , α 2 , α 3 ) denotes the length of the shortest interval in R/2πZ containing α 1 , α 2 , α 3 .

Note that each direction e iα k may be entering, i.e. t k > 0, or exiting, i.e.

t k < 0 (equivalently, (x k -z 0 ) • τ (x k ) > 0 or (x k -z 0 ) • τ (x k ) < 0).
We observe that a(•) is identically 0 if Ω is a disk. A useful geometric interpretation of a(•) is that a(x 1 , x 2 , x 3 ) is bounded below by the inner radius of the triangle formed by the three normals to ∂Ω passing through x 1 , x 2 and x 3 . See Figure 1 z 0

x 1 x 2 x 3 Ω τ (x 1 )
Figure 1: The black lines through the three points x 1 , x 2 , x 3 ∈ ∂Ω are the normals to ∂Ω, while the blue lines have directions e iα1 , e iα2 , e iα3 and they are concurrent in the point z 0 as in the definition of a. In this case z 0 is chosen as the center of the incircle of the triangle formed by the normals, and a is of the order of that incircle's radius.

The quantity a defined in Definition 2.1 will be useful only if the three segments [z 0 , x k ] are contained in Ω ∪ {x k }. That is why we define next subsets of ∂Ω where this will be ensured. Recall that B R (x 0 ) is a maximal disk contained in Ω, and consider the set

E * = {x ∈ ∂Ω : tx + (1 -t)x 0 ∈ Ω ∀t ∈ (0, 1)},
in some sense the part of the boundary that is star-shaped around x 0 . And for every η > 0, we define the subset of E * given by

E(η) = {x ∈ E * : |x -x 0 | ≤ (1 + η)R}. ( 17 
)
The main aim of the present section is to prove that the quantity a can be used to estimate the deviation of Ω from a disk, as follows.

Proposition 2.2. Let Ω as in Theorem 1.1. There exists

η 0 = η 0 (K) > 0 such that, if E(η 0 ) = ∂Ω then dist 2 (∂Ω, ∂D 1 (x * )) + ˆ∂Ω n ∂Ω (x) - x -x * |x -x * | 2 ˆ∂Ω 3 a 2 d(H 1 ) ⊗3 .
for some x * ∈ R 2 .

A few preliminary geometric facts

First we show that boundary points close to the maximal inscribed circle must have a unit normal close to radial (with respect to the inscribed circle's center).

Lemma 2.3. Let Ω be a C 1,1 simply connected domain with H 1 (∂Ω) = 2π, sup ∂Ω |κ| ≤ K and denote by B R (x 0 ) a maximal disk contained in Ω. Then 1/K ≤ R ≤ 1 and for every x ∈ ∂Ω we have

τ (x) • x -x 0 |x -x 0 | ≤ 2 K dist(x, ∂B R (x 0 )).
Proof of Lemma 2.3. The isoperimetric inequality ensures R ≤ 1. For a proof of the property R ≥ 1/K we refer to [START_REF] Pestov | On the largest possible circle imbedded in a given closed curve[END_REF][START_REF] Howard | A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature[END_REF]. Let us consider an arc-length parametrization g : R/2πZ → R 2 of ∂Ω and let ψ : R/2πZ → R be defined by

ψ(s) = |g(s) -x 0 | -R = dist(g(s), ∂B R (x 0 )).
In particular we have

ψ (s) = ġ(s) • (g(s) -x 0 ) |g(s) -x 0 | = τ (g(s)) • g(s) -x 0 |g(s) -x 0 | , ψ (s) = g(s) • (g(s) -x 0 ) |g(s) -x 0 | - | ġ(s) • (g(s) -x 0 )| 2 |g(s) -x 0 | 3 . ( 18 
)
and therefore

ψ L ∞ ≤ K + 1 R ≤ 2K.
Now consider, for any a > 2, the function

ϕ(s) = a ψ L ∞ ψ(s) -ψ (s) 2 ,
which is C 1 with derivative

ϕ (s) = a ψ L ∞ ψ (s) -2ψ (s)ψ (s) = (a ψ L ∞ -2ψ (s)) ψ (s).
The first factor is positive since a > 2. Hence at a minimal point s 0 of ϕ one must have ψ (s 0 ) = 0 and so ϕ(s 0 ) = a ψ L ∞ ψ(s 0 ) ≥ 0. Therefore ϕ is a nonnegative function. As this is valid for any a > 2 we deduce that

ψ (s) 2 ≤ 2 ψ L ∞ ψ(s) ≤ 4K ψ(s).
Taking the square root and recalling the expression of ψ and ψ concludes the proof.

The next lemma ensures that a(x) is meaningful whenever x ∈ E(η) 3 for sufficiently small η > 0.

Lemma 2.4. Let Ω be a C 1,1 simply connected domain with H 1 (∂Ω) = 2π and sup ∂Ω |κ| ≤ K. There exists η 0 > 0 depending only on K such that, for all x ∈ E(η 0 ) and any

z ∈ B 2R/3 (x 0 ), the segment [z, x] is included in Ω ∪ {x}.
Proof of Lemma 2.4. Let x ∈ E(η 0 ), and write x 0 = x + re iθ0 for some r ∈ [R, (1 + η 0 )R] and θ 0 ∈ R. Denote by L θ = x+[0, ∞)e iθ the half line from x in direction θ. This half-line has a nontrivial intersection with B 2R/3 (x 0 ) if and only if θ ∈ (θ 0 -α, θ 0 + α) + 2πZ, where

α = arcsin(2R/(3r)) = arcsin(2/3) + O(η 0 ) ≤ π/4 if η 0 is small enough. By definition (17) of E(η) and of E * , for all z ∈ B 2R/3 (x 0 ) ∩ L θ0 the segment [z, x] is included in Ω ∪ {x}.
If the conclusion of Lemma 2.4 is not true, by continuity we may therefore find

θ 1 ∈ (θ 0 -α, θ 0 + α), θ 1 = θ 0 , and z 1 ∈ B 2R/3 (x 0 ) ∩ L θ1 such that [z 1 , x] is not included in Ω ∪ {x}, while that property holds for z ∈ B 2R/3 (x 0 ) ∩ L θ if θ ∈ (θ 0 , θ 1 )
. This implies the existence of y ∈ [z 1 , x] ∩ ∂Ω \ {x}, with tangent vector τ (y) = e iθ1 and |x -y| Rη 0 . In particular we have (y -x 0 )/|y -x 0 | = e iθ with |θ -θ 0 | Rη 0 , and by Lemma 2.3 applied to the boundary point y we infer

|e iθ1 • e iθ0 | 2 KRη 0 c 0 Kη 0 . As |e iθ1 • e iθ0 | 2 ≥ cos 2 α ≥ 1/2 this implies η 0 1/K, hence choosing η 0 = 1/(CK) for a large enough absolute constant C ensures the validity of Lemma 2.4.
We also remark that, for a connected component of ∂Ω ∩ B (1+η)R (x 0 ) to be contained in E(η), it is sufficient that one of its elements belongs to E(η).

Lemma 2.5. Let η ∈ [0, 1/(4K)] and assume that x = g(s) ∈ E(η) and s 1 , s 2 ∈ R are such that s ∈ [s 1 , s 2 ] and |g(s) -x 0 | ≤ (1 + η)R ∀s ∈ [s 1 , s 2 ]. Then g((s 1 , s 2 )) ⊂ E(η).
Proof of Lemma 2.5. Since we assume that |g(s) -

x 0 | ≤ (1 + η)R for all s ∈ [s 1 , s 2 ], it only remains to show that g((s 1 , s 2 )) ⊂ E * , that is, for all s ∈ (s 1 , s 2 ) the line interval {(1 -t)x 0 + tg(s) : 0 < t < 1} is contained in Ω. Consider the largest interval I ⊂ (s 1 , s 2 )
containing s and such that g(s) ∈ E * for all s ∈ I. Note that I is open and non-empty. Assume by contradiction that (s 1 , s 2 ) \ I = ∅, and denote by s ∈ (s 1 , s 2 ) an extremity of I. Then by maximality of I the line interval {(1 -t)x 0 + tg(s) : 0 < t < 1} intersects ∂Ω: there exists t ∈ (0, 1) such that x = (1 -t)x 0 + tg(s) ∈ ∂Ω. By definition of I, locally near x the C 2 curve ∂Ω stays on one side of the line x 0 + R(g(s) -x 0 ), hence it must be tangent to that line. Therefore we have τ (x) = ±(x -x 0 )/|x -x 0 |. By Lemma 2.3, and since

R ≤ |x -x 0 | < |g(s) -x 0 | ≤ (1 + η)R this implies 2 √ KηR > 1,
in contradiction with the assumption that η ∈ [0, 1/(4K)] and the fact that R ≤ 1 (by isoperimetric inequality).

Finally we remark that the function a is Lipschitz.

Lemma 2.6. The function a is Lipschitz on ∂Ω 3 (with respect to the geodesic distance), with Lipschitz constant L K.

Proof. Let x = (x 1 , x 2 , x 3 ) ∈ ∂Ω 3 , and α = (α 1 , α 2 , α 3 ) ∈ (R/2πZ) 3 as in the definition of a(x). Denote by z 0 ∈ B R/2 (x 0 ) the intersection point of the three lines x k + e iα k R. Let x = (x 1 , x 2 , x 3 ) ∈ ∂Ω 3 . Since z 0 lies at a distance at least R/2 of each x k , the three concurrent lines connecting x k to z 0 are of the form x k +e iα k R for some α = (α 1 , α 2 , α 3 ) ∈ (R/2πZ) 3 such that |α k -α k | 1 R |x k -x k | K dist(x, x ) ∀k ∈ {1, 2, 3}. Therefore we have max(l(α ) -π, 0) ≥ max(l(α) -π, 0) -CK dist(x, x ) ≥ a(x) -CK dist(x, x ),
for some absolute constant C > 0. Moreover by definition of K we have

|τ (x k ) -τ (x k )| K dist(x, x ) ∀k ∈ {1, 2, 3},
and therefore

τ (x k ) • e iα k ≤ τ (x k ) • e iα k + C|τ (x k ) -τ (x k )| + C|α k -α k | ≤ -a(x) -CK dist(x, x ).
This shows that

a(x ) ≥ a(x) -CK dist(x, x ).
Exchanging the roles of x and x we conclude that |a(x ) -a(x)| K dist(x, x ).

Proof of Proposition 2.2

We start by remarking that the distance between ∂Ω and a unit circle is controlled by the L 1 -difference of their normals.

Lemma 2.7. If Ω is a simply connected C 1 domain such that H 1 (∂Ω) = 2π, then for any x * ∈ Ω such that Ω is strictly star-shaped around x * , we have

dist(∂Ω, ∂D 1 (x * )) ≤ ˆ∂Ω n ∂Ω (x) - x -x * |x -x * | dH 1 (x)
Proof of Lemma 2.7. We choose coordinates in which x * = 0 and denote

n * (x) = x -x * |x -x * | = x |x| .
First we claim that

|τ ∂Ω (x) • n * (x)| ≤ |n ∂Ω (x) -n * (x)| . ( 19 
)
To prove [START_REF] Jin | Singular perturbation and the energy of folds[END_REF], note that since Ω is strictly star-shaped around x * , i.e. n ∂Ω • n * > 0 on ∂Ω, we have

n ∂Ω • n * = 1 -(τ ∂Ω • n * ) 2
Hence we deduce

|n ∂Ω -n * | 2 = 2 -2 n ∂Ω • n * = 2 -2 1 -(τ ∂Ω • n * ) 2 .
Estimate [START_REF] Jin | Singular perturbation and the energy of folds[END_REF] follows from this identity and the convexity inequality

2 -2 √ 1 -t ≥ t ∀t ∈ [0, 1]. Let g ∈ C 1 (R/2πZ; R 2
) denote a counterclockwise arc-length parametrization of ∂Ω, and let r min = min |g|, r max = max |g| be the respective radii of the maximal centered disk contained in Ω and of the minimal centered disk containing Ω. As

d ds |g(s)| = ġ(s) • g(s) |g(s)| = τ ∂Ω (g(s)) • n * (g(s)),
we infer, using also [START_REF] Jin | Singular perturbation and the energy of folds[END_REF],

r max -r min ≤ 1 2 ˆ∂Ω |τ ∂Ω • n * | dH 1 ≤ 1 2 ˆ∂Ω |n ∂Ω -n * | dH 1 . (20) 
Note that r min ≤ 1 thanks to the isoperimetric inequality, so if r max ≥ 1 then (20) directly implies the conclusion of Lemma 2. [START_REF] Conti | Sharp upper bounds for a variational problem with singular perturbation[END_REF]. In what follows we may therefore assume r max < 1.

