N

N
N

HAL

open science

Tackling Threatening behavior through a Semantic
Approach

Claire Laudy, Simon Fossier, Johann Dreo

» To cite this version:

Claire Laudy, Simon Fossier, Johann Dreo. Tackling Threatening behavior through a Semantic Ap-
proach. 25th International Conference on Information Fusion (FUSION), International Society of

Information Fusion, Jul 2022, Linkdping, Sweden. 10.23919/FUSION49751.2022.9841333 .

04128705

HAL Id: hal-04128705
https://hal.science/hal-04128705

Submitted on 14 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04128705
https://hal.archives-ouvertes.fr

Tackling Threatening behavior through a Semantic
Approach

Simon Fossier
Thales
Palaiseau, France

Claire Laudy
Thales
Palaiseau, France
claire.laudy @thalesgroup.com

Abstract—We introduce a new approach to characterize and
detect threatening behaviors in surveillance systems, without rely-
ing on history or expertise. This approach consists in simulating
the worst-case attack plans, fusing their semantic descriptions
and using the produced patterns to raise alerts in operational
conditions. We demonstrate our set of tools on a simple scenario
involving geolocated sensors looking for moving vehicles targeting
a protected objective. We find that the system is able to recover
well-grounded graph patterns defining detection rules which
make sense in the operational context. We believe that our
approach achieves a relevant compromise between data-based
and expertise-based systems, and allows for a good balance
between efficiency and understandability.

Index Terms—Trajectory Fusion, Optimization, Motion Plan-
ning, Semantization, Threat Detection, Situation Awareness

I. INTRODUCTION

Surveillance systems are typically composed of a set of
sensors that track targets on the zone, in the objective of
raising alerts when a “threatening” behavior is detected. These
systems are typically designed by an expert who knows the
operational context and the definition of targeted behaviors.
Modern approaches may also make use of data captured by
an existing system in order to learn the targeted behaviors,
and possibly improve the system design iteratively [1]. These
approaches require to be able to actually identify a threatening
behavior in a database of situations. Once a set of threatening
behaviors is identified, it can be used to train a classifier, which
will be able to detect if a given situation is threatening or
not [2]. However, most classification approaches would not be
able to easily transfer their knowledge to an explainable form,
such as a geometric definition of a behavior [1].

In this work, we propose an intermediate approach which
substitutes the need for an explicit definition of a specific
behavior with an implicit characterization based on the sole
definition of the target’s objectives. A simulator generates
expected behaviors by optimizing the attainment of the threat’s
objective and these optimal simulations are interpreted as a
base of probable behaviors to reach the objectives. This is
close to goal-based analysis [3], but the simulator models
the whole behavior, instead of letting an expert defining key
points on the trajectories. These optimized situations are then
discretized, semantic information is attached to them thanks
to the use of a generic ontology, and common explicit patterns

simon.fossier @thalesgroup.com

Johann Dreo
Computational Systems Biomedicine lab.,
Department of Computational Biology,
Institut Pasteur, Université Paris Cité, Paris, France
johann.dreo @pasteur.fr

are finally extracted among the threatening behaviors, which
constitutes an explicit basis for generating alerts.

We thus provide a new way to raise alerts on threaten-
ing behaviors, which may complement more classical rule-
based [4] or learning-based approaches [5]. This is particularly
important for situations where no sufficient observations or
expertise is available, which is a common real-life occurrence
in surveillance systems [6].

We rely on the assumption that a threatening target, that
aims at traversing the system with a given objective, will try
to avoid detection while being efficient (typically, fast) in its
traversal [7]. For instance, a vehicle will try to traverse a
monitored area as fast as possible, in order to reach the exit
point which allows for an escape [8].

The objective is to help surveillance operators in intercept-
ing a target before it reaches a goal or hides. Technically, this
translates into: how to automatically trigger relevant alerts,
when there is no historical records of nefarious activity, and
no expert to explicitly design the alert system? This forces to
think in terms of states and optimal behaviors: how can we
design a system that anticipates the behaviors of the antagonist,
while focusing on the surveillance sensors that are available,
and that raises an alert when the measurements match a
behavior pattern? Moreover, how can we predict an intercept
state and/or a goal state in which the target may be present in
the future, to be able to stop it?

