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Abstract

In this study, we focus on addressing the challenge
of measuring the 3D-map quality in natural environ-
ments. Specifically, we consider scenarios where the
map is built using a robot’s 3D-Lidar point cloud ob-
servations, with potential uncertainty in the robot lo-
calization. When considering a natural environment,
such as a park or a forest, unstructured by nature,
another difficulty arises: the data becomes extremely
sparse. As a result, measuring the map quality be-
comes even more challenging. This study aims to
compare the effectiveness of various metrics in mea-
suring the 3D-map quality. Firstly, we evaluate these
metrics in a controlled experimental setup, where the
reconstructed map is created by progressively de-
grading the reference map using different degrada-
tion models. Secondly, we compare their ability to
measure 3D-map quality at a local level, across vari-
ous simulated environments, ranging from structured
to unstructured. Finally, we conduct a qualitative
comparison to demonstrate the robustness of certain
metrics to noise in the robot localization. This qual-
itative comparison is done both in simulation and in
a real world experiment. Ultimately, we synthesize
the properties of these metrics and provide practical
recommendations for their selection.

∗are with IRL2958 Georgia Tech - CNRS
†is with University of Lorraine

1 Introduction

The motivation behind this study arises from the dif-
ficulties faced in evaluating the 3D-map quality in
natural environments. Typically, map quality evalu-
ation aims to provide a single metric that reflects the
overall map quality. Nonetheless, in the context of a
robot autonomously mapping a natural environment
for inspection or monitoring purposes, it becomes in-
teresting to obtain a localized measure of map qual-
ity. Indeed, the map quality may not necessarily be
homogeneous throughout a possibly large-scale envi-
ronment.

This study specifically focuses on this scenario,
where the robot’s 3D-lidar observations construct the
map. In this case, the prevailing map representation
is the 3D grid, where each voxel encodes information.
Traditionally, this 3D grid encodes the occupancy
likelihood for each voxel. However, in this common
scenario, the conventional measures of map quality,
namely surface coverage and reconstruction accuracy,
may not always hold significant meaning, especially
when dealing with natural environments that are not
only sparse but also unstructured. We will demon-
strate it in this study, by emphasizing the specific
case of mapping a sparse, unstructured environment,
such as a natural environment, first in simulation,
and then with a real world experiment.

In the case of “unstructured” environments, dis-
tinct challenges arise compared to those encountered
when mapping “structured” environments. The lit-
erature often focuses on 3D-mapping in “structured”
environments like urban areas, as demonstrated by
extensive research conducted on the Kitti Dataset [1].
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However, when it comes to work in natural environ-
ments, such as those explored in [2], [3], [4] or [5],
the differentiation between structured and unstruc-
tured, dense and sparse environments becomes more
prominent due to the unique challenges involved.
The 3D-map in a natural environment is both un-
structured and sparse. It consists predominantly of
empty space, with only a few points where the 3D-
lidar actually hits an object, further complicated by
the increased noise level inherent to natural environ-
ments. For instance, trees, by their very structure,
are sparse because they offer only an aggregation of
small surfaces to the Lidar. Although the sampling of
a trunk from a Lidar could be dense, the sampling of
small branches or leaves, will generally not be high
enough to recover the underlying structure. More-
over, from a laser’s perspective, trees can behave as
semi-transparent structures, thereby inducing errors
in the measurements. The reason is that when laser-
rays – light cones in practice – reach a small object,
like a branch, often only a portion of the energy is
reflected, causing inaccurate distance readings. Two
other causes of errors in laser measurements, that are
particularly abundant in large-scale natural environ-
ments, are linked to the distance to the objects and
the incidence angle: the error increases with each of
them [6]. Finally, the localization of the robot in
the map is also a source of errors because the 3D-
map is a probabilistic accumulation of all the point-
clouds transformed in the localization frame. This
study does not directly evaluate various mapping al-
gorithms applied to natural environments. Instead,
our main emphasis lies in addressing the challenges
associated with assessing the quality of 3D maps in
such environments.
In a possibly large-scale environment, which could

also be both sparse and unstructured, the question
arises: How can we evaluate the local map quality?
Are the conventional metrics capable of delivering
meaningful measurements? This study specifically
centers around evaluating various 3D-reconstruction
metrics, including both conventional and less conven-
tional ones, with a specific focus on assessing their
effectiveness in accurately measuring the map qual-
ity. First, we begin by selecting six relevant met-
rics: surface coverage, reconstruction accuracy, Av-

erage Hausdorff Distance, Cohen’s Kappa coefficient,
Kullback-Leibler Divergence, and Wasserstein Dis-
tance. Then, we introduce a methodology that en-
ables the comparison of reconstructed map to ref-
erence map at a local level. This is accomplished
by extracting cuboid regions from both the reference
map, called ground-truth in this work, and the recon-
structed map, called reconstruction, and by assessing
the map quality with the previously mentioned met-
rics. Later on, we propose an additional methodol-
ogy to evaluate the capability of the selected met-
rics in measuring various degradation models, when
the reconstructed map is iteratively degraded from
the reference map. Finally, we empirically compare
the metrics in situations where the 3D map is built
from point clouds obtained from the robot’s observa-
tions, both in simulation and in a real world exper-
iment. Ultimately, we present a comparison of the
selected metrics, highlighting their properties, along
with guidelines towards the choice of the metric de-
pending on the application.

2 Related Work

2.1 Map building

Building a map consists in building a representation
of the perceived environment that aligns with the in-
tended purpose of the map. In robotics, the maps are
commonly built with the primary objective of opti-
mal navigation planning, such as [7]. However, there
are cases where the purpose is to reconstruct a scene
to enable its monitoring, such as [8]. When the pur-
pose of mapping is to reconstruct a scene, the most
common maps are volumetric maps, or 3D-grids, and
meshes, or 3D-surface maps. Meshes are generally
obtained from either a Lidar point-cloud or from the
point-cloud derived from visual odometry. In a mesh,
the surface is described by connected triangles. An
optimization algorithm is applied on the point-cloud
to build the mesh. Among the most widely used tech-
niques, we can cite Ball-Pivoting Algorithm [9], Pois-
son Surface Reconstruction [10] or Delaunay triangu-
lations [11], mainly applied to mesh a single object.
Other methods tackle large-scale meshing, such as [7]
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who includes texture in the mesh to improve its visual
aspect, or [8] who build a semantic mesh representa-
tion of a large-scale environment with the Las Vegas
Reconstruction Toolkit [12]. Recently, other meth-
ods have been presented to build meshes with deep
learning techniques, such as Voxel2Mesh [13].

In this paper, we focus on the prevailing map rep-
resentation for outdoor robotics: volumetric maps.
Such a map is the discretization of the space into
voxels, each voxel containing some information, such
as its occupancy likelihood. Several methods provide
means to build 3D-grids from 3D-Lidar point-clouds.
For instance, Voxblox [14] builds 3D grids where the
truncated signed distance field (TSDF) is stored for
each voxel. Although that method is developed to
produce high quality maps, it tends to struggle when
the environment size increases. Other methods have
been proven efficient to build large 3D-grids, such as
Octomap. Even though Octomap might not be the
most efficient, as shown in [15], it is still one of the
most widely used methods.

