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Next-Best-View selection from observation viewpoint statistics

Stéphanie Aravecchia1, Antoine Richard2, Marianne Clausel3, Cédric Pradalier1

Abstract— This paper discusses the problem of autonomously
constructing a qualitative map of an unknown 3D environment
using a 3D-Lidar. In this case, how can we effectively integrate
the quality of the 3D-reconstruction into the selection of the
Next-Best-View? Here, we address the challenge of estimating
the quality of the currently reconstructed map in order to
guide the exploration policy, in the absence of ground truth,
which is typically the case in exploration scenarios. Our key
contribution is a method to build a prior on the quality of the
reconstruction from the data itself. Indeed, we not only prove
that this quality depends on statistics from the observation
viewpoints, but we also demonstrate that we can enhance
the quality of the reconstruction by leveraging these statistics
during the exploration. To do so, we propose to integrate them
into Next-Best-View selection policies, in which the information
gain is directly computed based on these statistics. Finally, we
demonstrate the robustness of our approach, even in challenging
environments, with noise in the robot localization, and we
further validate it through a real-world experiment.

I. INTRODUCTION

The primary objective of autonomous exploration is to
answer the question ”where to go next?”, but this question
is intrinsically linked to what we are exploring and our
purpose or goals. When a robot explores an unknown space,
the complete volume is unknown at the beginning of the
exploration. When the robot moves in the space, it gathers
information and updates a map. In robotics, autonomously
exploring environments consists in finding the next most
interesting area to visit, i.e. determining a goal destination.
This goal is usually selected by optimizing a policy, usually
balancing information gain with some cost. In this work, we
are interested in autonomous exploration tasks in large scale
sparse environments, that is, where the proportion of the
volume containing objects is small with respect to the scale
of the scene. We are particularly interested in large scale
natural environments, such as parks or forests, sometimes
called “unstructured” [1], [2], in opposition to environments
containing large geometrical shapes, such as buildings, called
“structured”. In a large scale sparse unstructured environ-
ment, computing an accurate 3D map with a 3D-Lidar is
a challenging task. Among the main difficulties, we can
point out the sparsity of the data and the errors in the laser
measurements. This is amplified by the very complex nature
of the trees (the small surfaces they offer to the laser, the
leaves that act as semi-transparent reflectors, etc. [1]–[3]).
The localization of the robot in the map is an additional
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3 is with Université de Lorraine, Nancy, France

source of errors because the 3D-reconstruction is a proba-
bilistic accumulation of all the point-clouds transformed in
the localization frame.

When the objective of the exploration is constructing an
accurate map, a central question is ”how accurate is the
map currently, in each section that is currently mapped?”.
Additionally, when working in natural environments, there
is generally a lack of any ground-truth. This raises the
second question: ”how can we derive an exploration policy to
improve the quality of a map, without access to any ground-
truth?”.

In this study, we propose a methodology to compare the
reconstruction to the ground-truth at a local level. Then, we
propose several computationally light viewpoint statistics,
and a methodology to prove that they are indicators of the
local reconstruction quality. Those indicators point out which
areas are worth re-observing and how to re-observe them.
Conversely, they allow discarding areas that are not worth
re-observing, i.e. areas that do not significantly improve the
reconstruction quality. We demonstrate statistically that the
quality of the map can be estimated from statistics collected
from the observations themselves. Finally, we integrate those
statistics in the choice of the Next-Best-View in an explo-
ration task, demonstrating that those statistics can indeed be
used in an exploration policy to improve the overall map
quality.

To summarize, our contributions are:
• a methodology to compare reconstruction to ground-

truth at a local level;
• the proposition of four indicators of the map quality

based on viewpoint statistics only;
• a methodology to validate that those indicators are valid

indicators of the map quality;
• the integration of those indicators in Next-Best-View

policies.

