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We study the nonequilibrium Casimir-Lifshitz force between graphene-based parallel structures held at
different temperatures and in the presence of an external thermal bath at a third temperature. The graphene
conductivity, which is itself a function of temperature, as well as of chemical potential, allows us to tune in situ the
Casimir-Lifshitz force. We explore different nonequilibrium configurations while considering different values of
the graphene chemical potential. Particularly interesting cases are investigated, where the force can change sign
going from attractive to repulsive or where the force becomes nonmonotonic with respect to chemical-potential
variations, contrary to the behavior under thermal equilibrium.

DOI: 10.1103/PhysRevB.108.115412

I. INTRODUCTION

van der Waals dispersion forces occur between polarizable
objects and are a quantum, relativistic, and macroscopic phys-
ical manifestation of both quantum and thermal fluctuations
of the electromagnetic field. Generally, these forces increase
rapidly as the separation between the objects decreases, be-
coming dominant over other forces at the micron scale and
below. As a result, they could play an important role in nano-
and micro-electromechanical systems. If the whole system
is at thermal equilibrium, these forces are described by the
Lifshitz, Dzyaloshinskii, and Pitaevskii theory [1,2] which, in
the middle of the 1950s, considerably generalized the Casimir
ideal-reflectors configuration [3]. This allowed us to account
for objects made by real materials and consider finite tem-
perature, opening the possibility to study a large number of
new experimental realizations. We hence name this general
van der Waals interaction the Casimir-Lifshitz (CL) force.
Fifty years later, that theory has been further generalized to
systems out of thermal equilibrium (OTE) where the different
objects are held at different temperatures and are immersed
in a thermal environmental bath held at a third temperature,
with the full system being in a stationary OTE state. The new
nonequilibrium theory was first developed for atom-surface
configurations [4–7], showing rich and unexpected behavior
(change of sign of the force which can possibly become a
repulsive, different temperature and separation distance power
law, . . .). Some of these predictions were verified in experi-
ments with ultracold atoms trapped close to a hot substrate
[8,9]. Internal atomic nonequilibrium features have been also
investigated [10,11]. This theory was subsequently general-
ized to macroscopic planar objects [4,12] and finally to (two
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or more) objects of arbitrary shape and dielectric function
[13–16], opening new opportunities in the study of the CL
interaction in the general and richer framework of nonequi-
librium systems. A single closed-form expression based on
scattering matrix theory has been derived [14,16] accounting
for both CL force out of equilibrium and the concurrent radia-
tive heat transfer [17] occurring between the objects, hence
unifying the momentum and energy transfer in those systems.
Afterwards, expressions have been derived also using the
Green’s function formalism [18,19].

With this general OTE theory at hand, the CL force OTE
has been intensively explored for different geometric config-
urations (atom surface [5,8,14,16], parallel planes [12,14,16],
diffraction gratings [20]). In addition to geometric features,
the CL force is also very sensitive to the material dielectric
properties. It is hence interesting to study the effects that
emerging materials can bring to the features of CL force
OTE. One of the most interesting materials today is graphene,
due to its peculiar properties [21,22], like, for instance, the
possibility to tune, in situ, its Fermi energy (or chemical
potential μ) and hence its electric conductivity by a simple ap-
plied voltage, and the presence of thermally activated surface
modes exalting the thermal CL force at very short separations
[23–25]. By using the explicit atom-surface expression de-
rived in Ref. [14], the atom-graphene force has been recently
investigated [26] for μ = 0. In this paper we investigate the
CL force OTE between two graphene-based parallel structures
(see scheme on Fig. 1) made by suspended graphene or SiO2

slabs coated with graphene, in different thermal nonequilib-
rium configurations involving three different temperatures,
and also for different values of chemical potential μ.

In Sec. II we describe the physical systems, the dielectric
properties of the involved materials and the general model and
formalism. In Sec. III we present and analyze the numerical
calculations of the force in different configurations.
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FIG. 1. Sketch of the system under consideration, consisting of
two parallel graphene-based structures 1 and 2 held at tempera-
tures T1 and T2, respectively, in the presence of an environmental
bath at temperature T3. The two graphene sheets have conductivity
σ1(ω,μ1, T1) and σ2(ω,μ2, T2), depending on their chemical poten-
tial μi and temperature Ti.