Octomap [16] is a method to build and store an
octree instead of a 3D-grid, saving memory and com-
putation. The open-source ROS Octomap library 1

implements the complete probabilistic map building
process. The map is constructed in a given map
frame, and every point-cloud in the Lidar frame up-
dates the map. For each point in the point-cloud,
a ray-casting operation is performed. Between the
robot and the returned point, the probability of oc-
cupancy of the leaves in the octree is decreased. The
returned points are updated as occupied, their prob-
ability of occupancy is increased. A thorough update
process has been implemented to be robust to noise in
the Lidar’s point-cloud. Moreover, the leaves in the
octree encode the likelihood of occupancy, or empti-
ness, only if a point has been observed. Therefore, the
octree encodes the unknown volume, i.e. the volume
represented by absent leaves, a feature that could be
useful in different robotics applications, such as ex-
ploration. We use Octomap to build the probabilistic
volumetric map denoted as “reconstruction” in this
study.

It is also important to note that the quality of

1http://wiki.ros.org/Octomap

the map is intrinsically linked to the precision of the
robot localization and that solving the localization
in large-scale natural environment is still challeng-
ing. Since the point-clouds are expressed in the Li-
dar frame (which is based on the robot’s localization),
any error in the transformation from the Lidar frame
to the map frame will lead to errors in the map [4].
For those reasons, in this study, we evaluate the dif-
ferent metrics through the scope of the localization
precision with different level of noise in simulation.

2.2 3D-reconstruction metrics

2.2.1 Classic 3D reconstruction metrics in
robotics

In the context of 3D-map quality assessment, whether
for robotics applications or not, the task typically
consists in measuring the quality of the 3D recon-
struction, often by comparing two surfaces. Com-
monly, those are the mesh generated from the 3D-
point cloud, and the ground-truth mesh. Traditional
metrics in that case are based on surface distance er-
rors. They consist in calculating, for all surface points
of one surface, the distance to the closest on the other
surface, and then extract some statistics. Common
surface distance errors are the Hausdorff Distance,
that we will detail later, the Root Mean Square Er-
ror (RMSE) or the MAE (Mean Average Error) (used
respectively in [17], [18], [19] for instance).

In the context of robotics, the prevailing metrics of
reconstruction quality are the surface coverage and
the reconstruction accuracy. Both are derived from
those surface distance errors, and applied either on
the meshes or on the 3D-grids. In the latter case,
two sets of points are compared. Provided we want
to compute the surface coverage, we are interested on
the proportion of the set of points from the ground-
truth accurately reconstructed. To do so, if the dis-
tance between a ground-truth point and its closest
reconstructed point is less than a registration dis-
tance, the ground-truth point is considered as recon-
structed (i.e. valid). The metric is the proportion
of such points ([20, 21]). Similarly, the reconstruc-
tion accuracy corresponds to the proportion of accu-
rately reconstructed points in the set of points from
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the reconstruction, that is, points whose distance to
the closest ground-truth point is below a registration
distance.

2.2.2 Other reconstruction metrics

Some metrics have been proved efficient when it
comes to evaluate the quality of the semantic segmen-
tation predicted by deep-learning models, although
most of them have been used outside the field of
computer vision for decades. The idea with those
metrics is to evaluate at the same time the classifi-
cation accuracy and the correctness of the localiza-
tion. Among them, we can cite the accuracy, the
precision, the recall, or even the Intersection Over
Union (IoU, Jaccard Index), or the F1 score. [22]
provides a thorough review and comparison of the
existing segmentation metrics for 3D-medical image
segmentation tasks. Building upon [22], [23] com-
pares some of those metrics depending on the size
of the regions of interest to segment. As [22], build-
ing on the fact that we are working on 3D-grids, we
can consider our problem a 3D-segmentation prob-
lem. We can then consider each voxel is assigned the
class “empty” or “occupied” based on its occupancy
likelihood. In natural environments, the volume is
mostly empty space, with sparse objects whose con-
tours represent the occupied space. [23] shows that
two metrics are particularly sensitive when it comes
to measuring segmentation quality of small objects in
an image: the Average Hausdorff Distance and Co-
hen’s Kappa coefficient.
The Hausdorff Distance (HD) is, as the other met-

rics seen before, a spatial distance metric, widely used
to evaluate 3D-reconstruction [17, 24]. HD is a com-
mon measure of distance between two point sets, but
it is sensitive to outliers. [22] proposes to use instead
the Average Hausdorff Distance (AHD), introduced
in [25]. The AHD averages the HD over all the points,
becoming more stable and less sensitive to outliers
than HD.
The other interesting metric pointed out by [23],

is the Cohen’s Kappa coefficient (KAP). Unlike the
metrics seen previously, KAP is not a spatial distance
metric but a probabilistic metric. It was first pro-
posed in [26]: it provides a score measuring the agree-

ment between two samples. As an advantage over
other measures, KAP takes into account the agree-
ment caused by chance, which makes it more robust.
That is, KAP is in [-1,1], where 1 corresponds to com-
plete agreement, -1 to complete opposition, and 0 to
random.

2.3 Comparing probabilities

Since we are building a probabilistic volumetric map
with Octomap, we could take advantage of that
framework to measure the quality of the map. Each
voxel in the probabilistic map has a probability of oc-
cupancy between 0%, the absolute certainty that the
voxel is empty, and 100%, the absolute certainty that
the voxel is occupied. Leveraging the probabilities
inside a 3D-grid is not a novelty, and has been ex-
plored in [20]. However, they do not propose a mean
to compare the reconstructed volume to a reference
one. They calculate the entropy of the voxels, which
represents their distance to the unknown, thereby in-
dicating the quantity of observation for each voxel,
but not a measure of the reconstruction quality.

In this paper, we propose a methodology to com-
pare two volumetric maps with probabilistic val-
ues. Different methods allow comparing probabili-
ties. The most common is probably the Kullback-
Leibler Divergence (DKL). The DKL [27] is a mea-
sure of how different a probability distribution is from
another probability distribution. With the DKL, we
can measure how the probability distribution of the
reconstruction is different from the probability distri-
bution of the ground-truth.

Nonetheless, since we are considering a grid of
probabilistic voxels, we have access to another infor-
mation: the Euclidean distance between voxels. As
an example, if a point is erroneously reconstructed 5
cm away from an actual object, the reconstruction is
better than if the erroneous point is 50 cm away. The
DKL is not sensitive to this difference.

An alternative solution is then to find the Opti-
mal Transport plan, linking one probability distribu-
tion to another one, with a cost function depending
on the geometry [28]. From this Optimal Transport
plan, we can calculate a distance, the Wasserstein
Distance (WD) which is a generalization of the con-
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cept of Earth Mover’s Distance (EMD). Computing
the Optimal Transport Plan may be cumbersome, be-
cause it is an optimization problem that is not nec-
essarily convex. To bypass computational issues, [29]
regularizes the optimal transport problem by adding
an entropic term, and solves it using a Sinkhorn’s
fixed point iteration. [30] provides an open source
Python library implementing several solvers for Op-
timal Transport problems, including [29]’s algorithm.
With this regularized Wasserstein Distance, we can
measure the quality of the 3D-reconstruction, com-
paring not only the ground-truth and reconstructed
values of probabilistic maps but also taking into ac-
count the Euclidean distances in the errors.

3 Comparison Methodology

The objective of this study is to evaluate various
3D-reconstruction metrics with the expectation that
these metrics will provide a meaningful measure of
the map quality at a local level. Firstly, we present
our methodology for extracting cuboid regions that
enable the comparison of 3D-reconstructed map to
reference map. Secondly, we describe the compu-
tation process for each considered 3D-reconstruction
metric within these cuboid regions. Thirdly, we out-
line our methodology for evaluating the effectiveness
of these metrics in measuring the map quality. This
evaluation is conducted using controlled 3D-map ob-
tained through the iterative degradation of the refer-
ence map. In this section, we call for convenience re-
construction the reconstructed 3D-map, and ground-
truth the reference map. All the code is available
open-source2.