As Ω is strictly star-shaped around x * = 0, the map

g * (s) = g(s) |g(s)| , s ∈ R/2πZ,
defines a one-to-one parametrization of the unit circle ∂D 1 . In particular we must have

ˆR/2πZ | ġ * | = 2π.
On the other hand direct calculation shows

|g| ġ * = ġ -( ġ • g * ) g * , hence ˆR/2πZ (1 -|g|)| ġ * | = 2π - ˆR/2πZ | ġ -( ġ • g * ) g * | ≤ 2π - ˆR/2πZ | ġ| + ˆR/2πZ | ġ • g * | = ˆ∂Ω |τ ∂Ω • n * | dH 1 . As 0 < 1 -r max ≤ 1 -|g|, this implies 2π(1 -r max ) = (1 -r max ) ˆR/2πZ | ġ * | ≤ ˆ∂Ω |τ ∂Ω • n * | dH 1 .
Together with [START_REF] Lamy | On a generalized Aviles-Giga functional: compactness, zero-energy states, regularity estimates and energy bounds[END_REF] this gives

1 -r min ≤ 1 2 + 1 2π ˆ∂Ω |τ ∂Ω • n * | dH 1 ≤ ˆ∂Ω |n ∂Ω -n * | dH 1 ,
proving Lemma 2.7 also in the case r max < 1.

Now we turn to the proof of Proposition 2.2.

Proof of Proposition 2.2. We choose coordinates in which x 0 = 0. We assume Ω = E(η 0 ) for some η 0 = ε 2 0 /K > 0, with ε 0 to be fixed later. Hence Ω is star-shaped around x 0 and

B R (x 0 ) ⊂ Ω ⊂ B (1+η0)R .
Recall R ≤ 1 by the isoperimetric inequality, and thanks to Lemmas 2.3 and 2.7 we have

sup x∈∂Ω n ∂Ω (x) - x |x| ε 0 , 0 ≤ 1 -R ε 0 . (21) 
For any α ∈ R/2πZ we denote by I α the portion of ∂Ω that intersects the centered cone corresponding to angles from α to α + π/6, that is

I α = x ∈ ∂Ω : x |x| = e iθ for some θ ∈ [α, α + π/6] .
Thanks to the above we have H 1 (I α ) = π/6 + O(ε 0 ) ≥ π/12 for small enough η 0 , so by Fubini there exist x2 ∈

I α+2π/3 , x3 ∈ I α+4π/3 such that ˆIα a 2 (x 1 , x2 , x3 ) dH 1 (x 1 ) ˆ∂Ω 3 a 2 d(H 1 ) ⊗3 .
Denote by z α the intersection of the two normal lines at x2 and x3 . It satisfies |z α | ε 0 .

Let n α denote the vortex centered at z α , that is,

n α (x) = x -z α |x -z α | .
We claim that

|n ∂Ω (x 1 ) -n α (x 1 )| a(x 1 , x2 , x3 ) ∀x 1 ∈ I α . (22) 
Let indeed x 1 ∈ I α . We denote by L 1 , L 2 , L 3 the normal lines to ∂Ω at x 1 , x2 , x3 . As the normals are close to radial thanks to [START_REF] Lamy | Rigidity of a non-elliptic differential inclusion related to the Aviles-Giga conjecture[END_REF], the three intersection points

L 1 ∩ L 2 , L 1 ∩ L 3 and L 2 ∩ L 3 lie in D c0ε0
for some absolute constant c 0 . Recall that z α is the intersection point z α = L 2 ∩ L 3 , and denote by d its distance to the line L 1 , d = dist(z α , L 1 ) ε 0 . Since x 1 ∈ I α , x2 ∈ I α+2π/3 and x3 ∈ I α+4π/3 , the triangle formed inside D c0ε0 by the three lines L 1 , L 2 , L 3 has its three angles 1 for small enough ε 0 . Hence the radius r of that triangle's incircle is comparable to the distance d, we have d r. On the other hand, considering the three concurrent lines from x 1 , x2 , x3 to the incircle's center, we find that r a(x 1 , x2 , x3 ). Thus we have d r a(x 1 , x2 , x3 ). Moreover, the angle between L 1 and the line from z α to x 1 is d, which shows that

|n ∂Ω (x 1 ) -n α (x 1 )| d r a(x 1 , x2 , x3 ),
and proves the claim [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]. From [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] we deduce

ˆIα |n ∂Ω -n α | 2 dH 1 ˆIα a 2 (•, x2 , x3 ) dH 1 ˆ∂Ω 3 a 2 d(H 1 ) ⊗3 .
Applying this to α = jπ/12 for j = 1, . . . , 24, we cover ∂Ω with portions I 1 , . . . , I 24 satisfying H 1 (I j ∩ I j+1 ) = π/12 + O(ε 0 ), and find points

z j ∈ D c0ε0 such that ˆIj |n ∂Ω -n j | 2 dH 1 ˆ∂Ω 3 a 2 d(H 1 ) ⊗3 , n j (x) = x -z j |x -z j | . ( 23 
)
This implies

ˆIj∩Ij+1 |n j -n j+1 | 2 dH 1 ˆ∂Ω 3 a 2 d(H 1 ) ⊗3 .
We claim that

|z j -z j+1 | 2 ˆIj∩Ij+1 |n j -n j+1 | 2 dH 1 ˆ∂Ω 3 a 2 d(H 1 ) ⊗3 . ( 24 
)
The second inequality was proved above, so we only need to show the first inequality in [START_REF] Lorent | A quantitative characterisation of functions with low aviles giga energy on convex domains[END_REF]. First note that since z j , z j+1 ∈ D c0ε0 and

I j ∩ I j+1 ⊂ D 1+c0ε0 \ D 1-c0ε0 , for any x ∈ I j ∩ I j+1 we have |(z j+1 -z j ) • (in j (x))| |n j (x) -n j+1 (x)|.
In other words, |n j (x)-n j+1 (x)| controls |z j -z j+1 | unless x, z j , z j+1 are closed to aligned. But since I j ∩ I j+1 is a portion of curve inside D 1+c0ε0 \ D 1-c0ε0 from a point of polar angle (j + 1)π/12 to a point of polar angle (j + 2)π/12, there is a subset J ⊂ I j ∩ I j+1 satisfying H 1 (J) ≥ π/24 and such that for x ∈ J the three points x, z j , z j+1 are far from aligned, that is,

|z j -z j+1 | |(z j+1 -z j ) • (in j (x))| |n j (x) -n j+1 (x)| ∀x ∈ J.
Taking squares and integrating over J we obtain [START_REF] Lorent | A quantitative characterisation of functions with low aviles giga energy on convex domains[END_REF]. From [START_REF] Lorent | A quantitative characterisation of functions with low aviles giga energy on convex domains[END_REF] we deduce |z j -z 1 | 2 ´∂Ω 3 a 2 d(H 1 ) ⊗3 for all j = 1, . . . , 24, and therefore [START_REF] Lorent | A simple proof of the characterization of functions of low Aviles Giga energy on a ball via regularity[END_REF] implies

ˆ∂Ω |n ∂Ω -n 1 | 2 ˆ∂Ω 3 a 2 d(H 1 ) ⊗3 .
Taking x * = z 1 and applying Lemma 2.7 and Cauchy-Schwarz' inequality, this concludes the proof of Proposition 2.2.

Lower bound on the dissipation

In this section we prove the following.

Proposition 3.1. Let Ω and m be as in Theorem 1.7. We have the estimate

ˆE(η * ) 3 a 2 d(H 1 ) ⊗3 ≤ C ν(Ω) + C H 1 ({m ∂Ω = τ }),
where η * = min(η 0 /2, 1/(8K)), for η 0 as in Lemma 2.4, and C > 0 is a constant depending only on K.

Lagrangian representation

In order to prove Proposition 3.1, we introduce the notion of Lagrangian representation for entropy solutions of the eikonal equation from [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF].

Given T > 0 we let

Γ = (γ, t - γ , t + γ ) : 0 ≤ t - γ ≤ t + γ ≤ T, γ = (γ x , γ s ) ∈ BV((t - γ , t + γ ); Ω × R/2πZ), γ x is Lipschitz .
We will always consider the right-continuous representative of the component γ s and we will write γ(t - γ ) instead of lim t→t - γ γ(t) and γ(t + γ ) instead of lim t→t + γ γ(t). For every t ∈ (0, T ) we consider the section 

Γ(t) := γ, t - γ , t + γ ∈ Γ : t ∈ t - γ , t +
t : Γ(t) -→ Ω × R/2πZ (γ, t - γ , t + γ ) -→ γ(t),
the evaluation map at time t.

Definition 3.2. Let Ω be a C 1,1 open set and m solving (1) and [START_REF] De Lellis | A regularizing property of the 2D-eikonal equation[END_REF]. We say that a finite non-negative Radon measure ω ∈ M(Γ) is a Lagrangian representation of m if the following conditions are satisfied:

1. for every t ∈ (0, T ) we have

(e t ) [ω Γ(t)] = 1 Em L 2 × L 1 , (25) 
where

E m ⊂ Ω × R/2πZ is the 'epigraph' E m = (x, s) ∈ Ω × R/2πZ : m(x) • e is > 0 ;
2. the measure ω is concentrated on curves (γ, t - γ , t + γ ) ∈ Γ solving the characteristic equation:

γx (t) = e iγs(t) for a.e. t ∈ (t - γ , t + γ ); (26) 
3. we have the integral bound ˆΓ TV (0,T ) γ s dω(γ) < ∞;

4. for ω-a.e. (γ, t - γ , t + γ ) ∈ Γ we have t - γ > 0 ⇒ γ x (t - γ ) ∈ ∂Ω, and t + γ < T ⇒ γ x (t + γ ) ∈ ∂Ω. (27) 
A useful property of the Lagrangian formulation is the possibility of decomposing the entropy dissipation measure ν along the characteristics detected by ω. More precisely, from [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF] we have Proposition 3.3. Let Ω be a C 1,1 open set, m solving (1) and (9), and T > 0. Then there is a Lagrangian representation ω of m such that for every Borel set A ⊂ [0, T ] and

B ⊂ Ω it holds ˆΓ µ γ ({t ∈ A : γ x (t) ∈ B}) dω(γ) = L 1 (A)ν(B),
where µ γ = |D t γ s |. for the existence of such a lifting, which is however not necessary to define the measure µ γ ).

We will also use that, thanks to property [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF] and the trace properties of m, the pushforward of ω under evaluation at initial time t - γ is related to the H 1 ∂Ω in the following way.

Lemma 3.5. Denote Γ ini = {t - γ > 0} ⊂ Γ and

P ini : Γ ini → (0, T ) × ∂Ω × R/2πZ, γ → (t - γ , γ(t - γ )),
then the pushforward measure µ ini = P ini ω Γini is given by

dµ ini (t, x, s) = 1 m(x)•e is >0 1 iτ (x)•e is >0 (iτ (x) • e is ) dt dH 1 ∂Ω (x) ds.
Proof of Lemma 3.5. The argument is similar to [8, Lemma 3

.1]. Let F ∈ C 1 c ((0, T ) × ∂Ω × R/2πZ
), and denote also by F a C 1 extension to (0, T ) × Ω × R/2πZ.

