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A B S T R A C T 

The upcoming ByCycle project on the VISTA/4 MOST multi-object spectrograph will offer new prospects of using a massive 
sample of ∼1 million high spectral resolution ( R = 20 000) background quasars to map the circumgalactic metal content of 
fore ground galaxies (observ ed at R = 4000–7000), as traced by metal absorption. Such large surv e ys require specialized analysis 
methodologies. In the absence of early data, we instead produce synthetic 4 MOST high-resolution fibre quasar spectra. To do 

so, we use the TNG50 cosmological magnetohydrodynamical simulation, combining photo-ionization post-processing and ray 

tracing, to capture Mg II ( λ2796, λ2803) absorbers. We then use this sample to train a convolutional neural network (CNN) 
which searches for, and estimates the redshift of, Mg II absorbers within these spectra. For a test sample of quasar spectra with 

uniformly distributed properties ( λMg II , 2796 , EW 

rest 
Mg II , 2796 = 0 . 05 –5 . 15 Å, SNR = 3 –50), the algorithm has a robust classification 

accuracy of 98.6 per cent and a mean wavelength accuracy of 6.9 Å. For high signal-to-noise (SNR) spectra ( SNR > 20 ), the 
algorithm robustly detects and localizes Mg II absorbers down to equivalent widths of EW 

rest 
Mg II , 2796 = 0 . 05 Å. For the lowest 

SNR spectra ( SNR = 3 ), the CNN reliably reco v ers and localizes EW 

rest 
Mg II , 2796 ≥0.75 Å absorbers. This is more than sufficient 

for subsequent Voigt profile fitting to characterize the detected Mg II absorbers. We make the code publicly available through 

GitHub. Our work provides a proof-of-concept for future analyses of quasar spectra data sets numbering in the millions, soon to 

be delivered by the next generation of surveys. 

Key words: methods: data analysis – quasars: absorption lines – techniques: spectroscopic. 
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 I N T RO D U C T I O N  

easurements of anisotropies in the Cosmic Microwave Background
Planck Collaboration et al. 2020 ) and from primordial nucleosynthe-
is (Cooke, Pettini & Steidel 2018 ) have established a clear picture
f the basic constituents of the present Universe: 73 per cent dark
nergy, 23 per cent dark matter, and 4 per cent baryons. Across
osmic time, baryons accumulate within dark matter haloes and
orm the large-scale structure, galaxies, and stars of the Universe.
o we ver, a large fraction of the baryonic matter ( ∼90 per cent)

s expected to be in the form of low-density gas (e.g. P ́eroux &
owk 2020 ), which is difficult to observe in emission with current

nstruments (e.g. Frank et al. 2012 ; Augustin et al. 2019 ; Corlies
t al. 2020 ). 
 E-mail: roland.szakacs93@gmail.com (RS); celine.peroux@gmail.com 
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Part of this low-density gas is attributed to the circumgalactic
edium (CGM), which is loosely defined as the gas surrounding

alaxies outside the disc or interstellar medium, but within the virial
adius (e.g. Tumlinson, Peeples & Werk 2017 ). The CGM is a multi-
hase medium with rich dynamics, as gas expelled from galaxies due
o Active Galactic Nuclei (AGNs) feedback (e.g. Shull, Danforth &
ilton 2014 ) and stellar feedback (e.g. Ginolfi et al. 2020 ) interacts
ith gas being accreted from the cosmic web (e.g. Martin et al.
012 ; Rubin et al. 2012 ; Turner et al. 2017 ; Zabl et al. 2019 ; Szakacs
t al. 2021 ). This feedback-driven redistribution of baryons occurs to
arge scales, up to many times the virial radii of haloes, imprinting
ignatures of astrophysical feedback processes out to the closure
adius (Ayromlou, Nelson & Pillepich 2022 ). 

Absorption lines close in projected separation, and in frequency
pace, of foreground galaxies detected in background quasar (QSO)
pectra are a powerful tool to study the CGM and other low surface
rightness regions of the Universe. Their detection sensitivity is
ndependent of redshift (e.g. Tripp, Lu & Savage 1998 ). This method
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Figure 1. Simulation prediction for the average circumgalactic metal distri- 
bution around M � = 10 10 M � galaxies at z = 0.5. Here, we show a mean stack 
from the TNG50 simulation of 200 galaxies at this mass, which are similar to 
those targeted by the ByCycle project. The orange contour illustrates the Mg II 
column density detection limit currently accessible with SDSS (Anand et al. 
2021 ), while the white contour corresponds to the Mg II column density limit 
within reach of the VISTA/4 MOST surv e y. The white circle shows the virial 
radius r 200 . The ByCycle project will provide three orders of magnitude 
impro v ement in the Mg II column density probed throughout the extended 
circumgalactic medium of galaxies thanks to its large multiplexing capability 
and R = 20 000 high-spectral resolution. 
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as allowed for the study of various metal species as well as atomic
nd molecular hydrogen (e.g. Ledoux, Petitjean & Srianand 2003 ; 
oterdaeme et al. 2008 ; Steidel et al. 2010 ; Rudie et al. 2012 ;
erk et al. 2013 ; Turner et al. 2014 ). Additionally, absorption

nables the study of the metallicity evolution of the Universe. 
ontrary to emission-based metallicity estimates, absorption line- 
ased metallicity estimates are independent of excitation conditions, 
argely insensitive to density or temperature and require no local 
ource of excitation. Thus, absorption-line metallicity estimates 
robe both low- and high-excitation gas (P ́eroux & Howk 2020 ). 
One of the most e xtensiv ely studied absorption lines is the Mg II

oublet ( λ2796, λ2803). The doublet traces cool gas ( T ∼ 10 4 K) at
ow ionization states. Because of its distinct doublet feature, Mg II 
as been used e xtensiv ely in a great number of spectroscopic surv e ys.
specially in the last two decades, Mg II absorption surv e ys hav e con-
trained the physical properties of large samples of galaxies, across a 
ide range of luminosities and morphologies (e.g. Lanzetta & Bowen 
990 ; Nestor, Turnshek & Rao 2005 ; Narayanan et al. 2007 ; Seyffert
t al. 2013 ; Anand, Kauffmann & Nelson 2022 ). To find Mg II
bsorbers in QSO spectra, traditional approaches use convolution- 
ased template matching and significance thresholding (e.g. Zhu & 

 ́enard 2013 ; Anand, Nelson & Kauffmann 2021 ). While these
ethods hav e pro v en highly successful, the y are computationally

emanding, and require heuristic parameter optimization. With 
pcoming massive spectroscopic surveys and the subsequent increase 
n data volume, new approaches need to be explored which are more
omputationally efficient, and more accurate. 