3.1 Cuboid region extraction

To enable the comparison of the local reconstruction
and the ground-truth, we extract cuboid regions from
both the reconstruction and the ground-truth. To do
so, we discretize both volumes into two 3D-grids, of
the same resolution RES and in the same reference

2https://github.com/stephanie-aravecchia/
3d-reconstruction-metrics

frame Rf . A local region is then a cuboid C. To com-
pare the two local regions, we compute the metrics
described in Sec. 3.2 between intersecting cuboids.
Alg. 1 summarizes this section.

The ground-truth is the mesh of the scene used in
simulation, the 3D-reconstruction is the full proba-
bility map constructed by Octomap from the robot’s
observations.

For the ground-truth, we first slice the ground-
truth mesh with horizontal planes, with a vertical
space of res, our spatial resolution (with res < RES ).
In each plane, we then calculate the intersection of
the mesh and the plane, and we store it in a 3D ma-
trix of voxel size res. Each voxel on the intersection is
occupied and has a value of 1.0, all the remaining vox-
els are empty with a value of 0.0. Our ground-truth
dataset, Dgt, is then a 3D matrix of size (h1,w1,n1).
Its associated volume in space, in the reference frame
Rf , is the bounding-box Bbox1 .

For the reconstruction, we first create a full proba-
bility map with Octomap in the same reference frame
Rf , and with the same resolution res. From this oc-
tree, and its bounding-box in Rf , we initialize a 3D
matrix as unknown space, i.e. values of 0.5, corre-
sponding to the equal probability of the voxel to be
occupied or empty. We then iterate on all the leaves
in the octree. For each leaf, we set the probability
of its associated voxels in the 3D matrix to the prob-
ability of the leaf (the unknown space is implicitly
described in Octomap with absent leaves). We fi-
nally obtain the reconstruction dataset, Drec, a 3D
matrix of size (h2,w2,n2), with a voxel resolution res,
with its associated bounding-box, Bbox2

, in the same
reference frame, Rf .

Finally, we do the comparison in Bbox1
∩ Bbox2

.
First, we load the intersection of both datasets in
two 3D matrices, Mgt and Mrec: a voxel vijkgt from

Mgt corresponds to the same volume in Rf than vijkrec

from Mrec. Second, we go through both 3D matrices,
and compare, cuboid region by cuboid region, the
reconstruction and the ground truth. A cuboid region
is a group of n × n × n voxels in each 3D matrix,
and is noted Cgt or Crec. Those cuboid regions are
in fact large voxels of size RES = n × res, in the
3D-grid Bbox1

∩ Bbox2
, in Rf , and each element in
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Crec and Cgt stores the occupancy likelihood of its
corresponding voxel of size n in Rf . Fig. 1 shows an
example of a cuboid where n = 10.

3.2 Comparison metrics

This section explains how, for each cuboid region, we
compute different metrics to indicate the map quality.
Since this method is developed with the objective

to work also in natural environments with sparse ob-
jects, the reconstructed volume may contain more
empty space than actual objects to reconstruct. A
measure that would give information on occupied
space only may not be representative of the com-
plete volume. For this reason, we found it interesting
to measure not only how well objects have been re-
constructed, but also how well the empty space has
been reconstructed. To do so, we first define two
sets: Uocc , the set of the cuboids regions containing
at least one occupied voxel in Cgt and Uempty , its
complement. Then, we measure the reconstruction
quality of the cuboids with a different metric in each
set: one of the considered reconstruction metrics for
the cuboids in Uocc , the L1 norm for the cuboids
in Uempty . This study focuses on the evaluation of
metrics in Uocc.
Furthermore, because measuring reconstruction

quality of unknown space is pointless, we consider
a threshold before calculating our metrics. If all
the probabilities in Crec are close to the unknown
(0.5 ± 0.1), we do not calculate the metrics, but set
them to default values.

3.2.1 Choice of Metrics

As discussed in Section 2.2, several metrics are avail-
able to measure map quality, whereas they are 3D-
reconstruction metrics, or measure of distance be-
tween probabilities. We select six of them for evalu-
ation, based on the criteria listed in Table 1.

3.2.2 Surface Distance Metrics

The three surface distance metrics we consider here
(surface coverage, reconstruction accuracy and Av-
erage Hausdorff Distance) are based on spatial dis-

tances between sets of points. To compute them, we
define the following constants:

• p̂ is an occupancy likelihood threshold,

• dr is a registration distance.

We also define the following variables:

• Urec is the set of points P from Crec whose
occupancy likelihood is above p̂,

• Ugt is the set of occupied points from Cgt,

• nrec is the number of points in Urec,

• ngt is the number of points in Ugt,

• ∥PS∥ is the Euclidean Distance between a point
P from Urec to the closest S in Ugt,

• ∥SP∥ is the Euclidean Distance between a point
S from Ugt to the closest P in Urec.

As an example, in Fig. 1, the points from Ugt and
Urec correspond respectively to the white voxels in
Cgt and Ĉrec.

3.2.3 Surface Coverage

To compute COV, we apply the classical methodol-
ogy in a 3D-grid, as [20], to our cuboids. We first
compute the number of reconstructed points, krec,
that is, points in Ugt we consider correctly recon-
structed, and then we compute the surface cover-
age, COV, the proportion of correctly reconstructed
points.

krec =
∑

S∈Ugt

1B(∥SP∥ ≤ dr) (1)

where 1B(b) = 1 if b, 0 otherwise.

COV = krec/ngt (2)

3.2.4 Reconstruction Accuracy

To compute ACC, we proceed similarly: we first com-
pute the number of accurate points, kacc, that is,
points in Urec we considered valid, and then we com-
pute the reconstruction accuracy, ACC, the propor-
tion of valid points.
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Acronym Complete Name Properties
COV Surface Coverage Surface distance-based score, widely used in robotics
ACC Reconstruction Accuracy Surface distance-based score, widely used in robotics
AHD Average Hausdorff Distance Surface distance, robust to small objects
KAP Cohen’s Kappa coefficient Score, robust to small objects
DKL Kullback-Leibler Divergence Widely used for distance between probabilities
WD Wasserstein Distance Distance between probabilities (Euclidean distance with the cost matrix)

Table 1: Criteria for evaluated metric selection

Figure 1: Visualization of a cuboid (10x10x10 voxels). On the left part of the figure, each row of images
correspond to a single cuboid, each column in the row to a slice of the cuboid. The color encodes the
occupancy likelihood, from free space in black, to occupied space in white, as shown in the colorbar. The
grey corresponds to the unknown. The first row is the ground-truth cuboid, Cgt. The second row is the
reconstruction cuboid, Crec, encoding the occupancy likelihood. The last row is the binary version of Crec:
Ĉrec, where the voxels whose occupancy likelihood is above 0.8 are set to occupied, the others to empty.
DKL and WDocc are computed directly Crec, whereas COV, ACC, AHD and KAP are computed on Ĉrec.
The right part of the figure displays in green Cgt, in blue the thresholded Ĉrec.

kacc =
∑

P∈Urec

1B(∥PS∥ ≤ dr) (3)

ACC = kacc/nrec (4)

3.2.5 Average Hausdorff Distance

To compute AHD, we follow [22]. The Hausdorff
Distance measures the distance between two sets of
points. We compute two Hausdorff Distances: the
distance from reconstruction to ground-truth dPS ,
and the distance from ground-truth to reconstruction
dSP :

dPS =
1

np

∑
P∈Urec

∥PS∥ (5)

dSP =
1

ns

∑
S∈Urec

∥SP∥ (6)

Then, we compute the Average Hausdorff Distance,
which consists in the maximum between the two dis-
tances:

AHD = max(dPS , dSP ) (7)