The advantage of our approach is that it tackles the problem
by answering the following questions:

o What are the possible plans an attacker would follow if
they wanted to attack the system?

e What would be the common features between these
possible plans?

o How to leverage these commonalities to catch the at-
tacker?

Prior art only considers learning approaches on raw data
from the sensors, explicit rules, or discretization of features
in a human behavior video [1]. To our knowledge, this work
is the first to compensate for the lack of real labeled data by
using fully optimized simulation, and semantic graph fusion
to raise alerts.

II. COUPLING OPTIMIZATION AND FUSION TO
PARAMETERIZE AN ALERTING SYSTEM

Our approach relies on the synergy of three elements:

« Simulation of threatening targets by a planning optimizer,
which computes a set of possible plans of attacks on the
system. A large set of simulations, involving different
threat assumptions, provides a consequently large set of
attack plans.

« Semantization of those plans, i.e. their transformation
into a concept-centric description, using a given ontology,
which leads to a large set of semantic graphs describing
the plans of attack. This graph set is then fused to
obtain a description of the most common elements that
characterize threats, i.e. the elements that the alerting
system should try to identify — in other words, patterns
of attack.

o« When the system is in use, these patterns of detec-
tion are correlated with the sensor measurements: the
measurements first go through the same semantization
process, then are correlated with the fused patterns. When
this behavior matching method returns a high level of
correlation, it is interpreted as a potential threat, which
triggers the raising of an alert.

In this work, we consider a geolocated system, which threat
vehicles traversing a given zone. Sensors are placed to detect
moving threats in their assigned detection area, are usually
characterized by a detection range and sensitivity, but can
also have highly anisotropic capabilities by design or due
to the terrain (for instance, range difference in plains vs.
forests). On the attacker side, the threat can move more or
less easily, depending on its location (e.g. move fast on a
road with a car, move slowly while walking in the forest).
The target behavior itself can be summarized by a trajectory,
from a boundary of the system’s domain to another boundary.
During detection, there are remaining unknowns regarding the
attacker’s capabilities (e.g. the type of vehicle they will use),
and it can be necessary to enumerate and work with several
options (e.g. the attacker would use either a car or a truck).

The overall process can be summarized as follows:

1) Threats are simulated by a motion planning optimizer
that computes attack trajectories on the system. A large
set of simulations, involving different threat assump-
tions, provides a consequently large set of plans of at-
tack. This is our base dataset for describing the possible
threats.

2) These plans are then semantized with the support of
an ontology (description of the different elements that
appear in the domain), which leads to a large set of
semantic graphs. This is a simpler representation of the
threats, which has the advantage of being discrete and
understandable in terms of concepts, zones, speeds, etc.

3) The set of graphs is then fused, so as to obtain the
common and/or most threatening parts in the semantic
graphs. Each fused graph forms a pattern of attack. This
is our reference information to raise alerts.

4) When the system is in use, the sensors provide a
characterisation of the threat behavior (e.g. a trajectory,
a type of vehicle...). This behavior is passed through
the same semantization process, leading to a set of real-
time semantized detections, now expressed in the same
formalism as the patterns of attack.

5) The detections are finally matched with the patterns of
attack, in order to raise progressively increasing alerts
as the measured semantic graph matches an increasing
sub-part of a pattern of attack.

At first glance, it could be thought that most of these
steps have implementations in the state of the art. However,
when taking into account the input-output formalism of the
successive steps, as well as the required association of these
steps with the constraints associated to the problem, this
creates a new implementation problem in itself and specific
challenges. More specifically:

e 1) + 2) : The semantization of plans of attacks into
conceptual graphs is highly unusual, since plans are
usually processed at the event level or at the kinematics
level.

e 3) +4) + 5): Matching real-life detections with semantic
graphs without expert transformation rules is a challenge
in itself, made possible by the semantization module
that couples the zone/subnetwork description with attack
paths and transforms them into a semantized graph,
allowing for graph matching algorithms to be applied on
this coherent dataset.