II. RELATED WORK

A. Map building

In this paper, we focus on the most common map represen-
tation for outdoor robotics: volumetric maps, i.e. 3D-grids.
Such a map is a discretization of the space in voxels, each
voxel containing some information, such as its occupancy
likelihood. [4] presented Octomap, a method to build and
store an octree instead of a 3D-grid, saving memory and
computation. The open-source Octomap library implements
the complete probabilistic map building process. The map
is constructed in a given map frame, and every point-cloud
in the Lidar frame updates the map. For each point in the



point-cloud, a ray-casting operation is performed. Between
the robot and the returned point, the probability of occupancy
of the leaves in the octree is decreased. The returned points
are updated as occupied, their probability of occupancy
is increased. We use Octomap to build the probabilistic
volumetric map denoted as “reconstruction” in this paper.

It is also important to note that the quality of the map is
intrinsically linked to the precision of the robot localization.
Since the point-clouds are expressed in the Lidar frame
(which is based on the robot’s localization), any error in the
transformation from the Lidar frame to the map frame will
lead to errors in the map [1]. For those reasons, we evaluate
the robustness of our method with respect to the localization
precision, with different level of noise in simulation, and
with a real experiment.

B. Next-Best-View Policies

In autonomous exploration, traditional policies consist in
setting a goal destination within the known volume, but
with at least one unknown neighbor. This frontier-based
exploration was first introduced by [5], where the goal is
the nearest accessible frontier point (called closest-frontier
in this work). Another traditional policy is to sample ran-
domly the goal among the frontier points (random-frontier).
Similarly, [6] set goals by filtering and clustering frontier
points at different levels in Octomap’s octree. In that case,
however, the overall objective is to rapidly decrease the
percentage of unknown voxels in the map. By contrast, in
this work, the quality of the map is a central feature of
the overall objective. The policy is therefore intrinsically
linked to the robot perception, making this a Next-Best-View
(NBV) problem: the objective of the next goal selection is
a balance between the need to maximize the efficiency of
the perception (the information gain), and some cost. Often,
in that case, exploration policies are linked to simultaneous
localization and mapping, and the gain is formulated to
reduce both the uncertainty in the map and in the localization,
as in [7]. In this work, we consider that the localization is
an input to the mapping problem.

Commonly, improving the 3D-reconstruction quality can
be seen as an inspection task: the focus is on the reconstruc-
tion of the surface, and not on the exploration of the 3D
volume. In that context, the NBV is generally the candidate
view that maximizes the expected gain on the reconstruction
quality. [8] and [9] select the NBV to create a high quality
surface of a single small scale object. Both methods require
heavy calculations, such as estimating at runtime the surfaces
and their normals. This prevents them from scaling to large
environments. The scaling is tackled by [10] and [11]. They
focus on selecting the NBV to improve the quality of the 3D-
reconstruction of large and complex structures. Whereas [10]
selects the NBV after performing an initial scan to obtain a
rough model of the structure to reconstruct, [11] estimates at
runtime the quality of the surfaces through the computation
of surface points, where each point is assigned a confidence
level via the integration of Truncated Signed Distance Fields
(TSDFs).

However, some methods focus on exploring a 3D-volume
and reconstructing a 3D-surface at the same time. For exam-
ple, [12] explores an unknown volume, and proposes several
information gain formulations to select the NBV, all aiming
to be informative to the reconstruction by using the entropy
of the voxels. [13] explores a large scale unknown volume
with multiple UAVs and reconstructs a 3D-model of a large
scale object of interest in this volume. The NBV is guided
by the expected information gain on the 3D-reconstruction
with an estimation of the current surface with TSDFs.

All those methods assume in their information gain for-
mulations that the object of interest is large with respect
to the scale of the scene. That is the main limitation of
those methods: they make assumptions on the scene or
object to reconstruct, and are not intended to work in large
scale sparse unstructured environments, with their specific
challenges. Indeed, in that type of environment, not only are
there few objects to reconstruct in a large scene, but also the
noise in the Lidar and in the localization is important, the
sampling of the objects in the 3D-grid is not uniform, we face
unpredictable occlusions, etc... On the contrary, our method
makes no such restrictive assumptions, and our NBV policies
rely on observation viewpoint statistics only that discard the
need for any assumption on the scene to reconstruct.