To this end, several studies have recently turned to machine 
earning (ML), more specifically to convolutional neural networks 
CNN), to detect absorption-line systems of various species within 
SO spectra. These initial investigations show promising results. The 
odel by Zhao et al. ( 2019 ) can classify the presence or absence of
g II absorbers with EW Mg II , 2796 ≥ 0 . 3 in Sloan Digital Sky Survey

SDSS) DR12 (Alam et al. 2015 ) QSO spectra with an accuracy of
4 per cent. Similar approaches for the detection of Ca II (Xia et al.
022 ) and Ly α absorbers (Parks et al. 2018 ; Wang et al. 2022 ) have
learly demonstrated the value of CNNs in this context. In addition to
heir accuracy, ML-based approaches are more efficient than classical 
pproaches. They can be orders of magnitude faster when processing 
 given set of quasar spectra. Thus, we are motivated to explore these
echniques further, in preparation for future large-scale absorption- 
ine data, including surv e ys with DESI (DESI Collaboration 2016 ),

HT/WEAVE (Dalton et al. 2012 ), and VISTA/4 MOST (de Jong
t al. 2019 ). 

The goal of this paper is to develop an approach that is specific to an
pcoming high-resolution QSO surv e y, which is part of the 4 MOST
roject on the 4-m VISTA telescope. The manuscript is organized 
s follows: Section 2 presents a short o v erview of the 4 MOST
roject and the ByCycle project. Section 3 details the construction 
f mock ByCycle spectra with Mg II absorbers based on the TNG50
imulation. Section 4 focuses on the machine learning model and 
raining, while Section 5 summarizes the results of our analysis. In
ection 6 , we provide a discussion of these results in a broader context
nd conclude in Section 7 . We adopt an H 0 = 68 km s −1 Mpc −1 , h
 0.68, �M 

= 0.3, and �� 

= 0.7 cosmology throughout. 

 B Y C Y C L E :  T H E  BA R  Y  O N  C Y C L E  PROJ ECT  

n the last two decades, large statistical samples of QSO absorbers
ave enabled breakthroughs in our understanding of galaxy formation 
nd evolution. Large-scale surv e ys hav e brought such studies in a
ew era (e.g Noterdaeme et al. 2012 ; Bird, Garnett & Ho 2017 ).
fforts with 2.5-m class telescopes – the SDSS (e.g. Blanton et al.
017 ) in the Northern hemisphere and the 2dF QSO surv e y (e.g.
hanks et al. 2000 ) in the Southern hemisphere – advanced the
eld significantly, primarily because they produced homogeneous 

ow-resolution spectra samples for one million QSOs. The ByCycle 
BarYon Cycle) project is based on the next generation of such
edicated spectroscopic surv e ys on 4-m class telescopes, which will
rovide large numbers of medium and high-resolution QSO spectra. 
n particular, the combination of VISTA/4 MOST multiplexing capa- 
ilities (812 out of 2436 total fibres) and high spectral resolution ( R =
/ �λ = 18 000–21 000) of the 4 MOST high-resolution spectrograph
ill enable the construction of a unique long-lasting le gac y sample of
SO spectra. The start of observations is foreseen for 2024, lasting

or 5 yr. The ByCycle project will use data of ∼1 million background
SOs from an appro v ed 2.8 million fibre-hour VISTA/4 MOST
pen-time (community) surv e y (PI: P ́eroux) to search for metal
including e.g. Mg II ( λ2796, λ2803), C IV ( λ1548, λ1550)], and Ly α
bsorption-line systems. While individual absorption measurements 
re limited to a pencil-beam along the line of sight and hence sample a
mall section of the host galaxy, large samples allow us to statistically
easure the mean properties of the CGM of galaxies by combining
any sightlines. 
Fig. 1 illustrates the three orders of magnitude gain in Mg II

olumn density which will be reached with the ByCycle project, in
omparison to current SDSS sensitivities (see e.g. Anand et al. 2021 ).
herefore, VISTA/4 MOST will probe the CGM of galaxies at larger
cales than SDSS. Importantly, what makes the ByCycle project 
nique, is a well-studied population of o v er 1.5 million foreground
alaxies (Driver et al. 2019 ; Richard et al. 2019 ), AGNs (Merloni
t al. 2019 ), and groups and clusters (Finoguenov et al. 2019 ) to be
bserved with the low-resolution fibres ( R = λ/ �λ = 4000 −7500) of
MNRAS 526, 3744–3756 (2023) 
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ISTA/4 MOST in the same fields at a redshift concomitant with the
g II absorbers. Clearly, such surv e ys will require no v el and targeted

pproaches to analyse their massive data outputs, in order to detect
he expected hundreds of thousands of intervening absorbers. 

 CONSTRU C TING  T H E  T R A I N I N G  A N D  TEST  

ETS  

.1 Mg II absorbers in TNG50 simulations 

e use the TNG50 simulation (Nelson et al. 2019b ; Pillepich et al.
019 ) of the IllustrisTNG project to create synthetic Mg II absorption
rofiles. The The Next Generation (TNG) project 1 (Marinacci et al.
018 ; Naiman et al. 2018 ; Nelson et al. 2018 ; Pillepich et al.
018b ; Springel et al. 2018 ) is a large-volume cosmological gra v o-
agnetohydrodynamics MHD) simulation incorporating a compre-

ensive model for galaxy formation physics. TNG uses the AREPO

ode (Springel 2010 ) which self-consistently evolves a cosmological
ixture of dark matter, gas, stars, and black holes as prescribed by

elf-gravity coupled to ideal, continuum MHD (Pakmor, Bauer &
pringel 2011 ; Pakmor & Springel 2013 ). 
The physical processes included in the simulations are, broadly:

as radiati ve ef fects, including primordial and metal-line cool-
ng, plus heating from a meta-galactic background radiation field
Faucher-Gigu ̀ere et al. 2009 ); star formation within the cold
omponent of a two-phase interstellar medium model (Springel &
ernquist 2003 ); the evolution of stellar populations and subsequent

hemical enrichment, including Supernovae Ia, II, and AGB stars
independently tracking the ten elements H, He, C, N, O, Ne, Mg, Si,
e, and Eu); galactic-scale outflows generated by supernova feedback
Pillepich et al. 2018a ); the formation and mergers of supermassive
lack holes (SMBHs) and their accretion of neighbouring gas (Di
atteo, Springel & Hernquist 2005 ; Springel, Di Matteo & Hernquist

005 ); SMBH feedback that operates in a dual mode with a thermal
quasar’ mode for high accretion rates and a kinetic ‘wind’ mode
or low accretion rates (Weinberger et al. 2017 ; Pillepich et al.
021 ). TNG50 includes 2 × 2160 3 resolution elements (gas plus
ark matter) in a ∼ 50 Mpc (comoving) box, giving a baryon mass
esolution of 8 . 5 × 10 4 M �. All data from TNG are publicly released
Nelson et al. 2019a ). 