3.2.6 Cohen’s Kappa

The metric Cohen’s Kappa, KAP, provides a score in
[-1, 1] ([worst, best]). This score provides a measure
of agreement between two sets of classification. Un-
like surface distance metrics seen before, we compare
here directly the elements of Crec and Cgt. In the
cuboids, we consider our problem as a binary clas-
sification problem: each voxel is assigned either the
class occupied or empty. In Cgt, each voxel already
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has a value 0 (class empty) or 1 (class occupied). In
Crec, we consider a voxel occupied if its occupancy
likelihood p > p̂, else, we consider it empty and call
the resulting binary cuboid Ĉrec. Fig. 1 provides an
example. We iterate on all the voxels or of Ĉrec, com-
pare them to their corresponding voxel in Cgt, and we
count FP (occurrence of false positive), FN (false
negative), TP (true positive), TN (true negative).
Then, to compute KAP, we follow [22]. Let N be

the number of voxels in a cuboid:

fc =
(TN+ FN)(TN+ FP) + (FP+ TP)(FN+ TP)

N
(8)

KAP =
(TP+ TN)− fc

N − fc
(9)

3.2.7 Kullback-Leibler Divergence

The DKL provides a measure of how a probability
distribution is different from a reference probability
distribution. The DKL metric we use in this work is
the sum of the DKL between the probability distribu-
tions derived from the elements of the cuboids. Let p0

be the occupancy likelihood of a voxel in Crec, g
0 the

occupancy likelihood of the same voxel in Cgt. For
numerical reasons, we saturate p0 and g0 in [m, 1-m],
where m is a small number. The saturated values are
p and g. Then, we iterate on the N = n× n× n ele-
ments of the cuboids, and we compute the DKL met-
ric as follows:

DKL =

k=N∑
k=1

[
(1− pk) · log

(1− pk)

(1− gk)
+ pk · log pk

gk

]
(10)

3.2.8 Wasserstein Distance

The Wasserstein Distance is derived from the opti-
mal transport plan to “move” the mass distribution
from a query vector to match the mass distribution
of a reference vector. The cost of moving the mass
being a function of the Euclidean distance it has to
be moved by. Here, we calculate the Wasserstein Dis-
tance between two cuboid regions.

As this Wasserstein Distance is defined on his-
tograms, that is, vectors that sum to 1, we first
need to remap all the elements of Cgt and Crec

into two vectors of doubles, Vgt and Vrec, such that
∀(i, j, k) ∈ 0, n, V∗(i ·n2+ j ·n+ k) = C∗(i, j, k). Sec-
ond, we derive from each vector, two different vec-
tors. From Vgt, we derive V occ

gt = max (2Vgt − 1, 0)

and V free
gt = max (1− 2Vgt, 0). They contain respec-

tively the probability of an element to correspond to
an occupied voxel, and the probability of an element
to correspond to an empty voxel. We then normalize
each vector by their sum and obtain two histograms
P occ
gt and P free

gt . Similarly, from Vrec, we obtain P occ
rec

and P free
rec . We do this partition between occupancy

and emptiness because we observed that the Wasser-
stein Distance between P occ

rec and P occ
gt , which em-

beds in each element the distance from its probability
of occupancy to the unknown, contains more signal.
Moreover, this corresponds better to what we intend
to measure with this metric, that is how well the oc-
cupied space has been reconstructed. Using the same
mapping between voxels and elements of the vector,
we set the cost matrix M to contain the squared Eu-
clidean distance between the voxels associated to the
elements of the vector.

Finally, we calculate WDocc the regularized
Wasserstein Distance between P occ

rec and P occ
gt , com-

puted using the Sinkhorn algorithm described in [29],
following the implementation of [30]. This algorithm
is an optimization that seeks an optimal coupling
which minimizes the displacement cost of a discrete
measure, P occ

rec in our case, to a discrete measure,
P occ
gt , with respect to a cost, a transport matrix, M ,

under an entropic constraint. The optimal value of
the optimal transport problem is the Wasserstein Dis-
tance, defined as follows, with γ1 = P occ

rec , γ
T1 = P occ

gt

and γ ≥ 0:

WDocc = min
γ

⟨γ,M⟩+ α · Ω(γ) (11)

Where M is the previously defined cost matrix,
Ω is the entropic regularization term: Ω(γ) =∑

i,j γi,j log(γi,j), α is an entropic regularization fac-
tor and ⟨., .⟩ is the Frobenius dot-product.

In this study, we set the regularization factor α =
1.0. They show in [29] that the smaller the value of
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α, the better the precision of the algorithm, but also
the slower the convergence. The value of 1 appears
to be a good tradeoff, and produced satisfying results
in our tests.

3.2.9 L1 norm

In a cuboid region of the ground-truth in Uempty,
all the voxels have a probability of occupancy of 0.
Therefore, when comparing the reconstruction to the
ground-truth, we are comparing a vector containing
some probabilities of occupancy Vrec to a vector of the
same size containing only zeros (absolute certainty of
emptiness). Such a measure is given by the L1 norm
of Vrec: the distance between Vrec and the vector of
zeros that represent the empty space. We do not
evaluate L1 in this study, but simply provide it to
the reader, because we found it convenient in other
works:

L1 =

(i,j,k)=(n,n,n)∑
(i,j,k)=(0,0,0)

Creci,j,k (12)

Algorithm 1 Reconstruction and ground-truth com-
parison

// Dgt and Drec are the datasets
Dgt(Bbox1 , (h1, w1, n1), Rf ), Drec(Bbox2 , (h2, w2, n2), Rf )
Bbox ← Bbox1 ∩Bbox2

Mgt ← Dgt(Bbox),Mrec ← Drec(Bbox)
for all cuboid ∈ Bbox do:

Cgt ←Mgt(cuboid), Crec ←Mrec(cuboid)
if isObserved(Crec) then:

if cuboid ∈ Uocc then:
cuboid.metrics ←

computeMetrics(Crec, Cgt)
else:

cuboid.metrics← computeL1(Crec)
end if

else:
cuboid.metrics← maxMetrics

end if
end for

3.3 Evaluation Methodology

3.3.1 Controlled 3D-reconstruction

This section describes the evaluation of the metrics,
with a specific focus on examining their behavior in
the context of decreasing reconstruction quality. We
present the methodology using a single ground-truth
cuboid. The key approach involves initially measur-
ing the reconstruction quality when it is perfect, in-
dicated by Crec = Cgt. Then, we introduce vari-
ous degradation models that are iteratively applied
to the reconstructed cuboid, progressively degrading
the quality of the reconstruction. This methodol-
ogy is inspired from biological approaches, like [31],
where the evolutionary distance between a pair of
gene sequences is usually measured by the number
of edit operation (substitutions, insertions and dele-
tions) needed to transform one into the other. This
distance is called the Levenshtein distance, or edit
distance. Although this is not applicable here, our
methodology is inspired from this concept: we apply
a sequence of basic “edit” operations to increase the
distance between reconstruction and ground-truth.
Let us assume v is a voxel randomly sampled in the
cuboid Crec, p(v) the occupancy likelihood of v, and
v′ a direct neighbor of v. The degradation models
considered in this study are:

1. Nocc p(v) = 1
2. Nfree p(v) = 0
3. Nunknown p(v) = 0.5
4. Nrandom p(v) ∼ U(0, 1)
5. Nshift p(v′) = p(v), p(v) = p(v′)
6. Nflip p(v) = 1− p(v)

3.3.2 Metric Evaluation and Comparison

We evaluate the different metrics with a consistent
perspective, focusing on their ability to discriminate
reliably “good” from “less good” reconstructions. Be-
fore going further, it is important to note that some
metrics are distance metrics (the lower, the better):
DKL, AHD, WDocc, whereas the others are score
metrics (the higher, the better): COV, ACC, KAP.
First, following our inspiration of distances between
sequences introduced before, we define the thresh-
old n̂ that divides the population of Crec in two, the
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“good” ones, and the “less good” ones: n̂ is simply
a fixed level of degradation of the cuboid (i.e. 20%).