III. METHOD

The objective of our work is to prove that some indicators,
based on viewpoint statistics only, are presumptive of the
map quality, and to show their interest when integrated in
the choice of the NBV. First, we explain our methodology to
compare 3D-reconstruction to ground-truth, and to measure
the quality of the reconstruction at a local level. To do so,
we discretize the space into cuboid regions and calculate
a reconstruction metric for each cuboid. Second, we define
the indicators, i.e the statistics from the observation view-
points, in the same cuboid regions. Third, we evaluate those
indicators with respect to their ability to be presumptive of
the map quality. Finally, we integrate those indicators in the
NBV selection. All the code is available open-source1.

A. Cuboid region comparison

This section explains how we compare the reconstruction
to the ground-truth locally, on cuboid regions. To enable this
local comparison, we discretize the volume the reconstruc-
tion and the ground-truth represent into two 3D-grids, of the
same resolution RES and in the same reference frame Rf . A
local region is then a cuboid C. To compare the two local
regions, we compute metrics between intersecting cuboids.
Alg. 1 summarizes this section.

Cuboid extraction: The 3D-reconstruction is obtained
from the full probability map constructed by Octomap,
the ground-truth is either the mesh of the scene used in
simulation, or the point-cloud obtained when scanning the
area with a Total Station (Sec. IV-A). For the ground-truth,
in the simulated environment, we first slice the ground-truth

1https://github.com/stephanie-aravecchia/obs-stats-NBV
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mesh with horizontal planes, with a vertical space of res,
our spatial resolution (with res < RES). In each plane, we
then calculate the intersection of the mesh and the plane,
and we store it in a 3D matrix of voxel size res. Each voxel
on the intersection is occupied and has a value of 1.0, all
the remaining voxels are empty and a value of 0.0. In the
real experiment, we construct a 3D matrix of voxel size res
containing zeros. We iterate on the point-cloud from the
Total Station, and for each point, we set the value of the
corresponding voxel to 1.0. Our ground-truth dataset, Dgt, is
then a 3D matrix of size (h1,w1,n1). Its associated volume in
space, in the reference frame Rf , is the bounding-box Bbox1 .
For the reconstruction, we first create a full probability map
with Octomap in the same reference frame Rf , and with
the same resolution res. From this octree, and its bounding-
box in Rf , we initialize a 3D matrix as unknown space, i.e.
values of 0.5, corresponding to the equal probability of the
voxel to be occupied or empty. We then iterate on all the
leaves in the octree. For each leaf, we set the probability of
its associated voxels in the 3D matrix to the probability of the
leaf (the unknown space is implicitly described in Octomap
with absent leaves). We finally obtain the reconstruction
dataset, Drec, a 3D matrix of size (h2,w2,n2), with a voxel
resolution res, with its associated bounding-box, Bbox2 , in
the same reference frame, Rf .

Finally, we do the comparison in Bbox1 ∩Bbox2 . First, we
load the intersection of both datasets in two 3D matrices,
Mgt and Mrec: a voxel vijkgt from Mgt corresponds to the
same volume in Rf than vijkrec from Mrec. Second, we go
through both 3D matrices, and compare cuboid region by
cuboid region, the reconstruction and the ground truth. A
cuboid region is a group of n × n × n voxels in each 3D
matrix, and is noted Cgt or Crec. Those cuboid regions are
in fact large voxels of size RES = n × res, in the 3D-grid
Bbox1 ∩ Bbox2 , in Rf , and each element in Crec and Cgt

stores the occupancy likelihood of its corresponding voxel
of size n in Rf .

