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On a generalized Aviles-Giga functional: compactness, zero-energy states, regularity estimates and energy bounds

Given any strictly convex norm • on R 2 that is C 1 in R 2 \ {0}, we study the generalized Aviles-Giga functional

for Ω ⊂ R 2 and m : Ω → R 2 satisfying ∇ • m = 0. Using, as in the euclidean case • = | • |, the concept of entropies for the limit equation m = 1, ∇ • m = 0, we obtain the following. First, we prove compactness in L p of sequences of bounded energy. Second, we prove rigidity of zero-energy states (limits of sequences of vanishing energy), generalizing and simplifying a result by Bochard and Pegon. Third, we obtain optimal regularity estimates for limits of sequences of bounded energy, in terms of their entropy productions. Fourth, in the case of a limit map in BV , we show that lower bound provided by entropy productions and upper bound provided by one-dimensional transition profiles are of the same order. The first two points are analogous to what is known in the euclidean case • = | • |, and the last two points are sensitive to the anisotropy of the norm • .

Introduction

The Aviles-Giga functional

AG ε (u) = ˆΩ ε|∇ 2 u| 2 + 1 ε (1 -|∇u| 2 ) 2 dx, Ω ⊂ R 2 , u : Ω → R,
is a second order functional that (subject to appropriate boundary conditions) models phenomena from thin film blistering to smectic liquid crystals, and is also a natural higher order generalization of the Cahn-Hilliard functional. The conjecture on the Γ-limit of the Aviles-Giga energy, which roughly states that the energy concentrates on a one-dimensional jump set as ε → 0, has attracted a great deal of attention, yet remains open; see for example [START_REF] Aviles | A mathematical problem related to the physical theory of liquid crystal configurations[END_REF][START_REF] Aviles | The distance function and defect energy[END_REF][START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF][START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF][START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF][START_REF] Conti | Sharp upper bounds for a variational problem with singular perturbation[END_REF][START_REF] Poliakovsky | Upper bounds for singular perturbation problems involving gradient fields[END_REF].

The second term in the Aviles-Giga functional penalizes values of the divergence-free vector field m = ∇ ⊥ u that are far from the euclidean unit circle S 1 ⊂ R 2 . In the present work we continue the study, initiated in [START_REF] Bochard | Kinetic selection principle for curl-free vector fields of unit norm[END_REF], of a generalized Aviles-Giga functional where S 1 is replaced by the unit circle of a more general norm on R 2 . Specifically, we let • be a strictly convex norm on R 2 that is C 1 in R 2 \ {0} (strictly convex C 1 norm for simplicity), and consider the generalized Aviles-Giga functional

I ε (m) = I ε (m; Ω) = ˆΩ ε|∇m| 2 + 1 ε (1 -m 2 ) 2 dx, (1) 
Ω ⊂ R 2 , m : Ω → R 2 , ∇ • m = 0 in D (Ω).
Here the constraint ∇•m = 0 is equivalent to m = ∇ ⊥ u if the domain Ω is simply connected, so I ε can effectively be seen as a second order functional generalizing the Aviles-Giga functional.

In [START_REF] Bochard | Kinetic selection principle for curl-free vector fields of unit norm[END_REF] Bochard and Pegon obtain some preliminary results on the characterization of zeroenergy states of I ε (limits of sequences of asymptotically vanishing energy). In this work we carry out a rather comprehensive analysis of this generalized Aviles-Giga functional. Our goal is to investigate to which extent the results and methods that have been developed for the classical Aviles-Giga functional can be extended to this more general setting. In doing so, we hope to shed some light on what parts of the theory are contingent on specific algebraic properties of S 1 , and what parts are more flexible. Similar generalized Aviles-Giga functionals have also been studied in [START_REF] Ignat | A De Giorgi-type conjecture for minimal solutions to a nonlinear Stokes equation[END_REF], with a focus on symmetry properties of entire critical points.

Here we concentrate on four aspects: compactness in L p and energy lower bounds for sequences of bounded energy; characterization of zero-energy states;

optimal regularity estimates for limits of sequences of bounded energy;

comparison of upper and lower bounds for sequences converging to a map of bounded variation (BV ).

For the first two aspects we obtain complete generalizations of the analogous results in the classical case. For the last two aspects, our results demonstrate the effects induced by possible anisotropy and degenerate convexity of • . A central tool, introduced in [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] for the classical Aviles-Giga functional, is the notion of entropies, imported from scalar conservation laws. Formally (and this is justified by the compactness result), limits of sequences of bounded energy should satisfy the generalized Eikonal equation m = 1 a.e., ∇ • m = 0 in D (Ω).

(

) 2 
Writing locally the unit circle ∂B = {z ∈ R 2 : z = 1} as the graph of a convex function f , this equation can formally be rewritten as the scalar conservation law

∂ t u + ∂ x f (u) = 0. (3) 
In direct analogy with the entropy-entropy flux pairs for this scalar conservation law, entropies for the generalized Eikonal equation ( 2) are C 1 maps Φ : ∂B → R 2 with the property that ∇•Φ(m) = 0 for any smooth solution m of (2). For weak solutions, the distributions ∇•Φ(m), called entropy productions, encode the presence of singularities and can therefore be used to understand compactness and regularity properties. The key property used in [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] is that, in the classical case • = | • |, entropy productions are controlled by the energy. This provides compactness [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF][START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF], and an energy lower bound. Thanks to the strict convexity of • , this analysis can be adapted to our generalized setting; see Theorem 1 and Proposition 2.

A further consequence of the energy lower bound is that zero-energy states, that is, limits of sequences {m n } such that I εn (m n ) → 0, have vanishing entropy productions. This is exploited in [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] for the classical Aviles-Giga functional to obtain a kinetic equation which roughly speaking ensures that zero-energy states are, in a weak way, constant along characteristics. As a consequence, zero-energy states in the classical case • = | • | are shown in [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] to be locally Lipschitz outside a locally finite set of singular points, and around each singular point they must coincide with a vortex m(x) = ±ix/|x|. In [START_REF] Bochard | Kinetic selection principle for curl-free vector fields of unit norm[END_REF] this rigidity result is generalized (with appropriate modifications) to I ε associated with any C 1 norm • of power type p for some p ∈ [2, ∞) (a quantitative form of strict convexity, see Remark 5). Here we extend this further to I ε associated with any strictly convex C 1 norm (see Theorem 4) using an elementary argument that reduces it to the classical case

• = | • |.
Finite-energy states, that is, limits of sequences of bounded energy, can have a much more complicated structure. The energy lower bound ensures that entropy productions are finite Radon measures, and a central question to solve the Γ-convergence conjecture for the classical Aviles-Giga functional is whether these measures are concentrated on a one-dimensional rectifiable set. Substantial progress on that question has been made in [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF][START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF] but it remains open. For scalar conservation laws [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] with f uniformly convex (Burgers' equation), this rectifiability property has recently been proved in [START_REF] Marconi | The rectifiability of the entropy defect measure for Burgers equation[END_REF]. The results of [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF] and [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF]Proposition 1.7] can likely be generalized to the class of energy functionals (1) associated with any strictly convex C 1 norm • (using the kinetic formulation obtained in Lemma 19), but here we don't address that question and concentrate instead on optimal regularity estimates for solutions of the generalized Eikonal equation [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF] whose entropy productions are locally finite Radon measures. In the classical case • = | • |, it is proved in [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF] (adapting an argument of [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF] for scalar conservation laws) that such solutions must locally have the Besov regularity

B 1 3 3,∞ , i.e. sup h |h| -1 3 m-m h L 3 loc < ∞ where m h = m(•+h)
. Moreover this estimate is strongly optimal in the sense that it is equivalent to entropy productions being locally finite Radon measures. In the general case, the coercivity provided by the strict convexity of the norm • depends on the direction z on its unit circle ∂B, and optimal estimates must take that into account. We prove therefore a regularity estimate of the form sup

h |h| -1 Π(m, m h ) L 1 loc < ∞ for some function Π : ∂B × ∂B → [0, ∞)
that is sensitive to the anisotropy of • , and show that it is strongly optimal (equivalent to entropy productions being locally finite Radon measures) at least when the norm • is analytic; see Theorems 6 and 8. (For a norm • of power type p convexity this estimate implies in particular Besov regularity agreeing with the results of [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF] for scalar conservation laws (3) when the flux f has degenerate convexity; see Remark 7.) Furthermore, if • is merely C 1 then the quantity sup h |h| -1 Π(m, m h ) L 1 loc is comparable to the total entropy production when m is BV , hinting that the regularity estimate could be strongly optimal for all strictly convex C 1 norms • .

The Γ-convergence of the classical Aviles-Giga functional in the BV setting is well understood [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF][START_REF] Conti | Sharp upper bounds for a variational problem with singular perturbation[END_REF][START_REF] Poliakovsky | Upper bounds for singular perturbation problems involving gradient fields[END_REF]. For a solution m of the generalized Eikonal equation (2) which is BV , an upper bound can be obtained for the minimal energy of approximating sequences m n → m by pasting optimal one-dimensional transitions along the jump set J m [START_REF] Conti | Sharp upper bounds for a variational problem with singular perturbation[END_REF][START_REF] Poliakovsky | Upper bounds for singular perturbation problems involving gradient fields[END_REF][START_REF] Poliakovsky | A general technique to prove upper bounds for singular perturbation problems[END_REF]. In the classical case • = | • |, this upper bound happens to coincide with the lower bound provided by a particular class of entropy productions [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF], thus characterizing the Γ-limit at BV maps m. This perfect agreement of entropy lower bound and 1D upper bound is very likely linked to specific algebraic properties of the euclidean norm | • | (as are the symmetry results of [START_REF] Ignat | A De Giorgi-type conjecture for minimal solutions to a nonlinear Stokes equation[END_REF]). In fact it is known [19, § 4] that for general • optimal transition profiles may not be onedimensional, and in that case the 1D upper bound is strictly larger than any lower bound (see [START_REF] Poliakovsky | On the Γ-limit of singular perturbation problems with optimal profiles which are not one-dimensional. I: The upper bound[END_REF][START_REF] Poliakovsky | On the Γ-limit of singular perturbation problems with optimal profiles which are not one-dimensional. II: The lower bound[END_REF] for more results related to such issues). Moreover entropy lower bounds may be optimal even in cases where the optimal transition profile is two-dimensional, as happens e.g. in [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF] (see also [START_REF] Ignat | Entropy method for line-energies[END_REF] for this and other related results). It is however interesting to find out whether these two bounds (the entropy lower bound and the 1D upper bound) are of the same order of magnitude, or can instead be very far apart. Like optimal regularity estimates, this question is sensitive to the possibly anisotropic behavior of • . We prove that these upper and lower bounds do agree up to a multiplicative constant; see Theorem 11. In the rest of this introduction we present the precise statements of our results. In Section 2 we derive some useful properties of the entropies in our generalized setting. In Section 3 we prove the compactness result. In Section 4 we prove the rigidity of zero-energy states. In Section 5 we prove regularity estimates for finite-energy states and their optimality. And in Section 6 we compare upper and lower bounds for BV limits.
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Notations and assumptions

Let Ω ⊂ R 2 be a bounded open set and • be a strictly convex C 1 norm on R 2 unless otherwise specified. We denote by B = z ∈ R 2 : z < 1 the open unit disk for the norm

• . The properties of • are equivalent to strict convexity of B and ∂B being a C 1 manifold. Without loss of generality, we assume that ∂B has length 2π, and let γ : R/2πZ → ∂B be the counterclockwise arc-length parametrization of ∂B (unique up to translation of the variable). By assumption, γ ∈ C 1 (R/2πZ; R 2 ). In many places we identify R 2 with C and in particular we let i denote the counterclockwise rotation by π 2 . We will use the symbols and to denote inequality up to a multiplicative constant that depends only on B.

Compactness and lower bound

Our first result generalizes the compactness result obtained independently in [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF]Theorem 3.3] and [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF]Proposition 1] for the Aviles-Giga functional.

Theorem 1. Suppose the sequence {m n } ⊂ W 1,2 (Ω; R 2 ) satisfies ∇ • m n = 0 and sup n I n (m n ) < ∞. Then {m n } is precompact in L 2 (Ω).
As explained above, this compactness result relies heavily on the notion of entropies for the generalized Eikonal equation m = 1 a.e., ∇ • m = 0 in D (Ω).