A. Semantic Trajectory Modelling

One key aspect of our approach is the semantic modelling
of the trajectories. We choose to model them using conceptual
graphs. Conceptual graphs [9] are a family of formalisms for
knowledge representation, made of ontological and factual
knowledge. A CG is a bipartite graph representing factual
knowledge referring to a vocabulary that represents the on-
tological knowledge.

A vocabulary is a 5-tuple V = (T¢,Tr,0,1,7). Tc and
Tr, that respectively correspond to concept and relation types,
are two partially ordered disjoint finite sets, where ordering
corresponds to generalisation. T contains a greatest element
T. Each relation type has an associated arity. A signature
specifies the arity and the maximal concept type of each
argument of a given relation type. o maps to each relation type
r its signature o(r), i.e. a tuple (¢4, ...t,) where each t; € T¢,
thus specifying its arity, n, and the most general concept type
t; for each of its argument. [is a set of individual markers
used to instantiate concept nodes. 7 is a mapping from [to T¢
that defines the type instantiated by each individual marker.

A CG is a bipartite labeled multigraph represented as a 4-
tuple G = (C, R, F, label) defined over such a vocabulary V.
C and R correspond to concept and relation nodes, F denotes
the set of the edges connecting elements of C' and R. label
is a labelling function from C' to T x [and from R to Tg.
For any r € R, label(r) =t,. € Tg is the type of r and for

any ¢ € C, label(c) = (tc,ic) € Te x I where t. is the
type of ¢

The vocabulary we developed to model semantic trajectories
is made of an ontology and a set of signatures associated with
the relations types defined in the ontology. The ontology is
depicted on Figure 1

¢, Camelot | Mueme

Classes = Individusls = Comments = Changes by Entity = History =

Froperties =
Class Hierarchy
o~ o“ o
¥ OowkThing
¥ O Entity
v Ares
v Monitos
Dy
Fix
¥ © Unmanitoredares

Specislares
Delay
DetectionProbability

¥ OEvent
Entry
Exit
Prasence
Speed
¥ O Tersin
¥ O Ground
Beach
Field
Forest
Rosd
¥ O Water
River
Ses
Trajectory
¥ Q vehicle
Car
FastBost
Swim
Walk
durstion
in
precedes
target
terrain_type
with_probebility
with_speed
with_vehicle

Fig. 1. Ontology for semantic trajectories modelling

We define the following relation signature in order to
express the trajectories.

e in(Presence, Area, Duration),

o with_speed(Presence, Speed),

o precedes(Presence, Presence, Delay).

An elementary unit of a trajectory (EUT) of a vehicle
is defined by its presence in a given area for a given du-
ration and with a given speed. A trajectory is defined as
the succession of such EUTs, this succession being defined
using the precedes relation defined above. Figure 2 depicts
an example with a trajectory composed of a succession of
Presence in the radar2 zone and in the uavl zone.

Speed : 30 Speed : 30
2

Delay : 5,48
2

ot speed > . Cotnpeed >

Presence : P1 Presence : P2

|2 -]]2
Y Y

N N
2 3 2 3

FixedArea: F1 Duration : 8,55 DynamicArea: D1 Duration : 5,53

Fig. 2. Example of a semantized trajectory

B. Threat Planning Optimization

In this work, the objective of the threat model is to provide
a set of paths which captures the worst case scenario, where
the threat behaves optimally. This set I'* C I' encloses paths
going from a “source” set of EUTs T € Q (i.e. where the
threat comes from), to a “targeted” set of EUTs © € 012 (i.e.
what the threat wants to reach by traversing the domain).

In this setting, the navigation of threats are a priori com-
pletely free, in the sense that it only has to satisfy a transport
equation and thus satisfy locally the conservation of energy.
More realistically, though, paths may be subject to momentum-
related or environmental constraints, such as obstacles, radius
of curvature (depending on the speed), bounded accelerations,
bounded speed, etc. The model of navigation should thus be
able to capture the characteristics of different vehicles. The
following section introduces such models, and we refer the
reader to [10] for more details.

