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Abstract. In this paper, we build and analyze the stability of a collo-
cated scheme, involving a specific numerical diffusion operator, for the
isentropic Euler equations. This scheme is based on the numerical diffu-
sion operator of a family of staggered finite volume schemes introduced in
[1]. The properties of this operator allowed to understand the L2-stability
of staggered finite volume methods. Staggered schemes are popular in the
thermal hydraulics community for their reported robustness and lack of
spurious oscillations. The contributions of this paper are twofold: we
firstly build a colocated scheme with a staggered-based numerical dif-
fusion operator, hence the proposed terminology of ”pseudo-staggered”
scheme, and we secondly present a rigorous TVD analysis, in order to
explain the non-oscillatory behaviour of staggered discretisations.

Keywords: Euler equations, compressible flows, finite volumes, stag-
gered grids, TVD analysis

1 Introduction

Staggered finite volume discretisations were introduced in the 1960s for incom-
pressible flows [5], then nearly incompressible flows [2]. Although non conser-
vative, they are nowadays very popular in the thermal hydraulics community
of two phase flows [4], and used in many nuclear safety simulation platforms.
However, their stability analysis remained based on heuristics [3], and practical
simulations. Starting from 2008, entropy-stable staggered discretisations have
been proposed for the Euler system [6]. In [1], a framework is proposed for the
rigourous analysis of the linearised L2-stability of these staggered schemes [4] in
view of designing robust conservative L2-stable for multiphase flows.

Beyond stability, one of the purposed advantages of the staggered discretisa-
tion is their apparent lack of spurious oscillations. This paper proposes a TVD
analysis to explain the good behaviour of staggered discretisation for low Mach
flows. We perform a rigourous TVD analysis in the case of the 1D pseudo-
staggered scheme introduced in [1] for the isentropic Euler equations as a first
step before studying other discretisations and more advanced models. In section
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2 we recall the numercal method, then we compute in section 3 the equations
giving the evolution of the discrete Riemann invariants. Finaly in section 4 we
give a partial result obtained in the case of low Mach number flows. Some first
numerical results are given in Section 5.

2 A pseudo-staggered scheme

We consider the following 1D isentropic Euler equations in conservative form:∂tρ+ ∂xq = 0

∂tq + ∂x
q2

ρ + ∂xp = 0.
(1)

where t stands for the time, ρ, q and p are the density, momentum and pressure
respectively. The pressure p is a function of the density p = f(ρ) with f a strictly
increasing function. System (1) takes the conservative form

∂tU + ∂xF (U) = 0, U =

(
ρ
q

)
, F (U) =

(
q

q2

ρ + p

)
. (2)

We propose a conservative finite volume discretisation of (1)

∂tUi +
Fi,i+1 − Fi−1,i

∆x
= 0, Ui =

(
ρi
qi

)
, (3)

where the numerical flux takes the form

Fi,i+1(Ui, Ui+1) =
F (Ui) + F (Ui+1)

2
+DStag(Ui, Ui+1)

Ui − Ui+1

2
, (4)

where the matrix DStag is the diffusion operator of the scheme and is the same
as the one of the staggered scheme [1, Corollary 1]

DStag(Ui, Uj) =

(
|uij | − uij 1

−c2 − u2ij 2uij

)
. (5)

where c is the sound speed, and uij is the Roe average of the velocity between
the two states Ui and Uj . This matrix has complex eigenvalues |uij | ± ic but

still satisfies the stability condition introduced in [1] : P̃ (DStag + tDStag)P̃
−1 =

2|uij |I2 ≥ 0, where P̃ =

(
c 0
−uij 1

)
is a transfer matrix that symmetrises ∇F .