Cuboid metrics: Since this method is developed with the
objective to work also on large scale environments with
sparse objects, the reconstructed volume may contain more
empty space than actual objects to reconstruct. A measure
that would give information on occupied space only may not
be representative of the complete volume. For this reason, we
found it interesting to measure not only how well objects
have been reconstructed, but also how well the empty space
has been reconstructed. To do so, we first define two sets:
Uocc, the set of the cuboids regions containing at least one
occupied voxel in Cgt and Uempty , its complement. Then, we
measure the quality of reconstruction of the cuboids with a
different metric in each set. First, to measure the quality of
reconstruction of a cuboid region in Uocc we use the surface
coverage cov. We apply the classical methodology in a 3D-
grid, as [12]: all the reconstructed points in Crec are consid-
ered belonging to the surface if their occupancy likelihood
is above a threshold. We calculate the Euclidean distance
between a ground-truth point S and the closest reconstructed
point P . If the distance SP is below a registration distance,

the point is considered reconstructed. The total number of
ground-truth points is nS , the total number of considered
reconstructed points is nrec. The surface coverage is then
cov = nrec/nS . Conversely, when we measure the quality
of reconstruction of a cuboid region in Uempty we actually
want to measure the distance between Crec and a ground-
truth cuboid containing only zeros. The L1 norm provides
that distance: L1 =

∑(i,j,k)=(n,n,n)
(i,j,k)=(0,0,0) Creci,j,k .

Algorithm 1 Reconstruction and ground-truth comparison
// Dgt and Drec are the datasets
Dgt(Bbox1 , (h1, w1, n1), Rf ), Drec(Bbox2 , (h2, w2, n2), Rf )
Bbox ← Bbox1 ∩Bbox2
Mgt ← Dgt(Bbox),Mrec ← Drec(Bbox)
for all cuboid ∈ Bbox do:

Cgt ←Mgt(cuboid), Crec ←Mrec(cuboid)
if cuboid ∈ Uocc then:

cuboid.metrics← computeCov(Crec, Cgt)
else:

cuboid.metrics← computeL1(Crec)
end if

end for

B. Statistics from the observation viewpoints
This section describes the statistics from the observation

viewpoints we consider, it explains how these statistics are
computed, and introduces the new indicators we propose:
the spherical variance, and the covered angular sectors, to
express the diversity of the viewpoints. The underlying idea
is that in sparse and unstructured environments particularly,
the quality of the reconstruction should be influenced by
the viewpoint diversity, because of the specific problems
indicated in Sec. II-B.

We consider the following statistics: 1) nobs, the number
of times the cuboid region is observed; 2) rmin, the minimum
range of the viewpoints; 3) nΩ, the number of angular sectors
covered by the viewpoints; 4) σθ, the spherical variance of
the viewpoints. The two last are detailed later.

Viewpoint statistics update: To begin with, we describe
how the statistics are stored and updated. We first construct
and initialize G, a 3D-grid containing observation viewpoint
statistics. G is in the same reference frame Rf than the
reconstructed map and the ground-truth, and each element Cs
in this grid spatially corresponds to a cuboid region described
previously (same resolution RES, same position in Rf ). Cs
stores the viewpoint statistics of its corresponding cuboid
region. Each time we receive a new point-cloud from the
Lidar, we update at most once Cs, the elements of G, to
keep track of the viewpoint statistics. We know that each
point P of the point cloud is observed from the center of
the Lidar, O. The laser ray is [PO]. We also know that each
element along [PO] has been observed from the same point
O. We calculate the intersection of the segment [PO] and
the grid G. For each element in this intersection, we update
the statistics from the observations, considering the center of
Cs is observed from O. We perform the ray-casting operation
to compute the viewpoint statistics regardless that the cuboid
region contains an object or empty space. The update of G
is fast to compute and easily runs in real-time.



Angular Sectors: The objective here is to count the
number of angular sectors each cuboid region has been
observed from. To do so, we divide the horizontal plane
(x, y) going through the center of the considered cuboid
region C = (xc, yc, zc) into n angular sectors, represented
with Ω, a boolean vector of size n. For each observation
from a point O = (xo, yo, zo), we compute the azimuthal
angle in the (x, y) plane: θ = atan2(yo−yc, xo−xc). From
θ, we compute the angular sector index i in Ω: i = θ×n/2π,
and set Ωi to 1. The statistic we propose is simply: nΩ =∑i=n−1

i=0 Ωi.
Spherical Variance: Calculating the spherical variance,

defined in [14], consists in encoding each viewpoint
through its spherical angle with the coordinate axes, U =
[Ux, Uy, Uz] defined as the unit vector. Assume now that we
are given n observation viewpoints U(1), · · · ,U(n). The
spherical variance is defined as follows :