1) Eikonal model: Solving such a constrained navigation
problem is equivalent to solving the eikonal equation:

Vulp) = &5 Vpeq N
u(092) =0

for a given speed function ¢ : Q —]0, ool.
The goal thus becomes to recover the value function w :
Q — [0, 00]:
u(p) := inf {lengthz(v)|y : [0,1] — €,
7(0) € T,4(1) € ©}
In the general sense, the path length should be measured as
the sum of the length of (arbitrarily small) legs (i.e. sequence

of two EUTs), with respect to a given metric F : Q x E; —
[0, o0

1
length »(v) := /0 Fywy (7(1)) dt

F may be a conformal metric (locally proportional to the
Euclidean one) of the form F(p) = ||p||/c(p) (similar to
equation 1).

The (generalized) eikonal equation then reads:

f;(du(p)) = 1, where 7 := sup{(p,p) | Fp(P) <1} (2)

which allows to capture several anisotropic navigation con-
straints (e.g. radius of curvature, drift, detection probability,
etc.) within F, at each area of the domain.

It is worth noting that solving the eikonal equation 2 can be
done efficiently in O(nlogn) by causal eikonal solvers, while
also computing the vector field of optimal control v : R —
S™=1 at no additional cost, as:

H(p) — —VuP)
P W) @

Integrating the vector field (3) from some sources ¥ € T
effectively recovers the optimal paths that reach the nearest
—in the sense of the metric F— targeted locations ¢ € ©.
Note that the number of recovered paths is the same as the
number of sources, effectively limiting the space of threat’s
behavior.

2) Sensor Network Traversal: Since we consider the prob-
lem of a threat traversing a domain on which a network of
sensors is located, we define a “track” as a path linking a
source point to the nearest entry in an area that the system is
watching over. Sensors are modelled as areas where the system
has a high probability of detecting (some kind of) vehicles.
The cost metric F thus models the probability of detecting
the threat for each point of the domain.

If F(p) > 0Vp € Q (i.e. if there is a non-null probability
of detecting a threat out of any sensor field of view), then the
optimal paths resulting from integrating (3) are unique. Note
that, in that case, if the threat does not traverse a sensor’s
field of view, then the problem falls back to a shortest path
problem, hence producing realistic paths [11].

As an extension of this model, it is possible to set up
a two players game model where a player optimizes the
sensor network configuration against the player who optimizes
the threat paths, without loss of generality (see [12] for an
example).

In this work, we either use the HFM solver [13] to optimize
threat tracks, or produce hand-made tracks with realistic
shapes honoring equation 2.

C. Plans Semantization

The semantization consists in transforming a given threat
plan into a graph representation following the ontology and
relational structure defined in section II-A.

First, we use layers covering the navigation domain. Each
layer is linked to a specific semantic meaning, such as the oper-
ational boundaries, the navigation speeds, or the probabilities
of detection. Each layer is a partition of the domain, i.e. a
set of non-overlapping layer subzones. Each layer subzone in
those partitions is thus holding an atom of data with a semantic
meaning (“detection = 50%”, “boat speed = 12 kts”, or even
“no data”™).

The union of all layers produces a new partitioning of the
domain in a set of non-overlapping areas of interest, each of
which holds a list of data atoms, with one atom for each
layer. An event is defined as an entry of a threat into an
area of interest, or an exit from this area. The semantization
then transforms a path traversing the navigation domain into
a sequence of events.

In summary, the semantization process consists in:

1) computing the union of all layers,

2) discretizing the input threat track in a list of entry/exit

events in/out of the traversed areas,

3) transforming this discrete sequence of events in a con-

ceptual graph.

This results in tracks defined in the conceptual graph for-
malism, e.g., as “Presence of a SpeedBoat in MonitoredArea
zone X1, with average speed 25, during a time period of 9,
followed by a presence in zone Y2, with [etc.]”.

The computational geometry functions are implemented
with the CGAL library [14], using the kernel with exact
predicates & exact constructions, and the 2D arrangements
package [15].

D. Semantic Trajectory Fusion

The fusion process developed in the semantic information
fusion module is a hybrid between the Apriori algorithm [16]
and Taxogram [17].