For small enough h > 0 we may find a C/h-Lipschitz function G h : R 2 → [0, 1], with C depending only on K, such that

1 x∈Ω, dist(x,∂Ω)≤h ≤ G h (x) ≤ 1 x∈Ω , and ∇G h → iτ dH 1 ∂Ω as h → 0.
Thanks to the trace property of m and the Lagrangian property [START_REF] Lorent | Factorization for entropy production of the Eikonal equation and regularity[END_REF] we have

ˆ(0,T )×∂Ω×R/2πZ F (t, x, s) 1 m(x)•e is >0 (iτ (x) • e is ) dt dH 1 ∂Ω (x) ds = lim h→0 + ˆ(0,T )×Ω×R/2πZ F (t, x, s) 1 m(x)•e is >0 (e is • ∇G h (x)) dt dx ds = lim h→0 + ˆΓ A h (γ) dω(γ),
where

A h (γ) = ˆt+ γ t - γ F (t, γ x (t), γ s (t)) (e iγs(t) • ∇G h (γ x (t)) dt = ˆt+ γ t - γ F (t, γ x (t), γ s (t)) d dt [G h (γ x (t))] dt.
For the last equality we used the characteristic equation [START_REF] Lorent | Regularity of the eikonal equation with two vanishing entropies[END_REF]. Then we integrate by parts: since

G h (γ x (t - γ )) = 0 if t - γ > 0 and G h (t + γ ) = 0 if t + γ < T we obtain A h (γ) = - ˆt+ γ t - γ G h (γ x (t))DΦ γ (dt),
where Φ γ (t) = F (t, γ x (t), γ s (t)).

In particular we have the convergence

A h (γ) -→ A 0 (γ) = ˆt+ γ t - γ 1 γx(t)∈Ω DΦ γ (dt),
as h → 0 + . By definition of the Lagrangian representation, for ω-a.e. γ ∈ Γ we have γ x (t) ∈ Ω for all t ∈ (t - γ , t + γ ), so

A 0 (γ) = - ˆt+ γ t - γ DΦ γ (dt) = Φ γ (t - γ ) -Φ γ (t + γ ) = F (t - γ , γ x (t - γ ), γ s (t - γ )) -F (t + γ , γ x (t + γ ), γ s (t + γ )).
Thanks to the domination

|A h (γ)| ≤ ∇F ∞ (1 + T V (γ s )), we deduce ˆ(0,T )×∂Ω×R/2πZ F (t, x, s) 1 m(x)•e is >0 (iτ (x) • e is ) dt dH 1 ∂Ω (x) ds = ˆΓ F (t - γ , γ x (t - γ ), γ s (t - γ )) -F (t + γ , γ x (t + γ ), γ s (t + γ )) dω(γ).
We apply this to

F (t, x, s) = f (t, x, s)φ ε (x, s), 1 iτ (x)•e is >ε ≤ φ ε (x, s) ≤ 1 iτ (x)•e is >0
,

where f ∈ C 1 c ((0, T ) × ∂Ω × R/2πZ) and φ ε ∈ C 1 (∂Ω × R/2πZ
). Since for ω-a.e. γ ∈ Γ it holds γ x (t) ∈ Ω for all t ∈ (t - γ , t + γ ), by the characteristic speed constraint (26), we have

iτ (γ x (t + γ )) • e iγs(t + γ ) ≤ 0 if t + γ < T , so φ ε (γ x (t + γ ), γ s (t + γ )) = 0, and we deduce ˆ(0,T )×∂Ω×R/2πZ f (t, x, s)φ ε (x, s) 1 m(x)•e is >0 (iτ (x) • e is ) dt dH 1 ∂Ω (x) ds = ˆΓ f (t - γ , γ x (t - γ ), γ s (t - γ ))φ ε (γ x (t - γ ), γ s (t - γ )) dω(γ).
By dominated convergence as ε → 0 this implies ˆ(0,T )×∂Ω×R/2πZ f (t, x, s)

1 iτ (x)•e is >0 1 m(x)•e is >0 (iτ (x) • e is ) dt dH 1 ∂Ω (x) ds = ˆΓ f (t - γ , γ x (t - γ ), γ s (t - γ )) 1 iτ (γx(t - γ ))•e iγs (t - γ )) >0
dω(γ).

As above, for ω-a.e. γ ∈ Γ ini we have iτ (γ x (t - γ )) • e iγs(t - γ )) ≥ 0. Indeed the curves that enter tangentially into Ω, namely for which iτ (γ x (t - γ )) • e iγs(t - γ )) = 0, are ω-negligible (see [8, (3.5)] for details). In particular for ω-a.e. γ ∈ Γ ini we have iτ (γ

x (t - γ )) • e iγs(t - γ )) > 0 and we infer ˆ(0,T )×∂Ω×R/2πZ f (t, x, s) 1 iτ (x)•e is >0 1 m(x)•e is >0 (iτ (x) • e is ) dt dH 1 ∂Ω (x) ds = ˆΓini f (t - γ , γ x (t - γ ), γ s (t - γ )) dω(γ),
for any f ∈ C 1 c ((0, T ) × ∂Ω × R/2πZ). By approximation this is valid for any f ∈ C 0 c (0, T ) × ∂Ω × R/2πZ), concluding the proof of Lemma 3.5.

Proof of Proposition 3.1

Before proving Proposition 3.1 we set some notations and definitions.

• We apply Proposition 3.3 for some fixed T ≥ 3π, and let h ∈ L 1 (∂Ω) be defined by the relation

ˆE h dH 1 = ˆ{γ:γx(t - γ )∈E} |D t γ s |(I γ ) dω h (γ), (28) 
that is, h(x) encodes the entropy dissipation generated (via Proposition 3.3) by the curves of the Lagrangian representation emanating from x ∈ ∂Ω. • We denote by W the 'wrong trace' set W = {m = τ } ⊂ ∂Ω, by M1 W the maximal function

M1 W (x) = sup r>0 1 r ˆIr(x) 1 W dH 1 ,
where I r (x) = g([t -r, t + r]) for x = g(t), and for any ε > 0 we define the set

G ε = {M1 W < ε} ⊂ ∂Ω, (29) 
of boundary points where the proportion of wrong traces is less than ε at any scale around that point. Note that the Hardy-Littlewood inequality ensures that

H 1 (∂Ω \ G ε ) ε -1 H 1 (W ).
The main, and most technical, part of Proposition 3.1's proof is encoded in the following lemma. Lemma 3.6. There exist C, c, ε > 0, depending only on K, such that, for any x ∈ (E(η * ) ∩ G ε ) 3 with a(x) > 0, the quantity a(x) provides the following lower bound on the entropy dissipation:

C T ˆI(x,a(x)) (h(x 1 ) + h(x 2 ) + h(x 3 )) d(H 1 ) ⊗3 ≥ a(x) 5 ,
where

I(x, a(x)) = I 1 × I 2 × I 3 , I k = I c a(x) (x k ) = g([s k -c a(x), sk + c a(x)]),
and

x k = g(x k ) for k = 1, 2, 3.
Proof of Lemma 3.6. Let x ∈ (E(η * ) ∩ G ε ) 3 with a(x) > 0 First we choose the constant c = c(K) > 0 appearing in the definition of I(x, a(x)) in order to ensure

e iα k • τ (x) ≤ - a(x) 2 ∀x ∈ I k , and 
I k ⊂ E(2η * ),
where α k are the angles in the definition of a(x). The first condition can be imposed because τ is K-Lipschitz and e iα k • τ (x k ) ≤ -a(x), and the second thanks to Lemma 2.5, since 2η * ≤ 1/(4K) (as imposed in the statement of Proposition 3.1). We denote by z 0 the intersection point as in the definition of a(x), and consider the three cylinders

C k := B c1a(x) (z 0 ) × [α k -c 2 a(x), α k + c 2 a(x)] for k = 1, 2, 3,
where c 1 , c 2 > 0 are small constants depending on K and chosen to ensure that:

• for any (s 1 , s 2 , s 3 ) ∈ Π 3 k=1 [α k -c 2 a(x), α k + c 2 a(x)]
, the shortest interval in R/2πZ containing s 1 , s 2 , s 3 has length l > π;

• for all (x, s) ∈ C k , there is a boundary point y ∈ I k such that x = y + te is for some t ∈ R, the segment [x, y] is contained in Ω, and τ (y) • e is < 0.

The last property is possible since 2η * ≤ η 0 with η 0 as in Lemma 2.4.

Claim.

For every k = 1, 2, 3 we have at least one of the following two properties:

L 3 (C k ∩ E m ) ≥ 3 4 L 3 (C k ), or 1 T ˆIk h dH 1 a(x) 3 .
In other words, either most of the elements of C k belong to the 'epigraph' E m , or there must occur entropy dissipation of order a(x).

We first prove the statement assuming the Claim. Since H 1 (I k ) = 2c a(x) for every k = 1, 2, 3, then

ˆI(x,a(x)) (h(x 1 ) + h(x 2 ) + h(x 3 )) d(H 1 ) ⊗3 = 2c a(x) 2 3 k=1 ˆIk h dH 1 .
In view of the Claim, in order to conclude the proof it is sufficient to check that the first property L 3 (C k ∩ E m ) ≥ (3/4)L 3 (C k ) cannot be satisfied for all k = 1, 2, 3. Assume by contradiction that this is the case: for every k = 1, 2, 3, let

A k = {x ∈ B c1a(x) (z 0 ) : L 1 ({s : (x, s) ∈ C k ∩ E m }) > 0}. L 2 (A 1 ∩ A 2 ∩ A 3 ) ≥ 1 4 L 2 (B c1a(x) (z 0 )) > 0.
But the definition of a(x) implies that A 1 ∩A 2 ∩A 3 = ∅. Indeed for every triple (s 1 , s 2 , s 3 )

∈ 3 k=1 [α k -c 2 a(x), α k + c 2 a(x)
], on the one hand the choice of c 2 ensures that there is no α ∈ R/2πZ such that e iα • e is k > 0 for every k = 1, 2, 3, and on the other hand for L 3 -a.e. (x, s) ∈ E m we have m(x) • e is > 0. So this gives a contradiction.

It remains to prove the Claim. For k = 1, 2, 3, we consider the set of curves G k ⊂ Γ defined as follows. If the direction e iα k enters Ω, G k consists of the curves which enter Ω in a way that the 'free characteristic' (i.e. straight line) entering with the same initial direction intersects the cylinder C k . If the direction e iα k exits Ω, G k consists of the curves which exit Ω in a way that the free characteristic exiting with the same final direction intersects the cylinder C k . Explicitly:

G k = γ ∈ Γ : ∃ t ∈ T 3 , 2 3 T , γ x (t - γ ) + e iγs(t - γ ) ( t -t - γ ), γ s (t - γ ) ∈ C k if (x k -z 0 ) • τ (x k ) > 0, G k = γ ∈ Γ : ∃ t ∈ T 3 , 2 3 T , γ x (t + γ ) + e iγs(t + γ ) ( t -t + γ ), γ s (t + γ ) ∈ C k if (x k -z 0 ) • τ (x k ) < 0.
Moreover for γ ∈ G k we denote by t C k (γ) the time spent by γ in C k , and by tC k (γ) the time spent in C k by the corresponding (entering or exiting) free characteristic. Explicitly:

t C k (γ) = L 1 t ∈ T 3 , 2 3 
T : γ(t) ∈ C k tC k (γ) = L 1 t ∈ T 3 , 2 3 T , γ x (t - γ ) + e iγs(t - γ ) (t -t - γ ), γ s (t - γ ) ∈ C k if (x k -z 0 ) • τ (x k ) > 0, tC k (γ) = L 1 t ∈ T 3 , 2 3 T , γ x (t + γ ) + e iγs(t + γ ) ( t -t + γ ), γ s (t + γ ) ∈ C k if (x k -z 0 ) • τ (x k ) < 0, Since T ≥ 3π, the choices of c 1 , c 2 ensure that (1 -β) T 3 L 3 (C k ) ≤ ˆGk tC k dω ≤ T 3 L 3 (C k ), (30) 
where β