σθ = 1−R/n with R =
√

X2
sum + Y 2

sum + Z2
sum (1)

where we denote

Xsum, Ysum, Zsum =
k=n∑
k=0

Ux(k),
k=n∑
k=0

Uy(k),
k=n∑
k=0

Uz(k) (2)

We compute this spherical variance for each update, where
we derive U from [CO], and then calculate the resultant
length R from the history of U(n), from observation 0 to
the current one n, in the considered cuboid region CS .

C. Next-Best-View Selection

This paragraph presents our method where the previously
described grid of viewpoint statistics G is integrated into the
NBV selection. We implement four different policies, each of
them considering the expected information gain on a single
statistic: either on nobs, rmin, nΩ or σθ.

The candidates NBV are all the reachable candidates, in
the known free space, in a selected range around the current
robot position, R. For each target candidate T , let us consider
aT the action of moving the robot from R to T . Following
[7], our NBV selection policy is based on two quantities:
E[I(aT )], the expected information gain of taking aT , and
its associated cost cost(aT ).

Expected Information Gain: For each candidate NBV, T ,
we calculate E[I(aT )].

First, we consider the current state, G0, and the predicted
state Ĝ. We compute Ĝ by updating every visible cuboid Cs of
G0 with a new expected observation after simulating taking
aT (i.e. a new observation from T ). For nΩ, we update all
the angular sectors in Ωi covered by the displacement of the
robot from R to T . For the three other statistics, we simply
consider the new observation from T .

Second, given the two states G0 and Ĝ, E[I(aT )] is the
accumulation of the considered statistic’s updates over all
visible cuboids. Given a cuboid Cs, one indicator si0 in
[nobs, rmin, nΩ, σθ], in state G0 and the updated indicator
ŝi in state Ĝ, the indicator update follows the central limit
theorem gi = log(ŝi) − log(si0) if ŝi > si0, else gi = 0
(symmetric for rmin).

metrics M indicator s threshold s∗ alternative hypothesis H1

cov nobs, nΩ, σθ nobs*, nΩ*, σθ* M [s ≥ s∗] > M [s < s∗]
cov rmin rmin* M [s < s∗] > M [s ≥ s∗]
L1 nobs, nΩ, σθ nobs*, nΩ*, σθ* M [s ≥ s∗] < M [s < s∗]
L1 rmin rmin* M [s < s∗] < M [s ≥ s∗]

TABLE I: Details of the Mann-Whitney U tests populations and hypothesis

Finally, for one statistic: E[I(aT )] = 1/n
∑i=n

i=1 g
i, where

gi depends on the considered statistic, and n is the number
of visible cuboids from T .

NBV selection policy: The cost cost(aT ) is a function of
the distance the robot has to drive from R to T , avoiding
obstacles, computed with a Breadth-first algorithm.

The NBV is then selected as in [7]. It is the candidate
T , with aT ∗ the action with the highest expected utility:
aT ∗ = argmax(E[U(aT )), where the expected utility of
aT is E[U(aT )] = E[I(aT )] − α × cost(aT ), and α is a
weighting factor.

D. Evaluation Methodology
1) Validation of the indicators with statistical tests: The

objective of this section is to prove that the observation
viewpoint statistics we consider are closely related to the
map quality, and to validate that they are indeed relevant
indicators of the quality of reconstruction. Each cuboid
region yield a measure of the quality of its reconstruction
(cov or L1, sec. III-A), and statistics from its observation
viewpoints (nobs, rmin, nΩ, σθ, sec. III-B). Let M be
the value of its measured quality and s the value of the
statistic. We split the population of cuboids regions in two
populations, using a threshold for the considered indicator,
and we perform a statistical test to prove that the quality of
reconstruction M of the population of cuboids for which the
indicator s is above (or below) the threshold is significatively
better than the other population.