Agrawal and Srikant [16] proposed the Apriori algorithm,
for frequent item set mining and association rule learning from
transactional databases. It operates on databases containing
transactions (i.e. collections of items). Each transaction is seen
as a set of items (an “itemset”).

The algorithm discovers frequent item sets in the database in
a “bottom up” approach. It extends already processed frequent
item sets with new items. Thus, the algorithm first processes
the frequent item sets of length 1 and then extends them one
item at a time. The frequency condition is tested by processing
the support of an item set in the database and comparing it to
a threshold. The support of an item set is the number of times
this item set appears in the database. Given a threshold e, the
Apriori algorithm identifies the item sets which are subsets of
at least e transactions in the database.

Taxogram is a taxonomy-superimposed graph-mining algo-
rithm that can efficiently discover frequent graph structures
in a database of taxonomy-superimposed graphs. Taxonomy-
superimposed graph describes graphs which nodes take value
in a taxonomy. It is very close to our conceptual graphs, the
nodes of which take types in the taxonomy part of an ontology.
However, in conceptual graphs, concept nodes are not only
composed of types, but also value, that are not defined in the
taxonomy part of the ontology.

Taxogram has two main properties. First, it performs a
subgraph isomorphism test once per class of patterns, which
are structurally isomorphic, but have different labels. Then,
it reconciles standard graph mining methods with taxonomy-
based graph mining and takes advantage of well-studied meth-
ods in the literature.

The Taxogram algorithm is composed of three stages:

1) relabelling nodes in the input database,

2) mining pattern classes/families and constructing associ-
ated occurrence indices, and

3) computing patterns and eliminating useless (i.e., over-
generalized) patterns by post-processing occurrence in-
dices.

In the Semantic Information fusion module, as in Taxogram,
the graph data base is first generalised. Each concept of each
graph of the database is generalised. That is to say that the
type of concept is replaced by its most general super-type in
the ontology that is also a subtype of Entity.

Once the graphs of the database are generalised, they are
transformed into itemsets, in order to be processed by Apriori.
Each relation of the graph, with its linked concept nodes is
transformed into an item. The set of relations composing each
track graph is thus transformed as an itemset. The Apriori
algorithms processes a set of itemsets, searching for frequent
patterns into these itemsets.

Once frequent generalised patterns are provided by Apriori,
we use the approach described in [17] in order to process the

specific patterns.

E. Attacks Detection

The challenge of this final step is twofold: align the real
trajectories with the frequent patterns extracted by Semantic
Fusion, and define the explicit rules for triggering alerts.

Actual trajectories are provided by the different sensors on
the monitored zone. Here, our base material is system tracks,
which stem from the kinematic fusion of sets of sensor tracks
associated with a single object detected by multiple sensors.
For this paper, we make the assumption that there is a single
system track per actual moving object, although our tests
showed that, more often than not, an important preprocessing
work is required, e.g. to manage track drops due to blind zones
or objects closer than sensor resolution.

To align the system tracks with the semantic frequent
patterns, we first use the same semantization tool as described
in II-C. This ensures that the semantized version of the system
trajectory follows the same ontology as the frequent patterns.

Then, we need to match zone transition sequences, i.e. the
semantized track, with the frequent patterns which characterize
the threat. Though seemingly straightforward, this matching is
affected by:

« variability: the threat patterns provide hints about, e.g.,
expected speeds during a zone crossing, or time necessary
to cross a zone, but the actual detections will never
perfectly match these average/median/fused times. It is
therefore not possible to use purely Boolean predicate-
based matching systems, and we need to rely on proba-
bilistic or threshold-parameterized rule systems.

o observability: threat models are based on motion planning
in a fully modelled zone, but in actual contexts the threats
are not guaranteed to be observable with 100% uptime.
If a given zone is not or poorly covered by the detection
tools available to the system, the track will either lack
a portion of the plots that in this zone (best case) or
even be discarded, leading to a new track created when
newly re-detected in the next zone, with a new identifier.
This is linked to the preprocessing mentioned earlier.
Typically, a mitigation system has to be put in place, so
as to both manage the inobservable zones and perform
an hypothesis-based matching between partial tracks so
as to recreate the full behavior of the threats.

o quantization/sampling side effects: the fact that the ob-
servations and the threats are described in a discrete
paradigm results in classical time-space alignment issues,
and some measure of interpolation is necessary.