II. PHYSICAL SYSTEM AND MODEL

The physical system under consideration is depicted in
Fig. 1. It consists of two dielectric slabs of thicknesses h1

and h2 and relative dielectric permittivities ε1(ω) and ε2(ω)
that are facing each other and separated with distance d .
They are covered with graphene sheets having conductivities
σ1(ω,μ1, T1) and σ2(ω,μ2, T2) respectively where μ1 (μ2) is
the chemical potential of graphene sheet 1 (graphene sheet
2) and T1 (T2) is the temperature of graphene covered slab 1
(graphene covered slab 2). T3 is the temperature of the envi-
ronment. We emphasize that the environmental temperature is
not the temperature of the electromagnetic field. Instead, it is
just the temperature of the walls surrounding the two bodies.

A. Casimir-Lifshitz pressure

The Casimir-Lifshitz pressure (CLP) out of thermal equi-
librium between two parallel homogeneous dielectric slabs of

finite thicknesses, covered with graphene sheets, separated by
a distance d and acting on body 1 can be expressed as [12]

P1z(T1, T2, T3) = P(eq )
z (T1) + P(eq )

z (T2)

2
+ �1z(T1, T2, T3),

(1)

where all terms in this expressions depend on the chemical
potential μ1 and μ2 of the two graphene layers. Here P(eq)

z

stands for the CLP at thermal equilibrium and is given by

P(eq )
z (T ) = kBT

π

∞∑
n=0

∞′∫
0

dQQq
∑

p

[
e2qd

ρ̃1pρ̃2p
− 1

]−1

, (2)

where the prime on the sum means that the n = 0 term is
divided by 2, q = [(ξn/c)2 + Q2]1/2 and ξn = 2πnkBT/h̄ are
the Matsubara frequencies. ρ̃1p and ρ̃2p are the frequency-
rotated reflection coefficients of bodies 1 and 2 respectively,
p standing for either s (transverse electric TE) or p (trans-
verse magnetic TM) polarization. The second term in the first
equation corresponds to the nonequilibrium contribution, and
is given by

�1z(T1, T2, T3) = A(ew)(T1) − A(ew)(T2) + B(pw)
1 (T1)

− B(pw)
1 (T2) + B(pw)

2 (T3) − B(pw)
2 (T1)

+ B(pw)
3 (T3) − B(pw)

3 (T2), (3)
with

A(ew)(T ) = h̄

2π2

∑
p

∫ ∞

0
dω

∫ ∞

ω
c

dk k Im kz n(ω, T )
Im (ρ1pρ

∗
2p)

|Dp|2 e−2d Im kz ,

B(pw)
1 (T ) = − h̄

4π2

∑
p

∫ ∞

0
dω

∫ ω
c

0
dk kkzn(ω, T )

|ρ2p|2 − |ρ1p|2 + |τ1p|2(1 − |ρ2p|2)

|Dp|2 ,

B(pw)
2 (T ) = − h̄

4π2

∑
p

∫ ∞

0
dω

∫ ω
c

0
dk k kzn(ω, T )

[
|τ1p|2[1 + |ρ2p|2(1 − |τ1p|2)]

|Dp|2 − |ρ1p|2 − 2Re

(
ρ∗

1pρ2pτ
2
1p

Dp
e2ikz (d+h1 )

)]
,

B(pw)
3 (T ) = − h̄

4π2

∑
p

∫ ∞

0
dω

∫ ω
c

0
dk k kzn(ω, T )

[ |τ2p|2
|Dp|2 (1 + |ρ1p|2 − |τ1p|2) − 1

]
, (4)

where

Dp(ω,μ1, T1, μ2, T2) = 1 − ρ1pρ2pe2ikzd , (5)

and

n(ω, T ) = 1

eh̄ω/kBT − 1
. (6)

For TE polarization, and for the configuration described
above, the Fresnel reflection and transmission coefficients are
given by [24,27],