To perform the tests, we set the threshold s∗ to the median
of s. Then, following [15], we compare the two populations
with the one-sided non-parametric Mann-Whitney U tests
indicated in Table I, available in the scipy-stats library 2.
If the p-value is small, then we reject the null hypothesis
H0, that the two populations of voxels are equally well
reconstructed, in favor of the alternative H1, corresponding
to a significant better reconstruction when the value of the
indicator of interest is above s∗ (or below, for rmin). In other
words, a small p-value proves the considered viewpoints
statistic is undeniably an indicator of the reconstruction
quality.

2) Evaluation of the NBV selection: We evaluate several
exploration tasks w.r.t their produced map quality. The map
quality is evaluated globally. For each experimental explo-
ration, we consider Q, the quality of reconstruction of the
complete volume, as the weighted mean of the normalized
metrics calculated on the cuboids regions of Uocc and Uempty .
If Uocc and Uempty contains respectively n and m elements:

Q =
1

n + m
(

k=n∑
k=0

covk − min(cov)

max(cov) − min(cov)
+

k=m∑
k=0

(1 −
L1k

− min(L1)

max(L1) − min(L1)
))

(3)

2https://docs.scipy.org/doc/scipy/reference/stats.html
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Finally, we want to compare different policies based on
how the map quality evolves during the exploration process,
that is, how Q changes when the amount of unknown
space in the map decreases. We compare our four NBV
selection policies, where the information gain is based on
nobs, rmin, nΩ or σθ (III-C), with three other goal selections:
random-frontier and closest-frontier presented in II-B, and
another goal selection called random-free based on random
sampling of goals in the known space. We add the latter,
because by construction our policies may sample goals in
the known space, and it may not be fair to compare it only
against frontier algorithms that exclusively sample goals in
the frontier area close to the unknown space. Comparing to a
policy that samples goals randomly inside the known space
remove this potential bias in our opinion.

IV. EXPERIMENTS AND RESULTS

Our experiments are done in simulation and in the field.
In both cases, we use the ROS framework and the robot is a
Clearpath Husky, equipped with a 3D Lidar Ouster OS1-16.

A. Experimental Setup in Simulation

The simulator is Gazebo. A mixture of noise is applied
to the Lidar to better simulate the behaviour of a Lidar in
outdoor natural environments.

We generate randomly several environments. Each envi-
ronment is a plane of dimension 60m × 60m on which
we place assets with a Poisson Cluster Point Process, to
reproduce the natural spatial distribution of trees. The assets
can be, with an increasing level of difficulty w.r.t the recon-
struction, either rectangular cuboids, cross-extruded shapes,
helicoidal cones, or randomly selected in our 15-trees library
mimicking winter bare trees. Random factors are applied
on the assets’ dimensions and orientation. With the same
point process generation, we create four different synthetic
environments, one per type of asset.

Since the quality of the reconstruction is also directly
linked to the localization of the robot, we incrementally add
a Gaussian noise to the perfect localization. The noise levels
considered in this study are (with the standard deviations σp,
on position, in meter, σq , on orientation, in radian): 0) perfect
localization; 1) σp = 0.005, σq = 0.005; 2) σp = 0.05,
σq = 0.01.

In this work, the sensor range is set to 20m, the map
resolution to res = 0.1m, and the cuboid resolution to RES =
1m. For the NBV selection, we select candidates in a range
of 20m around the robot.

We generate 12 environments (3 different point processes
with 4 different assets). For each environment, for each of
the 3 noise levels, we run 3 simulations with each policy
(random-frontier, closest-frontier, random-free, ours[nobs],
ours[rmin], ours[nΩ] and ours[ σθ]), for a total of 756 exper-
iments in simulation. Each experiment consists in teleporting
the robot to the goal, accumulating the point-cloud, and
teleporting it to the next goal. We repeat until the ratio of
discovered space in the ground-plane reaches 70%.

Fig. 1: Mean quality of reconstruction expressed as a function of viewpoint
statistics. Blue: in simulation, orange: real experiment.