Recent studies have demonstrated that the TNG50 volume is
articularly suited for circumgalactic medium studies as it produces
ufficiently high co v ering fractions of extended, cold gas, as in-
erred by observ ations. Quantitati ve comparisons of predicted low-
onization Mg II column densities, around massive galaxies at in-
ermediate redshifts, reveal reasonable agreement with observations
Nelson et al. 2020 ). Further, the diversity and kinematics of observed
trong Mg II absorbers (EW 

rest 
2796 ≥ 0 . 5 Å) are reflected in mock Mg II

bsorber spectra based on TNG50 (DeFelippis et al. 2021 ), and in
he o v erall div ersity of the properties of CGM gas around the large
alaxy population (Ramesh, Nelson & Pillepich 2022 ). Analysis of
xtended Ly α and Mg II haloes, tracing the CGM in emission, has
lso shown promising consistency with MUSE data (Byrohl et al.
021 ; Nelson et al. 2021 ; Byrohl & Nelson 2022 ). 
To compute Mg II we take the total magnesium mass per cell

s tracked during the simulation, and use CLOUDY (Ferland et al.
017 ) to calculate the ionization state assuming both collisional and
hoto-ionization (following the modelling approach of Nelson et al.
020 ). We then ray-trace through the simulated gas distribution to
NRAS 526, 3744–3756 (2023) 
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reate synthetic absorption spectra, akin to those in real observations
Nelson, in prep). This is similar in spirit to several other techniques
or creating absorption spectra from hydrodynamical simulations,
.g. SPECWIZARD (Theuns, Leonard & Efstathiou 1998 ; Schaye
t al. 2003 ), TRIDENT (Hummels, Smith & Silvia 2017 ), and PYGAD

R ̈ottgers et al. 2020 ). 
We use three discrete snapshots from TNG50 at redshifts z = 0.5,

.7, and 1.0. In each case, we generate N = 10 6 random sightlines
nd propagate each for a total distance equal to the simulation box
ength of 35 cMpc h −1 . Some will intersect galaxies and cold gas,
enerating observable equivalent widths of Mg II absorption, while
any will not. The simulated Mg II equi v alent widths of the sample

sed in this work range from EW 

rest 
Mg II , 2796 = 0 . 05 to 5.15 Å, and

rovide physically moti v ated wavelength separations, doublet ratios,
nd other detailed spectral characteristics. 

.2 Synthetic ByCycle quasar spectra 

e create ∼680 000 normalized synthetic QSO spectra for the
raining of a CNN. Approximately 510 000 of these spectra include

g II absorbers, while ∼170 000 do not. 2 These mock spectra are
yCycle-like, meaning that they are created with the 4 MOST High-
esolution fibres technical specifications. As part of the 4 MOST
roject, all data will be calibrated to a so-called Level 1 (L1).
his pipeline will remo v e the instrumental signatures, identify the
ky lines and calibrate the raw data. It will produce all L1 data
roducts, including the science-ready, calibrated one-dimensional
pectra, their associated variances, and bad pixel masks as well as any
ther associated information. For these reasons, we produce mock
uasar spectra free of these instrumental and unwanted astronomical
ignatures. 

Firstly, roughly 97 000 normalized QSO spectra are created. They
pan a wavelength range composed of spectral windows (Blue Arm:
92.6 nm ≤ λ ≤ 435.5 nm, Green Arm: 516 nm ≤ λ ≤ 573 nm,
ed Arm: 610 nm ≤ λ ≤ 679 nm) with spectral gaps between these
indows and a spectral resolution of R = λ/ �λ = 20 000. 
Second, we insert Mg II absorption-line systems into ∼72 000 of

hese normalized QSO spectra. The absorbers are randomly drawn
rom the simulation-based sightlines described in Section 3.1 . While
andomly drawn, the Mg II absorbers are inserted such that they
re equally distributed in wavelength λMg II , 2796 and equi v alent width
W 

rest 
Mg II , 2796 as illustrated in Fig. 2 . Specifically, for given wavelength

ins of 40 Å we randomly draw an equal number of absorbers from
ach 0.3 Å EW 

rest 
Mg II , 2796 bin and inject them at random positions within

he wavelength bins. We note that we do not inject absorbers within
5 Å of the edges of the spectral windows, to a v oid only including
artial features of the Mg II doublet. The Mg II doublet ratio (fourth
anel of Fig. 2 ) is mostly in the range between 1.0 and 1.3 due to
he saturation of both Mg II lines at higher equi v alent widths. This is
onsistent with the doublet ratios observed in e.g. SDSS (e.g. Anand
t al. 2021 ). 

Third, we add Gaussian noise to all spectra to create spectra with
even discrete signal-to-noise ratio (SNR) values: 3, 5, 10, 20, 30,
0, and 50. Similar to SDSS spectra, we expect a decreasing SNR
t the edge of the spectral windows for ByCycle spectra due to the
pecifics of the instrumental response. 3 Thus, in the absence of early
hich resulted in a worse performance of the CNN. 
 We note that our quoted SNR values correspond to the SNR within the centre 
f the spectral windows, and do not reflect these edge effects. 

file:www.tng-project.org
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Figure 2. The distribution of Mg II absorber wavelength ( λMg II , 2796 ), 
equi v alent width (EW 

rest 
Mg II , 2796 ), SNR, and Mg II doublet ratio 

(EW 

rest 
Mg II , 2796 /EW 

rest 
Mg II , 2803 ) of our fiducial synthetic spectra sample used for 

training. We include only the spectra that contain an Mg II absorber in these 
plots. For training, we intentionally synthesize flat distributions for each of the 
first three parameters to a v oid any biases in the machine learning model. The 
doublet ratio is mostly in the range between 1.0 and 1.3 due to the saturation 
of one or both Mg II lines at higher equi v alent widths. 
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ata, we base the estimated SNR decrease on the properties of SDSS

pectra. We take a random sample of 10 000 SDSS Data Release 16
Ahumada et al. 2020 ) normalized QSO spectra, calculate the SNR
ithin the central 670 pixels and calculate the SNR ratio between 

he centre and edges in bins of 25 pixels. 4 The resulting increase in
oise towards the edges of the spectral windows is apparent in the
ynthetic spectrum of Fig. 3 . 

These three steps lead to a final synthetic normalized QSO spectra 
raining sample of ∼680 000. We also create an additional sample 
or testing the CNN including ∼730 000 spectra with the same 
istribution of properties outlined abo v e, ho we ver including a 50–50
plit of spectra with and without Mg II absorbers. 
 Due to the higher resolution of ByCycle spectra versus SDSS, that we rescale 
he SNR modulation from 100 to 420 pixels. 

o

5

 M AC H I N E  L E A R N I N G  M O D E L  A N D  

R A I N I N G  

n this section, we describe the deep learning model used and detail
he choice of architecture, hyperparameter optimization, and the 
hosen method of training the neural network. The deep learning 
rchitecture is implemented using PYTHON 3.10.4 (Van Rossum & 

rake 2009 ) and the open-source machine learning libraries KERAS 

.9.0 (Chollet et al. 2015 ) and TENSORFLOW 2.9.1 (Abadi et al.
015 ). The training and testing of the deep learning models were
erformed on an NVIDIA TESLA V100 GPU with 16 Gigabytes 
f memory. The CNN and PYTHON codes related to this paper are
ublicly available on GitHub. 5 

Our main goal is to classify the presence or absence of Mg II
bsorbers in spectra and to localize them in wavelength space. While
ne could consider localization without classification, Parks et al. 
 2018 ) demonstrate that combining a classification and regression 
ask in a single CNN impro v ed their results for the similar purpose of
etecting Ly α absorption line systems. Thus, the network is designed 
o produce the following outputs: 

(i) Classification: 

(a) 0: no intervening Mg II absorber detected in the spectrum. 
(b) 1: intervening Mg II absorber detected in spectrum. 

(ii) Localization: 

(a) observ ed wav elength of the Mg II absorber ( λMg II , 2796 ) in
Å. 