ρ j,s(ω,μ j, Tj ) = ra, j + (1 + ra, j + rb, j )rc, je2ikz, j h j

1 − rb, j rc, je2ikz, j h j
,

τ j,s(ω,μ j, Tj ) = ta, jtc, jei(kz, j−kz )h j

1 − rb, j rc, je2ikz, j h j
,

(7)
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where

ra, j = kz − σ jωμ0 − kz, j

kz + σ jωμ0 + kz, j
,

rb, j = kz, j − σ jωμ0 − kz

kz, j + σ jωμ0 + kz
,

rc, j = kz, j − kz

kz, j + kz
,

(8)

and

ta, j = 2kz

kz + kz, j + μ0ωσ j
,

tc, j = 2kz, j

kz + kz, j
. (9)

Here, j = 1, 2 denotes slab 1 or slab 2, kz =
[(ω/c)2 − Q2]1/2 and kz, j = [ε j (ω/c)2 − Q2]1/2 are the z
components of the wave vectors for vacuum and for body j,
respectively. σ j is the graphene conductivity for each sheet
and μ0 is the permeability of vacuum.

For TM polarization, the Fresnel coefficients are given by
[24,27]

ρ j,p = rd, j + (1 − rd, j − re, j )r f , je2ikz, j h j

1 − re, j r f , je2ikz, j h j
,

τ j,p = td, jt f , jei(kz, j−kz )h j

1 − re, j r f , je2ikz, j h j
,

(10)

where

rd, j = ε jkz − kz, j + σ j

ωε0
kzkz, j

ε jkz + kz, j + σ j

ωε0
kzkz, j

,

re, j = kz, j − ε jkz + σ j

ωε0
kzkz, j

kz, j + ε jkz + σ j

ωε0
kzkz, j

,

r f , j = kz, j − ε jkz

kz, j + ε jkz
,

(11)

and

td, j = 2kzε j

kz, j + kzε j + kzkz, j
σ j

ωε0

,

t f , j = 2kz, j

kzε j + kz, j
,

(12)

with ε0 being the vacuum permittivity.
Finally, the reflection coefficients for imaginary frequen-

cies can be obtained merely by setting ω = iξ , that is ρ̃(ξ ) =
ρ(ω = iξ ).

B. Graphene conductivity and dielectric function

The graphene conductivity σ (ω) [see Fig. 2 and Fig. 3] for
real frequencies can be written as a sum of an interband and an
intraband contributions, i.e., σ = σinter + σintra, respectively

FIG. 2. Graphene conductivity (real and imaginary part) at real
frequencies for several values of μ and at T = 300 K.

given by [28–30]:

σintra(ω) = i8σ0kBT

π (h̄ω + ih̄/τ )
ln

[
2 cosh

(
μ

2kBT

)]
, (13)

σinter(ω) = σ0

[
G

(
h̄ω

2

)
+ i

4h̄ω

π

∫ +∞

0

G(x) − G
(

h̄ω
2

)
(h̄ω)2 − 4x2

dx

]
.

(14)

Here, σ0 = e2/4h̄ (expressed in Siemens), e is the electron
charge, G(x) = sinh(x/kBT )/[cosh(μ/kBT ) + cosh(x/kBT )],
T is the graphene sheet temperature, τ is the relaxation time
(we use τ = 10−13 s) and μ is the chemical potential. This
model is accurate enough for the range of distances we study.
In case of very short separations of very few nanometers more
sophisticated models [31] can be used to obtain an even more
precise estimation of the force. For Matusbara frequencies the

FIG. 3. Graphene conductivity (real and imaginary part) at real
frequencies for several values of μ and at T = 10 K.
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FIG. 4. Graphene conductivity at imaginary frequencies for sev-
eral values of μ, at T = 300 K (upper panel) and T = 10 K (lower
panel).

graphene conductivity (as shown in Fig. 4) can be expressed
as the sum of its intraband and interband components [24]

σintra(iξn) = 8σ0kBT

π (h̄ξn + h̄/τ )
ln

[
2 cosh

(
μ

2kBT

)]
, (15)

σinter(iξn) = σ04h̄ξn

π

∫ +∞

0

G(x)

(h̄ξn)2 + 4x2
dx. (16)

Compared to the conductivity of graphene at T = 300
K and μ = 0 eV [as shown in Fig. 5(a) for imaginary fre-
quencies] or T = 10 K and μ = 0.2 eV, the behavior of the
conductivity at T = 10 K and μ = 0 eV is different [as shown
in Fig. 5(b)]. The same behavior can be seen for real frequen-
cies [see Fig. 6(a) and Fig. 6(b)].