(

Equivalently, the first constraint m = 1 means that m takes values into ∂B. Entropies for this equation are

C 1 maps Φ : ∂B → R 2 such that, if m is a C 1 solution of (2), then Φ(m) is also divergence-free ∇ • Φ(m) = 0.
It is a lengthy but straightforward exercise to see that this is equivalent to requiring that, for all θ ∈ R,

d dθ Φ(γ(θ)) is tangent to ∂B at γ(θ).
For a weak solution m of (2), the entropy production ∇ • Φ(m) is in general not zero, and encodes the presence of singularities. The proof of Theorem 1 relies on the control of entropy productions provided by the energy. This control is possible for regular enough entropies: we define

ENT = Φ ∈ C 1 (∂B; R 2 ) : d dθ Φ(γ(θ)) = λ Φ (θ)γ (θ) for some function λ Φ ∈ C 1 (R/2πZ) . (4) 
The control of entropy productions used to establish compactness also provides a lower bound for the energy. From this point on all entropies for equation ( 2) in statements and proofs will be taken to be the ones from ENT.

Proposition 2. Let m : Ω → R 2 be such that m = lim n→∞ m n in L 2 (Ω) for some sequence

{m n } ⊂ W 1,2 (Ω; R 2 ) with ∇•m n = 0 and sup n I εn (m n ) < ∞.
Then m satisfies the generalized Eikonal equation (2), its entropy productions satisfy ∇ • Φ(m) ∈ M(Ω) for all Φ ∈ ENT, and they provide the lower bound

  λ Φ ∞≤1 |∇ • Φ(m)|   (U ) ≤ C 0 lim inf n→∞ I εn (m n ; U ), (5) 
for any open subset U ⊂ Ω and some constant C 0 > 0 depending only on B. Here denotes the lowest upper bound measure [3, Definition 1.68] of a family of measures.

Remark 3. The hypothesis that • is strictly convex is necessary for Theorem 1: Suppose that ∂B contains a line segment [ζ 0 , ζ 1 ] then without loss of generality we can assume ζ 0 = e 1 + δe 2 and ζ 1 = e 1 -δe 2 . Setting m ε (x) = e 1 + δ sin (x 1 / √ ε) e 2 , then ∇ • m ε = 0 and m ε = 1 everywhere in Ω. Thus sup ε>0 I ε (m ε ) < ∞, but m ε converges weakly to m ≡ e 1 in L p as ε → 0 and m ε -m L p δ for all ε > 0 and all p ≥ 1.

Zero-energy states

As stated previously, Jabin, Otto and Perthame showed in [18, Theorem 1.1] that zero-energy states of the Aviles-Giga functional are rigid. This result has several interesting implications [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF][START_REF] De Lellis | A regularizing property of the 2D-eikonal equation[END_REF][START_REF] Lorent | Regularity of the eikonal equation with two vanishing entropies[END_REF][START_REF] Lamy | Rigidity of a non-elliptic differential inclusion related to the Aviles-Giga conjecture[END_REF]. It is proved in two steps: first, zero-energy states have vanishing entropy productions and satisfy as a consequence the kinetic equation e it • ∇ x 1 m(x)•e it >0 = 0, which expresses in a weak way the fact that m is constant along characteristics of the classical Eikonal equation; second, solutions of this kinetic equation are shown to be rigid. In [START_REF] Bochard | Kinetic selection principle for curl-free vector fields of unit norm[END_REF], Bochard and Pegon generalize the second step to solutions of the kinetic equation γ (t) • 1 m(x)•iγ(t)>0 = 0 naturally associated with the generalized Eikonal equation [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF], under the assumption that the C 1 norm • is of power type p (see Remark 5). They do not however prove the first step, namely that zero-energy states of I ε satisfy this kinetic equation. Here we do establish that missing step, and generalize their rigidity result to any strictly convex C 1 norm • , with a somewhat more direct proof. Theorem 4. Let m : Ω → R 2 be such that m = lim n→∞ m n in L 2 (Ω), where the sequence

{m n } ⊂ W 1,2 (Ω; R 2 ) satisfies ∇ • m n = 0 and lim n→∞ I n (m n ) = 0.
Then m is continuous outside a locally finite set of singular points. For every singular point x 0 , there exists β ∈ {-1, 1} such that in any convex neighborhood U of x 0 , we have m(x) = βV B (i(x -x 0 )), where V B (•) := ∇ • * is the vortex associated to • and • * is the dual norm of • .

Remark 5. Our proof also recovers the result, obtained in [START_REF] Bochard | Kinetic selection principle for curl-free vector fields of unit norm[END_REF], that if the C 1 norm • is of power type p for some p ≥ 2, that is,

1 - x + y 2 ≥ K x -y p ∀x, y ∈ ∂B,
for some constant K > 0, then m is locally 1 p-1 -Hölder outside a locally finite set of singular points (see the end of Section 4).

Optimal regularity estimates

Proposition 2 motivates the study of finite-entropy solutions of the generalized Eikonal equation, i.e. solutions of (2) satisfying ∇ • Φ(m) ∈ M loc (Ω) for all Φ ∈ ENT. We present here regularity estimates for these solutions, that are strongly optimal in the sense that a converse estimate is valid: regularity implies locally finite entropy productions. In the context of scalar conservation laws, this type of optimality is related to "Onsager conjecture-type" statements: see e.g. [START_REF] Bardos | On the extension of Onsager's conjecture for general conservation laws[END_REF] where the authors investigate minimal regularity requirements that are sufficient to ensure that entropy productions vanish.

In the classical case • = |•| it was shown in [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF] that finite-entropy solutions coincide with solutions of (2) that live in the Besov space B 1/3 3,∞,loc (Ω): such Besov estimates are strongly optimal. This was obtained by adapting methods of [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF] for scalar conservation laws (3) with convex flux f . The 1/3 order of regularity is valid for uniformly convex fluxes f and an example in [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF] had also demonstrated its optimality, in a different sense than the one we wish to study here: there exist finite-entropy solutions which don't have a better order of regularity.

For fluxes with degenerate convexity, quantified by the inequality

f (v) -f (w) |v -w| p-1 ∀v > w,
for some p ≥ 2, the regularity obtained in [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF] is B 1 p+1 p+1,∞,loc . This applies for instance to f (w) = |w| p , and is shown to be optimal in [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF]Proposition 3.2], again in the sense that there exist finite-entropy solutions which don't have a better order of regularity. However it is clear (considering solutions whose values stay away from the point w = 0 at which convexity degenerates) that this Besov regularity does not provide a converse estimate: it is not strongly optimal.

Here, following [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF] we adapt the methods of [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF] to the generalized Eikonal equation (2) in order to obtain regularity estimates that take into account the anisotropy of • , and in particular the fact that the convexity of • may degenerate differently in different directions. For a precise statement, we introduce the (unique up to an additive constant integer multiple of 2π) continuous function α : R → R such that

γ (θ) = e iα(θ) ∀θ ∈ R.
The strict convexity of B ensures that this function α is increasing, and the symmetry of B implies α(t + π) = α(t) + π for all t ∈ R. We define a function Π :

∂B × ∂B → [0, ∞) by Π (γ(θ 1 ), γ(θ 2 )) = ˆθ2 θ 1 ˆθ2 θ 1 |α(t) -α(s)| dtds for |θ 1 -θ 2 | ≤ π. (6) 
Using this function Π as a "metric" for the increments, we have the following regularity estimate for finite-entropy solutions of (2).

Theorem 6. Let m satisfy the generalized Eikonal equation (2). Suppose

∇ • Φ(m) ∈ M loc (Ω) for all Φ ∈ ENT, (7) 
then

sup |h|<dist(Ω ,∂Ω) 1 |h| ˆΩ Π (m(x + h), m(x)) dx < ∞ for any Ω ⊂⊂ Ω. ( 8 
)
Remark 7. If • is of power type p for some p ≥ 2 (see Remark 5), the estimate (8) directly implies that m ∈ B 1 p+1 p+1,∞,loc (Ω), as explained in Remark 17. This corollary is analogous to the regularity results obtained in [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]Theorem 4.1] for convex scalar conservation laws.

The main interest of this regularity estimate is that the "metric" Π is sensitive enough to the local convexity of ∂B to ensure the validity of a converse estimate, at least when • is analytic in R 2 \ {0} (or equivalently ∂B is analytic):

Theorem 8. Let m satisfy (2). Assume that the strictly convex norm • is analytic in R 2 \ {0}, then (8) implies (7).
Remark 9. Note that Theorem 8 applies in particular to • = • p for any 1 < p < ∞ (see Remark 26).

We don't know whether the analyticity assumption on • is necessary for the validity of the converse estimate ( 8) implying [START_REF] Bochard | Kinetic selection principle for curl-free vector fields of unit norm[END_REF]. An indication that it might not be needed is given by the following.

Theorem 10. Let • be a strictly convex C 1 norm on R 2 and let m ∈ BV (Ω; R 2 ) satisfy (2). Then for any open subset Ω ⊂⊂ Ω we have   λ Φ ∞≤1 |∇ • Φ(m)|   (Ω ) ≤ C 0 sup |h|<dist(Ω ,∂Ω) 1 |h| ˆΩ Π(m(x + h), m(x)) dx,
for some absolute constant C 0 > 0.

Note that for a BV solution of (2) as in Theorem 10, both the entropy productions and the quantity appearing in the regularity estimate [START_REF] Conti | Sharp upper bounds for a variational problem with singular perturbation[END_REF] are finite. Here the point is that the latter controls the former, without any further regularity assumption on the norm • .

Comparison of upper and lower bounds

For general maps m, finding an upper bound that matches (at least up to a multiplicative constant) the lower bound of Proposition 2 is a famously hard problem even in the classical case. However, when the limiting solution m of (2) additionally belongs to BV (Ω; R 2 ), then it is known [START_REF] Poliakovsky | A general technique to prove upper bounds for singular perturbation problems[END_REF] that an upper bound (in the sense of Γ-convergence) is obtained by pasting optimal one-dimensional transitions at scale ε along the jump set J m . Specifically, for any solution m ∈ BV (Ω; R 2 ) of the generalized Eikonal equation ( 2) and any smooth simply connected open subset U ⊂ Ω, there exists a sequence

m ε → m in L p (U ; R 2 ) for 1 ≤ p < ∞, such that lim sup ε→0 I ε (m ε ; U ) ≤ ˆU∩Jm c 1D (m + , m -) dH 1 , (9) 
where m ± are the traces of m along J m , and c 1D :

∂B × ∂B → [0, ∞) is given by c 1D (z + , z -) = 2 ˆz+ •iν z -•iν 1 -aν + siν 2 ds , (10) 
ν = i z + -z - |z + -z -| , a = z + • ν = z -• ν.
Here the unit vector ν represents a normal vector to the jump set J m at a jump between z + and z -. The divergence-free constraint ∇ • m = 0 forces ν to satisfy (z + -z -) • ν = 0, and this characterizes ν up to a sign. Note that it is known that the upper bound provided by one-dimensional profiles will in general not be optimal [19, § 4] (see [START_REF] Poliakovsky | On the Γ-limit of singular perturbation problems with optimal profiles which are not one-dimensional. I: The upper bound[END_REF][START_REF] Poliakovsky | On the Γ-limit of singular perturbation problems with optimal profiles which are not one-dimensional. II: The lower bound[END_REF] for a discussion of optimal upper bounds), but here we are only interested in optimality up to a multiplicative constant.

We wish to compare this 1D upper bound to the lower bound provided by the entropy productions in Proposition 2. For a solution m of (2) which additionally belongs to BV (Ω; R 2 ), the BV chain rule implies that the entropy productions are absolutely continuous with respect to H 1

Jm . Thanks to [3, Remark 1.69], the resulting lowest upper bound measure is also absolutely continuous with respect to H 1 Jm , and (see Lemma 27) we have

λ Φ ∞≤1 |∇ • Φ(m)| = c ENT (m + , m -) H 1 Jm ,
where m ± are the traces of m along J m , and the jump cost c ENT :

∂B × ∂B → [0, ∞) is given by c ENT (z + , z -) = sup λ Φ ∞≤1 ˆθ+ θ - λ Φ (s) γ (s) • ν ds for z ± = γ(θ ± ),
and ν as in [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF]. The value of the last integral does not depend on the choices of θ ± modulo 2π, because the definition of λ Φ in (4) implies ´R/2πZ λ Φ (s)γ (s) ds = 0 for any entropy Φ ∈ ENT.

In other words, for a BV map m, the lower bound (5) becomes

lim inf n→∞ I εn (m n ; U ) ˆJm∩U c ENT (m + , m -) dH 1 . (11) 
We show that these lower and upper bounds ( 11) and ( 9) for BV maps m are comparable:

Theorem 11. There exists a constant C 0 > 0 depending only on B such that

C -1 0 c 1D (z + , z -) ≤ c ENT (z + , z -) ≤ C 0 c 1D (z + , z -)
for all z ± ∈ ∂B.