Second, we define the threshold θ̂ that divides the
population of Crec in two: the cuboids measured as
“good” and those “less good”. In the case of dis-
tance metrics, a measure θ smaller than θ̂ indicates a
“good” measured reconstruction (conversely for score
metrics). Finally, we consider our problem as a classi-
fication problem, and we populate a confusion matrix
by evaluating all the cuboids, at all the iterations as
explained in Tab.2. It should be noted that the def-
inition of true / false positive / negative described
here are different from the quantities used to compute
Cohen’s Kappa, where the classification was made on
the voxels.

score metric distance metric

true positive (n ≤ n̂) & (θ > θ̂) (n ≤ n̂) & (θ ≤ θ̂)

true negative (n > n̂) & (θ ≤ θ̂) (n > n̂) & (θ > θ̂)

false positive (n > n̂) & (θ > θ̂) (n > n̂) & (θ ≤ θ̂)

false negative (n ≤ n̂) & (θ ≤ θ̂) (n ≤ n̂) & (θ > θ̂)

Table 2: Condition tested on a cuboid to populate
the Confusion Matrix

From the confusion matrix, where we count the oc-
currence of true positive TP, true negative TN, false
positive FP, and false negative FN, we compute the
precision and recall of the metric:

precision = TP/(TP+ FP) (13)

recall = TP/(TP+ FN) (14)

We repeat the process for different thresholds θ̂ for
each metric. From this data, we are able to compare
the precision recall curves for the different metrics.

4 Experimental Setting

This section explains how we generate the simulated
worlds to conduct the metric evaluation with the con-
trolled 3D-reconstruction (3.3.1). Then, with the
same worlds, we conduct experiments, in simulation.
The simulations are run within the ROS framework
with Gazebo and a Clearpath Husky robot equipped
with a 3D Lidar Ouster OS1-16 (16 planes of 512

points). Finally, we conduct a real world experiment,
where the robot is the real version of the simulated
robot, and the ground-truth of the world is acquired
with a Leica Total Station.

4.1 World Generation

Figure 2: Illustration of the different assets used
in simulation: rectangular cuboid, cross-extruded
shape, helicoidal cone, simulated tree.

We generate randomly several environments. Each
environment is a plane of dimension 60m × 60m on
which we place assets with a Poisson Cluster Point
Process, to reproduce the natural spatial distribution
of trees. The assets (illustrated in Fig. 2) can be,
with an increasing level of difficulty with respect to
the reconstruction, either rectangular cuboids, cross-
extruded shapes, helicoidal cones, or randomly se-
lected in our 15-trees library mimicking winter bare
trees or bushes. Those trees are created with a space
colonization algorithm 3. Due to computational con-
siderations in Gazebo, we create only trees without
leaves. Random factors are applied on the assets’ di-
mensions and orientation. The height of the assets
ranges from 4 to 6 meters.

To a point process generation corresponds a spa-
tial distribution that represents how the assets are
arranged in the given space. From a single spatial
distribution, we create four different synthetic envi-
ronments, each one containing a single type of assets.
With the open-source Blender software 4, we create
a single shapefile (.stl) for each environment. This

3https://github.com/dsforza96/tree-gen
4https://www.blender.org/
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Point ratio Noise formula
96% r = r0 +N , with N ∼ N (0, 0.0082)
3.9% r = r0 − ||N ||, with N ∼ N (0, (0.01× r0)2||
0.1% r ∼ U(rmin, r0 + 0.03)

Table 3: Noise mixture applied to the Lidar range

ensures that the mesh we slice to obtain the 3D-grid
ground-truth is the same used in Gazebo to infer the
collisions of the Lidar, hence to construct the map.
We generate 12 environments (3 distinct spatial

distributions with 4 different types of asset).
From those environments, we either build 3D-

reconstructions from the robot’s observations in sim-
ulation, as explained thereafter (Sec. 4.2), or we sam-
ple randomly 1500 cuboids to apply the controlled
3D-reconstruction evaluation (Sec. 3.3.1).

4.2 Experimental Simulation

Figure 3: Illustration of an experiment in simulation.

An experiment, illustrated in Fig.3, consists in
loading one of the environments described previously
in Gazebo, teleporting the robot randomly in the en-
vironment, accumulating the point-cloud, and tele-
porting it again, for 100 iterations. Empirically, we
found the mixture of noise models shown in Table 3,
applied on each point-cloud, produced an output vi-
sually similar to the real point-clouds, with the same
Lidar, in natural environments. For each point in
the point-cloud, we compute the noisy range r as in-
dicated in Table 3, with r0 the perfect sensor reading
from Gazebo, and rmin the minimum range of the
sensor.
Since the quality of the reconstruction is directly

linked to the localization of the robot, we incremen-
tally add noise in this localization. For each noise

level, we build a probabilistic map with Octomap.
To obtain the different noise levels, we use the per-
fect localization from Gazebo on which we apply a
Gaussian noise on the position and on the orienta-
tion. The noise levels considered in this study are
(with the standard deviations σp, on position, in me-
ter, σq, on orientation, in radian): 0. perfect local-
ization; 1. σp = 0.005, σq = 0.005; 2. σp = 0.05,
σq = 0.01.

Errors in the orientation estimation lead to large
errors in the position of far away points (i.e. a 0.01
radian error in the orientation leads to a 0.20m error
in the position of a 20m distant point in the Lidar
point-cloud). In this study, the sensor range is set
to 20m, the map resolution to res = 0.1m, and the
cuboid resolution to RES = 1m.

For each of the 12 environments, for each of the 3
noise levels, we run 28 simulations, for a total of 1008
experiments in simulation.

4.3 Experimental Setup in the field

Figure 4: Illustration of the real-world experiment.
Left: the Total Station scanning the area. Right: the
Husky robot driving.

The experimental site is located outside a campus
and encompasses a car park area of approximately
5400m2, surrounded by a park with trees and bushes,
some of which are also situated within the parking
lot. Fig. 4 illustrates this experiment. Although it
is not possible to acquire the ground-truth of such
an environment, we consider that the 3D point-cloud
obtained from its scan with a Total Station Leica
TS60 is precise and dense enough to be considered
as ground truth. The horizontal and vertical angular
resolution of the scanning is set to 0.05 degrees. To
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scan the area, the Total Station is placed on three dif-
ferent locations, to have different viewpoints on the
trees. Each scan takes 40 to 60 minutes. At the end,
we obtain a single consistent point-cloud from the
area, containing 5.5 × 106 points. The localization
of the robot is provided by an RTK-GPS fused with
an IMU in an Extended Kalman Filter. The position
of the robot is measured in 6 different locations with
the Total Station. These points are used to estimate
the transformation of the RTK-GPS based frame to
the Total Station frame. Because the estimate of this
transform is not perfect, the error in the localization
of the robot is not homogeneous. It is better in some
areas of the map than in some others. We do not cor-
rect this error in this work, and use that instead to
show results with different level of precision in the lo-
calization. For this experiment, the map is build with
Octomap (max-range 10m), with res = 0.1m, that we
compare to the ground-truth, with a cuboid resolu-
tion of RES = 1m. Because of the small vertical field
of view of the Lidar, the height of the Octomap is
constrained to 6m. Also, to avoid large errors due
to large uncertainty in the orientation, we filter out
the Lidar scans associated to turning motions of the
robot when we build the map with Octomap.