H 1 ({x ∈ I k (x, a(x)) : m(x) = τ (x)}) H 1 (I k (x, a(x))) ε.
To prove [START_REF] Ortiz | The morphology and folding patterns of buckling-driven thin-film blisters[END_REF], assume without loss of generality that (x k -z 0 ) • τ (x k ) > 0. Then, by Fubini theorem, we have

ˆGk tC k dω = ˆ2T/3 T /3 ω (A t ) dt,
where

A t = γ ∈ Γ : γ x (t - γ ) + e iγs(t - γ ) (t -t - γ ), γ s (t - γ ) ∈ C k .
Since T /3 ≥ π and Ω has diameter < π, for t ∈ [T /3, 2T /3] any γ ∈ A t satisfies t - γ > 0, and moreover γ x (t - γ ) ∈ I k and iτ (γ x (t - γ )) • e iγs(t - γ ) > 0 thanks to the choices of c 1 , c 2 . Invoking Lemma 3.5 this implies that

ω(A t ) = ˆαk +c2a(x) α k -c2a(x) ˆIk ˆ2T/3 0 1 y+(t-tini)e is ∈B c 1 a(x) (z0) • 1 m(y)•e is >0 (iτ (y) • e is ) dt ini dH 1 (y) ds.
For any s ∈ [α k -c 2 a(x), α k + c 2 a(x)] the map (t ini , y) → y + (t -t ini )e is is injective, its image contains B c1a(x) (z 0 ), and its jacobian is iτ (y) • e is > 0, so we deduce

ω(A t ) = ˆαk +c2a(x) α k -c2a(x) ˆBc 1 a(x) (z0) 1 m(xs(z))•e is >0 dz ds,
where x s (z) ∈ I k is the intersection point of the half-line z -[0, ∞) e is with the boundary arc I k . For z ∈ B c1a(x) (z 0 ) and s ∈ [α k -c 1 a(x), α k + c 2 a(x)], recalling that m ∈ {±τ } on ∂Ω, we have that m(x s (z)) • e is > 0 if and only if m(x s (z)) = -τ (x s (z)), and we deduce the validity of (30) with

β = sup z∈B c 1 a(x) (z0) L 1 ({s ∈ [α k -c 1 a(x), α k + c 2 a(x)] : m(x s (z)) = τ (x s (z))}) L 1 ([α k -c 1 a(x), α k + c 2 a(x)]
) .

The first inequality on β in the second line of (30) follows from the fact that, for all

z ∈ B c1a(x) (z 0 ), the map s → x s (z) is a diffeomorphism from [α k -c 1 a(x), α k + c 2 a(x)]
onto its image in I k , with jacobian bounded from below by R/2 ≥ 1/(2K). The second inequality β ε in ( 30) is simply by definition (29) of the set G ε . Moreover, since for every t ∈ [0, T ] we have (e t ) # ω = 1 Em L 3 , then

ˆGk t C k dω ≤ T 3 L 3 (C k ∩ E m ). ( 31 
)
We now estimate tC k -t C k in terms of the entropy dissipation from the curves in G k . Assume without loss of generality that k is such that (

x k -z 0 ) • τ (x k ) > 0. Denote by Ck = {(x, s) ∈ C k : dist((x, s), ∂C k ) > c 4 a(x)}
for some c 4 ∈ (0, min{c 1 , c 2 /2}) and by Gk ⊂ G k the set of curves γ such that there is

t ∈ (t - γ , t + γ ) such that γ x (t - γ ) + e iγs(t - γ ) (t -t - γ ) ∈ Ck . Finally denote by G * k = {γ ∈ Gk : tC k (γ) -t C k (γ) > c 5 a(x)}.
For every c 4 , c 5 > 0, by the characteristic constraint [START_REF] Lorent | Regularity of the eikonal equation with two vanishing entropies[END_REF], there is

c 6 > 0 such that for all γ ∈ G * k it holds |µ γ |((0, T )) ≥ c 6 a(x). We write ˆGk ( tC k -t C k )dω ≤ ˆGk \ Gk tC k dω + ˆG k \ G * k ( tC k -t C k )dω + ˆG * k tC k dω, (32) 
and estimate each integral separately. First, the argument leading to the upper bound in (30) also implies

ˆGk \ Gk tC k dω ≤ T 3 L 3 (C k \ Ck ) ≤ 2T 3 c 4 1 c 1 + 1 c 2 L 3 (C k ). (33) 
Second, by definition of G * k we have

ˆG k \ G * k ( tC k -t C k )dω ≤ c 5 a(x)ω( Gk ),
and since tC k (γ) ≥ √ c 1 c 4 a(x) for all γ ∈ Gk , from [START_REF] Ortiz | The morphology and folding patterns of buckling-driven thin-film blisters[END_REF] we deduce √ c 1 c 4 a(x)ω( Gk ) ≤ (T /3)L 3 (C k ), and plugging this into the previous equation yields

ˆG k \ G * k ( tC k -t C k )dω ≤ T 3 c 5 √ c 1 c 4 L 3 (C k ). (34) 
Third, by definition of c 6 , the third integral in (32) enjoys the estimate

ˆG * k tC k dω ≤ sup tC k ω( G * k ) ≤ 2c 1 a(x) c 6 a(x) ˆG * k |µ γ |(0, T )dω(γ) ≤ 2c 1 c 6 ˆIk (x,a(x)) h dH 1 ,
so plugging this and ( 33)-( 34) into (32) we infer ˆGk

( tC k -t C k )dω ≤ 2T 3 c 4 1 c 1 + 1 c 2 L 3 (C k ) + T 3 c 5 √ c 1 c 4 L 3 (C k ) + 2c 1 c 6 ˆIk (x,a(x)) h dH 1
We may choose c 4 and c 5 small enough so that

2T 3 c 4 1 c 1 + 1 c 2 L 3 (C k ) + T 3 c 5 √ c 1 c 4 L 3 (C k ) ≤ T 24 L 3 (C k )
so that by ( 31) and ( 30), we deduce

T 3 L 3 (C k ∩ E m ) ≥ ˆGk tC k dω - ˆGk ( tC k -t C k )dω ≥ T 3 7 8 -cε L 3 (C k ) - 2c 1 c 6 ˆIk (x,a(x)) h dH 1 ,
for some absolute constant c > 0. Choosing ε = 1/(16c) we deduce

L 3 (C k ∩ E m ) ≥ 3 4 L 3 (C k ) + 1 16 L 3 (C k ) - 6c 1 c 6 T ˆIk (x,a(x)) h dH 1 .
This estimate implies the claim: if 3 . Now Proposition 3.1 follows from Lemma 3.6 via a covering argument.

L 3 (C k ∩ E m ) ≤ 3 4 L 3 (C k ) then ´Ik (x,a(x)) h dH 1 ≥ (c 6 T /(6c 1 ))L 3 (C k )/16 = (πT c 1 c 2 c 6 /48) a(x)
Proof of Proposition 3.1. Denote by L the Lipschitz constant of a from Lemma 2.6. Let ε > 0 be fixed as in Lemma 3.6, and consider the covering 

{I(x, a(x)) : x ∈ (E(η 0 ) ∩ G ε ) 3 } of the set X * := {x ∈ (E(η 0 ) ∩ G ε ) 3 : a(x) > 0}. Since for every x ∈ X * , the diameter of I(x, a(x)) is a(x)
a 2 d(H 1 ) ⊗3 i∈I a(x i ) 5 i∈I ˆI(xi,r+(xi)) (h(x 1 ) + h(x 2 ) + h(x 3 )) d(H 1 ) ⊗3 ˆ∂Ω 3 (h(x 1 ) + h(x 2 ) + h(x 3 )) d(H 1 ) ⊗3 ˆ∂Ω h dH 1 .
The definition (28) of h and Proposition 3.3 ensure that ´∂Ω h dH 1 ν(Ω), so we deduce

ˆ(E(η0)\Gε) 3 a 2 d(H 1 ) ⊗3 ν(Ω), which implies, since 0 ≤ a ≤ π, ˆE(η0) 3 a 2 d(H 1 ) ⊗3 ν(Ω) + H 1 (∂Ω \ G ε ).
Recalling the definition (29) of G ε , thanks to the the Hardy-Littlewood inequality the last term is ε -1 H 1 ({m = τ }), and this concludes the proof of Proposition 3.1.

Compactness argument

In this section we use the characterization of zero-energy states [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] and a compactness argument to 'initialize' our analysis of the previous sections: if ν(Ω) is small enough, then Ω must be close to a disk and m close to a vortex.

Lemma 4.1. For any K, ε > 0, there exists δ = δ(ε, K) > 0 with the following property.

If Ω is a C 1,1 simply connected domain with H 1 (∂Ω) = 2π, sup ∂Ω |κ| ≤ K which admits a map m solving (1) and ( 9) and its dissipation measure ν defined in [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF] 

satisfies ν(Ω) ≤ δ, then dist(∂Ω, ∂B 1 (x 0 )) + sup x∈∂Ω n ∂Ω (x) - x -x 0 |x -x 0 | ≤ ε, (36) 
for some x 0 ∈ R 2 , and there is α

∈ {±1} such that ˆΩ 1 dist(•,∂Ω)≤ 1
Proof of Lemma 4.1. Assume by contradiction that there exists a sequence of C 2 simply connected domains Ω k such that

H 1 (∂Ω k ) = 2π, sup ∂Ω k |κ| ≤ K with maps m k : Ω k → S 1 satisfying ∇ • m k = 0 in Ω, m k • n ∂Ω k = 0 on ∂Ω k and ν m k (Ω k ) = δ k → 0, such that inf x0∈R 2 dist(∂Ω k , ∂B 1 (x 0 )) + sup x∈∂Ω k n ∂Ω k (x) - x -x 0 |x -x 0 | ≥ ε, or π ∂Ω k (x) is not well-defined (that is, not unique) for dist(x, ∂Ω k ) ≤ 1/(2K), or min α∈{±1} ˆΩk 1 dist(•,∂Ω k )≤ 1 2K |m -ατ ∂Ω k • π ∂Ω k | dx ≥ ε. Let g k ∈ C 2 (R/2πZ; R 2
) be a counterclockwise arc-length parametrization of ∂Ω k . Up to a translation we may assume that ´R/2πZ g k (t) dt = 0. Since |g k | ≤ K there exists a subsequence (which we don't relabel) such that g k convergence in C 1 (R/2πZ; R 2 ) to a curve g ∈ C 1,1 (R/2πZ; R 2 ) with | ġ| = 1. The curve g can self-intersect, but not self-cross, so at a multiple point all tangents must be parallel.

Each domain Ω k contains a disk of radius ≥ 1/K [14, Proposition 2.1], so R 2 \g(R/2πZ) has an open bounded simply connected component containing a disk of radius ≥ 1/K, which we denote by Ω. Since ∂Ω ⊂ g(R/2πZ), the boundary ∂Ω is C 1 except at multiple points of the C 1 curve g. We distinguish two types of singular points: a singular point z ∈ ∂Ω is of type I if there exists δ > 0 such that all connected components ω δ of Ω ∩ B δ are such that ∂ω δ ∩ ∂Ω is C 1 , and of type II otherwise. See Figure 2. The rest of the proof is divided in 4 steps. Step 1. Singular points of type II are isolated in ∂Ω.

Let z 0 ∈ ∂Ω a singular point. In particular it is a multiple point: g -1 ({z 0 }) contains strictly more than one element. If t 1 ∈ g -1 ({z 0 }), then g(t) = z 0 for |t -t 1 | < 2π/K because | ġ| = 1 and |g| ≤ K. This implies that g -1 ({z 0 }) is finite, g -1 ({z 0 }) = {t 1 , . . . , t N } for some N ≥ 2. Since g cannot self-cross, we have ġ(t j ) ∈ {±τ } for all j = 1, . . . , N and one fixed τ = ġ(t 1 ) ∈ S 1 .