Entropy productions

In this section we compute entropy productions of divergence-free m ∈ W 1,2 , and as a direct consequence we prove Proposition 2. This relies on ideas already present in [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF], we check that the same structure can be reproduced here thanks to a natural change of variable and ad hoc calculations. Since B is convex and centered, for any z ∈ R 2 \{0} there is a unique (r, θ) ∈ (0, ∞)×R/2πZ such that z = rγ(θ). In order to make use of classical polar coordinates, we introduce the bijection X : R 2 → R 2 given by

X(re iθ ) = rγ(θ) ∀r ≥ 0, θ ∈ R. (12) 
The map X is C 1 in R 2 \ {0}, and its jacobian determinant is

det(∇X(re iθ )) = iγ(θ) • γ (θ) ≥ α 0 > 0,
where α 0 is the radius of the largest euclidean ball contained in B. This last inequality follows from the convexity of B: for any z ∈ B we have (z -γ(θ)) • iγ (θ) ≥ 0, and applying this to

z = -iα 0 γ (θ) gives iγ(θ) • γ (θ) ≥ α 0 . As a consequence, X -1 is C 1 in R 2 \ {0}. Moreover X is a bi-Lipschitz homeomorphism.
In the following, we take η(r)

∈ C 1 ([0, ∞)) so that 0 ≤ η ≤ 1, η ≡ 0 in [0, 1 2 ] ∪ [2, ∞) and η(1) = 1. For Φ ∈ ENT, define Φ ∈ C 1 (R 2 ; R 2 ) by Φ (rγ(θ)) = η(r)Φ (γ(θ)) . ( 13 
) Lemma 12. Let m ∈ W 1,2 (Ω; R 2 ) satisfy ∇ • m = 0. Then for any Φ ∈ ENT, we have ∇ • Φ(m) = 1 2 Ψ(m) • ∇ 1 -m 2 , (14) 
where

Ψ (rγ(θ)) = η (r) λ Φ (θ) r 2 γ (θ) - η (r) r Φ (γ(θ))
and

λ Φ (θ) = d dθ (Φ (γ(θ))) • γ (θ).
Proof. It suffices to prove [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF] for a smooth map m : Ω → R 2 , because we can then approximate a W 1,2 map m with smooth maps m n → m in W 1,2 and a.e., satisfying in addition ∇ • m n = 0, so that (14) passes to the limit in D (Ω).

It is convenient to change variable in order to use classical polar coordinates: we set

Φ = Φ • X, m = X -1 (m), so that Φ(re iθ ) = η(r)Φ(γ(θ)), Φ( m) = Φ(m), and ∇ • X( m) = 0. (15) 
And note that X(v) = |v| for all v ∈ R 2 , and so

| m| = m . (16) 
In the following we perform calculations in the open set {m = 0}. Using that Φ ∈ ENT, we have

d dθ Φ(γ(θ)) = λ Φ (θ)γ (θ),
so computing D Φ using polar coordinates we find

D Φ(re iθ ) = η (r)Φ(γ(θ)) ⊗ e iθ + η(r) r λ Φ (θ) γ (θ) ⊗ ie iθ .
Note that for any v, w ∈ R 2 we have the identity tr

(v ⊗ wDm) = ((v • ∇) m) • w. So, writing m = re iθ , we obtain ∇ • Φ( m) = tr(D Φ( m)D m) = η (| m|) [(Φ(γ(θ)) • ∇) m] • m | m| + η(| m|) | m| λ Φ (θ) γ (θ) • ∇ m • i m | m| .
Applying this to η(r) = r (the above calculations only require η to be C 1 ) and Φ(z) = z gives in particular

∇ • X( m) = [(γ(θ) • ∇) m] • m | m| + γ (θ) • ∇ m • i m | m| ,
so the previous expression for ∇ • Φ( m) can be rewritten as

∇ • Φ( m) = η(| m|) | m| λ Φ (θ) ∇ • X( m) + η (| m|)Φ(γ(θ)) - η(| m|) | m| λ Φ (θ)γ(θ) • ∇ m • m | m| . Using ∇ • X( m) = 0 and ∂ j m • m = ∂ j | m| 2 /2, this becomes ∇ • Φ( m) = 1 2 Ψ( m) • ∇(1 -| m| 2 ), Ψ( m) = η(| m|) | m| 2 λ Φ (θ)γ(θ) - η (| m|) | m| Φ(γ(θ)).
The above calculations are valid in {m = 0}, but since η(r) = η (r) = 0 for 0 ≤ r < 1/2, this last expression makes sense everywhere. Recalling from ( 15)-( 16) that Φ( m) = Φ(m), and

| m| = m , setting Ψ = Ψ • X -1 this is exactly the claimed expression (14) for ∇ • Φ(m).
Proposition 2 is a rather direct consequence of the identity obtained in Lemma 12.

Proof of Proposition 2. Let m : Ω → R 2 be such that m = lim n→∞ m n in L 2 (Ω) for some {m n } ⊂ W 1,2 (Ω; R 2 ) with ∇ • m n = 0 and sup n I εn (m n ) < ∞. The fact that ∇ • m = 0 in D (Ω) follows from ∇ • m n = 0 and L 2 convergence. The assumption sup n I εn (m n ) < ∞ implies that m n → 1 in L 2 (Ω)
. This together with m n → m in L 2 (Ω) gives m = 1 a.e., and thus m satisfies the generalized Eikonal equation ( 2). Let Φ ∈ ENT and its extension Φ defined in [START_REF] Garofalo | A p -weight properties of real analytic functions in R n[END_REF]. First note that, in order to estimate ∇ • Φ(m), we may assume without loss of generality that ˆR/2πZ λ Φ = 0 and

ˆ∂B Φ = 0. ( 17 
)
This is due to the fact that, for any a ∈ R and b ∈ R 2 the entropy given by Φ a,b (z 

) = Φ(z) + az + b for z ∈ ∂B satisfies ∇ • Φ a,b (m) = ∇ • Φ(m) since ∇ • m = 0,
∇ • Φ(m n ), ζ = - 1 2 ˆΩ ζ (1 -m n 2 )∇ • Ψ(m n ) dx - 1 2 ˆΩ Ψ(m n ) • ∇ζ (1 -m n 2 ) dx ∇Ψ ∞ ζ ∞ I εn (m n ; V ) + Ψ ∞ ∇ζ ∞ |V | 1 2 ε 1 2 n I εn (m n ) 1 2 ,
so taking the limit n → ∞ we deduce

∇ • Φ(m), ζ ∇Ψ ∞ ζ ∞ lim inf n→∞ I εn (m n ; V ). ( 18 
)
This implies in particular that ∇ • Φ(m) is a finite Radon measure. From the proof of Lemma 12, we have

Ψ = Ψ • X -1 with Ψ(re iθ ) = η (r) λ Φ (θ) r 2 γ (θ) - η (r) r Φ (γ(θ)) .
Recalling that X -1 is Lipschitz we deduce

∇Ψ ∞ Φ C 1 + λ Φ C 1 .
Recall that λ Φ and Φ have zero average thanks to [START_REF] Ignat | A De Giorgi-type conjecture for minimal solutions to a nonlinear Stokes equation[END_REF] and thus

λ Φ C 1 is controlled by λ Φ ∞ . Further, as (d/dθ)Φ(γ(θ)) = λ Φ (θ)γ (θ), we also have that Φ C 1 is controlled by λ Φ ∞ and hence controlled by λ Φ ∞ . So we have ∇Ψ ∞ ≤ C 0 λ Φ ∞ .
Plugging this into [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF] and taking the supremum over all test functions

ζ ∈ C ∞ c (V ) with ζ ∞ ≤ 1 we deduce |∇ • Φ(m)|(V ) ≤ C 0 lim inf n→∞ I εn (m n ; V ) ∀Φ ∈ ENT with λ Φ ∞ ≤ 1.

Hence for any open subset U ⊂ Ω and any disjoint open subsets

V 1 , . . . , V k ⊂ U and entropies Φ 1 , . . . , Φ k ∈ ENT with λ Φ j ∞ ≤ 1 we have j |∇ • Φ j (m)|(V j ) ≤ C 0 j lim inf n→∞ I εn (m n ; V j ) ≤ C 0 lim inf n→∞ I εn (m n ; U ).
Given any disjoint compact sets A 1 , . . . , A k ⊂ U , we can find disjoints open sets containing them, and so for entropies Φ 1 , . . . ,

Φ k ∈ ENT with λ Φ j ∞ ≤ 1 we have j |∇ • Φ j (m)|(A j ) ≤ C 0 lim inf n→∞ I εn (m n ; U ).
By inner regularity of the Radon measures ∇ • Φ(m) this is in fact valid for any disjoint measurable sets A 1 , . . . , A k , and then for any countable disjoint family of measurable sets {A j }. Recalling the definition [3, Definition 1.68] of the lowest upper bound measure, this implies the lower bound (5).

Compactness

In this section we prove Theorem 1: let

{m n } ⊂ W 1,2 (Ω; R 2 ) satisfy ∇ • m n = 0 and sup n I εn (m n ) < ∞, then {m n } is precompact in L 2 (Ω).
The proof follows very closely the arguments in [12, Proposition 1.2], the only point that calls for a new technical input is the approximation of generalized entropies analogous to [12, Lemma 2.5] (see Lemma 15 below). We only briefly sketch the main ideas and highlight the steps that require adaptation. We refer to [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] for the details that stay unchanged.

The proof consists in showing that any Young measure {µ x } x∈Ω generated by a subsequence of {m n } must be a family of Dirac measures. As in [12, (3.17)], the energy bound sup n I εn (m n ) < ∞ implies that µ x is concentrated on ∂B for a.e. x ∈ Ω. The first main step is to prove that, for any entropy Φ ∈ ENT the sequence ∇ • Φ(m n ) is precompact in H -1 (Ω). This follows from the identity obtained in Lemma 12, exactly as in [12, (3.1)]. The div-curl lemma therefore implies that for any entropies Φ 1 , Φ 2 ∈ ENT, the weak* limit of the product

Φ 1 (m n ) • i Φ 2 (m n ) in measures is the product of the weak limits of Φ 1 (m n ) and i Φ 2 (m n ) in L 2 (Ω).
Hence, for a.e. x ∈ Ω, µ = µ x is a probability measure concentrated on ∂B and satisfying

ˆΦ1 • iΦ 2 dµ = ˆΦ1 dµ • i ˆΦ2 dµ. ( 19 
)
The conclusion of Theorem 

Σ 1 e iθ = i 2 e i3θ 3 + e -iθ , Σ 2 e iθ = 1 2 e i3θ 3 -e -iθ .
The proof of compactness given by [START_REF] Ambrosio | Line energies for gradient vector fields in the plane[END_REF] uses only Σ 1 , Σ 2 but is somewhat intricate, and the one in [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF] uses an infinite family of entropies. We indicate here a somewhat shorter proof using only Σ 1 , Σ 2 and Šverák's theorem [START_REF] Šverák | On Tartar's conjecture[END_REF]. To see this, rewrite [START_REF] Jin | Singular perturbation and the energy of folds[END_REF] 

applied to Σ 1 , Σ 2 as det ˆR2×2 X dν(X) = ˆR2×2 det(X) dν(X),
where ν = P µ is the pushforward of µ by the matrix-valued map P : S 1 → R 2×2 whose rows are Σ 1 , Σ 2 . Hence ν is a Null Lagrangian measure (in the sense of [START_REF] Lorent | Null Lagrangian measures in subspaces, compensated compactness and conservation laws[END_REF]) supported on K = P(S 1 ) (which is the same set as in [23, (42)]). By [START_REF] Lorent | Regularity of the eikonal equation with two vanishing entropies[END_REF]Lemma 7], the set K has no Rank-1 connections, so [32, Lemma 3] ensures that ν is a Dirac measure.

The proof of Lemma 13 follows closely [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF]Lemma 2.6]. Nevertheless we give some details, because this is where the crucial assumption that B is strictly convex is used. In the proof we will need the following construction.