B. Experimental Setup in the field

The experimental field is a small park containing trees, of
an approximate area of 1500m2. Although it is not possible
to acquire the ground-truth of such an environment, we
consider that the 3D point-cloud obtained from the scan of
the environment with a Total Station Leica TS60 is precise
and dense enough to be considered as ground truth. The
horizontal and vertical angular resolution of the scanning
is set to 0.05 degrees. To scan the area, the Total Station
is placed on three different locations, to have different
viewpoints on the trees. Each scan takes 40 to 60 minutes.
At the end, we obtain a single consistent point-cloud from
the area. To localize the robot in this area, it is equipped
with a prism tracked by the Total Station. The pose is
recovered in a post-processing phase. With this setup, we
can consider we have a “good” localization for an outdoor
robotics application. For this experiment, we drive the robot
manually, and we obtain one reconstruction with Octomap
(max-range 10m), with res = 0.1m, that we compare to the
ground-truth. This experiment is designed to validate that the
statistics from the observation viewpoints remain indicators
of the map quality even in a real environment.

Ultimately, the maps from the simulation and the real
experiment are compared to the ground-truth as described
in sec. III, with a cuboid resolution of RES = 1m.

C. Results

Fig. 1 shows how the statistics from the observation view-
points are linked to the quality of reconstruction. Following
what could seem intuitive, the quality of reconstruction
increases (cov increases and L1 decreases) when nobs, nΩor
σθ increase (the viewpoints are more numerous / more
diverse), and when rmin decreases (seen from closer). For
the experiments in simulation, the figure displays the results
only with the first level of noise, and the experiments are
grouped by type of asset. Each line corresponds to the mean
of the statistic for the 252 experiments selected. The darker
the line, the more challenging the type of environment. All
the curves follow the same trend, even though some statistics
seem more robust when the environment is more difficult
(rmin in particular). The figure also displays the information
on the real experiment. The trend of the curves remains the
same, despite the different vertical scale on cov, due to the



Fig. 2: Quality of reconstruction expressed as a function of the proportion
of discovered space in the ground plane. The plots are arranged with an
increasing difficulty in the scene. In each figure, the line is the mean of
the experiments, the area is between the min and the max. Our proposed
methods (nobs, rmin, nΩ, σθ) are compared to the baselines (random-
frontier, closest-frontier, random-free).

fact that the real environment is more difficult to reconstruct
than the simulation. Although we do not show it here due to
lack of space, for the experiments in simulation, the curves
are nearly superimposed if we fix the type of asset, and vary
the noise in the localization, indicating that the statistics are
robust to noise.

To prove that the trend we see is statistically significant,
we perform the statistical tests described in III-D for each
considered indicator. To avoid any bias in the viewpoint
statistics, we perform the tests only on the random-frontier
and random-free experiments. The results of the 162 experi-
ments are presented in Tab. II. We use a common threshold
for the p-value: 0.05. In simulation, generally, more than
87% of the tests leads to p < 0.05, rejecting H0 in favor
of H1: this validates statistically that our hypothesis that
the viewpoint statistics we consider are indicators of the
map quality, even in challenging environment, and with
noise in the localization. In the real experiment, p < 0.05
for all the tests, validating that the statistics’ ability to
indicate the quality of the reconstruction remain true in a
real environment. We cannot see any trend in the tests where
p > 0.05, they are spread on the different type of assets and
on the different level of noise. The lower reliability of nobs

and nΩ at indicating the quality of reconstruction of occupied
space suggest that a reliable policy should optimize on all
the statistics and not only one at the time, as we do currently.
This is left for future work.

cov L1 cov L1

nobs 0.74 0.90 rmin 0.89 1.00
nΩ 0.74 0.87 σθ 0.88 0.93

TABLE II: Ratio of statistical tests with pvalue p < 0.05

Fig. 2 displays how the quality of the map Q evolves
during the exploration phase, when the space is discovered.
The results are shown for the experiments in four envi-
ronments, where the asset distribution is the same, but the
assets vary, and the perfect localization (84 experiments).
Generally, the curves representing our methods are higher
than the others. This indicates that basing NBV policies on
viewpoint statistics significantly improves the map quality

during the exploration process. This is particularly true when
the difficulty in the scene increases.