When training this type of CNN, the wavelength labels for cases
ith no Mg II absorbers need to have a real value as well. One cannot

et an invalid i.e. NaN value, as the training loss will then also be
aN, and the optimization of the network will fail. In the spirit of
arks et al. ( 2018 ), we use a central value for the wavelength label

n these cases, as this approach w ork ed well in the case of Ly α
bsorption detection and localization within QSO spectra. Thus, we 
et λMg II , 2796 = 5358 Å. This corresponds to the mean λMg II , 2796 of 
he synthetic spectra sample containing Mg II absorbers. 

.1 Convolutional neural network ar chitectur e 

e use a CNN model (see e.g. LeCun, Bengio & Hinton 2015 ;
amashita et al. 2018 for re vie ws). CNNs are often associated with
etecting features in images. Ho we v er, recent studies hav e shown
hat they are useful for the analysis of QSO spectra and features
ithin them (e.g. Busca & Balland 2018 ; Parks et al. 2018 ; Zhao

t al. 2019 ; Wang et al. 2022 ). In short, this type of network takes
dvantage of the fact that local groups of values in e.g. images, or in
his case spectra, are often correlated. 

Typically, this advantage is exploited through three layers within 
he CNN models: (i) convolutional layers, (ii) pooling layers, and 
iii) fully connected layers. Convolutional layers perform discrete 
onvolutions of their input using set filter (or kernel) sizes. These
ayers serve to detect local connections of features from previous 
ayers. After the convolutional layer, a non-linear acti v ation function
s applied (e.g. ReLU, sigmoid) to allow for outputs that vary
on-linearly for the given inputs. Pooling layers reduce the data 
imensionality by computing aggregate values, such as maximum 

r average (depending on the specific pooling technique employed), 
MNRAS 526, 3744–3756 (2023) 
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Figure 3. An example of our mock normalized QSO spectra with SNR = 20 , an Mg II absorber at λMg II , 2796 = 6234 Å and equi v alent width of EW 

rest 
2796 = 0 . 08 Å. 

The mock spectra include the spectral gaps that characterize 4 MOST high-resolution fibre spectra, with decreasing SNR towards the edges of spectral windows. 
Top: Full spectrum including spectral gaps between the three spectrographs. Middle: Red arm of the spectrum shown abo v e. Bottom: Zoom in towards the Mg II 
absorber in the normalized QSO spectrum displaying the Mg II doublet feature ( λ2796, λ2803). 

w  

T  

f  

t  

a  

l  

d  

o  

f  

t
 

l  

w  

w  

c  

w  

d
 

t  

o  

f  

p  

a  

f  

o  

f  

a  

o  

t

4

I  

f  

t  

u
 

t  

f  

i  

g  

o  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/526/3/3744/7279474 by guest on 24 M
ay 2024
ithin patches of feature maps generated by convolutional layers.
his allows for a shift-invariance of the feature detection. Finally,

ully connected layers connect all inputs from the previous layer
o all acti v ation units of the fully connected layer. Subsequently,
 non-linear acti v ation function is applied. Thus, fully connected
ayers compile all the data extracted from previous layers to provide
esired outputs (e.g. classification or regression). The combination
f these layers leads to a neural network that can extract desired
eatures without being affected by small shifts and distortions of
hese features. 

We use a CNN structure resembling an AlexNet in terms of
ayer structure (Krizhe vsky, Sutske ver & Hinton 2012 ). AlexNet
as developed as an image classification network. Specifically, it
as designed to work with two-dimensional images including three

olour channels (Red, Green, Blue). We modify the network to work
ith one-dimensional data by changing the input, filter, and pooling
imensions of the network. 
Our modified version of the network is shown in Fig. 4 . The CNN

akes an input spectrum of 6316 pixels, which is fed through a series
f convolutional average pooling layers. We use filter sizes of 10
or the convolutional layers and use a pooling size of five for the
ooling layers. After each convolutional layer, the ReLU non-linear
NRAS 526, 3744–3756 (2023) 

t  
cti v ation function (Fukushima 1975 ) is applied. Subsequently, the
eatures derived after the last average pooling layer are flattened to
ne dimension and two fully connected layers leading to our two final
ully connected output layers for the classification of the spectrum
nd the localization of the Mg II absorption feature. The classification
utput layer uses the sigmoid non-linear acti v ation function, while
he localization output layer uses ReLU. 

.2 Training the convolutional neural network 

n this section, we outline the training method and parameters used
or the deep learning model. We describe the modification of the
raining set before training, the loss functions used, the optimizer
sed, and how the learning rate (LR) was chosen. 
Before training the model we remo v e the spectral gaps between

he windows in the synthetic normalized QSO spectra. This is done
or two reasons: (1) the spectral gaps do not include any important
nformation that the network needs to learn, and (2) removing the
aps decreases the input size and thus the time needed for the training
f the network. Hence, this makes the multitask model more efficient.
A multi-task learning model, such as the CNN used here, has

wo different outputs that often cannot be optimized by a single loss
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Figure 4. The CNN architecture used in this work. Our structure is similar to Ale xNet (Krizhevsk y et al. 2012 ), however, the dimensions and filters are modified 
and optimized for the 4 MOST mock spectra. The input is an array containing the flux values of the spectrum with a length of 6316. There are two outputs: (1) 
classification (using binary cross-entropy as the loss function): 0 – no intervening Mg II absorber in the spectrum, 1 – intervening Mg II absorber in the spectrum; 
(2) localization (using the mean absolute error as the loss function): observed wavelength of the Mg II absorber ( λMg II , 2796 ) in Å. 

f  

t

L

w  

t  

a  

a  

s
t  

F  

t

L

F
f

L

w  

T  

e  

l
w
n

M
e
(  

s  

m

7
1  

d
l  

(  

d  

C  

c  

F

4

O
v
g  

t  

h
o
l  

c
L

w

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/526/3/3744/7279474 by guest on 24 M
ay 2024
unction. In these cases a combined loss function is preferred. For
he classification task we use the cross-entropy loss function: 

 class = 

N ∑ 

i 

−y class , i log ( ̂ y class , i ) − (1 − y class , i ) log (1 − ˆ y class , i ) , (1) 

here y class is the ground truth of the classification and ˆ y class is
he CNN prediction for the label. ˆ y class can be in the range [0,1]
nd we adopt the definition that ˆ y class ≥ 0 . 5 is a prediction for
 spectrum with an Mg II absorber, while ˆ y class < 0 . 5 indicates a
pectrum without one. We note that this threshold can be increased 
o put a higher emphasis on a v oiding false positives (see Section 6.2 )
or the localization task, we use the mean absolute error (MAE) as

he loss function: 

 local = 

∑ N 

i | y local − ˆ y local | 
N 

. (2) 

inally, the multitask learning model uses the sum of these two 
unctions as its final loss function: 

 model = 300 × L class + L local , (3) 

ith the weight of the classification loss function ( L class ) set to 300.
his weighting is needed as the final values of the binary cross-
ntropy loss function ( L class ) is ∼300 times lower than that of the
ocalization loss function ( L local ). Without this weighting, the CNN 

ould put a priority on optimizing the localization loss and might 
eglect to optimize the classification loss. 
To optimize the CNN parameters we use the Adam (Adaptive 
oment Estimation) algorithm (Kingma & Ba 2014 ) with the default 

xponential decay rates and stability constant of the KERAS library 
 β1 = 0.9, β2 = 0.999, ε = 10 −7 ). We also implement a learning rate
cheduler that additionally decreases the learning rate by an order of
agnitude at set epochs: Epoch ≤ 19: LR = 10 −2 , 19 < Epoch ≤
9: LR = 10 −3 , 79 < Epoch ≤ 119: LR = 10 −4 , 119 < Epoch ≤
50: LR = 10 −5 ). This was an ad hoc choice after manually testing
ifferent decaying learning rates (exponential decay, smaller and 
arger learning rates at dif ferent epochs). Gi ven the large training set
 ∼680 000 spectra), we use a data generator that individually loads
ata sets with a batch size of 500 into memory . Finally , we train the
NN for 150 epochs. The training history, namely the decrease and
onvergence of the loss functions, for our final model is shown in
ig. 5 . 