Hence the final form of the semi-discrete finite volume scheme

∂tUi +
A−(Ui, Ui+1)(Ui+1 − Ui) +A+(Ui−1, Ui)(Ui − Ui−1)

∆x
= 0. (6)

The matrices A+ and A− are defined by:

A+(Ui, Uj) =
A(Ui, Uj) +DStag(Ui, Uj)

2
=

 |uij |−uij

2 1

−u2ij uij +
|uij |+uij

2

 , (7)
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A−(Ui, Uj) =
A(Ui, Uj)−DStag(Ui, Uj)

2
=

− |uij |−uij

2 0

c2 uij − |uij |+uij

2

 , (8)

where A(Ui, Uj) is the Roe matrix between the states Ui and Uj .
In order to analyse the total variation of schemes (6), we study the behaviour

of Riemann invariants that are connected to the left eigenvectors of ∇F (see [7,
chapter I.5]). Indeed for 1D smooth flows, the Riemann invariants l1, l2 follow a
transport equation ∂tlk + λk∂xlk, and therefore should follow a TVD property :
∂tTV (lk)(t) = 0, k = 1, 2 (see Kruzkov’s theorem [7, section 3.3]).

3 Evolution of the discrete Riemann invariants

We linearise the Euler system (2) around a constant state U0 = (ρ0, q0) :

∂tU +∇F (U0)∂xU = 0, (9)

as well as the (pseudo-)staggered scheme (6) which becomes

∂tUi +
A−(U0, U0)(Ui+1 − Ui) +A+(U0, U0)(Ui − Ui−1)

∆x
= 0, (10)

∇F (U0) is diagonalisable with left eigenvectors L1(U0) = (u0 + c,−1). and
L2(U0) = (−u0 + c, 1). The transition matrix P (U0) for diagonalising A(U0, U0)
and its inverse P−1(U0) are given by

P (U0) =

(
u0 + c −1

−u0 + c 1

)
, P−1(U0) =

1

2c

(
1 1

u0 − c u0 + c

)
. (11)

In the linear case, the Riemann invariants are :

l1(U0, U) = ρu0 + ρc− q, l2(U0, U) = −ρu0 + ρc+ q. (12)

We compute the evolution of the discrete invariants by multiplying (10) by the
transition matrix P (U0),

– Ui becomes P (U0)Ui = (l1,i, l2,i),

– A(U0, U0) becomes P (U0)A(U0, U0)P−1(U0) =

(
u0 − c 0

0 u0 + c

)
,

– DStag(U0, U0) becomes

D̄Stag(U0, U0) = P (U0)DStag(U0, U0)P−1(U0) =

( |u0| c

−c |u0|

)
, (13)

– A+(U0, U0) becomes 1
2

(
u0 + |u0| − c c

−c u0 + |u0|+ c

)
,
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– A−(U0, U0) becomes 1
2

(
u0 − |u0| − c −c

c u0 − |u0|+ c

)
.

Hence the evolution of the discrete Riemann invariants is given by

∂tl1,i + (u−0 −
c

2
)
[l1]

i+1
i

∆x
− c

2

[l2]
i+1
i

∆x
+ (u+0 −

c

2
)
[l1]

i
i−1

∆x
+
c

2

[l2]
i
i−1

∆x
= 0 (14)

∂tl2,i +
c

2

[l1]
i+1
i

∆x
+ (u−0 +

c

2
)
[l2]

i+1
i

∆x
− c

2

[l1]
i
i−1

∆x
+ (u+0 +

c

2
)
[l2]

i
i−1

∆x
= 0. (15)

where [X]
i
j is the jump between cells j and i of the X variable: [X]

i
j = Xi−Xj .

4 Low Mach TVD analysis

The following theorem on the low Mach TVD analysis follows from the fact that
for large sound speeds (c� |u|) we have |l1 − l2| � min{l1, l2}.

Theorem 1 (Low Mach TVD analysis). The numerical scheme (3)-(4)
based on the diffusion matrix (5) satisfies

∂t
∑
i

| [l1]
i+1
i | ≤ 0

provided

– assumption 1 : c (resp. M) is large enough (resp. small enough)

– assumption 2 : [ρ]i+1
i = 0 implies 2|[q]i+1

i |+ u+|[ρ]ii−1| − [q − ρu0]
i
i−1 ≥ 0.

Proof. We focus on TV (l1), but the same approach can be used to obtain TV (l2).

We first compute the evolutions of [l1]
i+1
i from (14) for two cells i and i+ 1.