V. CONCLUSION

We have demonstrated that the four observation viewpoint
statistics we consider in this work are undeniably indicators
of the map quality, while being extremely simple to compute
in real-time for any environment. We also have demonstrated
that basing the choice of the Next-Best-View on one of those
indicators allows exploring while optimizing implicitly, but
significantly, the quality of the 3D-reconstruction. So far,
we have used only one observation viewpoint statistic at a
time. Our intuition, consistent with statistical testing, is that
building upon the four statistics, we will be able to improve
the prediction of the quality of reconstruction, and further
integrate that prediction in the Next-Best-View selection. In
doing so, the definition of the information gain may become
more challenging. Future work will focus on solving this
problem with Deep Reinforcement Learning.

REFERENCES

[1] G. Chahine et al., “Mapping in unstructured natural environment:
a sensor fusion framework for wearable sensor suites,” SN Applied
Sciences, no. 5, pp. 1–14.

[2] P. Babin et al., “Large-Scale 3D Mapping of Subarctic Forests,”
Springer Proceedings in Advanced Robotics, vol. 16, pp. 261–275,
2021.

[3] J. Laconte et al., “Lidar measurement bias estimation via return
waveform modelling in a context of 3D mapping,” Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2019-May,
pp. 8100–8106, 2019.

[4] A. Hornung et al., “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees,” Autonomous Robots, vol. 34, no. 3, pp.
189–206, 2013.

[5] B. Yamauchi, “Frontier-based approach for autonomous exploration,”
Proceedings of IEEE International Symposium on Computational
Intelligence in Robotics and Automation, CIRA, pp. 146–151, 1997.

[6] A. Batinovic et al., “A Multi-Resolution Frontier-Based Planner for
Autonomous 3D Exploration,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 4528–4535, 2021.

[7] C. Stachniss et al., “Information gain-based exploration using rao-
blackwellized particle filters,” Robotics: Science and Systems, vol. 1,
pp. 65–72, 2005.

[8] N. A. Massios and R. B. Fisher, “A Best Next View Selection
Algorithm Incorporating a Quality Criterion,” Department of Artificial
Intelligence, University of Edinburgh, 1998.

[9] S. Kriegel et al., “Efficient next-best-scan planning for autonomous
3D surface reconstruction of unknown objects,” Journal of Real-Time
Image Processing, vol. 10, no. 4, 2015.

[10] R. Almadhoun et al., “Guided next best view for 3D reconstruction of
large complex structures,” Remote Sensing, vol. 11, no. 20, pp. 1–20,
2019.

[11] S. Song and S. Jo, “Surface-Based Exploration for Autonomous 3D
Modeling,” Proceedings - IEEE International Conference on Robotics
and Automation, pp. 4319–4326, 2018.

[12] S. Isler et al., “An information gain formulation for active volumetric
3D reconstruction,” Proceedings - IEEE International Conference on
Robotics and Automation, pp. 3477–3484, 2016.

[13] G. Hardouin et al., “Next-Best-View planning for surface recon-
struction of large-scale 3D environments with multiple UAVs,” IEEE
International Conference on Intelligent Robots and Systems, pp. 1567–
1574, 2020.

[14] D. E. Tyler, “Statistical Analysis for the Angular Central Gaussian
Distribution on the Sphere,” Biometrika, vol. 74, no. 3, pp. 579–589,
jan 1987.

[15] M. P. Fay and M. A. Proschan, “Wilcoxon-Mann-Whitney or T-test?
on assumptions for hypothesis tests and multiple interpretations of
decision rules,” Statistics Surveys, vol. 4, pp. 1–39, 2010.


	Introduction
	Related Work
	Map building
	Next-Best-View Policies

	Method
	Cuboid region comparison
	Statistics from the observation viewpoints
	Next-Best-View Selection
	Evaluation Methodology
	Validation of the indicators with statistical tests
	Evaluation of the NBV selection


	Experiments and Results
	Experimental Setup in Simulation
	Experimental Setup in the field
	Results

	Conclusion
	References