.3 Hyperparameter optimization 

ptimally, the full parameter space of hyperparameters and their 
arious combinations should be explored simultaneously. However, 
iven the large amount of time needed to train one model with
he training sample ( ∼15 h on one V100 GPU), we split the
yperparameter optimization into two parts. First, we explored if 
ur large fiducial model can be reduced without any significant 
oss in accuracy. Then, we optimized the size of the kernels in the
onvolutional layers and pooling layers using Bayesian (see Snoek, 
arochelle & Adams 2012 ) and random optimization methods. 
We began our hyperparameter optimization with a fiducial model 

hich has an e xcessiv ely large width for each layer: 

(i) Convolutional Layer – 1: 

(a) Filters: 128 
(b) Filter size: 10 

(ii) Convolutional Layer – 2: 

(a) Filters: 256 
(b) Filter size: 10 
MNRAS 526, 3744–3756 (2023) 
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Figure 5. The training history of our final CNN. Top: training history of the 
combined loss function. Middle: training history displaying the classification 
accuracy metric. Bottom: training history of the localization mean absolute 
error (MAE). While the validation set (red) metrics are below the training set 
(blue), the difference is small and the values for both training and validation 
sets are converged. 
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(iii) Convolutional Layer – 3,5,6: 

(a) Filters: 512 
(b) Filter size: 10 

(iv) Fully Connected Layer size: 1024 
(v) Average Pooling Layer size: 5 

Using this fiducial model, we first explored reducing the width of
he individual layers by reducing the number of filters for each layer
nd the size of the fully connected layers by one-half. Doing this
nce led to no loss in accuracy. Further, ho we ver, the accuracy of the
ocalization task slightly degraded. Thus, we continued optimizing
he filter sizes with the network width depicted in Fig. 4 . 

The parameter space probed for the filter sizes of each convolu-
ional block was { 5, 10, 15, 20 } . The pooling layer k ernel w as varied
sing a size of either 3, 5, or 7. Instead of training for 150 epochs, we
rained for 60 epochs for efficiency and thus modified the decrease
f our learning rate accordingly (Epoch ≤ 5: LR = 10 −2 , 5 < Epoch

25: LR = 10 −3 , 25 < Epoch ≤ 40: LR = 10 −4 , 40 < Epoch ≤
0: LR = 10 −5 ). Otherwise, we use the same training parameters as
xplained in Section 4.2 . When training for 60 epochs the CNN was
ufficiently converged to appreciate the differences of the results for
ifferent hyperparameters. 
We applied both the Bayesian and random optimization toolkits

rovided by KERAS to probe the available parameter space. The
ayesian optimization used 35 different trials, with twelve initial

andom parameter combinations, and 23 parameter combinations
here Bayesian optimization was applied. The random optimization
sed 20 different random parameter combinations. Both of these
NRAS 526, 3744–3756 (2023) 
ethods did not find a better parameter combination than our initial
odel within the parameter space explored, which is somewhat

urprising. Ho we ver, gi ven the computational intensity of a more
 xtensiv e parameter optimization, and the proof-of-concept nature
f our work, we choose to adopt our initial network. This network
lready achieves its principal goal of detecting and localizing the
g II absorbers with the needed accuracy for subsequent Voigt profile

tting. 

.4 Alternati v e CNN ar chitectur es 

o test whether other model architectures could provide better results,
nd try a number of possibilities. In short, none was more accurate
han our fiducial choice. We give a short description of these tests
ere. 
We explored an alternative CNN model resembling a 1D version

f a residual network architecture (He et al. 2015 ). Ho we ver, the ad-
antage of residual networks, which is the possibility to create much
eeper neural netw orks, w as not needed in this case. In particular,
e found that more than one residual block led to no impro v ement
f the network. At the same time, this architecture resulted in a
orse localization accuracy, by a factor of ∼2. While there is a
ossibility that this accuracy could be impro v ed by further optimizing
his type of architecture, we found that our fiducial architecture works
etter in our initial tests and also suited our accuracy needs in both
lassification and localization of Mg II absorbers. 

Another possibility we explored was using two individual fully
onnected layers, instead of a combined one for each output after
he first fully connected layer of the network. The accuracy for
oth classification and localization was slightly lower for both cases
 ∼1 per cent lower for classification, ∼2 Å for localization). Given
his, we decided to use a combined second fully connected layer. 

 RESULTS  

e first test the ability of our CNN-based machine learning model to
orrectly identify if an Mg II absorber is present in a given spectrum,
s well as its ability to estimate the Mg II absorber wavelength. Our
est set has the same uniform statistical properties in terms of SNR,

g II absorber wavelength ( λMg II , 2796 ), and Mg II absorber equi v alent
idth (EW 

rest 
Mg II , 2796 ) distribution as the training set. In this case, we

nd high accuracy for classification as well as localization tasks. For
98.6 per cent of the spectra, the CNN correctly identified whether

n Mg II absorber is contained within the spectrum. In terms of
ocalization, the MAE of the wavelength prediction, if the spectrum
s classified as containing an Mg II absorber, is ∼6.9 Å for the full
est sample. This corresponds to a redshift MAE of �z ∼ ±0.0025. 

In practice, it is important that the CNN provides an accurate
ocalization when the spectrum is classified as containing an absorber.
his allows for the subsequent selection of a region in which the
g II absorption-line profile can be fitted to derive its properties.

ig. 6 shows the predicted versus ground truth wavelength positions
f Mg II absorption for our fiducial test case. The vast majority of
redictions are within ∼15 Å. This is more than sufficient for a
ubsequent Voigt profile fit to obtain the physical properties of the
bsorber. 