After alignment, we define a set of metrics from the
pattern/track correlation, which include: track vs. pattern speed
alignment; zone traversal time alignment; presence/absence of
missing segments in tracks vs. patterns.

Moreover, a dynamic alert system requires timeliness, i.e.
the capability to raise alerts at the right time, with as much
early notice as possible. By design, the threat patterns span
the whole threat behavior, from early detection to threat
realization. Therefore, we cannot wait until the whole threat

pattern is matched by a trajectory to raise the alarm. This is
managed by defining a level of completion of the patterns,
i.e. a current position in the threat pattern (close or far to the
objective).

The track is also complemented with contextual informa-
tion, issued from the system identification capabilities. This
information is either (1) controlled/measured — based on sensor
measurements, e.g. video-extracted; (2) declarative — retrieved
directly or indirectly from reports from the objects, e.g. AIS;
(3) curated — aggregated in trustworthy databases with some
human verification involved, e.g. ship registration databases.

Finally, all these metrics are merged into a rule system tuned
with the stakeholders, to trigger alerts. These alerts are raised
or dropped dynamically, and complemented with high-level
indicators, such as a confidence level, an estimated time to
completion, or hints on targets or geographical elements to be
highlighted, based on the part of the frequent patterns which
is still to happen.

III. EXAMPLE

We applied the approach on several scenarios, with contexts
ranging from a couple of departure and target points, to much
bigger ones. We describe in the following section one of our
middle size scenarios and present the results we obtained in
terms of detection rules.

A. Scenario

The scenario depicted on Figure 3 takes place around the
island of Salamine in the Saronic Gulf. The set of targets
for the attackers, depicted in red on the figure, is situated
in the inner part of the Eleusis Bay, along the coast. Possible
departure points, depicted in yellow, are situated in the Saronic
Gulf open sea, on the other side of the island.

Fig. 3. Salamine Island Attack scenario

The area is too large to be fully covered by detection
systems. Two fixed-position radars are located in the outwards
coast, depicted in light blue circular sectors and referred

as F1 and F2 in the following. In addition, depicted in
darker blue rectangles, two uncrewed aerial vehicles (UAV)
provide dynamic detection systems, referred to as D1 and D2,
and patrol within the gulf in predetermined flight patterns.
Notably, it can be assumed that potential attackers are aware
of the radars range and detection efficiency, since they are
permanently installed, but not of the UAVs.

B. Threats simulation and tracks semantization

In order to keep the example visually interpretable, we
generated only a few threatening tracks for this example. These
tracks are depicted on figure 3 as the green lines between the
possible departure and target points.

The tracks are then semantized so that they are transformed
into semantic graphs before the fusion step. Figure 2 depicts
the resulting semantic graph for the track depicted in plain
line. This track first crosses the F1 detection area, then avoids
the D1 area by bypassing it on the right and finally crosses
the D3 detection area.

C. Track fusion

The fusion module aims at finding recurrent patterns across
the different tracks, in order to generate detection rules from
them. We want to detect with the same rule all tracks that
have close trajectories; therefore, the patterns have to be
underspecified, with regards to the input semantic tracks.
However, as depicted on figure 2 each graph track has specific
(and usually different) values for the duration of the presence
of the vehicle in an area, speed of the vehicle and delay
between the crossing of two successive areas. Therefore, the
fusion algorithm needs to integrate a set of parametered fusion
heuristics, which fuzzify the values by associating them to
ranges of speed, duration and delay.

Second, the fusion algorithm needs to be parametered with
the minimal support desired for each pattern graph (and thus
detection rule), over the initial data set of input tracks. Here, a
graph pattern is said to be supported by a set of input graphs
if it represents these input graphs, i.e. the support of a graph
pattern is the proportion of graphs in the input data set that
are more specific than the graph pattern.

Obviously, we don’t want to have too many rules, since
it would reduce the interpretability of the detection rule set
by operators. On the other hand, if rules are too generic and
support too many threat configurations, the information they
carry may be of little use to the operator: a rule being triggered
would not give enough specific information on the behavior
of the vehicle for an appropriate action to be taken.