We consider, for δ > 0 small enough, the open set g -1 (B δ (z 0 )). From a Taylor expansion around each t j , we deduce the existence of η = η(K) > 0 such that for j = 1, . . . , N , the subset g -1 (B δ (z 0 )) ∩ (t j -η, t j + η) is an open interval I j δ . For small enough δ > 0, the open set g -1 (B δ (z 0 )) is exactly the union of these N open intervals. Maybe I would give for granted this proof, but since it is already there, we can also keep it. We prove this by contradiction: otherwise, there would exist a sequence δ → 0 and t δ such that |g(t δ ) -z 0 | < δ but t δ / ∈ I δ j for any j = 1, . . . , N . Extracting a subsequence t δ → t * , we must have g(t * ) = z 0 , so t * ∈ {t 1 , . . . , t N }, and therefore t δ ∈ (t j -η, t j + η) for some j ∈ {1, . . . , N } and all small enough δ. By the above property of η this implies t δ ∈ I j δ and gives a contradiction, so g -1 (B δ (z 0 )) is indeed the union of the N intervals I j δ . We choose coordinates (x, y) in which z 0 = 0 and τ = e 1 . Then for small enough δ > 0 we have

g(R/2πZ) ∩ B δ = N j=1 {y = f j (x)} ∩ B δ , for some C 1 functions f 1 ≤ • • • ≤ f N such that f j (0) = f j (0) = 0 for j = 1, . . . , N .
We have z 0 = 0 ∈ ∂Ω, and any (x 0 , y 0 ) ∈ B δ ∩ Ω must satisfy y 0 / ∈ {f 1 (x 0 ), . . . , f N (x 0 )}. Moreover, if f j (x 0 ) < y 0 < f j+1 (x 0 ) for some j ∈ {1, . . . , N -1}, we deduce that f j (x) < f j+1 (x) for all x ∈ (0, x ) since Ω is connected. Therefore, possibly taking a smaller value of δ, the connected components of Ω ∩ B δ are among the sets

{y < f 1 (x)} ∩ B δ , {y > f N (x)} ∩ B δ , {f j (x) < y < f j+1 (x)} ∩ {x > 0} ∩ B δ , {f j (x) < y < f j+1 (x)} ∩ {x < 0} ∩ B δ .
Note that the singular point z 0 = 0 is of type I if and only if the two last types of connected components do not arise. Moreover, if z 0 is of type II, this description of Ω ∩ B δ shows that ∂Ω ∩ B δ contains no other singular points of type II. This proves Step 1.

Step 2. There exists m : Ω → S 1 such that ∇ • m = 0 in Ω, ν(Ω) = 0, with a strong L 1 trace m ∂Ω satisfying m ∂Ω • n ∂Ω = 0 a.e. on ∂Ω. More precisely, this makes sense in any C 1 portion of ∂Ω, singular points of type II are negligible by Step 1, and around a singular point of type I, Ω is, in adapted coordinates, locally of the form {y < f (x)} ∪ {y > f (x)} for some C 1 functions f ≤ f with f (0) = f (0) = f (0) = f (0) = 0, and the trace m ∂Ω may differ from one side to another, but both traces satisfy m • n ∂Ω = 0 a.e. for any choice of unit normal n ∂Ω .

For any z ∈ Ω and B r (z) ⊂ Ω, the sequence m k Dr(z) has bounded entropy production and is therefore compact in L 1 (D r (z)) [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF], so m k Ω is compact in L 1 loc (Ω). After extracting a subsequence converging in L 1 loc and a.e., its limit m : Ω → S 1 satisfies ∇ • m = 0 in Ω and ∇ • Φ(m) = 0 for any entropy Φ (see Appendix A), so ν(Ω) = 0. This last property implies that m has an L 1 trace along any C 1 portion of ∂Ω, and along both sides of any portion of ∂Ω around a singular point of type I (see e.g. [17, § 3.2]). It remains to prove that this trace satisfies m ∂Ω • n ∂Ω = 0 a.e. on ∂Ω.

To that end consider first a C 1 point z 0 ∈ ∂Ω, and a disk B 2r (z 0 ) such that ∂Ω ∩ B 2r (z 0 ) = g(I) for some open interval I. Possibly choosing a smaller r and adapted coordinates (x, y) in which z 0 = 0 and g(I) is close to horizontal, we write Ω ∩ B 2r as a subgraph

Ω ∩ B 2r = {y < f (x)} ∩ B 2r , where f (0) = f (0) = 0 and f is C 1 . Since g k → g in C 1
, we can write g k (I) as a graph {y = f k (x)} for some functions f k converging to f in C 1 , and define

Ω k = {y < f k (x)} ∩ B r . Then we have Ω k ⊂ Ω k and B r ∩∂ Ω k ⊂ ∂Ω k , so m k •n ∂ Ω k = 0 on B r ∩∂ Ω k ⊂ ∂Ω k , implying that ∇ • (m k 1 Ω k ) = 0 in B r . By dominated convergence we have m k 1 Ω k → m1 Ω∩Br in L 1 (B r
). We deduce that ∇ • (m1 Ω ) = 0 in B r , which implies that m ∂Ω • n ∂Ω = 0 a.e. on ∂Ω ∩ B r . This is valid around any C 1 point of ∂Ω. Around a singular point z 0 of type I, the same argument can be applied in both connected components of Ω ∩ B 2r (z 0 ). And singular points of type II are isolated by Step 1, so m ∂Ω • n ∂Ω = 0 a.e. on ∂Ω.

Step 3. There are no singular points of type II.

If z 0 ∈ ∂Ω is a singular point of type II, then by the analysis in Step 1 we may choose coordinates (x, y) in which z 0 = 0 and there exist δ > 0 and a connected component ω δ of Ω ∩ B δ such that

ω δ = {f 1 (x) < y < f 2 (x)} ∩ {x > 0} ∩ B δ , where f 1 , f 2 are C 1 functions such that f 1 (0) = f 2 (0) = f 1 (0) = f 2 (0) = 0 and f 1 (x) < f 2 (x) for x > 0.
For all small x > 0, the normal N f1,x to the graph of f 1 at x intersects the graph of f 2 , at a point (x , f 2 (x )). There must be at least a value of x at which the normal N f2,x to the graph of f 2 at x is not parallel to N 1,x : otherwise the distance from (x, f 1 (x)) to the graph of f 2 would be a constant function of x, contradicting the fact that the two graphs intersect at 0. Therefore, considering x slightly larger or smaller than x (depending on the sign of the angle between the two normals N f1,x and N f2,x ) we have that N f2,x intersects N f1,x at a point z 1 ∈ ω δ . The proof of [17, Theorem 1.2] implies that, for every point z ∈ ∂Ω such that n ∂Ω (x) is defined and [z 1 , z] \ {z} is contained in Ω, n ∂Ω (z) must be equal to (z -z 1 )/|z -z 1 |. By a continuation argument, we deduce that the graphs of f 1 and f 2 are, until they meet, arcs of circles centered at z 1 , but this contradicts the fact that they have the same tangent at their intersection point. This contradiction proves that ∂Ω contains no singular points of type II.

Step 4. Conclusion.

If there are no singular points of type I, Ω is C 1 with bounded curvature and [14, Proposition 2.1] ensures the existence of a tangent inscribed disk centered at a focal point: explicitly we have a disk B r (z * ) ⊂ Ω and a tangency point z b = g(t 0 ) ∈ ∂B r (z * ) ∩ ∂Ω, such that for any ε > 0 and z ε = z * -ε(z b -z * ), the function t → |g(t) -z ε | doesn't have a local minimum at t 0 . In fact it can be checked that the proof of [14, Proposition 2.1] works even if Ω has singular points of type I. (One may also approximate Ω with C 1 domains, apply [14, Proposition 2.1] and pass to the limit.) So we do have a disk B r (z * ) ⊂ Ω and a tangency point z b = g(t 0 ) ∈ ∂B r (z * )∩∂Ω, such that for any ε > 0 and z ε = z * -ε(z b -z * ), the function t → |g(t) -z ε | doesn't have a local minimum at t 0 . The derivative of that function cannot be nondecreasing near t 0 , and this implies the existence of t = t 0 arbitrarily close to t 0 such that the normal line to ∂Ω at g(t) intersects [z ε , z b ]. Denote by z 1 ∈ Ω one such intersection point. Applying again the argument in the proof of [17, Theorem 1.2], we have the following geometric property: for every point

z ∈ ∂Ω such that [z 1 , z] \ {z} is contained in Ω, n ∂Ω (z) must be equal to (z -z 1 )/|z -z 1 |. Let I ⊂ R be the connected component of t 0 in the open set of all t ∈ R such that [z 1 , g(t)] \ {g(t)} is contained in Ω.
Thanks to the above, we deduce that g(I) is an arc of circle centered at z 1 . Assume I doesn't coincide with R, it means that there is a half-line from z 1 which intersects ∂Ω for the first time tangentially, but this is impossible by the above geometric property. We conclude that I = R and ∂Ω = g(R/2πZ) is a circle ∂B R (z 1 ). Since g has length 2π we must have R = 1, hence Ω = B 1 (z 1 ). Further, from [17, Theorem 1.2] there exists α ∈ {±1} such that

m(x) = αi x -z 1 |x -z 1 | = ατ ∂Ω • π ∂Ω (x) for a.e. x ∈ Ω.
Therefore, the convergence of

g k to g in C 1 (R/2πZ; R 2 ) implies dist(∂Ω k , ∂B 1 (z 1 )) + sup x∈∂Ω k n ∂Ω k (x) - x -z 1 |x -z 1 | -→ 0,
and also that π ∂Ω k (x) is well defined for dist(x, ∂Ω k ) ≤ 1/(2K) and large enough k.

Moreover by dominated convergence we have ˆΩk

1 dist(•,∂Ω k )≤ 1 2K |m k -ατ ∂Ω k • π ∂Ω k | dx -→ 0.
This contradicts the assumptions on (Ω k , m k ) and concludes the proof of Lemma 4.1.

Trace estimate

The estimate (37) provided by the compactness argument is not enough to handle the trace term in Proposition 3.1. In this section we explain how to strengthen it to a quantitative trace estimate, using the Lagrangian representation introduced in § 3.1.

Proposition 5.1. Let Ω ⊂ R 2 be a C 1,1 simply connected domain with H 1 (∂Ω) = 2π, sup ∂Ω |κ| ≤ K.
For any map m solving (1) and (9), there is α ∈ {±1} for which

H 1 ({x ∈ ∂Ω : m(x) = -ατ (x)}) ≤ Cν(Ω), (38) 
where C > 0 is a constant depending only on K.

We start by showing a preliminary lemma, which is a more precise version of [27, Lemma 3.1] (see also [START_REF] Marconi | Rectifiability of entropy defect measures in a micromagnetics model[END_REF]Lemma 22]). As in [27, Lemma 2.7] we denote by Γ g ⊂ Γ the full measure set of curves γ such that for a.e. t ∈ (t - γ , t + γ ) we have that γ x (t) is a Lebesgue point of m with m(γ x (t)) • e iγs(t) > 0.

Lemma 5.2. Let r > 0, γ ∈ Γ g and t ∈ (t - γ , t + γ ) be such that B r (γ x ( t)) ⊂ Ω and denote by (t - r , t + r ) the connected component of γ -1

x (B r (γ x ( t))) in (t - γ , t + γ ) containing t. Then there exists an absolute constant c > 0 such that for every β ∈ Osc (t - r ,t + r ) γ s , π/4 at least one of the following holds:

1. ν(B r (γ x ( t))) ≥ cβ 3 r; 2. L 2 ({x ∈ B r (γ x ( t)) : e iγs( t) • m(x) ≥ -2β}) ≥ cβr 2 .
Proof of Lemma 5.2. We let x = γx ( t), s = γs ( t), and C γ be the image curve C γ = γx ((t - r , t + r )) ⊂ Ω. For x = γ(t) ∈ C γ we denote by τ γ (x) = γx (t) the unit tangent vector determined by the parametrization γ. In particular, τ γ (x) = e is .