Lemma 15. Given ξ = γ(θ 0 ) ∈ ∂B, define Φ ξ : ∂B → R 2 by Φ ξ (z) = 1 z•iγ(θ 0 )>0 γ (θ 0 ) = 1 z•iξ>0 in B (ξ),
where n B (ξ) denotes the outer unit normal to ∂B at ξ. Then Φ ξ is a generalized entropy for the equation (2) in the sense that there exists a sequence Φ ξ δ δ>0 ⊂ ENT that is uniformly bounded and satisfies

Φ ξ δ (z) → Φ ξ (z) for all z ∈ ∂B. (20) 
Proof. For any λ ∈ C1 (R/2πZ) such that ´R/2πZ λ(θ)γ (θ) dθ = 0, the map Φ : ∂B → R 2 given by

Φ(γ(θ)) = ˆθ θ 0 λ(t)γ (t) dt,
is well defined and belongs to ENT. We define a sequence of functions λ δ such that the corresponding Φ = Φ ξ δ has the desired properties. We fix a smooth nonnegative kernel ρ ∈ C ∞ c (R) with support supp ρ ⊂ (0, 1) and unit integral ´ρ = 1, denote ρ δ (t) = δ -1 ρ(t/δ), and define a function λδ ∈ C ∞ (R/2πZ) by setting

λδ (θ) = ρ δ (θ -θ 0 ) + ρ δ (π + θ 0 -θ) for θ 0 < θ ≤ θ 0 + 2π,
and λδ extended as a 2π-periodic function. Note that λδ is supported in

(θ 0 , θ 0 + δ) ∪ (θ 0 + π -δ, θ 0 + π) + 2πZ.
Moreover, the map Ψ δ : (θ 0 , θ 0 + 2π] → R 2 defined by

Ψ δ (θ) = ˆθ θ 0 λδ (t)γ (t) dt for θ 0 < θ ≤ θ 0 + 2π, satisfies |Ψ δ | ≤ 2 since |γ | = 1, and 
Ψ δ (θ) = ´R ρ δ (t -θ 0 )γ (t) dt if θ 0 + δ < θ < θ 0 + π -δ, ´R ρ δ (t -θ 0 )γ (t) dt + ´R ρ δ (θ 0 + π -t)γ (t) dt if θ 0 + π ≤ θ ≤ θ 0 + 2π.
Using that γ is continuous and γ (θ 0 + π) = -γ (θ 0 ) we obtain, for any θ ∈ (θ 0 , θ 0 + 2π], the limit

lim δ→0 Ψ δ (θ) = γ (θ 0 ) if θ 0 < θ < θ 0 + π, 0 if θ 0 + π ≤ θ ≤ θ 0 + 2π.
This corresponds exactly to Φ ξ (γ(θ)). The only issue is that λδ does not satisfy the constraint ´R/2πZ λδ (θ)γ (θ) dθ = 0, hence Ψ δ cannot be extended to a 2π-periodic function and does not define an entropy. So we need to modify λδ . 1 We claim that there exists

µ δ ∈ C 1 (R/2πZ) such that ˆR/2πZ µ δ (θ)γ (θ) dθ = ˆR/2πZ λδ (θ)γ (θ) dθ, and 
ˆR/2πZ |µ δ (θ)| dθ -→ 0 as δ → 0. (21) 
Granted [START_REF] Lamy | Rigidity of a non-elliptic differential inclusion related to the Aviles-Giga conjecture[END_REF], we define λ δ = λδ (θ) -µ δ . This function does satisfy ´R/2πZ λ δ (θ)γ (θ) dθ = 0 thanks to [START_REF] Lamy | Rigidity of a non-elliptic differential inclusion related to the Aviles-Giga conjecture[END_REF], so the formula

Φ ξ δ (γ(θ)) = ˆθ θ 0 λ(t)γ (t) dt,
defines an entropy Φ ξ δ ∈ ENT. Moreover for any θ ∈ (θ 0 , θ 0 + 2π] we have

|Ψ δ (θ) -Φ ξ δ (γ(θ))| ≤ ˆR/2πZ |µ δ (θ)| dθ -→ 0 as δ → 0.
Thanks to the convergence of Ψ δ established above, this implies Φ ξ δ (z) → Φ ξ (z) for all z ∈ ∂B, and uniform boundedness of Φ ξ δ follows from the uniform boundedness of Ψ δ . Therefore the proof of Lemma 15 will be complete once we prove the existence of µ δ ∈ C 1 (R/2πZ) satisfying [START_REF] Lamy | Rigidity of a non-elliptic differential inclusion related to the Aviles-Giga conjecture[END_REF].

This construction is possible thanks to the fact that

v δ := ˆR/2πZ λδ (θ)γ (θ) dθ -→ γ (θ 0 ) + γ (θ 0 + π) = 0,
as δ → 0. To explicitly construct µ δ , we introduce a (small) parameter η > 0, to be fixed later, and two functions

f η 1 , f η 2 ∈ C 1 (R/2πZ) such that f η j -γ j L 2 (R/2πZ) ≤ η for j = 1, 2,
and look for µ δ in the form

µ δ (θ) = α δ f η 1 (θ) + β δ f η 2 (θ), α δ , β δ ∈ R.
With these notations, the constraint ´µδ γ = ´λ δ γ in (21) turns into

v δ = A η α δ β δ , A η = ´f η 1 γ 1 ´f η 2 γ 1 ´f η 1 γ 2 ´f η 2 γ 2 .
Next we show that we may fix η > 0 such that A η is invertible. As a consequence, defining (α δ , β δ ) T = A -1 η v δ ensures that µ δ satisfies the constraint ´µδ γ = ´λ δ γ in [START_REF] Lamy | Rigidity of a non-elliptic differential inclusion related to the Aviles-Giga conjecture[END_REF], and the convergence µ δ → 0 in L 1 follows from v δ → 0. This concludes the proof of ( 21) and of Lemma 15.

It remains to prove that A η is invertible for small enough η > 0. To that end we remark that thanks to the convergence f η j → γ j in L 2 , we have

A η -→ A 0 = ´(γ 1 ) 2 ´γ 2 γ 1 ´γ 1 γ 2 ´(γ 2 ) 2
as η → 0.

The Cauchy-Schwarz inequality ( ´γ

1 γ 2 ) 2 ≤ ´(γ 1 ) 2
´(γ 2 ) 2 ensures that det(A 0 ) ≥ 0, and in fact det(A 0 ) > 0 because equality cannot occur in the Cauchy-Schwarz inequality: otherwise γ 1 , γ 2 would be colinear in L 2 , implying that γ takes values in a fixed line, which is incompatible with it being the unit tangent of ∂B. So the matrix A 0 is invertible, and we may fix η > 0 such that A η is invertible.

With the construction of Lemma 15 at hand, we turn to the proof of Lemma 13.

Proof of Lemma 13. Let ξ 1 , ξ 2 ∈ ∂B. By Lemma 15, for j = 1, 2, we can find Φ

ξ j δ δ ⊂ ENT such that Φ ξ j δ (z) δ→0 → Φ ξ j (z) for all z ∈ ∂B.
Also recall that Φ ξ j δ is uniformly bounded. Hence, applying [START_REF] Jin | Singular perturbation and the energy of folds[END_REF] to Φ j = Φ ξ j δ and passing to the limit δ → 0 we obtain, by dominated convergence,

ˆ∂B Φ ξ 1 (z) • iΦ ξ 2 (z)dµ(z) = ˆ∂B Φ ξ 1 (z)dµ(z) • i ˆ∂B Φ ξ 2 (z)dµ(z) .
In other words, recalling the definition of Φ ξ in Lemma 15, for any ξ 1 , ξ 2 ∈ ∂B we have

in B (ξ 1 ) • n B (ξ 2 ) µ({z • iξ 1 > 0} ∩ {z • iξ 2 > 0}) = in B (ξ 1 ) • n B (ξ 2 ) µ({z • iξ 1 > 0}) µ({z • iξ 2 > 0}).
(Here and in the rest of the proof, we use the shortened notation {z • iξ > 0} to denote the subset of points z ∈ ∂B satisfying this inequality.) By strict convexity of ∂B, for ξ 1 = ±ξ 2 we have in B (ξ 1 ) • n B (ξ 2 ) = 0, and the last equation becomes

µ({z • iξ 1 > 0} ∩ {z • iξ 2 > 0}) = µ({z • iξ 1 > 0}) µ({z • iξ 2 > 0}).
From that point on the proof follows exactly [12, Lemma 2.6], for the reader's convenience we recall here the short argument. Letting ξ 2 → ξ 1 with ξ 2 = ±ξ 1 we obtain

µ ({z • iξ 1 > 0}) ≤ µ ({z • iξ 1 > 0}) µ ({z • iξ 1 ≥ 0}) , which implies µ ({z • iξ > 0}) = 0 or µ ({z • iξ ≥ 0}) = 1 for all ξ ∈ ∂B.
This is equivalent to

µ ({z • iξ > 0}) = 0 or µ ({z • iξ < 0}) = 0 for all ξ ∈ ∂B. (22) 
This implies that µ is a Dirac measure: otherwise we can find ξ ∈ ∂B such that

µ ({z • iξ > 0}) > 0 and µ ({z • iξ < 0}) > 0,
which contradicts [START_REF] Lorent | Factorization for entropy production of the Eikonal equation and regularity[END_REF].

Zero-energy states

In this section we prove Theorem 4 on zero-energy states: let m : Ω → R 2 satisfy m = lim n→∞ m n in L 2 (Ω) for some {m n } ⊂ W 1,2 (Ω; R 2 ) with ∇ • m n = 0 and lim n→∞ I εn (m n ) = 0 for some ε n → 0, then m must be continuous outside a locally finite set of vortices associated to the norm • . This relies on a kinetic formulation obtained exactly as in [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF], and on a simple new argument that establishes a correspondence with the zero-energy states of the euclidean case

• = | • |.
The first step, analogous to [18, Proposition 1.1] is to obtain the kinetic formulation

γ (t) • ∇ x 1 m(x)•iγ(t)>0 = 0 in D (Ω) for all t ∈ R. (23) 
This follows from the fact that entropy productions vanish: thanks to Proposition 2, ∇ • Φ(m) = 0 in D (Ω) for all Φ ∈ ENT. For any t ∈ R, we may apply this to the entropies Φ γ(t) δ

provided by Lemma 15, hence ˆΩ Φ

γ(t) δ (m(x)) • ∇ζ(x) dx = 0 for all ζ ∈ C ∞ c (Ω).
Thanks to the pointwise convergence Φ

γ(t) δ (z) → Φ γ(t) (z) = 1 z•iγ(t)>0 γ (t)
and the uniform boundedness of Φ γ(t) δ , we can pass to the limit δ → 0 by dominated convergence, and deduce

ˆΩ 1 m(x)•iγ(t)>0 γ (t) • ∇ζ(x) dx = 0 for all ζ ∈ C ∞ c (Ω),
which is exactly [START_REF] Lorent | Regularity of the eikonal equation with two vanishing entropies[END_REF].

Next we define m : Ω → S 1 by setting m = n B (m), where n B : ∂B → S 1 is the outer unit normal to ∂B.

The symmetries of B ensure that, for any z ∈ ∂B,

z • iγ(t) > 0 ⇐⇒ n B (z) • γ (t) > 0.
Therefore, for a fixed t ∈ R, and θ t = α(t) where α : R → R is the (unique up to an additive constant) continuous function such that γ (t) = e iα(t) , we have

1 m(x)•iγ(t)>0 γ (t) = 1 m(x)•e iθ t >0 e iθt .
As t → θ t is a bijection from R into itself we deduce from ( 23) that m solves the kinetic equation

e iθ • ∇ x 1 m(x)•e iθ >0 = 0 in D (Ω) for all θ ∈ R.
This is the kinetic formulation that characterizes zero-energy states for the classical Aviles-Giga functional: it follows from [18, Theorem 1.3] that m is locally Lipschitz outside a locally finite set. Moreover, in any convex neighborhood of a singularity x 0 we have m(x) = βi(xx 0 )/|x -x 0 | for some β ∈ {±1}. Note that, since ∂B is C 1 and strictly convex, the map n B : ∂B → S 1 is a homeomorphism. We deduce that m = n -1 B ( m) is continuous outside a locally finite set. Moreover, from [7, Proposition 2.2] we know that n -1 B (x/|x|) = V B (x) for any x ∈ R 2 , where V B = ∇ • * is the vortex associated to • and • * is the dual norm of • , and V B (-x) = -V B (x), so we deduce m(x) = βV B (i(x-x 0 )) in any convex neighborhood of a singularity x 0 . This concludes the proof of Theorem 4.

To prove the assertion of Remark 5, simply note that n -1 B is 1/(p -1)-Hölder whenever • is of power type p for p ≥ 2 [7, Theorem 2.6].

Regularity estimates

In this section we give the proofs of Theorems 6 and 8 in Subsections 5.1 and 5.2, respectively. The proof of Theorem 10 relies on explicit calculations in the BV setting and is postponed to Subsection 6.1.

The proof of Theorem 6 follows the ideas of [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF], themselves inspired by [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. The main new ingredient, after realizing that these ideas can be adapted to control a large family of integral quantities, is to construct one such quantity that has the additional property of being coercive, and eventually provides the regularity estimate of Theorem 6 (see Lemma 22). The proof of Theorem 8 starts from the now standard idea of using commutator estimates as in [START_REF] De Lellis | A regularizing property of the 2D-eikonal equation[END_REF][START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF], but here we need these estimates to be in terms of the anisotropic regularity cost of Theorem 6, a subtler goal which requires taking full advantage of the convexity of • .

Finite entropy production implies regularity estimates

In this subsection we find it more convenient to work with maps m : Ω → R 2 solving |m| = 1 a.e., ∇ • X(m) = 0 in D (Ω).