For this example, if we target a minimum support of 50%
for the graph pattern, we obtain only one frequent pattern,
representing tracks that cross the D2 and then the D3 areas.
This pattern is depicted on figure 4. None of the northern
tracks are represented, and no difference is made between
tracks coming from the east (not crossing F2) and the ones
coming from the south (crossing F2).

When we lower the minimum support for graph patterns
to 25%, two additional patterns are found (and depicted on

Speed : 30 Speed : 30
Delay : [2,8]
2

Presence : P1 (\) Presence : P2
B o i
<D <D
N N

2 3 2 3

DynamicArea: D2 Duration : [6,9] DynamicArea: D3 Duration : [2,5]

Fig. 4. Graph pattern with support of 50%

figure 5) by the fusion algorithm. These patterns may then be
translated into detection rules.

Speed : 30 Speed:30
2 2
1

Speed : 30

Delay: [2,8]
2

3

Delay: [2,3]

Dynamichrea: D3 ‘ Duraton: 2,51

=
Delay : (2, 8] 3

DynamicArea: D3 ‘ Duration 2, 51

| omamicares:02 Duration 16, 9]

Fig. 5. Graph pattern with support of 25%

D. Detection rules

Semantization allows us to match the detected tracks with
the graph patterns. The matching is checked for each threat
and each threat pattern, reiterated over time, and is performed
by following the sequence implied by the Precedes relation.

Each elementary unit of trajectory (EUT, linked by
precedes) involves multiple values. Atomically, the com-
parison is straightforward when the values associated to the
extracted concepts are fuzzified (here, Duration or Delay
intervals) and imply a notion of membership of the seman-
tized value to the fuzzified value. When the fused value is
sharp (here, Speed), the comparison will require a heuristic
membership criterion, typically a fuzzy or sharp threshold in
the difference between values.

Then, at a given point in time, a potential threat will have
matched a certain number of sequential EUTs. We check
whether the threat pattern is matched from the beginning, if
there are additional or missing EUTSs, and how many EUTs
in the pattern have been matched at that instant. From these
criteria, we build, in link with the stakeholders, an aggregated
threat level and a scale of operational alert levels.

Finally, during operation, threats will be continuously
matched against patterns, their threat levels evaluated, and
alerts raised with the appropriate levels, with the estimated
time to completion, and with the estimated end zone (linkable
to the targeted asset).

IV. CONCLUSION AND PERSPECTIVES

In this paper we presented an approach for building a
surveillance system based on simulation of attacks rather than
on the expertise of an operator defining specific threatening
behaviors within specific contexts, or on a labeled dataset.
The process we propose follows 5 steps:

1) the simulation of threatening behaviors (tracks genera-
tion),

2) the semantization of these tracks,

3) the fusion of the semantized tracks during the system
preparation phase,

4) the semantization of tracks provided by sensors during
operation,

5) the detection of threatening vehicles which behavior
matches the behavior patterns found on step 3.

While we present here the use of the process with the aim
of automatically generating behavior rules that are understand-
able by a human operator, a perspective of our work is to use
it in order to configure the sensors as well. To do so, we can
take advantage of the fact that threatening tracks are simulated.
The idea is to add a system that will automatically optimize
sensors positioning, in order to maximise the probability of
detection of a vehicle (see [11], [12] for examples, albeit not
involving semantic fusion). The process described here then
remains unchanged: semantic behavior rules, associated with
the best sensor positioning will be generated, and the final
probability of raising an alert will be used as an objective
function of a high-level optimization problem.

Furthermore, as the whole process would be automated, one
may be able to find the best operational compromise between
the probability of detection and the understandability (and thus
usability) of detection rules.

More generally, the work described in this paper may also
be applied on any topology that features a generic notion of
“plan”. We intend to apply it within the cybersecurity domain,
i.e. the study and monitoring of actions in information systems
networks. In such a use-case, the semantization of a plan
resulting from an automated planning problem optimization
may even bring more information to the following layers.