For

H 1 -a.e. x ∈ C γ ∩ B r/2 (x) we have m(x) • τ γ (x) ≥ 0, therefore recalling that β ∈ Osc (t - r ,t + r ) γ s , π/4 one of the following holds: m(x) • e is e is > 0 ∀s ∈ 5β 4 , 7β 4 
,

or m(x) • e is e is > 0 ∀s ∈ - 7β 4 , - 5β 4 . 
One of these two conditions must be satisfied for at least half the points in C γ ∩ B r/2 (x), and we assume without loss of generality that

H 1 x ∈ C γ ∩ B r/2 (x) : m(x) • e is e is > 0 ∀s ∈ 5β 4 , 7β 4 ≥ r 2 . (39) 
We define

I(γ) = {t ∈ (0, T ) : γ x (t) ∈ B r (x)}, I (γ) = {t ∈ I(γ) : γ s (t) ∈ (s + β, s + 2β)},
and T (γ) = L 1 (I (γ)). We moreover consider

N (γ) = # t ∈ (0, T ) : γ x (t) ∈ C γ ∩ B r/2 (x), γ s (t) ∈ s + 5β 4 , s + 7β 4 . ( 40 
)
This cardinal is finite for ω-a.e. γ ∈ Γ thanks to [8, Proposition 3.3], and we denote by t 1 (γ) < . . . < t N (γ) (γ) the elements of the above set. We show that for every γ ∈ Γ we have

µ γ (I(γ)) β + T (γ) r ≥ 1 4 N (γ), (41) 
where µ γ = |D t γ s | ∈ M(t - γ , t + γ ) can be interpreted as the entropy dissipation along γ thanks to Proposition 3.3. It follows from the characteristic equation ( 26) that for every i = 1, . . . N (γ) there is a neighbourhood I i of t i (γ) of size at least r/2 such that I i ⊂ I(γ) and at least one of the following holds:

I i ⊂ I (γ) or µ γ (I i ) ≥ β 4 .
The neighborhoods I i are not necessarily disjoint, but if i = 1, . . . N (γ) -1 is such that t i+1 (γ) -t i (γ) < r, then [START_REF] Lorent | Regularity of the eikonal equation with two vanishing entropies[END_REF] implies that [t i (γ), t i+1 (γ)] ⊂ I(γ) and µ γ ([t i (γ), t i+1 (γ)]) ≥ β/4. This establishes (41).

Next we integrate (41) with respect to ω. From Proposition 3.3 we deduce ˆΓ µ γ (I(γ)) dω ≤ ν(B r (x))T, and from the Lagrangian property [START_REF] Lorent | Factorization for entropy production of the Eikonal equation and regularity[END_REF] we infer

ˆΓ T (γ) dω ≤ T L 3 ({(x, s) ∈ B r (x) × (s + β, s + 2β) : m(x) • e is > 0}) ≤ T βL 2 ({x ∈ B r (x) : m(x) • e is > -2β}).
Therefore integrating (41) we obtain

1 T ˆΓ N (γ) dω ≤ 4 β ν(B r (x)) + 4β r L 2 ({x ∈ B r (x) : m(x) • e is > -2β}). (42) 
To estimate from below the left-hand side of (42) we use its link with the Lagrangian flux across the curve C γ . Specifically, for any

f ∈ C 1 c ((0, T ) × Ω × R/2πZ), we have ˆf (t, x, s)1 m(x)•e is >0 (iτ γ (x) • e is ) ds dH 1 Cγ (x) dt = ˆΓ F γ , f dω(γ),
where F γ is given by

F γ , f = t∈X + f (t, γ x (t), γ s (t + )) - t∈X - f (t, γ x (t), γ s (t -)) X + = t ∈ (t - γ , t + γ ) : γ x (t) ∈ C γ , iτ γ (γ x (t)) • e iγs(t) > 0 X -= t ∈ (t - γ , t + γ ) : γ x (t) ∈ C γ , iτ γ (γ x (t)) • e iγs(t -) < 0 .
The set X + corresponds to intersection times of γ with C γ where γ exits C γ in direction of the normal iτ γ , and the set X -to intersection times where γ enters C γ in the opposite direction. Note that these two sets may not be disjoint since γ could 'bounce' on C γ . The proof of this flux formula is similar to the proof of Lemma 3.5 for the boundary flux, and details are provided in [START_REF] Contreras Hip | Generalized characteristics for finite entropy solutions of Burgers' equation[END_REF]Theorem 1.4] in a very similar setting. Applying this flux formula to f (t, x, s) ≈ 1 t∈(0,T ) 1 x∈B r/2 (x) 1 s∈(s+5β/4,s+7β/4) , we see that there are no contributions from X -and obtain

ˆΓ N (γ)dω = T ˆ1m(x)•e is >0 (iτ (x) • e is )1 s∈[s+ 5β 4 ,s+ 7β 4 ] ds dH 1 Cγ ∩B r/2 (x) (x).
Using also (39) we deduce

1 T ˆΓ N (γ)dω ≥ sin β 4 β 2 r 2 ≥ 1 8π β 2 r.
Combining this with (42) we get

1 32π β 2 r ≤ 1 β ν(B r (x)) + β r L 2 ({x ∈ B r (x) : m(x) • e is > -2β}).
This implies the statement of Lemma 5.2.

With Lemma 5.2 at hand, we turn to the proof of Proposition 5.1.

Proof of Proposition 5.1. It is sufficient to prove the statement for ν(Ω) < δ for some small δ. We choose α satisfying (37) and we prove that (37) implies (38), provided δ is sufficiently small. Assume without loss of generality that α = -1 and let us consider the set of curves

G = γ ∈ Γ : 0 < t - γ < T -1, m(γ x (t - γ )) = τ (γ x (τ - γ )),
and e iγs(t - γ ) • e i π 4 τ (γ x (τ - γ )) ≥ cos π 16 .

By Lemma 3.5 we have

ω(G) ≥ cos π 4 + π 16 
π(T -1) 16 H 1 ({x ∈ ∂Ω : m(x) = τ (x)}). (43) 
Claim. If ν(Ω) is sufficiently small, then ω-a.e. γ ∈ G satisfies µ γ ((t - γ , t + γ )) ≥ 1 32 . The Claim implies the statement since

T ν(Ω) ≥ ˆG µ γ ((t - γ , t + γ ))dω ≥ ω(G) 32 
and eventually (38) follows by (43). It remains to prove the Claim. Let ε > 0 small to be chosen later and assume ν(Ω) < δ where δ = min{δ , δ(ε, K)} where δ(ε, K) is provided by Lemma 4.1 and δ > 0 is chosen later. Assume by contradiction that there is γ ∈ G ∩ Γ g such that µ γ ((t - γ , t + γ )) < 1 32 . The constraints [START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF] and [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF] imply that t + γ -t - γ ≥ 1 K . Moreover setting t = t - γ + 4r, and x = γx ( t), we have that if we assume r ≤ 1/(100K), then B r (x) ⊂ {x ∈ Ω : dist(x, ∂Ω) < 1 2K }. We can therefore apply Lemma 5.2 with β = 1 32 and get that one of the following holds true:

1. ν(Ω) ≥ ν(B r (x)) ≥ cβ 3 r; 2. the set A = {x ∈ B r (x) : e iγs( t) • m(x) ≥ -2β} satisfies L 2 (A) ≥ cβr 2 .
(44)

The first case is incompatible with ν(Ω) < δ , provided δ < cβ 3 r. Therefore we take δ = c 2 β 3 r, with r ≤ 1/(100K) to be fixed later. Let us then consider the second case: we are going to show that (44) is contradicts (37) for ε sufficiently small. First we observe that every x ∈ B r (x) satisfies

dist(π ∂Ω (x), γx (t - γ )) ≤ c(1 + K)r
for some absolute constant c > 0, and therefore

e iγs( t) • τ (π ∂Ω (x)) ≥ e iγs( t) • τ (γ x (t - γ )) -|τ (γ x (t - γ )) -τ (π ∂Ω (x))| ≥ e iγs( t) • τ (γ x (t - γ )) -cK(1 + K)r.
Moreover, using that γ ∈ G and µ γ ((t - γ , t + γ )) < 1 32 we infer

e iγs( t) • τ (π ∂Ω (x)) ≥ e iγs(t - γ ) • τ (γ x (t - γ )) -|e iγs(t - γ ) -e iγs( t) | -cK(1 + K)r ≥ cos π 16 + π 4 - 1 32 -cK(1 + K)r ≥ 1 4 -cK(1 + K)r, for all x ∈ B r (x). Let us choose r = min 1 100K , 1 8cK(1 + K) ,
so that by the above

e iγs( t) • τ (π ∂Ω (x)) ≥ 1 8 ∀x ∈ B r (x).
We deduce in particular

ˆΩ 1 dist(•,∂Ω)≤ 1 2K |m + τ • π ∂Ω | dx ≥ ˆA(m + τ • π ∂Ω ) • e iγs( t) dx ≥ 1 8 -2β L 2 (A) = 1 16 L 2 (A) ≥ c 16 βr 2 .
The last inequality follows from (44). Choosing ε = cβr 2 /32 contradicts (37) and concludes the proof of the Claim and of Proposition 5.1.

The unit normal n ∂Ω N is equal to the disk's unit normal x/|x| at the 2N points of polar angle e iπ /N ( = 0, . . . , 2N -1), and it differs from it by ∼ 1/N in 2N boundary arcs of length ∼ 1/N away from those points. Therefore we have

ˆ∂Ω N n ∂Ω N (x) - x |x| 2 dH 1 (x) ∼ 1 N 2 . ( 46 
)
One particular solution m N of ( 1) and ( 9) in Ω N is given by

m N (x) = i∇ dist(•, ∂Ω N ).
This map m N is BV , its jump set J N is the union of N segments,

J N = N -1 k=0 [0, x k ], x k = 1 2 + O 1 N 2 e 2ikπ/N /2,
with jump amplitude

|m + N -m - N | 1 N on J N .
Replacing the sharp jump along J N with a well-chosen smooth transition at scale ε, one obtains maps mε,N → m N as ε → 0, with

lim sup ε→0 F ε ( mε,N ; Ω N ) ˆJN |m + N -m - N | 3 dH 1 N • 1 N 3 = 1 N 2 . ( 47 
)
Details of such construction can be found e.g. in [START_REF] Poliakovsky | Upper bounds for singular perturbation problems involving gradient fields[END_REF][START_REF] Conti | Sharp upper bounds for a variational problem with singular perturbation[END_REF] for the Aviles-Giga functional E AG ε , which is enough to obtain an upper bound on F ε . For the functional E RS ε a similar construction is performed in [START_REF] Rivière | Limiting domain wall energy for a problem related to micromagnetics[END_REF], and the methods in [START_REF] Poliakovsky | Upper bounds for singular perturbation problems involving gradient fields[END_REF] apply for E ARS ε . (Note that for our explicit map m N the technical details of such construction can be significantly simplified because the jump set J N is particularly simple and stays away from the boundary, and m N is smooth outside of it.) Combining (46), ( 47) and ( 8) we obtain Proposition 1.2. Remark 6.2. We cannot prove that the minimizers m ε,N of E AG ε (•; Ω N ) and E ARS ε (•; Ω N ) converge to m N as ε → 0, but from the proof above we have that m N and the (possibly different and not unique) limit of m ε,N go to 0 with the same order as N → ∞.