5 Results

In this section, we assess the metrics considered in
this study for their capacity to offer a meaningful
quality measure. We present a selection of real-
world experiment cuboids, illustrating the challenge
of assigning a quality score to maps, even for hu-
man observers. Thus, these examples offer insights
into metric behavior, but rigorous statistical valida-
tion requires controlled maps to compare to reference
maps. Consequently, the evaluation is run in simu-
lation, where the reconstruction comes from an iter-
ative degradation of the ground-truth, and the real-
world experiments validate the evaluation.

Before delving into details, we would like to of-
fer some preliminary information to help the under-
standing of this section. Firstly, Table 4 provides the
acronyms used to refer to the simulated environments
and the degradation models.

Acronym Type of asset in the world
RECT Rectangular cuboids
CROSS Cross extruded shape
HELICOID Helicoidal cone
TREE Simulated tree

Degradation model
Nocc a random voxel is set to occupied
Nfree a random voxel is set to free
Nunknown a random voxel is set to unkown
Nrandom a random voxel is set to random
Nshift the occupancy likelihoods of two ran-

dom neighbor voxels are shifted
Nflip the occupancy likelihood of a random

voxel is set to its emptiness likelihood

Table 4: Summary of the acronyms used in the Re-
sults section

Secondly, Table 5 summarizes the classification
of the metrics: for score metrics, higher is better,
whereas for distance metrics, lower is better.

Score Metrics Distance Metrics
Surface Coverage COV Average Hausdorff Distance AHD
Reconstruction Accuracy ACC Kullback-Leibler Divergence DKL
Cohen’s Kappa KAP Wasserstein Distance WDocc

Table 5: Classification of the metrics

Finally, as detailed in Sec. 3.2, surface distance
metrics rely on constants, namely occupancy likeli-
hood threshold and registration distance. For our
experiments, we used common values in robotics ap-
plications (similar to [20, 21]):

• p̂: 0.7, 0.8 (COV, ACC, KAP, AHD),

• dr: 0.05, 0.1, 0.15 meters (COV, ACC).

For the sake of brevity, we present results only for
the values in bold. Even though the metric value is
slightly affected by the constants, the overall behavior
remains consistent.

5.1 Theoretical Metrics Comparison

We compare the metrics when the reconstruction
moves further from the ground-truth, following the
methodology in Sec. 3.3.1, and we distinguish the ex-
periments by type of world.
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Figure 5: Visualization of the degradation models.
Left-most is one slice of ground-truth cuboid. Oth-
ers: degraded cuboids, after 200 iterations, with the
different degradation models.

Figure 5 provides a visualization of the degradation
models we are considering. The figure displays a sin-
gle slice of a cuboid, from the ground-truth, and from
the differently degraded cuboids, after 200 iterations.

5.1.1 Metrics behavior when Crec moves fur-
ther from Cgt

We now evaluate the metrics on the 1500 sampled
cuboids detailed in Sec. 4.2, with the six different
degradation models. A “good” metric is expected
to: be sensitive to all the types of transformations,
vary monotonically when the reconstruction moves
further from the ground-truth, be independent of the
type of world, and give measurements in a range that
does not depend too drastically on the transforma-
tions. Under this assumption, we plot for each met-
ric, for each type of degradation, and for each type
of world, how the metric behaves when the recon-
struction moves further from the ground-truth. Fig. 6
shows the results in the CROSS worlds, and the com-
plete graph is provided in Appendix . The conclusion
from these graphs is that no metric satisfies all those
conditions.
From each individual graph in Fig. 6 correspond-

ing to a couple (metric, type of degradation), we can
distinguish three trends, depending on how the met-
ric vary when the reconstruction moves further from
the ground-truth (n increases).

• no variation, the curve is flat: the metric is not
sensitive to the type of degradation;

• a small variation (gentle slope): the metric seems
slightly sensitive to the type of degradation, but
we cannot conclude;

• a huge variation: the metric is sensitive to the
type of degradation.

Table 6 summarizes the results of all these graphs
and displays the sensitivities of the metrics to the
different type of degradations.

N
o
c
c

N
fr
e
e

N
u
n
k
n
o
w
n

N
ra

n
d
o
m

N
sh

if
t

N
fl
ip

DKL ✓ - ✓ ✓ - ✓
WDocc ✓ ◦ ◦ ✓ ◦ ✓
COV ◦ ✓ ✓ ✓ ✓ ✓
ACC ✓ ◦ ◦ ✓ ✓ ✓
AHD ✓ - - ✓ - ✓
KAP ✓ - - ✓ - ✓

Table 6: Metrics apparent sensitivity to the degrada-
tion types. ◦: not sensitive, ✓: sensitive, -: uncon-
clusive.

Another interesting conclusion from our evaluation
is that the metrics are generally dependent on the
type of world. We illustrate that statement with the
two graphs in the right part of Figure 6. It shows the
influence of the type of world for two metrics, ACC
and AHD, under Nocc degradation model.The areas
corresponding to 80% of the measures in TREES en-
vironments (red) are larger and the medians are dif-
ferent from the areas corresponding to 80% of RECT
environments for instance (blue). That tends to in-
dicate that not only the measure provided by the
metrics are noisier in challenging environments, but
also the very value supposedly dependent only on
the reconstruction quality also depends highly on the
type of environment. Again, the complete results are
shown in Appendix .

In real world applications, the noise model is prob-
ably a combination of all the degradation models con-
sidered here, and a central question is: is there a
threshold to discriminate reliably “good” and “less
good” reconstructions for the chosen metric ?

5.1.2 Precision-Recall of the metrics

Fig. 7 shows the very challenge of setting thresholds
to discriminate “good” and “less good” reconstruc-
tions, with precision-recall curves. Precision-recall
curves show the tradeoff between precision and recall
for different thresholds. The better the classifier, the
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Figure 6: Left: illustration of the different metrics behavior when the reconstruction moves further from
the ground-truth. One line per metric, one column per type of degradation applied to the gt. For each
sub-figure, the x-axis is the number of iteration n, the y-axis the value of the metric θ. The results are
displayed only for the CROSS worlds. In each sub-figure, the line corresponds to the median value from all
cuboids and the filled area shows the spread of 80% of the population. Right: Same information, displayed
in all the type of worlds for AHD and ACC with a Noccdegradation model.

closer the precision to 1 for all values of recall. This
figure shows the precision-recall curves obtained as
detailed in Sec. 3.3.2, where the threshold θ̂ for each
metric varies in a specific range. This range matches
the min and max values of the y-axis of Fig.6 for
the respective metric. Similarly, the distinction be-
tween “good” and “less good” reconstructions is a
fixed level of degradation of the cuboids. In this eval-
uation, the threshold n̂ that divides the population
of cuboids in two classes is set to 200 iterations of
degradation. In other words, cuboids degraded less
than 20 % are considered “good”, the others, “less
good”.

For each metric, the curves are drawn with 10 val-

ues of θ̂, and we highlight three particular values
with the circle, diamond and star markers. Fig. 7
displays only results in the CROSS words. The com-
plete graph is provided in A. Fig. 7 shows that,
with a specific threshold (one of the markers), a met-
ric can perform well for certain degradation models
while performing poorly for others. Finally, the two
plots in the right part of the figure show that the met-
rics’ performance depends on the type of world: their
lower performance is in the TREES worlds. Com-
plementary to the questions marks in Table 6, these
graphs suggest that AHD might be sensitive to Nfree

Nunknown and Nshift, as might KAP in a slighter way.
On the contrary, DKL might not be sensitive to Nfree
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Figure 7: Left: Precision-Recall curves when we vary the value of the threshold θ̂ for each metric. One line
per metric, one column per type of degradation. The results are shown only for CROSS worlds. The three
markers display precision-recall points for three values of θ̂ for each metric. The results are displayed for a
level of degradation of the cuboid of 20%. The points in (0,0) corresponds to points where it is not possible
to compute precision and recall (division by 0 in Eq. 13 and 14) Right: Same information, displayed in all
the type of worlds for AHD and ACC with a Nocc degradation model.

and Nshift.