REFERENCES

[1] K. K. Verma, B. M. Singh, and A. Dixit, “A review of supervised
and unsupervised machine learning techniques for suspicious behavior

[5] A. Wiliem, V. Madasu, W. Boles, and P. Yarlagadda, “A suspicious
behaviour detection using a context space model for smart surveillance
systems,” Computer Vision and Image Understanding, vol. 116, no. 2,
pp. 194-209, 2012.

[3]

[4]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

recognition in intelligent surveillance system,” International Journal of
Information Technology, pp. 1-14, 2019.

A. Joshi, N. Jagdale, R. Gandhi, and S. Chaudhari, “Smart surveillance
system for detection of suspicious behaviour using machine learning,” in
Intelligent Computing, Information and Control Systems, A. P. Pandian,
K. Ntalianis, and R. Palanisamy, Eds. Cham: Springer International
Publishing, 2020, pp. 239-2438.

F. Tung, J. S. Zelek, and D. A. Clausi, “Goal-based trajectory analysis
for unusual behaviour detection in intelligent surveillance,” Image and
Vision Computing, vol. 29, no. 4, pp. 230-240, 2011.

W.-K. Lee, C.-F. Leong, W.-K. Lai, L.-K. Leow, and T.-H. Yap,
“Archcam: Real time expert system for suspicious behaviour detection in
atm site,” Expert Systems with Applications, vol. 109, pp. 12-24, 2018.
D. Martinez Torres, H. Loaiza Correa, and E. Caicedo Bravo, “Online
learning of contexts for detecting suspicious behaviors in surveillance
videos,” Image and Vision Computing, vol. 89, pp. 197-210, 2019.

J. Dreo, F. Desquilbet, F. Barbaresco, and J.-M. Mirebeau, “Netted
multi-function radars positioning and modes selection by non-holonomic
fast marching computation of highest threatening trajectories by cma-es
optimization,” in 2019 International Radar Conference (RADAR), 2019,
pp. 1-6.

C. Strode, “Optimising multistatic sensor locations using path planning
and game theory,” in 2011 IEEE Symposium on Computational Intelli-
gence for Security and Defense Applications (CISDA), 2011, pp. 9-16.

M. Chein and M.-L. Mugnier, A Graph-Based Approach to Knowl-
edge Representation: Computational Foundations of Conceptual Graphs
(Part. I). Springer, 10 2008.

J.-M. Mirebeau, “Numerical schemes for anisotropic PDEs on cartesian
grid domains,” Habilitation a diriger des recherches, Université Paris-
Sud XI, May 2018.

Q. Renau, “Landscape-Aware Selection of Metaheuristics for the Opti-
mization of Radar Networks,” Theses, Institut Polytechnique de Paris,
Jan. 2022.

J.-M. Mirebeau and J. Dreo, “Automatic differentiation of non-
holonomic fast marching for computing most threatening trajectories
under sensors surveillance,” in Geometric Science of Information - Third
International Conference, GSI 2017, Paris, France, November 7-9, 2017,
Proceedings, ser. Lecture Notes in Computer Science, F. Nielsen and
F. Barbaresco, Eds., vol. 10589. Springer, 2017, pp. 791-800.

J.-M. Mirebeau and J. Portegies, “Hamiltonian Fast Marching: A Numer-
ical Solver for Anisotropic and Non-Holonomic Eikonal PDEs,” Image
Processing On Line, vol. 9, pp. 47-93, 2019.

A. Fabri and S. Pion, “Cgal: The computational geometry algorithms
library,” in Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, ser. GIS
’09. New York, NY, USA: Association for Computing Machinery,
2009, p. 538-539.

R. Wein, E. Fogel, B. Zukerman, and D. Halperin, “Advanced program-
ming techniques applied to CGAL’s arrangement package,” Computa-
tional Geometry, vol. 38, no. 1, pp. 37-63, 2007, special Issue on CGAL.

R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proceedings of the 20th International Conference
on Very Large Data Bases, ser. VLDB 94. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1994, p. 487-499.

A. Cakmak and G. Ozsoyoglu, “Taxonomy-superimposed graph min-
ing,” in Proceedings of the 11th Int.Conf. on Extending database
technology: Advances in database technology, 2008, pp. 217-228.