As already mentioned, we want to calculate the CLP
out of thermal equilibrium between two parallel dielectric

FIG. 5. Graphene conductivity at imaginary frequencies for μ =
0 eV, at T = 300 K (upper panel) and T = 10 K (lower panel).

FIG. 6. Graphene conductivity at real frequencies for μ = 0 eV,
at T = 300 K (upper panel) and T = 10 K (lower panel).

slabs covered with a graphene sheets. For our study, we
choose fused silica (SiO2) with relative dielectric permittiv-
ity ε(ω) = ε′(ω) + iε′′(ω) taken from [32]. In Figs. 7(a) and
7(b) we show the real imaginary parts, respectively, of this
dielectric function. For Matsubara frequencies, this function
(which is necessarily real) can be deduced from the imaginary
part ε′′(ω) (for real frequencies) through the Kramers-Kronig
relation given by the following equation [33,34]:

ε(iξ ) = 1 + 2

π

∫ ∞

0

ωε′′(ω)

ω2 + ξ 2
dω, (17)

represented in Fig. 7(c).

FIG. 7. Relative dielectric permittivity of fused silica (SiO2).
(a) Real and (b) imaginary parts of ε(ω) on the real frequency axis,
and (c) permittivity ε(iξ ) on the imaginary frequency axis.
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FIG. 8. Comparison of the CLP out of thermal equilibrium
[Eq. (1)] and in thermal equilibrium [Eq. (2)] acting on body
1, between two graphene sheets with chemical potentials μ1 =
μ2 = 0 eV. Lines show equilibrium pressures at T = 10 K (black
solid), 300 K (blue dashed), and 600 K (red dash-dotted). Sym-
bols show nonequilibrium pressures at T3 = 10 K (green circles),
300 K (magenta diamonds), and 600 K (orange plus). T1 = T2 =
300 K in panel (a), T1 = T2 = 10 K in panel (b), and T1 = 300 K and
T2 = 10 K in panel (c).

III. RESULTS

A. Out of thermal equilibrium effect

In the previous section, we presented the theory behind
the CLP out of thermal equilibrium and its dependence on
temperature, the chemical potential of the graphene sheet,
and also the distance between objects. In this section, we
discuss the specific results obtained for the CLP between two
graphene sheets (μ1 = μ2 = 0 eV) without a substrate. The
results are shown in Fig. 8, which displays the CLP as a
function of distance for various configurations (see caption of
Fig. 8 for details).

The green circles in Fig. 8(a) show that when the two
graphene sheets are at the same temperature T1 = T2 = 300 K,
and the environment is at T3 = 10 K, the CLP is attractive
at small d , causing them to be pushed towards each other.
However, as the distance increases, the force decreases and
eventually becomes repulsive at distances greater than 5.8 μm.
To better show this sign change, the pressure is displayed on
a linear scale (between 5 and 10 μm) in Fig. 9(a).

Considering a scenario where the first graphene sheet is
at T1 = 300 K and the second at T2 = 10 K, the sign change
in pressure occurs at a slightly larger separation distance of
around 6 μm [see Fig. 9(b) with linear scale] compared with
the previous case where T1 = T2 = 300 K. Figure 8(a) plots
the CLP for the case when the environment is at T3 = 600 K
and the sheets are at the same temperature T1 = T2 = 300 K.
As the CLP decreases with the separation distance, it becomes
greater than the pressure at any thermal equilibrium (10, 300,
and 600 K) for large separation distances (from around 3 μm).
This behavior is also observed if we cool down one of the
sheets [T1 = 300 K and T2 = 10 K, see Fig. 8(c)] or both of

FIG. 9. Zoom of Fig. 8 on linear scales, using the same conven-
tions. The change in sign of the force is clearly visible.

them [T1 = T2 = 10 K, see Fig. 8(b)]. Such behavior is in con-
trast to the equilibrium case where the CLP decreases when
the system is cooled down. It is worth noticing that the dis-
tance at which OTE-CLP becomes predominant is shifted by
an amount that depends on the temperatures of the graphene
sheets. For the system parameters we considered, this
behavior appears to be a general trend happening whenever
departing from an equilibrium situation and cooling down the
sheets (while preserving the temperature of the environment).