∂t [l1]
i+1
i + (u− − c

2
)
[l1]

i+2
i+1 − [l1]

i+1
i

∆x
+ (u+ − c

2
)
[l1]

i+1
i − [l1]

i
i−1

∆x

− c

2

[l2]
i+2
i+1 − [l2]

i+1
i

∆x
+
c

2

[l2]
i+1
i − [l1]

i
i−1

∆x
= 0. (16)

We multiply (16) by sign([l1]
i+1
i ) to obtain the evolution of | [l1]

i+1
i | and sum

over i to obtain the evolution of the variations:

∂t
∑
i

| [l1]
i+1
i |+ (u− − c

2
)

∑
i sign([l1]

i+1
i ) [l1]

i+2
i+1 −

∑
i | [l1]

i+1
i |

∆x

+(u+ − c

2
)

∑
i | [l1]

i+1
i | −

∑
i sign([l1]

i+1
i ) [l1]

i
i−1

∆x

− c
2

∑
i

sign([l1]
i+1
i )

[l2]
i+2
i+1 − [l2]

i+1
i

∆x
+
c

2

∑
i

sign([l1]
i+1
i )

[l2]
i+1
i − [l2]

i
i−1

∆x
= 0.
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We perform the shift of indices i+ 1→ i and i− 1→ i, and after some factori-
sation we get:

∂t
∑
i

| [l1]
i+1
i |+ (u− − c

2
)
∑
i

| [l1]
i+1
i |

sign([l1]
i
i−1)sign([l1]

i+1
i )− 1

∆x

+(u+ − c

2
)
∑
i

| [l1]
i+1
i |

1− sign([l1]
i+2
i+1)sign([l1]

i+1
i )

∆x

− c
2

∑
i

[l2]
i+1
i

sign([l1]
i
i−1)− sign([l1]

i+1
i )

∆x
+
c

2

∑
i

[l2]
i+1
i

sign([l1]
i+1
i )− sign([l1]

i+2
i+1)

∆x
= 0.

We now expand u±− c
2 and introduce the difference [l1]

i+1
i in the last two lines:

∂t
∑
i

| [l1]
i+1
i | − c

∆x

∑
i

| [l1]
i+1
i |(sign([l1]

i+1
i )sign([l1]

i
i−1)− 1)

+
∑
i

(
u−| [l1]

i+1
i | − sign([l1]

i+1
i )

c

2
[l1 − l2]

i+1
i

) sign([l1]
i
i−1)sign([l1]

i+1
i )− 1

∆x

+
∑
i

(
u+| [l1]

i+1
i | − sign([l1]

i+1
i )

c

2
[l1 − l2]

i+1
i

) 1− sign([l1]
i+2
i+1)sign([l1]

i+1
i )

∆x
= 0.

Performing a shift of indices i→ i− 1 in the last line we find

∂t
∑
i

| [l1]
i+1
i | − c

∆x

∑
i

| [l1]
i+1
i |(sign([l1]

i+1
i )sign([l1]

i
i−1)− 1)

+
∑
i

(
u−| [l1]

i+1
i | − sign([l1]

i+1
i )

c

2
[l1 − l2]

i+1
i

) sign([l1]
i
i−1)sign([l1]

i+1
i )− 1

∆x

+
∑
i

(
u+| [l1]

i
i−1 | − sign([l1]

i
i−1)

c

2
[l1 − l2]

i
i−1

) 1− sign([l1]
i+1
i )sign([l1]

i
i−1)

∆x
= 0,

and therefore

∂t
∑
i

| [l1]
i+1
i | − 1

∆x

∑
i

(sign([l1]
i+1
i )sign([l1]

i
i−1)− 1)(

c| [l1]
i+1
i | − u−| [l1]

i+1
i |+ u+| [l1]

i
i−1 |+ sign([l1]

i+1
i )

c

2
[l1 − l2]

i+1
i

−sign([l1]
i
i−1)

c

2
[l1 − l2]

i
i−1

)
= 0. (17)

In order to complete the proof we need to prove that the second line in (17)
is positive. Note that the first three terms in (17) are positive. Thus there is
competition between the respective jumps of l1 and l1 − l2 in absolute value.