To any f ∈ C ∞ (R/2πZ) one may associate an entropy Φ f given by Φ

f (z) = ˆR/2πZ f (s)1 z•e is >0 ds ∀z ∈ S 1 , (48) 
and the kinetic formulation ( 9) is equivalent to

∇ • Φ f (m), ζ = -σ, f (s)ζ(x) ∀ζ ∈ C ∞ c (Ω), f ∈ C ∞ (R/2πZ). (49) 
An entropy Φ, whenever extended to R 2 by setting Φ(re iθ ) = η(r)Φ(e iθ ) for some fixed real-valued cut-off function η ∈ C ∞ c (0, ∞) with η(1) = 1, satisfies (see e.g. [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF][START_REF] De Lellis | A regularizing property of the 2D-eikonal equation[END_REF])

∇ • Φ(m) = Ψ(m) • ∇(1 -|m| 2 ) + α(m)∇ • m ∀m ∈ H 1 (Ω; R 2 ),
where Ψ : R 2 → R 2 and α : R 2 → R are such that

∇Ψ C 1 (R 2 ) + ∇α C 1 (R 2 ) ≤ c λ Φ C 1 (R/2πZ) ,
for some constant c > 0 depending only on the cut-off function η. Applying this to

m ε = (m 1 ε , m 2 ε ) for some sequence m ε ∈ H 1 (Ω; R 3 ) with F ε (m ε ) ≤ C, we find ∇ • Φ(m ε ) = ∇ • Ψ(m ε )(1 -|m ε | 2 ) -α(m ε )H ε -(1 -|m ε | 2 )∇ • Ψ(m ε ) -H ε • ∇[α(m ε )] in D (Ω), (50) 
where

H ε : R 2 → R 2 is the curl-free vector field such that ∇•H ε = -∇•(1 Ω m ε ).
Boundedness of the energy F ε (m ε ; Ω) implies that the first line in the right-hand side of (50) tends to 0 in H -1 (Ω), while the second line is bounded in L 1 (Ω). One can then argue exactly as in [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF], to deduce that ∇

• Φ(m ε ) is precompact in H -1 (Ω) and that m ε is precompact in L 2 (Ω). This gives the precompactness of m ε since m 3 ε → 0 in L 2 (Ω). Moreover taking the limit ε → 0 in (50) along a converging subsequence m ε → m, one infers div Φ(m), ζ ζ ∞ λ Φ C 1 lim inf ε→0 F ε (m ε ; Ω) ∀ζ ∈ C ∞ c (Ω).
Using the arguments of [12, § 3.1] (see [25, Appendix B] for more details), this estimate provides the existence of σ ∈ M(Ω × R/2πZ) satisfying [START_REF] De Lellis | A regularizing property of the 2D-eikonal equation[END_REF].

Appendix B On the sharp lower bound for E ARS ε

The analysis recalled in Appendix A provides an energy lower bound in terms of the kinetic dissipation measure of the limit map. In the case of E ARS ε (4) from [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF], these arguments can be refined to obtain a sharp lower bound: for any m = lim m ε we have

1 2 ν(Ω) ≤ lim inf ε→0 E ARS ε (m ε ; Ω), ( 51 
)
where ν is the minimal kinetic dissipation measure associated to m as defined in [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF]. Moreover this lower bound is sharp if m ∈ BV (Ω; R 2 ), in the sense of Γ-convergence: there exists m ε → m such that lim sup

ε→0 E ARS ε (m ε ; Ω) ≤ 1 2 ν(Ω). (52) 
The sharp lower bound (51) is contained in [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF], but not explicitly stated, so we briefly recall here why it is valid. The key step is [1, Lemma 2.2], which ensures the existence of mε ∈ W 1,p (Ω; S 1 ) for 1 ≤ p < 2, such that mε → m and

ˆΩ |∇ mε | • | Hε | dx ≤ E ARS ε (m ε ; Ω) + o(1). (53) 
Here Hε : R 2 → R 2 is the curl-free vector field such that ∇ • Hε = -∇ • (1 Ω mε ). The gain provided by this lemma is that mε takes values into S 1 , so one can directly compute entropy productions (without using an extension Φ as in the previous section). Specifically, for an entropy Φ we have

∇ • Φ( mε ) = λ Φ ( mε )∇ • mε = -∇ • λ Φ ( mε ) Hε + λ Φ ( mε )H ε • ∇ mε in D (Ω).
Here λ Φ (e iθ ) = ie iθ • (d/dθ)Φ(e iθ ) as in Appendix A. As in Appendix A this implies

|∇ • Φ(m)|(Ω) ≤ λ Φ ∞ lim inf ε→0 E ARS ε (m ε ; Ω).
This is also the argument in Step 1 of the proof of [ 

Φ f (θ) = f (θ + π/2) + f (θ -π/2), we deduce   |f |≤1/2 |∇ • Φ f (m)|   (Ω) ≤ lim inf n→∞ E ARS ε (m ε ; Ω).
Recalling (49) and [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF], we see that the left-hand side is equal to (1/2)ν(Ω), which proves (51).

For a BV map m, we let J m denote its jump set and m ± the traces of m along J m . Then, the calculations in [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF]Corollary 3.4] imply that we have

1 2 ν(Ω) = ˆJm c(|m + -m -|) dH 1 , where c(2 sin X) = 2 |sin X -X cos X| if 0 ≤ X ≤ π/4, 2 (X -π/2) cos X -sin X + √ 2 if π/4 ≤ X ≤ π/2.
This is exactly the expression of the lower bound in [1, Theorem 1]. Moreover, that lower bound is shown to be optimal in [1, Theorem 2], in the sense that the energy cost A(X) = c(2 sin X) corresponds to the asymptotic energy per unit-length of an ideal wall transition between to limit values m ± with |m + -m -| = 2 sin X. This implies the Γ-upper bound (52) using e.g. the techniques in [START_REF] Poliakovsky | On the Γ-limit of singular perturbation problems with optimal profiles which are not one-dimensional. I: The upper bound[END_REF]. It satisfies

θ (s) = 1 |g(s)| ig(s) |g(s)| • ġ(s). If |s -s * | ≤ ηR/(4πK) we have ig(s) • ġ(s) ≥ 0 and ig(s) |g(s)| • ġ(s) = 1 - g(s) |g(s)| • ġ(s) 2 ≥ 1 -8KηR.
The last inequality follows from Lemma 2.3 and the fact that g(s) ∈ E(2η). Since R ≤ 1, provided ε 0 ≤ 1/16 we deduce ġ(s) • ig(s)/|g(s)| ≥ 1/2, and therefore

θ (s) ≥ 1 2|g(s)| ≥ 1 2π , using that |g(s)| ≤ π as a consequence of H 1 (∂Ω) = 2π. We deduce that - ηR 8π 2 K , ηR 8π 2 K ⊂ θ s * - ηR 4πK , s * + ηR 4πK ,
Therefore, if |θ| ≤ ηR/(8π 2 K) then there exists s such that |s -s * | ≤ ηR/(4πK) and the ray {te iθ y} t>0 coincides with the ray {tg(s)} t>0 , which does not contain any tangency point. This proves Step 2.

Step 3. There exists a tangency point x ∈ ∂Ω ∩ ∂B R such that

x |x| = e i θ0 y |y| with ηR 8π 2 K ≤ θ0 ≤ π - ηR 8π 2 K .
By maximality of the inscribed disk B R ⊂ Ω, the tangency points cannot be all contained in an arc of angle less than π, so there must be at least one tangency point x ∈ ∂Ω ∩ ∂B R such that x/|x| = e i θ0 y/|y| for some θ0 ∈ [-ηR/(8π 2 K), π -ηR/8π 2 K]. Thanks to Step 2, it must satisfy also θ0 ≥ ηR/(8π 2 K), proving Step 3.

Step 4. There are constants c 1 , c 2 , c 3 > 0 depending only on K, with the following property. For any tangency point x ∈ ∂Ω ∩ ∂B R , any t ∈ (0, 1/2) and z = tx, and any δ ∈ (0, 1/(8K)), there exist x 1 , x 2 ∈ E(2δ 2 ) such that This proves the last assertion of Step 4. Moreover, since g (s) = 0, δ ∈ (0, 1/(8K) and |g| ≤ K, the points x 1 , x 2 lie outside of the disk of radius 1/K tangent to D R (x 0 ) at x, and since R ≥ 1/K we infer that they are at distance at most 2Kδ 2 from D R (x 0 ), and thanks to Lemma 2.5 they belong to E(2Kδ 2 /R) ⊂ E(2δ 2 ). It remains to show that

x j -z |x j -z| = e iθj x |x| for j = 1, 2, -c 2 δ < θ 1 < -c 1 δt, c 1 δt < θ 2 < c 2 δ.
By definition of θ we know that

x j |x j | = e i θ(sj )

x |x| , so we relate θ(s j ) to θ j and estimate θ(s j ). To do the first, consider, for any fixed s ∈ R, the C 1 function α s : [0, 1/2] → R such that α s (0) = θ(s) and g(s) -tx |g(s) -tx| = e iαs(t) x |x| .

That way, we have θ(s j ) = α sj (0) and can choose θ j = α sj (t). Moreover we have Step 5. We choose t ∈ (0, 1/2) and δ ∈ (0, 1/(8K)) such that 2δ 2 ≤ η and, for the tangency point x ∈ ∂Ω ∩ ∂B R obtained in Step 3 and z = tx, letting x 1 , x 2 ∈ ∂Ω provided by Step 4, and x 3 = y provided by Step 1, the three concurring lines from x 1 , x 2 , x 3 through z can be used to show a(x 1 , x 2 , x 3 ) ≥ a 0 . See Choosing

δ = min ηR 32c 2 π 2 K , 1 2c 2 , 1 8K , η 2 
,
this implies that the shortest interval in R/2πZ containing α 1 , α 2 , α 3 is of length l(α 1 , α 2 , α 3 ) ≥ π + 2c 1 δt, ηR 32π 2 K .

Letting a 0 = min 2c 1 δt, ηR 32π 2 K , c 3 δt , and gathering the above, we conclude that a(x 1 , x 2 , x 3 ) ≥ a 0 .

The proof of Proposition C.1 will be a combination of Lemma C.2 and of the fact, proven in Lemma 2.6, that a is Lipschitz.

Proof of Proposition C.1. We assume that E(η) = ∂Ω, and prove that ´E(η) 3 ad(H 1 ) ⊗3 ≥ c for some c = c(η, K) > 0. As E(η/2) ⊂ E(η) ∂Ω, applying Lemma C.2 we find x = (x 1 , x 2 , x 3 ) ∈ E(η/2) 3 such that a(x) ≥ a 0 , where a 0 = a 0 (η, K) > 0. Let x k = g(s k ) for k = 1, 2, 3. Thanks to Lemma 2.5 and the Lipschitz quality of a (Lemma 2.6) we may choose δ = δ(η, K) > 0 such that a ≥ a 0 2 on 
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 22 Figure 2: The point z 1 is a type I singularity, while z 2 is a type II singularity.

Remark B. 1 .

 1 A closer look at Step 1 in the proof of [1,Theorem 1] reveals that only entropies of the form Φ f σ are used to obtain the lower bound (51), where 2f σ (s) = g(s-σ) for any σ ∈ R and g is π-periodic with g(s) = π/4 -|s -π/4| for s ∈ [-π/4, 3π/4]. This should come as no surprise, since, as a consequence of the disintegration of σ min in [27, Corollary 3.4], it can be checked that the identity1 2 ν(Ω) = |f |≤1/2 |∇ • Φ f (m)| = σ∈R |∇ • Φ f σ (m)|,is valid for any m satisfying the kinetic formulation[START_REF] De Lellis | A regularizing property of the 2D-eikonal equation[END_REF]. Let θ : R → R be the C 1 function such that θ(s * ) = 0 and g(s) |g(s)| = e iθ(s) y |y| .

x 1 -z |x 1 -z| = e iθ1 x |x| for some θ 1 ∈ 2 -z |x 2 -z| = e iθ2 x |x| for some θ 2 ∈

 122 (-c 2 δ, -c 1 δt), x (c 1 δt, c 2 δ), τ (x 1 ) • x 1 -z |x 1 -z| ≤ -c 3 δt, τ (x 2 ) • x 2 -z |x 2 -z| ≥ c 3 δt.These will be used in Step 5 as illustrated by Figure4.Write x = g(s) for some s ∈ R. The map g is 1-Lipschitz and |g(s)| = R, so by Lemma 2.5 we have g(s) ∈ E * for |s -s| ≤ δ ≤ 1/(4K).