Next, we extend our study to the case where two graphene
sheets are placed on fused silica slabs with finite thicknesses
h1 = h2 = 2 μm. The CLP is calculated and compared with
the previous case of two graphene sheets without substrates.
Our results, shown in Fig. 10, indicate that the behavior of
the CLP shows similar features compared with the previous
case. The attractive force is dominant at short distances and
eventually becomes repulsive at larger distances when the
environment is at T3 = 10 K. However, we observe that the
presence of the substrate slightly modifies the distance where
the sign changes (As illustrated in Fig. 11, which is plotted on
a linear scale). Overall, the results suggest that the presence
of the fused silica substrate does not lead to qualitatively new
features for on the CLP between the graphene sheets.

B. Chemical potential effect

1. Thermal equilibrium

To begin, let us examine the chemical potential effect on
the CLP at thermal equilibrium. To study the relative variation
of the pressure as function of the chemical potential (assuming
that μ1 = μ2) we define the function

�Pμ = P1z(μ) − P1z(μ = 0)

P1z(μ = 0)
, (18)

where P1z is given by Eq. (2) or Eq. (1), for configurations at
or out of thermal equilibrium, respectively.

Figure 12 displays the relative variation �Pμ for different
values of the chemical potential with respect to the situation
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FIG. 10. Comparison of the CLP out of thermal equilibrium
[Eq. (1)] and in thermal equilibrium [Eq. (2)] acting on body 1,
between two fused silica slabs (h1 = h2 = 2 μm) covered with
graphene sheets (chemical potential μ1 = μ2 = 0 eV). Lines show
equilibrium pressures at T = 10 K (black solid), 300 K (blue
dashed), and 600 K (red dash-dotted). Symbols show nonequilibrium
pressures at T3 = 10 K (green circles), 300 K (magenta diamonds),
and 600 K (orange plus). T1 = T2 = 300 K in panel (a), T1 = T2 =
10 K in panel (b), and T1 = 300 K and T2 = 10 K in panel (c).

where μ = 0 eV. This is done for two different configurations:
suspended graphene sheets [Figs. 12(a)–12(c)] and slabs of
SiO2 covered with graphene sheets [Figs. 12(d)–12(f)].

Focusing on Fig. 12(a), which represents the T = 10 K
case, it is evident that as the chemical potential increases, there
is a simultaneous increase in the pressure. The graph exhibits
a bell-shaped curve, with the relative variation being minimal
at both small and large distances (universal graphene graphene
interaction and the thermal limits [35,36]), and reaching

FIG. 11. Zoom of Fig. 9 on linear scales, using the same conven-
tions. The change in sign of the force is clearly visible.

FIG. 12. Relative variation �Pμ of the CLP at thermal equilib-
rium as a function of (a)–(c) the distance between the two suspended
graphene and (d)–(f) covered slabs of SiO2. We plot �Pμ for
μ = 0.2, 0.4, 0.6, 0.8, 1 eV.

its maximum at 1 μm. Furthermore, when the temperature
increases, the effect of the chemical potential diminishes sig-
nificantly and the maximum of �Pμ shifts towards smaller
distances. For instance, at T = 300 K [Fig. 12(b)], the max-
imum variation occurs around 30 nm. This effect is due to
the change in the thermal wavelength λT which depends on
the temperature. For the same reason, when the temperature
is increased to T = 600 K [Fig. 12(c)], �Pμ becomes even
smaller, and its maximum shifts to around 10 nm.

We then proceed to the second case involving two slabs
of SiO2 covered with graphene sheets. When T = 10 K
[Fig. 12(d)], it can be observed that, compared with the case of
two graphene sheets without a substrate, the maximum shifts
to the right, because the CLP is dominated in this case by the
μ-independent substrate (for distances smaller than 8 μm),
and the variation decreases. Furthermore, as the temperature
increases, such as at T = 300 K [Fig. 12(e)] and T = 600 K
[Fig. 12(f)], the maximum shifts towards the left, and the
chemical potential effect decreases.