Now consider the limit in (17) when c → ∞. From the definition of the
Riemann invariants (12)

[l1]i+1
i = c[ρ]i+1

i + [q − ρu0]i+1
i (18)

[l1 − l2]
i+1
i = 2[q − ρu0]i+1

i , (19)
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there are two cases :

– if [ρ]i+1
i 6= 0 then [l1 − l2]i+1

i and [l1 − l2]ii−1 are negligible (since order one

in c) compared to [l1]i+1
i (order two in c) as c→∞, hence the assumption 1

– if [ρ]i+1
i = 0 then [l1]i+1

i = [q]i+1
i , [l1− l2]i+1

i = 2[q]i+1
i and the second line in

(17) reduces to

c|[q]i+1
i | − u

−|[q]i+1
i |+ u+|[l1]ii−1|+ sign([q]i+1

i )c [q]
i+1
i

−sign([l1]ii−1)c [q − ρu0]
i
i−1

= 2c|[q]i+1
i | − u

−|[q]i+1
i |+ u+|[l1]ii−1| − sign([l1]ii−1)c [q − ρu0]

i
i−1

The leading term for large c is 2|[q]i+1
i |+u+|[ρ]ii−1|− [q − ρu0]

i
i−1, hence the

assumption 2.

�

Remark 1. The assumption 1 in theorem 1 is met for flows at low Mach number
although we do not have a specific bound on the Mach number to be met in
practice. The assumption 2 is more tricky as it has to be checked for every
numerical method.

5 Numerical results

As an illustration of our main result, we present the numerical simulation of
a Riemann problem for a perfect gas with isothermal gas law p = ρc2 with
c = 300m/s.
The initial data is made of two constant states separated by a discontinuity : a
left state : (ρL = 1, qL = 10ρL), and a right state : (ρR = 2, qR = −10ρL).

We compare the numerical result obtained with three fully implicit finite
volume methods taking the form (3) where the numerical flux takes the form

Fi,i+1(Ui, Ui+1) =
F (Ui) + F (Ui+1)

2
+D(Ui, Ui+1)

Ui − Ui+1

2
, (20)

where the matrixD can beDupwind = |∇F | for the upwind scheme,Dcentered = 0
for the centered scheme, or D = Dstag (equation 5) for the staggered scheme.

Picture 1 shows the numerical results obtained with CFL number 1,
and picture 2a shows the evolution of the Riemann invariant l1 = u

c + ln(ρ).
Picture 1 shows as expected that the three conservative schemes capture the
three constant states separated by two waves. The result of the upwind and
staggered schemes are very similar. However the centered scheme oscillates since
it is not TVD.

On picture 2a we observe as expected that the total variation of the centered
scheme grows to a large final value. The total variation of the upwind scheme
remains almost constant. The total variation of the staggered scheme is very
close to that of the upwind scheme, however it increases in the first time step.
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Fig. 1: Solution of the Riemann problem at t = nx
4

(a) Evolution of the total variation
of the Riemann invariant l1

(b) Evolution of the total variation
of the Riemann invariant l1
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With the initial data chosen, the second assumption of theorem 1 is satisfied.
We therefore expected that the scheme would become TVD as one increases
the sound speed. However looking at picture 2b where we increased the sound
speed from 30 to 30000, the total variation of the pseudo-staggered scheme never
appears to be diminishing. One possible explanation is the fact that we analysed
the linearised Euler system but simulated and plotted the nonlinear invariant.
Another possible reason is that our theoretical analysis is based on a continuous
in time semi-discrete equation whereas the numerical results are obtained with
a fully discrete scheme.

6 Conclusion

We performed a TVD analysis for a stable conservative scheme inspired from
staggered discretisations used in the multiphase flow community. The Riemann
invariants were analysed and their total variation decreases provided the two
conditions of theorem 1 are met. These assumptions are not necessarily met in
practice, and given the numerical results, we believe our TVD criteria is not
optimal. We are therefore working on improving our TVD analysis in order to
match the observed behaviour of the scheme.
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