(

) 24 
Solutions of ( 24) and of the generalized Eikonal equation ( 2) are in correspondence via the Lipschitz homeomorphism X defined in [START_REF] Desimone | A compactness result in the gradient theory of phase transitions[END_REF]. Specifically, a map m solves [START_REF] Lorent | Null Lagrangian measures in subspaces, compensated compactness and conservation laws[END_REF] if and only if m = X(m) solves ( 2). This transformation also induces a correspondence between entropies. A C 1 map Φ : S 1 → R 2 is an entropy for equation [START_REF] Lorent | Null Lagrangian measures in subspaces, compensated compactness and conservation laws[END_REF] if and only if ∇ • Φ(m) = 0 for any smooth solution of [START_REF] Lorent | Null Lagrangian measures in subspaces, compensated compactness and conservation laws[END_REF]. It is an exercise to see that this is equivalent to (d/dθ)Φ(e iθ ) being colinear to γ (θ). As in the definition of ENT in (4), we consider the subclass of entropies where we require a C 1 colinearity coefficient:

d dθ Φ(e iθ ) = λ(θ)γ (θ) for some λ ∈ C 1 (R/2πZ).
Therefore, Φ is an entropy for equation [START_REF] Lorent | Null Lagrangian measures in subspaces, compensated compactness and conservation laws[END_REF] in this subclass if and only if Φ = Φ • X -1 : ∂B → R 2 belongs to ENT, as follows directly from the definition (4) of the class ENT. Moreover we have Φ(m) = Φ(m). In particular, the entropy productions ∇ • Φ(m) of a solution m of ( 24) are measures if and only if the entropy productions ∇ • Φ(m) of the solution m = X(m) of ( 2) are measures. Thanks to the above discussion, all results we prove in this section about solutions of ( 24) directly translate into corresponding results about solutions of (2). We use the family of entropies Φ ψ for equation [START_REF] Lorent | Null Lagrangian measures in subspaces, compensated compactness and conservation laws[END_REF] given by

Φ ψ (e iθ ) = ˆR/2πZ 1 e iθ •e is >0 ψ(s)γ (s -π/2) ds, ψ ∈ C 1 (R/2πZ). ( 25 
)
Note that since γ (t + π) = -γ (t) we have that (d/dθ)Φ ψ e iθ = λ(θ)γ (θ) with λ(θ) = ψ(θ + π/2) + ψ(θ -π/2). Therefore (25) does define an entropy for equation [START_REF] Lorent | Null Lagrangian measures in subspaces, compensated compactness and conservation laws[END_REF]. Recall that α ∈ C 0 (R) is such that

e iα(θ) = γ (θ) ∀θ ∈ R. (26) 
The continuous function α is uniquely determined up to a constant, is strictly increasing, and satisfies α(θ + π) = α(θ) + π for all θ ∈ R.

Proposition 16. If m satisfies (24) and

∇ • Φ ψ (m) ∈ M loc (Ω) ∀ψ ∈ C 1 (R/2πZ),
then we have

sup 0<|h|<dist(Ω ,∂Ω) 1 |h| ˆΩ Λ(m(x), m(x + h)) dx < ∞ ∀Ω ⊂⊂ Ω, ( 27 
)
where Λ :

S 1 × S 1 → [0, +∞) is given by Λ(e iθ 1 , e iθ 2 ) = ˆθ2 θ 1 ˆθ2 θ 1 |α(t) -α(s)| dtds for |θ 1 -θ 2 | ≤ π. (28) 
Moreover, for m 1 , m 2 ∈ S 1 , we have

Λ(m 1 , m 2 ) δ 2 ω -1 (δ/2), δ = |m 1 -m 2 |, ( 29 
)
where ω(δ) = sup{|α -1 (t) -α -1 (s)| : |t -s| < δ} is the minimal modulus of continuity of α -1 .

Theorem 6 is a direct consequence of Proposition 16 and the correspondence between the generalized Eikonal equation ( 2) and equation [START_REF] Lorent | Null Lagrangian measures in subspaces, compensated compactness and conservation laws[END_REF]. In particular, the regularity estimate (8) of Theorem 6 is equivalent to [START_REF] Poliakovsky | Upper bounds for singular perturbation problems involving gradient fields[END_REF] by noting that the function Π defined in (6) satisfies Π(γ(θ 1 ), γ(θ 2 )) = Λ(e iθ 1 , e iθ 2 ). Remark 17. If • is in addition of power type p for some p ≥ 2 then α -1 is 1/(p-1)-Hölder [7, Theorem 2.6], so ω -1 (δ) δ p-1 and therefore [START_REF] Poliakovsky | Upper bounds for singular perturbation problems involving gradient fields[END_REF] and (29) imply sup 0<|h|<dist(Ω ,∂Ω)

1 |h| ˆΩ |m(x + h) -m(x)| p+1 dx < ∞ ∀Ω ⊂⊂ Ω, that is, m has the local Besov regularity B 1 p+1 p+1,∞ .
Remark 18. The function α is increasing and therefore Dα is a positive measure. Hence for 0 ≤ θ 2 -θ 1 ≤ π, one can rewrite the quantity Λ defined in [START_REF] Poliakovsky | A general technique to prove upper bounds for singular perturbation problems[END_REF] as

Λ(e iθ 1 , e iθ 2 ) = ˚[θ 1 ,θ 2 ] 3 (1 s<τ <t + 1 s>τ >t ) dtds Dα(dτ ) = 2 ˆθ2 θ 1 (τ -θ 1 )(θ 2 -τ ) Dα(dτ ) ≥ 2 9 (θ 2 -θ 1 ) 2 Dα([θ 1 + (θ 2 -θ 1 )/3, θ 1 + 2(θ 2 -θ 1 )/3]).
(We used the identity 

˜[θ 1 ,θ 2 ] 2 (1 s<τ <t + 1 s>τ >t ) dtds = 2(τ -θ 1 )(θ 2 -τ ) to
∇ • Φ ψ (m) ∈ M(Ω) ∀ψ ∈ C 1 (R/2πZ) ,
then m satisfies the kinetic equation

γ (s -π/2) • ∇ x 1 m(x)•e is >0 = ∂ s σ(s, x) in D (R/2πZ × Ω), ( 30 
)
for some σ ∈ M(R/2πZ × Ω).

Proof. For any fixed ζ ∈ C ∞ c (Ω), the operator

T ζ : ψ → ∇•Φ ψ (m), ζ is a linear operator from C 1 (R/2πZ) to R. Further the estimate | ∇ • Φ ψ (m), ζ | ψ C 1 (R/2πZ) ∇ζ L ∞ (Ω)
implies that T ζ is a bounded linear operator. Thus the same Banach-Steinhaus argument as in [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF]Lemma 3.4] provides the bound

| ∇ • Φ ψ (m), ζ | ψ C 1 (R/2πZ) ζ L ∞ (Ω) , for all ζ ∈ C 0 c (Ω) and ψ ∈ C 1 (R/2πZ). Moreover, when ψ is a constant ψ ≡ c, we have ∇ • Φ ψ (m) = 2c∇•X(m) = 0, so in the above we can consider the quotient space C 1 (R/2πZ)/R ≈ C 0 (R/2πZ). Explicitly, for any f ∈ C 0 (R/2πZ) consider the function ψ[f ] ∈ C 1 (R/2πZ) given by ψ[f ](t) = ˆt 0 f -- ˆR/2πZ f ,
then we have

∇ • Φ ψ[f ] (m), ζ f L ∞ (R/2πZ) ζ L ∞ (Ω) ,
for all ζ ∈ C 0 c (Ω) and f ∈ C 0 (R/2πZ). As a consequence (see [22, Appendix B] for a detailed proof) there exists a measure σ ∈ M(R/2πZ × Ω) such that, for all ζ ∈ C ∞ c (Ω) and f ∈ C 0 (R/2πZ) with - ´R/2πZ f = 0, we have

∇ • Φ ψ[f ] (m), ζ = -σ, f ⊗ ζ = ∂ s σ, ψ[f ] ⊗ ζ .
From the the definition of Φ ψ [START_REF] Marconi | Characterization of minimizers of Aviles-Giga functionals in special domains[END_REF] we see that this is equivalent to 31) amounts to 2c ∇ • X(m) = 0, so it is in fact valid for any ψ ∈ C 1 (R/2πZ). This proves the kinetic equation [START_REF] Poliakovsky | On the Γ-limit of singular perturbation problems with optimal profiles which are not one-dimensional. II: The lower bound[END_REF].

γ (s -π/2) • ∇ x 1 m(x)•e is >0 -∂ s σ, ψ(s)ζ(x) = 0, ( 31 
)
for ψ = ψ[f ], that is, for all ψ ∈ C 1 (R/2πZ) such that ψ(0) = 0 and ζ ∈ C ∞ c (Ω). For constant ψ = c, equation (
Remark 20. Note that the kinetic equation [START_REF] Poliakovsky | On the Γ-limit of singular perturbation problems with optimal profiles which are not one-dimensional. II: The lower bound[END_REF] only uniquely determines ∂ s σ. We may choose the unique σ satisfying in addition σ(s, x), ζ(x) = 0 for all ζ ∈ C 0 c (Ω). Lemma 21. If m satisfies |m| = 1 a.e. and the kinetic equation [START_REF] Poliakovsky | On the Γ-limit of singular perturbation problems with optimal profiles which are not one-dimensional. II: The lower bound[END_REF], then for any ϕ ∈ BV (R/2πZ) which is odd, i.e. ϕ(-θ) = -ϕ(θ), the quantity

∆ ϕ (e iθ 1 , e iθ 2 ) = ¨R/2πZ×R/2πZ ϕ(t -s) γ (s -π/2) ∧ γ (t -π/2) ( 32 
)
1 e is •e iθ 2 >0 -1 e is •e iθ 1 >0 1 e it •e iθ 2 >0 -1 e it •e iθ 1 >0 dtds, satisfies 1 |h| ˆΩ ∆ ϕ (m(x), m(x + h)) dx ϕ L 1 (R/2πZ) dist(Ω , ∂Ω) + |Dϕ|(R/2πZ)|σ|(R/2πZ × Ω),
for all Ω ⊂⊂ Ω and h ∈ R 2 such that |h| < dist(Ω , ∂Ω).

Proof. This essentially follows [14, Lemma 3.9] in a slightly modified setting; we provide some details here for the reader's convenience. We set

χ(t, x) = 1 e it •m(x)>0 ,
and for a small parameter ε > 0 we consider regularized (with respect to x) maps

χ ε = χ * x ρ ε , σ ε = σ * x ρ ε ,
where ρ ε is a regularizing kernel. We have the regularized kinetic equation

γ (s -π/2) • ∇ x χ ε = ∂ s σ ε .
Let Ω ⊂⊂ Ω be fixed and h = ue for some e ∈ S 1 and u ∈ R such that |u| = |h| < dist(Ω , ∂Ω). Without loss of generality, assume e = e 1 . We denote by χ u (t, x) = χ(t, x + ue 1 ) and D u χ(t, x) = χ u (t, x) -χ(t, x). Define the quantity

∆ ε ϕ (x, u) = ¨R/2πZ×R/2πZ ϕ(t -s) γ (s -π/2) ∧ γ (t -π/2) D u χ ε (s, x)D u χ ε (t, x) dtds,
for x ∈ Ω and |u| + < dist(x, ∂Ω). Note that, as ε → 0, we have the pointwise limit ∆ ε ϕ (x, u) -→ ∆ ϕ (m(x), m(x + ue 1 )) for a.e. x ∈ Ω. A long but direct calculation (detailed in [START_REF] Ghiraldin | Optimal Besov differentiability for entropy solutions of the eikonal equation[END_REF]Lemma 3.9] in the case γ(t) = e it ) provides, for any smooth odd ϕ, the identity

∂ ∂u ∆ ε ϕ = I + ∇ • A ε , I = 2 ¨ϕ(t -s)γ 2 (t -π/2) [χ u ε (t, x)∂ s σ ε (s, x) -χ ε (t, x)∂ s σ u ε (s, x)] dtds, A ε 1 = 2 ¨ϕ(t -s)γ 2 (t -π/2)γ 1 (s -π/2)χ u ε (t, x)D u χ ε (s, x) dtds, A ε 2 = 2 ¨ϕ(t -s)γ 2 (t -π/2)γ 2 (s -π/2)χ ε (t, x)χ u ε (s, x) dtds. Note that |A ε | ϕ L 1 (R/2πZ
) . Integrating with respect to u and against a smooth cut-off function in x we deduce

1 |h| ˆΩ ∆ ε ϕ (x, u) dx ϕ L 1 (R/2πZ) dist(Ω , ∂Ω) + |σ|(R/2πZ × Ω) ˆR/2πZ |ϕ (t)| dt.
Letting ε → 0 we infer

1 |h| ˆΩ ∆ ϕ (m(x), m(x + ue 1 )) dx ϕ L 1 (R/2πZ) dist(Ω , ∂Ω) + |Dϕ|(R/2πZ)|σ|(R/2πZ × Ω),
for all smooth odd ϕ, and by approximation for any odd ϕ ∈ BV (R/2πZ).