2. Out of thermal equilibrium: Suspended graphene sheets

Besides examining the influence of nonequilibrium condi-
tions on the CLP, we also explored how the chemical potential
affects this pressure. Let us start considering the two graphene
sheets being at the same chemical potential μ = μ1 = μ2.
Figure 13 shows �Pμ between two graphene sheets for dif-
ferent values of the chemical potential (0.2, 0.4, 0.6, 0.8,
1 eV). Our results reveal that when T1 = T2 = 300 K, varying
the environment temperature T3 does not lead to significant
changes of the CLP for all μ, as shown in Figs. 13(a) and
13(b). This situation is comparable to the thermal equilib-
rium case as shown in Fig. 12(a). In both Figs 13(a) and
13(b), as the chemical potential increases, the relative varia-
tion of the nonequilibrium pressure also increases, reaching
approximately a value of 1 when μ = 1 eV and the separation
distance is near 30 nm. On the other hand, when T1 = T2 =

115412-6
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FIG. 13. Relative variation �Pμ of the CLP as a function of the
distance between the two suspended graphenes with T1 = T2.

10 K and T3 = 300 K, as shown in Fig. 13(c), the impact of
the chemical potential becomes much stronger. Specifically,
when the separation distance is around 500 nm, the CLP with
μ = 1 eV becomes about 10 times greater than when μ =
0 eV and d is near 500 nm. The relative variation is further
demonstrated in Fig. 13(d) when the environment temperature
is increased to 600 K, where the effect is slightly lower than
in the previous case. Our findings suggest that the chemical
potential has a substantial impact only when the graphene
sheets are at low temperatures.

To further understand the impact of the chemical poten-
tial on the CLP between two graphene sheets, we extend
our investigation to the case where the two sheets are at
different temperatures. As shown in Fig. 14(a), where T1 =
300 K, T2 = 10 K, and T3 = 10 K, the relative variation in-
creases with chemical potential, and the pressure for μ =
1 eV is larger than that for μ = 0 eV before the sign change.

FIG. 14. Relative variation �Pμ of the CLP as a function of the
distance between the two suspended graphenes with T1 �= T2.

FIG. 15. Relative variation �Pμ of the CLP as a function of the
distance between two slabs of SiO2 covered with graphene sheets
with T1 = T2.

However, beyond a separation distance of 6 μm (where the
pressure becomes repulsive) the CLP becomes smaller when
μ = 1 eV than when μ = 0 eV. Furthermore, it is worth notic-
ing that the singularities in Fig. 14(a) are due to the fact
that we are dividing by the pressure at μ = 0 eV, which is
very low. We notice also that the relative variation of the
pressure increases with the chemical potential, and is the most
important when μ = 1 eV and d = 60 nm, except for the case
where T3 = 10 K and d > 6 μm.

3. Out of thermal equilibrium: Fused silica slabs covered
with graphene sheets

In the previous section, we examined the impact of the
chemical potential on the (CLP) between two graphene sheets
under nonequilibrium conditions. We now turn our attention
to a system composed of two graphene sheets covering two
fused silica substrates with identical thicknesses of h1 = h2 =
2 μm.

Our results, shown in Figs. 15(a) and 15(b), reveal that the
relative variation of the pressure in this system is significantly
smaller than in the previous case, reaching a maximum value
of only 0.15 when both objects are at 300 K regardless of T3.
Furthermore, this maximum is shifted slightly to the right,
towards a separation distance of 100 nm (30 nm in the case
of suspended graphene).

It should be noted that, when the two graphene sheets are
at 300 K and the environment temperature is 10 K, the effect
of the chemical potential after the change in sign, i.e., after
6 μm, is very small.

On the other hand, as the temperature of the graphene
sheets decreases to T1 = T2 = 10 K, the relative variation in-
creases, with a maximum value of 0.75 for T3 = 300 K, as
shown in Fig. 15(c). In this case, we observe that the max-
imum occurs at a larger separation distance, between 1 and
2 μm, and shifts towards greater distances.

Notably, for T3 = 600 K, the maximum relative variation
occurs between 900 nm and 1 μm, as shown in Fig. 15(d),
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FIG. 16. Relative variation �Pμ of the CLP as a function of the
distance between two slab of SiO2 covered with graphene sheets with
T1 �= T2.

which is smaller than the previous case. Nevertheless, the
maximum value is still significant, and the overall trend re-
mains similar to the case of T3 = 300 K.