5.2 Metrics Comparison on experi-
mental reconstructions

In this section, the comparison no longer focuses
on the metrics’ behaviors with controlled reconstruc-
tions, but is instead directed towards their perfor-
mance when the map is built from the robot’s obser-
vations.

5.2.1 Comparison of the metrics distribu-
tions

Fig. 8 shows the distribution of the different met-
rics per type of world. We consider only the cuboids
in Uocc, and we display also the distribution of ngt

and nrec, the occurrence of occupied voxels in the
ground-truth and reconstruction cuboids Cgt and
Crec (Sec. 3.2).

The graphs in Fig. 8 are arranged from top to
down in increasing level of difficulty in the recon-
struction, from RECT (basic geometrical shape), to
TREES (unstructured objects). This figure shows
that determining a meaningful threshold above or be-
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Figure 8: Distribution of the values of the metrics among the cuboids from Uocc in the experiments. The
blue corresponds to the values of the cuboids where nrec = 0. The orange to the other cuboids. The values
are computed only for “observed” cuboids (at least one voxel in Crec has p < 0.4 or p > 0.6, explained in
Sec. 3.3). The figure display one line per type of world and one column per metric, with two extra-columns
showing nrec and ngt.

low which the reconstruction can be considered good
is not straightforward. This is highlighted particu-
larly with the blue color in the histograms, corre-
sponding to cuboids where nrec = 0 (denoted C0

rec).
These cuboids, where not a single point have been
reconstructed, are likely “bad” cuboids.
Fig. 8 shows two trends:

• The metric is likely to provide a noisy measure-
ment: the cuboids of C0

rec are spread on all the
range of values.

• The range of the values the metric provides
shrinks when the complexity of the world in-
creases.

From those two trends, we can hypothesize that
DKL and WDocc are likely to be noisy. We can also
hypothesize that AHD is the most capable of pro-
viding measures when the difficulty in the world in-
creases: the proportion of cuboids where the value is
not in the first bar is the largest. Additionally, AHD
provides measures only when there is at least a re-
constructed point, making it easier to identify C0

rec

cuboids.
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Limited noise in measurement - - ✓ ✓ ✓ ✓
Robust to world complexity ✓ ✓ - - ✓ -

Table 7: Apparent advantages of the different metrics

Table 7 summarizes the apparent advantages of the
metrics. We hypothesize a metric may have this po-
tential property if it does not follow the correspond-
ing trends described above. Table 7, Table 6 and
Figure 7 all indicate that one metric seems more po-
tent in challenging environments: AHD.

5.2.2 Insight on potential metrics combina-
tions

Complementary to Table 6 on controlled reconstruc-
tions, Figure 9 shows the correlation matrix of the dif-
ferent metrics computed on the cuboids containing at
least one reconstructed point, in all the experiments.
We computed this same correlation matrix by type of
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Figure 9: Correlation Matrix of the metrics. The
correlation can be positive or negative depending on
the type of metric (score or distance).

world, and by noise level in the localization, and al-
though the level of correlation may change, the trend
remains the same.
From that matrix, we can see that DKL is the met-

ric the least correlated with the others. Our hypoth-
esis is that DKL is sensitive to different information
(we believe in the level of unknown in the cuboid)
and may be combined with other metrics for a more
reliable estimate of the reconstruction quality. Such
combination is not straightforward. It would require
normalizing the combined metrics in a range in which
they all are meaningful, and add weighting factors.
We leave that to future work.
Lastly, Table 8 presents the computation time asso-

ciated with each metric. It is important to highlight
that no specific optimization effort were applied to
any of the implementations. Moreover, the computa-
tion of WDocc could greatly benefit from running on
GPU. Such an implementation is provided by python-
optimal-transport 5. While not employed in this work

5https://pythonot.github.io/index.html

due to its current C++ implementation and the ab-
sence of real-time inference requirements, this option
holds potential. An interesting observation from this
table is the efficiency of DKL computation, suggest-
ing that combining it with another metric would de-
mand a relatively small computational effort. Addi-
tionally, it’s worth mentioning that ACC is faster to
compute than COV because there are generally fewer
points in the reconstruction than in the ground-truth.
Finally, for those interested in the computation time,
KAP stands as promising option.

time (µs) ±std(µs)
DKL 12 ±1
WDocc 137x103 ±63x103
COV 230 ±53
ACC 11 ±17
AHD 241 ±57
KAP 5 ±1

Table 8: Comparison of the computation time

5.3 Qualitative comparaison

5.3.1 Comparing reconstructions of the same
cuboid

In this section, we intend to compare qualitatively
the metrics on different reconstructions of the same
ground-truth cuboid. To enable this comparison, we
design another experiment in simulation, in a world
with either a rectangular cuboid or a simulated tree.
We create two sets of experiments:

• FRONT: the robot drives in a straight line to-
wards the object,

• LAT: the robot drives in a straight line with the
object on the side.

We then build the reconstructions from the robot’s
observations, with different noise level in the localiza-
tion (as detailed in Sec.4.2).

Fig. 10 and Fig. 11 shows the results for the same
cuboid, in the RECT and TREES environments, and
the three reconstructions built from the two respec-
tive driving behaviors. We focus first on Fig. 10.
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Figure 10: Example of a cuboid in a RECT environment. In the left, the first group of rows corresponds
to the cuboids reconstructed with the FRONT driving behavior. GT is the ground-truth cuboid, F0, F1,
F2 correspond to the reconstructions obtained with three noise level in the robot localization. The second
group of rows corresponds to the LAT driving behavior. L0, L1, L2 to the reconstructions with the three
noise levels. Two slices of the cuboids (3 and 8) remain mostly unknown: the Lidar used in this study is a
16-plane Lidar, and those slices remain situated between two of those planes during the experiments. The
right part of the figure displays the values of the metrics, with the two different driving behaviors. Distance
and score metrics are displayed with different colors to facilitate the interpretation (distance: lower is better,
score: higher is better). The errorbars display the variation between the min and the max of each metric, for
each driving behavior, when the reconstruction is built with the three noise levels in the robot localization.