Lemma 22. There exists an odd function ϕ ∈ BV (R/2πZ) such that the quantity ∆ ϕ defined in (32) satisfies ∆ ϕ Λ, where Λ is defined in [START_REF] Poliakovsky | A general technique to prove upper bounds for singular perturbation problems[END_REF].

Proof. We define an odd function ϕ ∈ BV (R/2πZ) by setting

ϕ(θ) =      1 for 0 < θ < δ, -1 for -δ < θ < 0, 0 for δ < |θ| < π,
where δ ∈ (0, π/2) is a parameter to be chosen later. Recalling the definitions of ∆ ϕ (32) and α (26), we have, for

m 1 , m 2 ∈ S 1 , ∆ ϕ (m 1 , m 2 ) = ¨dist S 1 (e is ,e it )<δ | sin(α(t -π/2) -α(s -π/2))| Ξ(t) Ξ(s) dtds, (33) 
Ξ(t) = Ξ(t, m 1 , m 2 ) = 1 e it •m 2 >0 -1 e it •m 1 >0 .
Here and in what follows we let dist S 1 denote the geodesic distance in S 1 . The function

Ξ(•, m 1 , m 2 ) is supported in two opposite arcs of length dist S 1 (m 1 , m 2 ): Ξ(t, m 1 , m 2 ) = 1 t∈A -1 t∈-A for a.e. t ∈ R/2πZ, A = A(m 1 , m 2 ) = t ∈ R/2πZ : e it • m 2 > 0 and e it • m 1 < 0 . If dist S 1 (m 1 , m 2 ) ≤ π -δ,
then the distance between these arcs is at least δ, so we have

Ξ(t)Ξ(s) = 1 s,t∈A + 1 s,t∈-A for dist S 1 (e is , e it ) < δ,
and therefore

∆ ϕ (m 1 , m 2 ) = ¨A×A 1 dist S 1 (e is ,e it )<δ | sin(α(t -π/2) -α(s -π/2))| dtds + ¨-A×-A 1 dist S 1 (e is ,e it )<δ | sin(α(t -π/2) -α(s -π/2))| dtds = 2 ¨A×A 1 dist S 1 (e is ,e it )<δ | sin(α(t -π/2) -α(s -π/2))| dtds.
The last equality follows from α(t + π) = α(t) + π for all t ∈ R/2πZ. Because α is uniformly continuous we may choose δ 0 > 0 small enough to ensure that |α(t -π/2) -α(s -π/2)| ≤ π/2 for dist S 1 (e it , e is ) < δ provided δ ≤ δ 0 , and then we have

∆ ϕ (m 1 , m 2 ) ≥ 4 π ¨A×A 1 dist S 1 (e is ,e it )<δ |α(t -π/2) -α(s -π/2)| dtds.
Letting

m 1 = e iθ 1 , m 2 = e iθ 2 with |θ 1 -θ 2 | = dist S 1 (m 1 , m 2 ), this turns into ∆ ϕ (m 1 , m 2 ) ≥ 4 π ˆθ2 + π 2 θ 1 + π 2 ˆθ2 + π 2 θ 1 + π 2 1 |t-s|<δ |α(t -π/2) -α(s -π/2)| dtds = 4 π ˆθ2 θ 1 ˆθ2 θ 1 1 |t-s|<δ |α(t) -α(s)| dtds. (34) 
Recalling the definition (28) of Λ(m 1 , m 2 ), we deduce

∆ ϕ (m 1 , m 2 ) ≥ 4 π Λ(m 1 , m 2 ) if dist S 1 (m 1 , m 2 ) ≤ δ. For δ < dist S 1 (m 1 , m 2 ) ≤ π -δ, from (34) we have ∆ ϕ (m 1 , m 2 ) ≥ C 1 (δ) := 4 π inf θ∈R ˆθ+δ θ ˆθ+δ θ |α(t) -α(s)| dtds > 0
(where this infimum is indeed positive because α is strictly increasing thanks to the strict convexity of B), so

∆ ϕ (m 1 , m 2 ) ≥ C 1 (δ) sup S 1 ×S 1 Λ Λ(m 1 , m 2 ) if δ < dist S 1 (m 1 , m 2 ) ≤ π -δ.
Finally we turn to the case π -δ < dist S 1 (m 1 , m 2 ) ≤ π, where the product Ξ(s)Ξ(t) can take negative values. We have

Ξ(t)Ξ(s) = 1 s,t∈A + 1 s,t∈-A -1 t∈A,s∈-A -1 t∈-A,s∈A ≥ 1 s,t∈A + 1 s,t∈-A -1 s,t∈ Âδ -1 s,t∈-Âδ ,
where Âδ is the arc of length 2δ given by

Âδ = t ∈ R/2πZ : dist S 1 (e it , ie iθ 0 ) < δ , θ 0 = θ 1 + θ 2 2 - π 2 .
Plugging this into the expression of ∆ ϕ in (33) and using again α(θ + π) = α(θ) + π and |α(t -π/2) -α(s -π/2)| ≤ π/2 for dist S 1 (e is , e it ) < δ, we find

∆ ϕ (m 1 , m 2 ) ≥ 4 π ¨A×A 1 dist S 1 (e is ,e it )<δ |α(t -π/2) -α(s -π/2)| dtds -2 ¨Â δ × Âδ |α(t -π/2) -α(s -π/2)| dtds ≥ 4 π ˆθ0 +π-δ 2 θ 0 + δ 2 ˆθ0 +π-δ 2 θ 0 + δ 2 1 |t-s|<δ |α(t) -α(s)| dtds -2 ˆθ0 +δ θ 0 -δ ˆθ0 +δ θ 0 -δ |α(t) -α(s)| dtds. (35) 
Since α is increasing, its derivative Dα is a nonnegative Radon measure. We use this to calculate For τ ∈ [θ 0 + 3δ/2, θ 0 + π -3δ/2] the quantity W (τ ) is the sum of the areas of two isosceles right-angled triangles of height δ, so W (τ ) = δ 2 ; see Figure 1. Thus we deduce

ˆθ0 +π-δ 2 θ 0 + δ 2 ˆθ0 +π-δ 2 θ 0 + δ 2 1 |t-s|<δ |α(t) -α(s)| dtds = ˆθ0 +π-δ 2 θ 0 + δ 2 W (τ ) Dα(dτ ), W (τ ) = ¨1|t-s|<δ 1 θ 0 +δ/2<t<τ 1 τ <s<θ 0 +π-δ/2 dtds + ¨1|t-s|<δ 1 θ 0 +δ/2<s<τ 1 τ <t<θ 0 +π-δ/2 dtds.
ˆθ0 +π-δ 2 θ 0 + δ 2 ˆθ0 +π-δ 2 θ 0 + δ 2 1 |t-s|<δ |α(t) -α(s)| dtds ≥ δ 2 Dα([θ 0 + 3δ/2, θ 0 + π -3δ/2]). (36) 
Similarly we write ˆθ0 +δ

θ 0 -δ ˆθ0 +δ θ 0 -δ |α(t) -α(s)| dtds = ˆθ0 +δ θ 0 -δ ¨[θ 0 -δ,θ 0 +δ] 2 (1 t<τ <s + 1 s<τ <t ) dtds Dα(dτ ), ≤ 4δ 2 Dα([θ 0 -δ, θ 0 + δ]). (37) 
Plugging (36)-(37) into (35) we obtain

∆ ϕ (m 1 , m 2 ) ≥ 4δ 2 1 π Dα([θ 0 + 3δ/2, θ 0 + π -3δ/2]) -2Dα([θ 0 -δ, θ 0 + δ]) , if π -δ < dist S 1 (m 1 , m 2 ) ≤ π.
Since α is continuous, the measure Dα has no atoms, and we deduce the convergence

1 π Dα([θ 0 + 3δ/2, θ 0 + π -3δ/2]) -2Dα([θ 0 -δ, θ 0 + δ]) -→ 1 π Dα([θ 0 , θ 0 + π]) = 1,
as δ → 0, uniformly with respect to θ 0 ∈ R. In particular we may choose δ ∈ (0, δ 0 ) sufficiently small such that

∆ ϕ (m 1 , m 2 ) ≥ δ 2 ≥ δ 2 sup S 1 ×S 1 Λ Λ(m 1 , m 2 ), for π -δ < dist S 1 (m 1 , m 2 )
≤ π, and this concludes the proof of Lemma 22.

Lemma 23. For all m 1 , m 2 ∈ S 1 , the function Λ defined in [START_REF] Poliakovsky | A general technique to prove upper bounds for singular perturbation problems[END_REF] satisfies

Λ(m 1 , m 2 ) δ 2 ω -1 (δ/2) , δ = |m 1 -m 2 |,
where ω is the minimal modulus of continuity of α -1 .

Proof. By definition of the modulus of continuity ω we have

|α(t) -α(s)| ≥ ω -1 (|t -s|) ∀s, t ∈ R.
Using this and the fact that ω -1 is increasing in the definition (28) of Λ we obtain, for

|θ 2 -θ 1 | ≤ π, Λ(e iθ 1 , e iθ 2 ) ≥ ˆθ2 θ 1 ˆθ2 θ 1 ω -1 (|t -s|) dtds ≥ ˆθ2 θ 1 ˆθ2 θ 1 1 1 2 |θ 2 -θ 1 |≤|t-s|≤|θ 1 -θ 2 | dtds ω -1 |θ 2 -θ 1 | 2 |θ 2 -θ 1 | 2 ω -1 |θ 2 -θ 1 | 2 . Since δ = |e iθ 1 -e iθ 2 | ≤ |θ 1 -θ 2 | and ω -1 is increasing we deduce Λ(m 1 , m 2 ) δ 2 ω -1 (δ/2) , δ = |m 1 -m 2 |,
for all m 1 , m 2 ∈ S 1 .

Regularity implies finite entropy production for analytic norms

Recall the definition of α in (26), i.e. α ∈ C 0 (R) satisfies

e iα(θ) = γ (θ) ∀θ ∈ R,
and that α is increasing and therefore Dα is a nonnegative measure on R. Here we prove Theorem 8, which follows from the following Lemmas 24 and 25.

Lemma 24. Let m satisfy (2). Assume Dα forms a doubling measure and for any Ω ⊂⊂ Ω we have

sup |h|<dist(Ω ,∂Ω) 1 |h| ˆΩ Π (m(x), m(x + h)) dx < ∞, ( 38 
)
where Π is defined by [START_REF] Bardos | On the extension of Onsager's conjecture for general conservation laws[END_REF]. Then the entropy productions of m satisfy ∇ • Φ(m) ∈ M loc (Ω) for all Φ ∈ ENT, and their lowest upper bound measure satisfies the estimate

  λ Φ ∞≤1 |∇ • Φ(m)|   (Ω ) ≤ C sup |h|<dist(Ω ,∂Ω) 1 |h| ˆΩ Π (m(x), m(x + h)) dx,
for some constant C > 0 depending on B and the doubling constant of Dα.

Proof. Let m ε = m * ρ ε for a regularizing kernel ρ ε . For any Φ ∈ ENT and any test function ζ ∈ C ∞ c (Ω) with support inside an open subset V ⊂ Ω, using estimates similar to those leading to [START_REF] Jabin | Line-energy Ginzburg-Landau models: zero-energy states[END_REF], we deduce that

| ∇ • Φ(m), ζ | ∇Ψ ∞ ζ ∞ lim inf →0 ˆV |Dm | 1 -m 2 dx. (39) 
Given x ∈ V , note that

|Dm (x)| ≤ ˆB (x) |m (z) -m (x)| |∇ρ (x -z)| dz -1 - ˆB (x) |m (z) -m (x)| dz. (40) 
Define the function F : R 2 → R by F (z) = z 2 for any z ∈ R 2 . By convexity of F , we have

1 -m (x) 2 = F (m(x)) -F (m (x)) ≤ ∇F (m(x)) • (m(x) -m (x)) = ∇F (m(x)) • ˆB (x) (m(x) -m(z)) ρ (x -z)dz.
As the level sets {F = λ 2 } are the curves {λγ(θ)} θ∈R , the gradient of F at m = γ(θ) is in the direction of -iγ (θ). Since moreover F is locally Lipschitz we have

∇F (γ(θ)) = -c(θ)iγ (θ), 0 < c(θ) ≤ C,
for some constant C > 0 depending on B. (Explicitly, c(θ) = 2/(iγ(θ) • γ (θ)).) We write m(x) = γ(θ(x)) for some θ(x) ∈ R and m(z) = γ(θ x (z)) for some θ x (z) ∈ R such that dist ∂B (m(x), m(z)) = |θ(x) -θ x (z)|, where dist ∂B denotes the geodesic distance in ∂B, and plug the above expression for ∇F into the previous inequality. This yields

1 -m (x) 2 ≤ C(-iγ (θ(x))) • ˆB (x) ˆθ(x) θx(z) γ (s) ds ρ (x -z)dz = C ˆB (x) ˆθ(x) θx(z)
sin(α(θ(x)) -α(s)) ds ρ (x -z)dz.