Although the network localizes the Mg II absorber accurately in
he majority of cases, there are also outliers. In Fig. 6 the localization
redictions for the full test sample are shown, for cases where the
NN predicted that the spectrum contains an absorber. A distinct
ertical line at λMg II , 2796 = 5358 Å is apparent: this is the ad hoc
Mg II , 2796 value set for spectra without Mg II absorbers. Hence, the
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Figure 6. True observed Mg II absorber wavelength λtrue 
Mg II , 2796 against predicted Mg II absorber wavelength λpred 

Mg II , 2796 for spectra classified as containing an Mg II 

absorber by the CNN within the full test sample. The majority of the predictions are within 15 Å of the true value. A distinct line is visible at λMg II , 2796 , true = 5358 
Å. This is caused by false positives, as λMg II , 2796 is set to 5358 Å for spectra not containing Mg II absorbers. Top Left: Blue arm of 4 MOST . Middle Left: Green 
arm of 4 MOST . Bottom Left: Red arm of 4 MOST . The majority of the predictions are within 15 Å of the true wavelength (i.e. within the green dotted line), 
which is fully sufficient to perform subsequent Voigt profile fitting. Right: All spectral arms of 4 MOST . 
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ertical line corresponds to false positives, where for example the 
etwork incorrectly identified a noise feature as an Mg II absorber. 
Approximately 0.4 per cent of the predicted Mg II w avelengths f all

nto spectral gaps. While there are no true λMg II , 2796 labels within 
he spectral gaps, the CNN returns λMg II , 2796 values within the full 
avelength range ( λMg II , 2796 = 3950–6930 Å). To overcome this 

imitation we tested suppressing the spectral gaps by remapping the 
rue wavelength onto a continuous scale. Ho we ver, the result does not
educe the number of outliers and has the side-effect of introducing 
dditional errors at the spectral window edges. Thus, we opt to a v oid
emapping and keep the observed wavelength values as the output of
he localization task. 

The number of false ne gativ es increase towards the edges of the
bserving windows as the noise increases and Mg II absorbers fall 
elow the detection threshold (see Fig. 7 , top). There is a peak in the
alse ne gativ e count at the highest λtrue 

Mg II , 2796 values. This is likely due
o the network structure currently not including padding leading to 
 possible worse classification accuracy at the edge of the data. This
ill be impro v ed upon in future iterations of the network. F or our
ducial classification threshold value of y class = 0.5, we find the false
ositive count is peaking at the ad hoc λMg II , 2796 = 5358 Å value 
or spectra without absorbers. Increasing the classification threshold 
alue (see discussion in Section 6.2 ) leads to the disappearance of
his peak and to less false positives in general at the cost of more
alse ne gativ es. Exploring other solutions for values of λMg II , 2796 
t  
n the future could additionally impro v e the CNN performance in
his localization parameter space region as the discussed peak in 
alse positives is due to our current set-up of the training data
abels. 

.1 Accurate Mg II absorber detection down to SNR = 3 

orrect classification depends sensitively on both the SNR of the 
pectrum and the EW 

rest 
Mg II , 2796 of the absorber. This is apparent in

ig. 8 , where we show the confusion matrix of the classification
ask normalized by the true values for different EW 

rest 
Mg II , 2796 bins and

NRs. The first row of the figure displays the true positive rate, which
an be understood as the completeness of finding Mg II absorbers.
he second row displays the false ne gativ e rate, which is the inverse
f the completeness. The third ro w sho ws the false positi ve rate.
hus, it displays the percentage of spectra where a noise feature
as identified as an absorber even though no absorber is contained
ithin the spectrum. The fourth row displays the true ne gativ e rate,

.e. the fraction of spectra for which the CNN correctly identified the
on-existence of an Mg II absorber within the spectrum. 
We can set a reliability threshold for our network. For each

NR, we consider the results to be reliable if the completeness
s > 95 per cent for a EW 

rest 
Mg II , 2796 bin. As the SNR increases, the

W 

rest 
Mg II , 2796 values where the threshold is met decrease. This is 

o be expected, as the lower the SNR, the more difficult it is
MNRAS 526, 3744–3756 (2023) 
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Figure 7. False positive and negative statistics for classification thresholds 
of y class = 0.5 (fiducial) and y class = 0.9. Top: false ne gativ e count against 
the true wavelength position of the absorber ( λtrue 

Mg II , 2796 ). The false ne gativ es 
increase towards the edges of the observing windows due to increasing noise. 
Bottom: false positive count against the predicted wavelength ( λpred 

Mg II , 2796 ). 
For lower classification thresholds the false positive count increases towards 
the ad hoc λMg II , 2796 = 5358 Å value for spectra without absorbers (see 
Section 6.2 ). 
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or the network to detect weaker Mg II absorption-line systems.
he thresholds for different SNRs are given in Table 1 (fourth
olumn). There, we also provide benchmarks of the CNN for
ifferent SNRs, including all spectra, and only including spectra
ith Mg II absorbers abo v e the outlined thresholds. As one would
 xpect, the classification accurac y for sub-sets including all spectra
f specific SNR increases as the SNR increases. For the sub-sets
ncluding only spectra with Mg II absorbers abo v e the thresholds
he completeness of Mg II absorber detection is ≥99.4 throughout.
he false positive rate is low ( < 4 per cent) for all SNRs, and
as a small dependence on SNR. As the SNR increases, the false
ositive rate also decreases. Thus, with more noise there is a higher
hance that the CNN identifies a random noise feature as an Mg II
bsorber. 

In summary, the CNN has a high detection completeness abo v e
W 

rest 
Mg II , 2796 thresholds between 0.05 and 0.75 Å for all SNR. Abo v e

W 

rest 
2796 ≥ 0 . 75 Å, the CNN provides accurate results for the entire

NR range probed (SNR = 3–50). 

.2 Accurate estimations of absorber location down to SNR = 3

he mean absolute error of the wavelength predictions in specific
W 

rest 
Mg II , 2796 bins is tied to the completeness of the Mg II absorber

etection. This is apparent in Fig. 9 , where the MAE of the wave-
ength predictions for different EW 

rest 
Mg II , 2796 bins and SNR is shown,

or spectra that were classified as containing an Mg II absorber. 
The high errors below the EW 

rest, thresh 
Mg II , 2796 threshold for each SNR

re driven by the CNN misinterpreting a noise feature as an Mg II
NRAS 526, 3744–3756 (2023) 
bsorber. Below the thresholds a large part of the Mg II absorbers
re not identified by the CNN, as seen by the increasing amount of
alse ne gativ es below the thresholds in Fig. 8 . Thus, with decreasing
W 

rest 
Mg II , 2796 , fewer Mg II absorbers are identified correctly, as they

isappear below the noise. In extreme cases this leads to only
ncorrectly classifying noise features as Mg II absorbers, leading to a
igh MAE in low EW 

rest 
Mg II , 2796 bins. 

Abo v e the EW 

rest 
Mg II , 2796 threshold we reach mean accuracies be-

ween 1 and 16 Å, depending on the SNR of the spectrum and
W 

rest 
Mg II , 2796 of the Mg II absorbers. The wavelength accuracy for

ow SNR spectra is lower than for high SNR spectra. Strong noise
eatures lead to a possible shift of several Angstroms in the predicted
ocalization, and thus a higher MAE. Nonetheless, our accuracy
bo v e the threshold is al w ays high enough to enable subsequent
oigt profile fitting of Mg II absorbers. 
A summary of the wavelength accuracy, for the full samples, and

or samples only including absorbers abo v e the threshold, is giv en in
able 1 (columns 3 and 6). 

 DI SCUSSI ON  

achine learning is a useful tool in many applications. Ho we ver, its
erformance and reliability should be carefully e v aluated. 