We consider now the case where the two objects are at
different temperatures, T1 �= T2. Figure 16(a) displays �Pμ for
different temperatures T3 of the environment. First of all, let
us recall that the CLP increases with the chemical potential
for suspended graphene sheets if the pressure is attractive.
We retrieve this behavior in Figs. 16 for distances less than
a certain value depending on μ. For example, this distance is
about 1.72 μm for μ = 1 eV regardless of T3. This behavior
is shown in Fig. 17, where we directly display the CLP for
μ = 0 eV and μ = 1 eV with a zoom around their first inter-
section [see Fig. 17(a)].

In the specific case where T3 is fixed at 10 K, we observe
that at distances larger than 1.7 μm, the pressure for μ = 1 eV

FIG. 17. CLP out of thermal equilibrium [Eq. (1)] between two
slabs of SiO2 covered with graphene sheets. T1 = 300 K, T2 = 10 K,
and T3 = 300 K and for μ = 0 eV and μ = 1 eV.

FIG. 18. CLP out of thermal equilibrium [Eq. (1)] between two
slabs of SiO2 covered with graphene sheets separated by d = 2 μm
and T1 = 300 K, T2 = 10 K, and T3 = 300 K.

is lower than that for μ = 0 eV until a change in sign occurs
at around 6 μm. Subsequently, the pressure for μ = 1 eV be-
comes greater than that for μ = 0 eV again (when d < 7 μm).
Beyond this distance, the pressure for μ = 1 eV once again
becomes lower than that for μ = 0 eV.

We now shift our attention to the case at T3 = 300 K [see
Fig. 16(b)]. It is noteworthy that between 1.7 and 7 μm, as
the chemical potential decreases, the relative variation is ex-
pected to approach zero. However, this is not what we observe
because the smallest value of μ we are considering is only
0.2 eV. To clarify this point, we focus on a specific distance of
2 μm [red dotted line in Fig. 16(b)] and gradually decrease the
chemical potential towards zero, as shown in Fig. 18 where we
display the CLP for different values of μ and also �Pμ in the
inset. It becomes apparent that this variation is not monotonic.
The nonmonotonic dependence of the CLP represents a novel
feature of nonequilibrium systems that is absent in their equi-
librium counterparts. This variation eventually tends towards
zero for small values of the chemical potential (below 0.1 eV).
After 7 μm, the opposite occurs, �Pμ becomes monotonic,
and this is clearly shown in Fig. 17(b).

Finally, for the case of T3 = 600 K, we observe the same
behavior as in the previous cases, with the pressure for μ =
1 eV being lower than that for μ = 0 eV after 1.7 μm. How-
ever, as the distance increases, the relative variation tends
towards zero, indicating that the difference in CLP between
the chemical potentials becomes negligible at larger separa-
tions. This behavior is illustrated in Fig. 16(c).

When the CLP becomes repulsive, it decreases with chem-
ical potential on the contrary of what happens when it
is attractive. This can be directly seen in Fig. 16(a) for
d > 6.2 μm.

IV. CONCLUSIONS

We studied the OTE CLP between two graphene layers
at two different temperatures in a thermal bath of a third
temperature. The graphene layers can be suspended or coated
on a fused silica substrate. Unlike the equilibrium case where
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the pressure is always attractive, the pressure can be tuned to
change sign and become repulsive. The repulsive interactions
could play a role in alleviating stiction in graphene nanome-
chanical systems. We also show that the CLP on graphene
can be tuned by the chemical potentials. To obtain large
changes of the CLP, we find that the temperatures of the
graphene sheets need to be kept low in both equilibrium and
nonequilibrium situations. While the CLP at equilibrium
increases with chemical potential for all distances and tem-
peratures we considered, we find that for OTE CLP the
dependence on the chemical potential becomes nonmonotonic
at certain ranges of distance. Finally, one interesting addi-

tional degree of liberty that can bring new effect is anisotropy.
This is present, e.g., in black phosphorus which has been used
to explore the Casimir interaction at thermal equilibrium [37].
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