For the last equality we used the definition of the continuous increasing function α characterized by γ = e iα . Letting g(x, z) = dist ∂B (m(x), m(z)), we infer

1 -m (x) 2 ≤ C ˆB (x) ˆθ(x)+g(x,z) θ(x)-g(x,z) |α(θ(x)) -α(s)| ds ρ (x -z)dz. (41) 
For all θ, r ∈ R, define 

G θ (r) =
Using that α is strictly increasing, we find that G θ is strictly increasing, and thus G θ is strictly convex. Moreover, for θ -r < s < θ we have |α(θ) -α(s)| < |α(θ + r) -α(s)|, and for θ < s < θ + r we have |α(θ) -α(s)| < |α(θ -r) -α(s)|. So we deduce from the estimate (41) and the expression (43

) of G θ that 1 -m (x) 2 ≤ C 2 ˆB (x) G θ(x) (g(x, z)) ρ (x -z)dz.
Putting this together with (40), we obtain

|Dm (x)| 1 -m (x) 2 C ε - ˆB (x) - ˆB (x) 
G θ(x) (g(x, z)) g(x, y) dz dy.

Let H θ denote the Legendre transform of G θ , i.e. H θ (p) = sup r∈R {pr -G θ (r)} for all p ∈ R.

It follows that ε C |Dm (x)| (1 -m (x) ) - ˆB (x) H θ(x) G θ(x) (g(x, z)) dz + - ˆB (x)
G θ(x) (g(x, y)) dy.

Note that G θ (r) ≥ cr 2 for all r sufficiently large and for some universal constant c > 0.

Therefore, for all p ∈ R, we have H θ (p) = pr * -G θ (r * ) for the unique r * ∈ R characterized by G θ (r * ) = p. Thus for all θ, r ∈ R we have

H θ (G θ (r)) = G θ (r)r -G θ (r) ≤ G θ (r)r = 2r ˆθ+r θ-r (|α (θ + r) -α(s)| + |α (θ -r) -α(s)|) ds ≤ 8 r 2 |α(θ + r) -α(θ -r)| = 8 r 2 Dα ([θ -r, θ + r]) .
For the last inequality we used again the fact that α is increasing. On the other hand, it is clear from (42) that

G θ (r) ≤ 4 r 2 Dα ([θ -r, θ + r]) .
Plugging these two inequalities for H θ (G θ ) and G θ into (44) and changing y to z in the second integral on the right-hand side we obtain

|Dm (x)| (1 -m (x) ) C ε - ˆB (x) g(x, z) 2 Dα ([θ(x) -g(x, z), θ(x) + g(x, z)]) dz. (45) 
Recall from Remark 18 that, for any

θ 1 , θ 2 ∈ R with r = |θ 1 -θ 2 | ≤ π, we have Π(γ(θ 1 ), γ(θ 2 )) = Λ(e iθ 1 , e iθ 2 ) r 2 Dα θ 1 + θ 2 2 - r 6 , θ 1 + θ 2 2 + r 6 .
Using the fact that Dα is a doubling measure, we deduce

Π(γ(θ 1 ), γ(θ 2 )) C 0 r 2 Dα θ 1 + θ 2 2 - 3r 2 , θ 1 + θ 2 2 + 3r 2 
≥ C 0 r 2 Dα ([θ 1 -r, θ 1 + r]) ,
for some constant C 0 > 0 depending on the doubling constant of Dα. Applying this to θ 1 = θ(x), θ 2 = θ x (z) and r = g(x, z) and plugging the resulting inequality into (45) we find

|Dm (x)| (1 -m (x) ) ≤ C 1 ε - ˆBε(x) Π(m(x), m(z)) dz,
for a constant C 1 > 0 depending on the doubling constant of Dα and B.

Integrating this estimate with respect to x ∈ V and recalling (39) we deduce

| ∇ • Φ(m), ζ | C 1 ∇Ψ ∞ ζ ∞ lim inf ε→0 1 ε - ˆBε(0) ˆV Π(m(x), m(x + h)) dx dh, for any ζ ∈ C ∞ c (V ).
Thanks to (38), the limit in the right-hand side is finite. This implies in particular that ∇ • Φ(m) is a locally finite Radon measure, such that

|∇ • Φ(m)| (V ) C 1 ∇Ψ ∞ lim inf ε→0 1 ε - ˆBε(0) ˆV Π(m(x), m(x + h)) dx dh.
Moreover, from this estimate we infer (arguing as in the proof of Proposition 2) that

  λ Φ ∞≤1 |∇ • Φ(m)|   (Ω ) C 1 lim inf ε→0 1 ε - ˆBε(0) ˆΩ Π(m(x), m(x + h)) dx dh,
for any open subset Ω ⊂⊂ Ω. This implies the conclusion of Lemma 24.

Lemma 25. Suppose ∂B is analytic. Then α is analytic and α (t) dt forms a doubling measure.

Proof. The lemma comes down to the fact that an absolutely continuous measure whose density is a nonnegative analytic function is doubling. This is presumably a well known fact, but we found no direct reference for it beyond a (more general) theorem in [START_REF] Garofalo | A p -weight properties of real analytic functions in R n[END_REF] for the square of an analytic function. Since α ≥ 0, the function β(t) := α (t) is well defined. As the square root function is analytic in (0, ∞), it follows that β(t) is analytic at all t such that α (t) > 0 (see [START_REF] Krantz | A primer of real analytic functions[END_REF]Proposition 1.4.2]). Given t 0 with α (t 0 ) = 0, again by the fact that α ≥ 0, we can write, for t in a sufficiently small neighborhood I of t 0 , α (t) = (t -t 0 ) 2p h(t) for some integer p ≥ 1 and some analytic function h with h(t) = 0 in I. Thus β(t) = (t -t 0 ) p h(t) is analytic in I. This shows that β(t) is analytic in R, and thus [13, Theorem 1] can be applied to β to conclude that α (t) dt = β 2 (t) dt is a doubling measure.

Remark 26. The unit sphere of the p norm in R 2 defined by |x| p + |y| p = 1 is analytic for 1 < p < ∞. This follows from the analyticity of the function (1 -|x| p ) 1/p in (-1, 1), which in turn is a consequence of the analyticity of the functions 1 -|x| p and x 1/p in the intervals (-1, 1) and (0, ∞), respectively.

6 Comparison of upper and lower bounds when m is BV

In this section we consider m ∈ BV (Ω; R 2 ) that satisfies (2) and compare the upper and lower bounds that can be obtained for the energy I ε (m ε ) of maps m ε → m. In our anisotropic setting, contrary to the euclidean case • = | • |, there is little hope to obtain matching bounds, and our main new contribution here is to present elementary, but lengthy and tricky calculations which show at least that these bounds (as well as the regularity cost of Theorem 6) are of the same magnitude. We assume that Ω ⊂ R 2 is a bounded simply connected smooth domain. Therefore the constraint ∇ • m = 0 is equivalent to the existence of a function u such that m = i∇u. Using that correspondence, it is somewhat lengthy but straightforward to see that the upper bound construction in [START_REF] Poliakovsky | A general technique to prove upper bounds for singular perturbation problems[END_REF] directly applies (taking

F (A, w) = |A| 2 + 1 -iw 2 2 for A ∈ R 2×2 and w ∈ R 2 in [28, Theorem 1.2]) to provide the existence of a C 1 sequence m ε → m in L p (Ω; R 2 ) for 1 ≤ p < ∞, such that ∇ • m ε = 0 and lim sup ε→0 I ε (m ε ) ≤ ˆJm c 1D (m + , m -) dH 1 .
Here m ± are the traces of m along its jump set J m , and c 1D (z + , z -) is the optimal energy of a one-dimensional transition between two states z ± ∈ ∂B. In other words

c 1D (z + , z -) = inf ζ∈Y ˆ+∞ -∞ (ζ (x)) 2 + (1 -a ν + ζ(x) iν 2 ) 2 dx , (46) 
where

Y = ζ ∈ C 1 (R) : lim x→±∞ ζ = z ± • iν , and 
ν = ν z + ,z -= i z + -z - |z + -z -| , a = a z + ,z -= z + • ν = z -• ν. (47) 
Classically (see e.g. [START_REF] Sternberg | Vector-valued local minimizers of nonconvex variational problems[END_REF] for details), the infimum in (46) can be explicitly calculated. Indeed, assuming without loss of generality that z 

-• iν ≤ z + • iν, for any admissible function ζ ∈ Y we have ˆ+∞ -∞ (ζ (x)) 2 + (1 -a ν + ζ(x) iν 2 ) 2 dx ≥ 2 ˆ+∞ -∞ (1 -a ν + ζ(x) iν 2 ) ζ (x) dx = 2 ˆ+∞ -∞ d dx ˆζ(x) 0 (1 -a ν + s iν 2 ) ds dx = 2 ˆz+ •iν z -•iν (1 -a ν + s iν 2 )
(z + , z -) = 2 ˆz+ •iν z -•iν 1 -aν + s iν 2 ds ,
which corresponds to the expression [START_REF] De Lellis | Structure of entropy solutions to the eikonal equation[END_REF] given in the introduction. Our goal in this section is to prove Theorem 11 by comparing this upper bound with the lower bound (5) provided by the entropy productions:

  λ Φ ∞≤1 |∇ • Φ(m)|   (Ω) ≤ C 0 lim inf ε→0 I ε (m ε ).
This follows from the estimate (49) and Lemma 29 below.

Lemma 27. For m ∈ BV (Ω; R 2 ) satisfying (2) we have

λ Φ ∞≤1 |∇ • Φ(m)| = c ENT (m + , m -) H 1 Jm ,
where

c ENT (z + , z -) = sup λ∈Λ * ˆθ+ θ - λ(t) γ (t) • ν z + ,z -dt for z ± = γ(θ ± ), (48) 
and With these notations we therefore have

Λ * = λ ∈ C 1 (R/2πZ) : ˆR/2πZ λ(t)γ (t) dt = 0 and λ ∞ ≤ 1 . Proof. For any Φ ∈ ENT, the function λ Φ defined by d dθ Φ(γ(θ)) = λ Φ (θ)γ (θ) belongs to Λ * if it satisfies λ Φ ∞ ≤ 1,
λ Φ ∞≤1 |∇ • Φ(m)| = λ∈Λ * |∇ • Φ λ (m)|.
For a BV map m, the BV chain rule implies that the entropy productions are absolutely continuous with respect to H 1 Jm , and

|∇ • Φ λ (m)| = |(Φ λ (m + ) -Φ λ (m -)) • ν| dH 1 Jm = |c λ (m + , m -)| dH 1 Jm , c λ (z + , z -) = ˆθ+ θ - λ(t) γ (t) • ν z + ,z -dt for z ± = γ(θ ± ).
Therefore, restricting the supremum to a countable dense subset of Λ * and applying [3, Remark 1.69] (see also [START_REF] Ignat | Entropy method for line-energies[END_REF]Theorem 3]), we see that the lowest upper bound measure is also absolutely continuous with respect to H 1 Jm and given by

λ∈Λ * |∇ • Φ λ (m)| = sup λ∈Λ * |c λ (m + , m -)| H 1 Jm .
Since λ → c λ is linear we can remove the absolute value in the right-hand side, concluding the proof of Lemma 27.

Combining the lower and upper bounds, we see that for any m ∈ BV (Ω; R 2 ) satisfying (2) we have ˆJm

c ENT (m + , m -) dH 1 ≤ C 0 ˆJm c 1D (m + , m -) dH 1 .
For any fixed z ± ∈ ∂B we may apply this to a divergence-free map taking only the two values z ± , and we immediately deduce the inequality

c ENT (z + , z -) ≤ C 0 c 1D (z + , z -) ∀z ± ∈ ∂B. (49) 
Next we prove the reverse inequality. To that end we start by obtaining a more explicit expression of c ENT for small jumps.