.1 Accuracy and efficiency versus traditional methods 

raditional approaches often use convolution-based filter matching
o detect Mg II candidates abo v e a given SNR threshold (e.g. Zhu &
 ́enard 2013 ; Anand et al. 2021 ). Direct comparisons with tradi-

ional methods are difficult, as this work relies on a different sample
nd uses idealized mock spectra with higher resolution compared
o the methods outlined in Zhu & M ́enard ( 2013 ) and Anand et al.
 2021 ) that are benchmarked on SDSS spectra. Ho we ver, we find that
ur model detects Mg II absorbers within our sample with at least
he same level of completeness as traditional methods do for SDSS
amples. Traditional methods typically have a completeness between
0 and 95 per cent (see e.g. fig. 7 in both Zhu & M ́enard 2013 ; Anand
t al. 2021 ) for EW 

rest 
2796 ≥ 1 . 0 Å depending on the sample. The CNN-

ased approach reaches a higher completeness in our sample in this
W 

rest 
Mg II , 2796 parameter space, with a completeness > 95 per cent for

ll SNR ≥3. Compared to traditional methods, the completeness
rops steeply below EW 

rest 
2796 < 0 . 75 Å instead of EW 

rest 
2796 < 1 . 0 Å

or lower SNR spectra in our sample. Ho we ver, we note that SDSS
lso includes QSO spectra with SNR < 3. Further work is needed to
etermine if this difference arises due to our idealized spectra, the
ifferences in samples (and subsequently SNR), or the method itself.
The CNN-based approach has a clear advantage in terms of

omputational efficiency. While the training of the CNN takes a
ignificant amount of time, subsequent e v aluation of the trained
etwork is essentially free. The CNN can classify and localize
g II absorbers within 10 000 spectra in a matter of seconds. Thus,

mplementing a CNN within a surv e y pipeline enables real-time data
ntrospection and scientific-level output, even for ∼ million spectra
ata sets. 
These results reinforce the findings concerning the feasibility of

he CNN approach by Zhao et al. ( 2019 ) based on SDSS quasar
pectra. With their CNN, they drew the same statistical results as
he traditional approach by Zhu & M ́enard ( 2013 ), ho we ver with a
ignificantly higher computational ef ficiency. Ho we ver, Zhao et al.
 2019 ) only classified whether a QSO spectrum included an Mg II
bsorber or not, and with a different architecture than the one we
xplore herein. They did not include the localization aspect. 



ByCycle: identifying Mg II absorbers with ML 3753 

Table 1. Benchmarks of the CNN for the full test sample, and different SNR. Column 1: the SNR of the benchmarked spectra. Columns 2 and 3: results 
for all spectra with the specified SNR. Column 4: the threshold Mg II absorber rest equi v alent widths (EW 

rest 
Mg II , 2796 ) abo v e which the completeness is at least 

95 per cent , for a given SNR. Columns 5 and 6: results for spectra including Mg II absorbers abo v e the threshold EW 

rest, thresh 
Mg II , 2796 , specified in column 4. The 

wav elength accurac y is al w ays the mean absolute error for spectra classified by the CNN as containing an Mg II absorber. 

SNR Classification accuracy Wav elength accurac y Equi v alent width threshold Completeness Wav elength accurac y 
All EW 

rest 
Mg II , 2796 (per cent) All EW 

rest 
Mg II , 2796 ( Å) EW 

rest, thresh 
Mg II , 2796 ( Å) ≥EW 

rest, thresh 
Mg II , 2796 (per cent) ≥EW 

rest, thresh 
Mg II , 2796 ( Å) 

3–50 98.6 6.9 – – –
3 94.7 26.7 0.75 99.4 7.6 
5 97.3 10.8 0.35 99.6 4.1 
10 98.8 4.9 0.15 99.8 2.4 
20–50 99.8 1.2 0.05 99.8 1.6 

Figure 8. Confusion matrix of the classification task of the CNN for spectra of different SNR and binned in EW 

rest 
Mg II , 2796 First row: true positive rate. This 

plot describes the completeness of the detections. The completeness rises as SNR and EW 

rest 
Mg II , 2796 increase. Second row: false ne gativ e rate. The inv erse of 

the completeness plot in the first row. The false ne gativ e rate decreases as SNR and EW 

rest 
Mg II , 2796 increase. Third row: false positive rate. This plot displays the 

percentage of spectra where spectra without Mg II absorbers were wrongly classified as spectra with Mg II absorbers. Thus, the CNN classified a noise feature 
as an Mg II absorber. There is a weak dependence on SNR, with SNR = 3 spectra being a clear outlier. Fourth row: true ne gativ e rate. The inverse of the third 
row. Thus, spectra without Mg II absorbers that are correctly classified as not containing Mg II absorbers. 
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.2 Decreasing false positi v e rates 

n our fiducial analysis, we defined that y class ≥0.5 indicates a 
pectrum with an Mg II absorber while y class < 0.5 indicates a
t  
pectrum without one (see Section 4.2 ). Ho we ver, this v alue can
e modified to e.g. put a higher emphasis on a v oiding false positives.
o find the threshold value with the optimal trade-off between the

rue positive and false positive rate we calculate Youden’s J index
MNRAS 526, 3744–3756 (2023) 
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M

Figure 9. The mean absolute error for the localization output ( λMg II , 2796 ) of the CNN for various EW 

rest 
Mg II , 2796 and SNR. The large errors below the EW 

rest 
Mg II , 2796 

thresholds for different SNR detailed in Table 1 are driven by the CNN misinterpreting noise features as Mg II absorbers. Abo v e these thresholds, the wavelength 
accuracy increases with higher equi v alent widths of the absorbers for all SNRs. The achieved accuracy is fully sufficient for subsequent Voigt profile fitting. 
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Youden 1950 ) for each y class threshold: 

 = True Positive Rate − F alse Positiv e Rate , (4) 

and find that the highest J value is a y class threshold of 0.9. re-
nalysing the results of the CNN on the test set with this threshold,
e find that the false positive rates for spectra of all SNR decrease

o around 1 per cent. Ho we ver, the EW 

rest 
Mg II , 2796 reliability thresholds

or all SNR spectra except of SNR = 5 are at higher EW 

rest 
Mg II , 2796 

alues compared to our fiducial analysis. Thus, if one wishes to be
ore conserv ati ve in terms of false positi ves at the cost of possibly
issing more Mg II absorber candidates this threshold can be set to
 higher value. 

.3 Future work 

ur investigation is a proof-of-concept for the feasibility of using
eep learning to detect and localize the Mg II doublet ( λ2796, λ2803)
bsorption-line systems in normalized QSO spectra with a signifi-
ant increase in computational efficiency compared to traditional
ethods. There are several possible improvements for the future. 
First, we only consider the case of one Mg II doublet within each

pectrum. Thus, our CNN is not able to provide a prediction if
ultiple Mg II absorbers exist within one spectrum. To address this

ssue we could train the network to only look at sub-sections within
he spectrum, with a sliding window size in which multiple Mg II
bsorbers are unlikely (e.g. similar to an approach for Damped
yman-Alpha (DLA) detection in Parks et al. 2018 ). Alternatively,
e could train the network including spectra with multiple Mg II

bsorbers, including simultaneous output for several absorbers within
NRAS 526, 3744–3756 (2023) 
 spectrum. Finally, we could mask each detected absorption line
ystem after its identification in a spectrum, and then run another
teration of the CNN. This final approach would allow the network
rchitecture to remain essentially unchanged from its current form. 