2 Figure 4 : 2 ≤ 2 -(R -Rt) 2 = 2 -≥ 2tR 2 ( 1 -

 24222221 Figure4: The blue arrows denote the directions e iα1 , e iα2 , e iα3 in Step 5. The idea is that the two directions e iα1 and e iα2 are almost opposite and e iα3 is not close to e iα1 and e iα2 and belongs to the longest of the two intervals with endpoints at e iα1 and e iα2 .

αR 2 δ ≤ π 2 K

 2 s (t) = -i(g(s) -tx) |g(s) -tx| 2 • x = g(s) • (ix) |g(s) -tx| 2 = R|g(s)| |g(s) -tx| 2 sin θ(s).Note that since θ(s) = 0 and 1/(2π) ≤ θ ≤ 1/R we have0 < sign(s -s) θ(s) ≤ δ R ≤ δK ≤ 1 8 for |s -s| ≤ δ.In particular, using |g| ≤ π, |g -tx| ≥ R/2 and | sin θ| ≤ | θ|, we deduce0 < sign(s -s)α s (t) ≤ 4π for |s -s| ≤ δ,hence, recalling θ j -θ(s j ) = ´t 0 α sj , we infer-(1 + π/2)Kδ ≤ θ 2 ≤ θ(s 1 ) < 0 < θ(s 2 ) ≤ θ 2 ≤ (1 + π/2)Kδ.The proof of Step 4 will be complete once we show that | θ(s j )| ≥ c 1 δt for j = 1, 2. Because ϕ (s) = 0 and |ϕ | ≤ 2K + 2 ≤ 4K, we must have|s j -s| ≥ |ϕ (s j )| 4K ≥ 2πc 1 t, c 1 = R 2 32π 2 K .Combining this with θ ≥ 1/(2π) on [s 1 , s 2 ] we deduce that | θ(s j )| ≥ c 1 δt and conclude the proof of Step 4.

Figure 4 .= e i θ0 y |y| with ηR 8π 2 K 2 K

 422 Let α 1 , α 2 , α 3 ∈ R/2πZ such thatx 1 -z |x 1 -z| = e iα1 , x 2 -z |x 2 -z| = -e iα2 , y -z |y -z| = -e iα3 .By definition, the three lines x j + e iαj R are concurrent in z ∈ B R/2 . Moreover by Step 4 we haveτ (x j ) • e iαj ≤ -c 3 δt for j = 1, 2. The function t → τ (y)•(y-tx)/|y-tx| is 2-Lipschitz on [0, 1/2] since |x| = R and |y-tx| ≥ R/2 for t ∈ [0, 1/2]. Since τ (y) • y/|y| > ηR/(2π) by Step 1, choosing t ∈ (0, ηR/(8π)) ensures τ (y) • e iα3 = -τ (y) • y -tx |y -≤ θ0 ≤ π -ηR 8π 2 K .The C 1 function θ : [0, 1/2] → R such that θ(0) = θ0 andx |x| = e i θ(t) y -tx |y -tx| , satisfies, arguing as in previous steps, | θ | ≤ 2, so choosing t = ηR 32π 2 K ∈ (0, ηR/(8π)), ensures x |x| = e i θt y -z |y -z| , with ηR 16π 2 K ≤ θt ≤ π -ηR 16πFrom this identity, the definitions of θ 1 , θ 2 in Step 4, and the definitions of α 1 , α 2 , α 3 , we obtain x |x| = e i(α3+ θt-π) = e i(α2-θ2-π) = e i(α1-θ1) .So we have, recalling from Step 4 the inequalities satisfied by θ 1 , θ 2 ,e iα2 = e i(π+θ2-θ1) e iα1 , π + θ 2 -θ 1 ∈ [π + 2c 1 δt, π + 2c 2 δ],e iα3 = e i(π-θt-θ1) e iα1 , π -θt -θ 1 ∈ [ηR/(16π 2 K), π -ηR/(16π 2 K) + c 2 δ].

3 k=1C

 3 ([s k -δ, sk + δ]) ⊂ E(η) 3 . This implies ˆE(η) 3 a d(H 1 ) ⊗3 ≥ δ 3 a 0 2 ,concluding the proof of Proposition C.1.

  and the function a is Lipschitz by Lemma 2.6, we have ˆI(x,a(x)) a 2 d(H 1 ) ⊗3 a(x) 2 (H 1 ) ⊗3 (I(x, a(x))) a(x) 5 .

			(35)
	By Besicovitch covering theorem, there is a subcovering
	{I(x i , a(x i )) : i ∈ I}
	of X * with finite overlap. By (35), Lemma 3.6 and the finite overlap property we obtain
	ˆX *	a 2 d(H 1 ) ⊗3 ≤	i∈I ˆI(xi,a(xi))

  1, Theorem 1]. A natural refinement of that argument (see e.g. the proof of [20, Proposition 2]) leads to is any class of entropies Φ with λ Φ ∞ ≤ 1, and denotes the lowest upper bound measure of a family of measures [3, Definition 1.68]. Applying this to entropies Φ f as in (48), which satisfy λ

Φ∈S

|∇ • Φ(m)| (Ω) ≤ lim inf n→∞ E ARS ε (m ε ; Ω),

where S

2K |m -ατ ∂Ω • π ∂Ω | dx ≤ ε,(37)where π ∂Ω (x) ∈ ∂Ω is the nearest-point projection of x onto ∂Ω, well-defined for dist(x, ∂Ω) ≤ 1/(2K).

Proof of the main resultsWe collect the results from the previous sections to prove Theorem 1.1 and Corollary 1.4. We moreover prove Corollary 1.5 and Proposition 1.2.

,
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Proof of Theorem 1.1 and Corollary 1.4

Let m solve (1) and [START_REF] De Lellis | A regularizing property of the 2D-eikonal equation[END_REF]. Without loss of generality, we may assume that the constant α provided by the trace estimate Proposition 5.1 is equal to -1, hence H 1 ({x ∈ ∂Ω : m(x) = τ (x)}) ≤ Cν(Ω). Lemma 4.1 ensures that, if ν(Ω) is small enough, then Ω = E(η), with η = min(η 0 , η * ), η 0 as in Proposition 2.2 and η * as in Proposition 3.1. Gathering the results of both said Propositions together with the above trace estimate, we obtain Theorem 1.7 and [START_REF] Golse | Nonlinear regularizing effect for hyperbolic partial differential equations[END_REF], which imply Theorem 1.1 and Corollary 1.4 as explained in the introduction.

Proof of Corollary 1.5

In this section we prove [START_REF] Howard | A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature[END_REF], which implies Corollary 1.5. We rely on a div-curl argument involving the entropies Σ 1 , Σ 2 :

Lemma 6.1. For any m 1 , m 2 : Ω → S 1 with strong L 1 traces on ∂Ω we have

where

depends on the norm of the Sobolev embedding W 1,4 0 (Ω) ⊂ L ∞ (Ω), and on K = max ∂Ω |κ|.

Proof of Lemma 6.1. The proof is inspired by [START_REF] Golse | Nonlinear regularizing effect for hyperbolic partial differential equations[END_REF]. Let χ ∈ C ∞ c (Ω) such that |χ| ≤ 1, and apply the div-curl estimate of [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF]Lemma 4.2] to the vector fields

for p = 4. This yields

we used |∇Σ| 1 for the last inequality. Moreover, thanks to [26, Lemma 7 and (92)] we have

Therefore we deduce from the previous inequality that

Next we compute, for any

where c 0 (Ω) is the norm of the Sobolev embedding

Plugging this into (45) we obtain

Finally, choosing χ = χ ε such that χ ε (x) = 1 for dist(x, ∂Ω) > ε and |∇χ| K/ε for ε → 0 and using the trace property of m 1 , m 2 we obtain the result.

Moreover since Σ 1 , Σ 2 are entropies (see Appendix A), the first term in the right-hand side is controlled by ν(Ω), and we directly deduce (14).

Proof of Proposition 1.2

Given N ≥ 3, we define Ω N as the convex hull of the union of the disks D 1/2 (e 2ikπ/N /2), k = 0, . . . , N -1, rescaled by a factor 1 + O(1/N 2 ) in order to have perimeter 2π. In other words, Ω N is obtained from the regular N -gon replacing sharp corners by arcs of circles, see Figure 3 

Appendix A Entropy productions, compactness and kinetic formulation

The kinetic formulation ( 9) is intimately linked to the notion of entropy, also borrowed from conservation laws, and introduced in [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] for the eikonal equation. A smooth map Φ : S 1 → R 2 is an entropy for the eikonal equation (1) if and only if it preserves the divergence-free quality of smooth solutions :

for any open Ω ⊂ R 2 and smooth m : Ω → R 2 . Direct calculation shows that this is equivalent to the existence of a smooth function λ Φ : R/2πZ → R such that

Appendix C Quantitative alternative to the compactness argument under a restrictive trace assumption

In this appendix we prove that, if the integral of a is small enough, then Ω is close enough to a disk. This provides a quantitative proof of the estimate (36) obtained via the compactness argument of Lemma 4.1. We are however not able to prove (37) without a compactness argument, so that this only leads to a quantitative proof of Theorem 1.7 under the additional trace assumption that m • τ is constant on ∂Ω.

Proposition C.1. Let Ω as in Theorem 1.1. For any η > 0 there is

The main ingredient to prove Proposition C.1 is the following lower bound on a at one boundary triple, if Ω fails to be close enough to ∂D.

Lemma C.2. For any η > 0 there is a constant a 0 = a 0 (η, K) > 0 such that, if E(η) = ∂Ω then there exists x ∈ E(η) 3 with a(x) ≥ a 0 .

Proof. We choose coordinates in which x 0 = 0 and consider η ≤ ε 0 /K for some small absolute constant ε 0 > 0 to be adjusted during the proof: for larger values of η we can then simply take a 0 = a 0 (ε 0 /K, K).

We assume that E(η) = ∂Ω and prove the existence of x satisfying a(x) ≥ a 0 in several steps. During the proof we denote by c 0 a generic small constant that depends only on η and K. We are going to construct a triple x = (x 1 , x 2 , x 3 ) ∈ E 3 * and three directions e iα1 , e iα2 , e iα3 that can be used in the definition of a(x) to show that a(x) ≥ a 0 . We divide this construction in 5 steps.

Step 1. There exists y ∈ E(η) such that

Pick a tangency point x = g(s) ∈ ∂Ω ∩ ∂B R , and let (s 1 , s 2 ) ⊂ R denote the largest interval containing s and such that g((s 1 , s 2 )) ⊂ E(η). Since E(η) = ∂Ω we know that s 2 -s 1 < 2π. Moreover, by Lemma 2.5 if ε 0 ≤ 1/4 we must have

Consider the function ψ(s) = |g(s)| -R = dist(g(s), ∂B R ) as in Lemma 2.3. We have ψ(s 1 ) = ψ(s 2 ) = ηR and ψ(s) = 0, so there must exist s * ∈ (s, s 2 ) such that ψ (s * ) ≥ ηR/(s 2 -s 1 ) > ηR/(2π). Setting y = g(s * ) and recalling the expression (18) of ψ , we have ψ (s * ) = τ (y) • y/|y| > ηR/(2π), proving Step 1.

Step 2. For all angles |θ| ≤ ηR/(8π 2 K), the ray {te iθ y} t>0 does not contain any tangency point x ∈ ∂Ω ∩ ∂B R .

Recall from (18) that |ψ | ≤ 2K. As ψ (s * ) > ηR/(2π) this implies ψ (s) > 0 for all s such that |s -s * | ≤ ηR/(4πK), hence g(s) is not a tangency point. Further, as g is 1-Lipschitz and |g(s * )| ≤ (1 + η)R we have |g(s)| ≤ (1 + 2η)R for all s such that |s -s * | ≤ ηR, which by Lemma 2.5 implies g((s * -ηR, s * + ηR)) ⊂ E(2η), provided ε 0 ≤ 1/8. Since K ≥ 1/R ≥ 1 we deduce that whenever |s -s * | ≤ ηR/(4πK) we have g(s) ∈ E(2η) and the ray {tg(s)} t>0 does not contain any tangency point.