Lemma 28. For all

z ± = γ(θ ± ) ∈ ∂B with |θ + -θ -| = dist ∂B (z + , z -) < π/2, we have c ENT z + , z -= ˆθ+ θ - θ -θz + ,z -γ (θ) • ν z + ,z -dθ , (50) 
where θz + ,z -∈ R is the unique point between θ -and θ + satisfying

γ θz + ,z -• ν z + ,z -= 0.
Moreover we also have

inf dist ∂B (z + ,z -)≥ π 2 c ENT z + , z -> 0. (51) 
Proof. Let z ± = γ(θ ± ) ∈ ∂B with |θ + -θ -| < π/2. Assume without loss of generality that θ -< θ + < θ -+ π/2. To simplify notations, in this proof we drop the indices (z + , z -) and simply write ν = ν z + ,z -and θ = θz + ,z -. Recall that c ENT is given by c

ENT (z + , z -) = sup λ∈Λ * c λ (z + , z -), where c λ (z + , z -) = ˆθ+ θ - λ(θ)γ (θ) • ν dθ = ˆθ+ θ - λ(θ) -λ( θ) γ (θ) • ν dθ.
The last equality is valid because

´θ+ θ -γ (θ) • ν dθ = (z + -z -) • ν = 0 by definition of ν. Since for all λ ∈ Λ * we have λ ∞ ≤ 1, and therefore |λ(θ) -λ( θ)| ≤ |θ -θ|. This implies c ENT (z + , z -) ≤ ˆθ+ θ - |θ -θ| γ (θ) • ν dθ.
The definition of θ and convexity of B ensure that (θ -θ)(γ (θ) • ν) ≥ 0 for θ ∈ (θ -, θ + ), so the above becomes

c ENT (z + , z -) ≤ ˆθ+ θ - (θ -θ) (γ (θ) • ν) dθ .
Conversely, since |θ + -θ -| < π/2 we may choose a π-periodic λ 0 ∈ C 1 (R/πZ) with λ 0 ∞ ≤ 1 and such that λ 0 (θ) -λ 0 ( θ) = θ -θ for θ -< θ < θ + . Note that the π-periodicity of λ 0 ensures ´R/2πZ λ 0 γ = 0 since γ (t + π) = -γ (t), so λ 0 ∈ Λ * . Therefore we have c ENT ≥ c λ 0 and we deduce that c ENT is given by (50).

To prove (51), note that c ENT is defined in (48) as a supremum of continuous functions, and is therefore lower semicontinuous on ∂B × ∂B. Hence the infimum in ( 51) is attained at some z ± ∈ ∂B, dist ∂B (z + , z -) ≥ π 2 . As B is strictly convex, the function θ → γ (θ) • ν cannot be identically zero on any open interval, which prevents c ENT from vanishing unless z + = z -. So the infimum in (51) is positive.

Lemma 29. We have

c 1D (z + , z -) ≤ C c ENT (z + , z -) ∀z ± ∈ ∂B,
for some constant C > 0 depending only on B.

Proof. Let z ± = γ(θ ± ) ∈ ∂B be two distinct points, with |θ + -θ -| = dist ∂B (z + , z -), and θ -< θ + ≤ θ -+ π. Dropping the indices (z + , z -) we denote

ν = i z + -z - |z + -z -| , a = z + • ν = z -• ν ≤ 0,
and recall that c 1D is given by c 1D (z + , z -) = 2 ˆz-•iν

z + •iν
1 -a ν + s iν 2 ds.

Since B is strictly convex, for any θ ∈ (θ -, θ + ) there is a unique s(θ) ∈ (z + • iν, z -• iν) such that a ν + s(θ) iν = β(θ)γ(θ) for some 0 < β(θ) < 1.

The function s : (θ -, θ + ) → (z + •iν, z -•iν) is a decreasing bijection. Taking the scalar product of the above with iγ(θ) and with ν we have 

s(θ) = a γ(θ) • iν γ(θ) • ν , β ( 
) 58 
This inequality is valid for any Lipschitz function Π and BV map m, as a consequence of the rectifiability of J m and the trace properties of m (see e.g. [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]), via a Besicovitch covering argument which we detail next. We first consider J σ = Ω ∩ J m ∩ {c ENT (m + , m -) > σ} for σ > 0, so that H 1 (J σ ) ≤ σ -1 λ Φ ∞≤1 |∇ • Φ(m)| (Ω ) < ∞, and show (58) where the integral on the left is over J σ . Letting σ → 0 then gives (58) by monotone convergence.

Let δ ∈ (0, 1). There exists 0 > 0 and a subset J m ⊂ J σ with H 1 J σ ∩ Ω \ J m < δ and J m + B ε 0 (0) ⊂ Ω , such that for any x 0 ∈ J m and 0 < r < ε 0 , -ˆBr(x0)∩Jσ m ± (x) -m ± (x 0 ) dH 1 (x) < δ, H 1 (B r (x 0 ) ∩ J σ ) -2r < δ r, and -ˆB± r (x 0 ) m (x) -m ± (x 0 ) dx < δ for all 0 < r < 0 ,

where B ± r (x) denote the two half balls obtained by splitting B r (x) along the tangent line to J σ at x. Let ∈ (0, 0 ). By Besicovitch's covering theorem [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.18] there exists an absolute constant Q ∈ N and families B 1 , B 2 , . . . , B Q of pairwise disjoint balls in the set B (x) : x ∈ J m such that

J m ⊂ Q k=1 B∈B k B.
In particular for some k 0 ∈ {1, 2, . . . , Q} we have

ˆ Jm Π m + , m -dH 1 ≤ Q B∈B k 0 ˆ Jm∩B Π m + , m -dH 1 . (60) 
We have B k 0 = {B ε (x j )} j=1,...,p for some x 1 , . . . , x p ∈ J m . Using that Π is Lipschitz thanks to its definition [START_REF] Bardos | On the extension of Onsager's conjecture for general conservation laws[END_REF], and the properties (59) of J m , we find ˆ Jm∩B (x j )

Π m + , m -dH 1 ≤ 2 Π m + (x j ), m -(x j ) + 2L δ H 1 (J σ ∩ B (x j )) Noting from the properties (59) of J m that Taking the limits ε → 0 and then δ → 0, and finally σ → 0, we obtain (58), which concludes the proof of Lemma 32.

H 1 J σ ∩ Ω ≥

  and λ Φ a,b = λ Φ + a. Hence we may choose a such that λ Φ a,b has zero average for any b ∈ R 2 , and b such that Φ a,b has zero average. Thanks to Lemma 12, for any test function ζ ∈ C ∞ c (Ω) with support inside an open subset V ⊂ Ω, we have
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  and reciprocally, to any λ ∈ Λ * one can associate an entropy Φ λ ∈ ENT by setting Φ λ (γ(θ)) = ˆθ 0 λ(t) γ (t) dt.

  θ) = a γ(θ) • ν .The change of variable s = s(θ) therefore givesc 1D (z + , z -) = -2 θ) • ν) 2 s (θ) dθ = -2 ˆθ+ θ - (γ(θ) • ν -a) γ(θ) • ν + a (γ(θ) • ν) 2 s (θ) dθ. (52) Since |γ | = 1, from the explicit expression of s(θ) we have |s (θ)| ≤ 2|a| |γ(θ)|/(γ(θ) • ν) 2 .For |θ + -θ -| < π, using moreover the inequality γ(θ) • ν ≤ a < 0, which follows from the convexity of B and implies in particular (γ(θ) • ν) 2 ≥ a 2 , we deduce ˆθ θ -

2 . 2 ,Π m + , m -dH 1 .

 221 θ)(γ (t) • ν) dt.(54)For |θ + -θ -| < π/2, this last integral is exactly the expression of c ENT (z + , z -) given by Lemma 28. Therefore, combining this with (53) we deducec 1D (z + , z -) 1 |a z + ,z -| 3 c ENT (z + , z -) for dist ∂B (z + , z -) < π The function (z + , z -) → |a z + ,z -|,is continuous on ∂B × ∂B \ {z + = z -}, vanishes exactly when dist ∂B (z + , z -) = π, and for z + close to z -it satisfies|a z + ,z -| -→ |iγ (θ) • γ(θ)|, as (z + , z -) → (γ(θ), γ(θ)).By convexity of B we have |iγ (θ) • γ(θ)| ≥ α 0 > 0, where α 0 is the largest radius of a euclidean ball contained in B. From these properties we deduce thatinf dist ∂B (z + ,z -)≤ π 2 |a z + ,z -| > 0,and the above bound on c 1D impliesc 1D (z + , z -) ≤ Cc ENT (z + , z -) for dist ∂B (z + , z -) < πfor some constant C > 0 depending only on B. Since c 1D ≤ 2π and c ENT is bounded away from zero for dist ∂B (z + , z -) ≥ π/2 thanks to Lemma 28, this inequality is true for all z ± ∈ ∂B.c ENT (z + , z -) ≤ 2 ˆθ+ θ (θ + -τ )(τ -θ -) Dα(dτ ).In both cases, we havec ENT (z + , z -) ≤ 2 ˆθ+ θ - (θ + -τ )(τ -θ -) Dα(dτ ),and thanks to Remark 18 and the symmetry of Π, this last expression is exactly Λ(e iθ -, e iθ + ) = Π(γ(θ -), γ(θ + )) = Π(z + , z -).Next we deduce from Lemma 31 and properties of BV maps that the regularity estimate provided by Π controls the entropy productions, proving Theorem 10. Recall for an entropyΦ ∈ ENT the C 1 function λ Φ is defined by d dθ Φ(γ(θ)) = λ Φ (θ)γ (θ). Lemma 32. Let m ∈ BV Ω; R 2 satisfy (2). Then for any open set Ω ⊂⊂ Ω we have   λ Φ ∞≤1 |∇ • Φ(m)|   Ω ≤ C 0 lim sup |h|→0 1 |h| ˆΩ Π (m(x + h), m(x)) dx,(57)where C 0 > 0 is an absolute constant.Proof. We know from Lemma 27 that if m is BV thenˆJm∩Ω c ENT m + , m -dH 1 ,where c ENT is defined by (48). Thanks to the inequality c ENT ≤ Π provided by Lemma 31, Hence the proof of Lemma 32 follows from the inequality ˆJm∩Ω Π m + , m -dH 1 ≤ C 0 lim sup |h|→0 |h| -1 ˆΩ Π (m(x + h), m(x)) dx. (
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  2ε-ˆB+ (x j ) -ˆB-(x j ) Π (m(x), m (x)) dx dx + 5Lδε,for some L > 0 depending only on Π. Summing over j = 1, . . . , p and taking (60) into account, we deduceˆ Jm Π m + , m -dH 1 ≤ 2Qε p j=1 ˆB+ (x j ) -ˆB-(x j ) Π (m(x), m(x)) dx dx + 5Lδ pε.
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 11 (B (x k ) ∩ J σ ) ≥ p , this implies ˆ Jm Π m + , m -dH 1 ≤ 2Qε p j=1 ˆB+ (x j ) -ˆB-(x j ) Π (m(x), m (x)) dx dx + 5Lδ H 1 J σ ∩ Ω . ˆB+ (x j ) -ˆB-(x j ) Π (m(x), m (x)) dx dx ≤ 16 πε p j=1 ˆB+ (x j ) -ˆB2 (0) Π (m(x), m (x + h)) dh dx x), m (x + h)) dx,provided < 1/2 dist(Ω , ∂Ω), so plugging this into the previous inequality we deduceˆ Jm Π m + , m -dH 1 ≤ |h| ˆΩ Π (m(x), m (x + h)) dx + 5Lδ H 1 (J σ ) .

  1 then follows from the next Lemma, which is the counterpart of [12, Lemma 2.6].

Lemma 13. Let µ be a probability measure on R 2 that is supported on ∂B and satisfies

[START_REF] Jin | Singular perturbation and the energy of folds[END_REF] 

for all Φ 1 , Φ 2 ∈ ENT. Then µ is a Dirac measure. Remark 14. In the euclidean case • = | • |, building on earlier work by Aviles and Giga

[START_REF] Aviles | A mathematical problem related to the physical theory of liquid crystal configurations[END_REF]

, Jin and Kohn

[START_REF] Jin | Singular perturbation and the energy of folds[END_REF] 

introduced two fundamental entropies Σ 1 , Σ 2 : S 1 → R 2 given by

  ds, and conversely, one can check that any solution of ζ = 1 -a ν + ζ iν 2 with initial condition ζ(0) ∈ (z -• iν, z + • iν) is admissible, i.e. belongs to the class Y , and achieves equality. So we have c 1D

Note in order to get the pointwise convergence in[START_REF] Krantz | A primer of real analytic functions[END_REF] for every z ∈ ∂B we can not define λδ via the standard symmetric (across zero) kernel centered on θ0, θ0 + π. This is why we do the two step procedure of defining λδ then modifying it.

Remark 30. Combining the expressions (52) and (54) obtained in the proof of Lemma 29 and passing to the limit as θ + -θ -→ 0 one obtains

Hence for infinitesimally small jumps, the costs c 1D and c ENT differ by the above multiplicative factor, which depends on the direction of the jump.

Regularity controls entropy productions when m is BV

In this subsection we prove Theorem 10. To that end we first compare the jump cost c ENT to the regularity cost Π defined in [START_REF] Bardos | On the extension of Onsager's conjecture for general conservation laws[END_REF].

Lemma 31. We have

for all z ± ∈ ∂B.

Proof. We let z ± = γ(θ ± ) for some θ ± ∈ R such that |θ + -θ -| = dist ∂B (z + , z -) ≤ π, and assume without loss of generality that θ -< θ + . From the proof of Lemma 28 we have