In addition to multiple absorbers, our spectra do not include other
etal absorption lines. Many are commonly detected within QSO

pectra, including C IV ( λ1548, λ1550), Si IV ( λ1393, λ1402), and
e II ( λ2382, λ2600). To identify these species, we would clearly
eed to include the corresponding transitions in our mock spectra.
dditional absorbing species, i.e. at the same redshift as Mg II , could

ignificantly increase the accuracy of identifying low equivalent
idth absorbers. Multiple metal absorbers in spectra could trace

he same intervening gas and thus provide additional information
hrough the intrinsic wavelength spacing between different species.
ome metal lines might also have a higher equi v alent width than
thers, making their detection easier. Multispecies joint inference
ould boost the performance of the CNN. We note that including
ifferent species could also potentially lead to a decrease in accuracy
ue to the chance of the CNN confusing the different absorption
ines. Hence, this needs to be carefully e v aluated. 

For spectra in the lowest reliable EW 

rest 
2796 bins for a given SNR, the

NN detects an Mg II absorption line system even though only the
tronger doublet component ( λ2796 Å) is abo v e the theoretical 3 −
equi v alent width detection limit for a given SNR (see equation 1 in
 ́enard & P ́eroux 2003 ). This effect arises due to the doublet ratios

f the absorbers which can vary between ∼0.8 and 2.0 depending on
he saturation of the lines (see Fig. 2 , bottom panel). Ho we ver, the
rue positive rate for these cases drops by ∼5–15 per cent depending
n the SNR of the spectra. This effect could lead to the confusion
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f singlet absorption line systems with Mg II absorption lines in the
owest EW 

rest 
2796 bins. For the future inclusion of other absorption line 

pecies, the theoretical detection limits will be considered in the 
raining set to a v oid any potential bias. 

Beyond the properties of the absorbers, the quasar spectra them- 
elves can be improved. In this work, we use idealized, normalized 
SO spectra. Thus, they do not include possible artifacts related to in-

ccurate normalization. To impro v e this aspect, we can either include
ontinuum normalization-related errors or train the network directly 
n non-normalized spectra. This would increase the parameter space 
eeded for the training set, as different QSO parameters would have 
o be taken into account. Ho we ver, our first tests on a sub-set of the
arameter space, and other works based on SDSS spectra (e.g. Zhao 
t al. 2019 ; Xia et al. 2022 ), show that this is a viable method. This
f fecti vely incorporates the continuum estimation process into the 
NN itself. 
The SNR of the different spectral arms might also vary in the real

ata. This effect could also be included in the training data of future
terations of this CNN. To test the effect of varying noise in the dif-
erent arms of 4 MOST we created an additional test set. The general
roperties in terms of EW 

rest 
Mg II , 2796 and λMg II , 2796 distribution remain 

he same. The test set includes spectra with the SNR drawn from a
ormal distribution with μ = 5 and a random σ of 0.1, 0.3 or 0.5 for
ach arm. With this test set, we get results that are statistically not sig-
ificantly different from the fiducial SNR = 5 test set spectra. Thus,
he CNN can already handle this type of dispersion in the noise for
he different arms of 4 MOST without any loss in accuracy and adding
uch SNR dispersion to the training set is not deemed necessary. 

Finally, our method currently identifies and localizes, Mg II ab- 
orbers. The model could be extended to simultaneously measure 
he equi v alent width EW 

rest 
Mg II , 2796 and column density ( N Mg II ). This

ould prevent the need for the second step of Voigt profile fitting,
nd this approach has been used to measure Ly α absorber column 
ensities (Parks et al. 2018 ). If implemented with a method such
s conditional invertible neural networks, the full posterior distribu- 
ion i.e. uncertainties on these parameters could simultaneously be 
onstrained (see Eisert et al. 2022 ). 

 SU M M A RY  

n preparation for the upcoming VISTA/4 MOST community surv e y 
yCycle, we explore the feasibility of a machine learning approach 

o detect and localize Mg II absorption-line systems in synthetic, 
 MOST -like high-resolution QSO spectra. Using the TNG50 cos- 
ological simulation TNG50 we create millions of mock Mg II 

bsorption profiles by combining a post-processing photo- plus 
ollisional ionization calculation with a geometrical ray-tracing step. 

We then use these synthetic Mg II absorbers, with uniform distri-
utions in EW 

rest 
Mg II , 2796 and λMg II , 2796 , to create R = λ/ �λ = 20 000

ock, continuum normalized spectra. These co v er the parameter 
pace of EW 

rest 
Mg II , 2796 = 0 . 05 − 5 . 15 Å. We add noise corresponding

o expected signal-to-noise levels, from SNR = 3 to SNR = 50 . 
We design a CNN model to simultaneously identify, and measure 

he wavelength of, Mg II absorbers. For training, we construct a 
ample that consists of ∼680 000 spectra ( ∼510 000 with Mg II
bsorbers, and ∼170 000 without). 

After a hyper-parameter optimization step, we test our final trained 
odel on a test sample that has a 50–50 split of spectra with, and
ithout, Mg II absorbers, as well as a flat distribution of EW 

rest 
Mg II , 2796 ,

Mg II , 2796 and SNR. Our best trained model achieves a 98.6 per cent 
lobal classification accuracy, correctly identifying whether an Mg II 
bsorber is present in a spectrum for the majority of spectra. It
ocalizes Mg II absorbers with a mean absolute error of 6.9 Å for
pectra classified as containing an Mg II absorber. This is fully
ufficient for subsequent Voigt profile fitting. 

The Mg II absorber detection completeness and localization ac- 
uracy of our method depend strongly on the SNR of the spectrum
nd on the EW 

rest 
Mg II , 2796 of the absorber. We determine an EW 

rest 
Mg II , 2796 

hreshold abo v e which our method giv es reliable predictions, defined
s 95 per cent detection completeness. For SNR = 3 spectra, this 
s EW 

rest, thresh 
Mg II , 2796 ≥ 0 . 75 Å, with a corresponding completeness of

9.4 per cent and a localization MAE of 7.6 Å. For the highest quality
pectra SNR = 20 − 50 , this impro v es to EW 

rest, thresh 
Mg II , 2796 ≥ 0 . 05 Å,

ith a corresponding detection completeness of 99.8 per cent and 
 localization MAE of 1.6 Å (see Table 1 ). 

In addition to its high classification and localization accuracy, 
ne key advantage of our CNN-based technique is speed. The 
omputational efficiency of the detection of Mg II absorbers with 
his approach is significantly higher compared to traditional methods. 
lthough the initial training step is e xpensiv e ( ∼15 h on one NVIDIA
ESLA V100 GPU), subsequent e v aluation is essentially free: the
etwork can process ∼10 000 spectra in seconds. 
As a result, we propose that CNNs are a practical and feasi-

le tool to detect and localize Mg II absorption-line systems in
dealized 4 MOST -like high-resolution spectra with high accuracy. 
uture work, in terms of the realism of our mock spectra, and the
unctionality of the model, will prepare it to be a production-quality
ool for the start of 4 MOST observations in 2024. 
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