18



Figure 11: Example of a cuboid in a TREE environment. The figure display the same information that
Fig. 10.
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Figure 12: Example of a cuboid in a real environment. 8 cuboids are displayed (A to H). Each time, top
row: Cgt, bottom row: Crec. The last row shows the metrics corresponding to the 8 cuboids, one plot per
metric. Distance metrics are blue circles, score metrics orange triangles.
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In the context of an autonomous robot building a
map, based on our expectations, we can presume that
the maps from LAT are better than the maps from
FRONT. Indeed, the group of reconstructions at the
bottom of the figure appear “better” than the group
at the top. We then expect the metrics to measure
better reconstructions in LAT compared to FRONT.
Nonetheless, the metrics yield divergent results when
assessing the reconstruction quality, as they are not
equally sensitive to all types of errors. For instance,
COV measures a better reconstruction in LAT com-
pared to FRONT, as a larger portion of the object
has been reconstructed. Conversely, ACC measures
a better map in FRONT compared to LAT, as the
few points in FRONT are reconstructed more accu-
rately. KAP is highly sensitive to noise in the local-
ization: it penalizes erroneous points, regardless of
the Euclidean error distance. Due to errors in the lo-
calization, discretization errors, or aliasing, an offset
of one voxel, or pixel, is very likely, and a metric that
penalizes such errors is very strict. We can see such
errors in Fig.10. As a consequence, the variation of
KAP’s measures in LAT includes the range of val-
ues of those in FRONT. In other words, with KAP,
one LAT reconstruction is measured as better than
the all FRONT reconstructions, whereas another one
is measured as worse. On the contrary, AHD and
WDocc are robust to that type of errors, as they are
to noise in the localization. They provide a measure
that is consistent with what one would expect in the
context of autonomous robot mapping, that is, LAT
are better than FRONT. DKL is dominated by the
unknown volume of the map. It does not appear use-
ful in this example, but it might provide information
complementary to the other metrics, for instance in
an exploration task, where reducing the unknown is
a central feature.
Fig. 11 shows the results in the most challenging

simulated environment: TREES. First, when we an-
alyze this figure, we cannot reach an obvious con-
clusion, as with the previous example. Visually, the
reconstructions from LAT experiments do not ap-
pear significantly better compared to FRONT ex-
periments. However, this trend is still what is indi-
cated by all the metrics but WDocc. This illustrates
our claim that measuring 3D-reconstruction quality

in such an environment is a challenging task in itself.
Also, we can point out that the metrics are gener-

ally sensitive to the density of points, either in the
ground-truth or in the reconstruction. When one or
both is really low, we reach the limit of all those met-
rics.

5.3.2 Comparing real-world cuboids

In this section, we focus on comparing the metrics
when measuring quality of real-world cuboids. We
select 8 cuboids, displayed in Figure 12. Cuboids A,
B and C are correctly reconstructed. The reconstruc-
tion is noisy, but we can overall recover the underly-
ing shape of the ground-truth, in the correct location.
Cuboids D, E, F, G and H are poorly reconstructed.
D, E, F are reconstructed with an error in the local-
ization: the z error (represented by the offset in the
sliced images) is visible. Apart from that, we can
mostly recover the underlying shape of the ground-
truth in the reconstruction. G and H are also recon-
structed with a z error, but are overall difficult to
“grade”, because of the unstructured nature of the
objects they contain (namely, branches). For a hu-
man observer, apart from assigning a better grade on
cuboids A, B and C, grading all the poor reconstruc-
tions is a subjective task. The figures in the bottom
of Figure 12 show how all the metrics measure these
reconstructions quality. Firstly, most metrics (apart
from DKL) generally agree that A, B, C (the first
group of three symbols) are ranked in the best re-
constructions. Secondly, two interesting observations
emerge from the other cuboids. The first observa-
tion is that some metrics rank some poor cuboids
as good as the good ones (F, G for WDocc, E for
COV, G, H for ACC). The second observation is
that some metrics do not provide any information at
all on those reconstructions (D, F for COV, ACC and
KAP). The fact that the underlying structure of the
ground-truth is present, even though with an error
in the localization, is completely lost in the measure.
From these figures, it seems the most robust metric
is AHD, comforting the observations from simulation.
Finally, those figures also show that combining met-
rics, for example AHD and DKL, would likely result
in a more robust metric. For instance, by doing so,
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C

A
H
D

K
A
P

Sensitive to additional points ✓ ✓ ◦ ✓ ✓ ✓
Sensitive to missing points - ◦ ✓ ◦ - ✓
Informative wrt unknown volume ✓ ◦ ◦ ◦ ◦ ◦
Fast to compute ✓ ◦ - ✓ - ✓
Proportional to Euclidean distance error ◦ ✓ ✓ ✓ ✓ ◦
Robust to noise - ✓ - - ✓ ◦
Robust to point density ◦ ◦ ◦ ◦ - ◦
Already normalized ◦ ◦ - - ◦ -

Table 9: Summary of the metric properties. ◦: the metric does not have this property, -: it has it, but it is
not a significant feature, ✓: the property is significant

the unknown remaining volume in G or E would pe-
nalize their measured distance, something AHD alone
cannot measure.

5.4 Summary and Discussion

To summarize, we have seen that no metric is able to
provide a meaningful measure in all the situations.
Mainly, it depends on the intent of the quality mea-
surement. Table 9 shows a summary of the metrics
properties. In the context of autonomous robot map-
ping in natural environment, we believe a key feature
is noise-robustness. When the environment is un-
structured, AHD is probably a good choice of met-
ric. AHD may be combined to DKL in the context
of autonomous exploration, where it would also be
interesting to have information on the remaining un-
known volume. When the environment is structured,
ACC or COV might still be good choices too, if the
intent of the measure is to assess either the extent
of the ground-truth surface observed (COV), or the
precision of the reconstructed points (ACC), but not
both at the same time. In a structured environment,
their lack of robustness to point-density is counter-
balanced with the underlying density of the ground-
truth. Nonetheless, if the aim of the metric is to pro-
vide a robust measure of the reconstruction quality,
then AHD remains a good choice, both in structured
and unstructured environments.

6 Conclusion and Future Work

In this study, we have highlighted the challenges as-
sociated with assessing the 3D map quality in natural
environments. We have also shown that these chal-
lenges are amplified by the unstructured nature of
these environments. We have proposed a methodol-
ogy for comparing the 3D-map built from the robot’s
observations to the ground-truth, at a local level.
While our method specifically uses Octomap’s octree,
it can be adapted to other mapping techniques, as
long as the produced map can be converted to a 3D-
grid representation. Furthermore, we have demon-
strated that the different metrics used for evaluating
3D map quality exhibit distinct properties and sen-
sitivities to specific types of errors. Therefore, the
choice of the metric should be carefully considered,
based on the specific error modes we want to quan-
tify. We have also observed that comparing the local
quality of 3D map is generally feasible. However,
determining an absolute threshold that reliably in-
dicates a good reconstruction is not feasible for this
set of metrics in a general case. In conclusion, our
study provides practical recommendations for future
research focused on evaluating the quality of 3D maps
in natural environments.

Future work would follow different paths. Firstly,
we could focus on combining certain metrics for a
more robust map quality estimation, such as the Av-
erage Hausdorff Distance and the Kullback-Leibler
Divergence. Secondly, complementary investigation
could be done on the Wasserstein Distance. This
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work focuses on conventional optimal transport, yet
we would like to explore unbalanced optimal trans-
port [32]. This would enable measures between pos-
itive values that are not necessary probability dis-
tributions. That would eliminate the current nor-
malization step, allowing the comparison of cuboids
with different mass. This could lead to a more ro-
bust map quality assessment. Such work would of
course require GPU-based optimization implementa-
tions. Lastly, we could build upon the conclusions
of this work to perform a comparative evaluation of
different reconstruction algorithms.
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Figure 13: Illustration of the different metrics behavior when the reconstruction moves further from the
ground-truth. One line per metric, one column per type of degradation applied to the gt. For each sub-
figure, the x-axis is the number of iteration n, the y-axis the value of the metric θ. The results are grouped
by type of asset in the world. In each sub-figure, the line corresponds to the median value from all cuboids
in the type of world and the filled area shows the spread of 80% of the population.
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Figure 14: Precision-Recall curves when we vary the value of the threshold θ̂ for each metric. One line
per metric, one column per type of degradation, one color per type of world. The three markers display
precision-recall points for three values of θ̂ for each metric. The results are displayed for a level of degradation
of the cuboid of 20%. The points in (0,0) corresponds to points where it is not possible to compute precision
and recall (division by 0 in Eq. 13 and 14)
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