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Large-Scale Environment Mapping
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Abstract

In this study, we focus on addressing the
challenge of measuring the quality of 3D-
reconstruction in large scale environments.
Specifically, we consider scenarios where the
map is built using a robot’s 3D-Lidar point
cloud observations, with potential uncertainty
in the robot localization. When considering a
large scale environment that is unstructured,
such as a park or a forest, another difficulty
arises: the data becomes extremely sparse.
As a result, measuring the quality of a re-
construction becomes even more challenging.
This study aims to compare the effectiveness
of various metrics in measuring the quality of
3D reconstruction. Firstly, we evaluate these
metrics in a controlled experimental setup,
where the reconstruction is created by pro-
gressively degrading the ground-truth using
different degradation models. Secondly, we
compare their ability to measure reconstruc-
tion quality at a local level, across various sim-
ulated environments, ranging from structured
to unstructured. Finally, we conduct a quali-
tative comparison to demonstrate the robust-
ness of certain metrics to noise in the robot lo-
calization. Ultimately, we synthesize the prop-
erties of these metrics and provide practical
recommendations for their selection.

∗are with IRL2958 Georgia Tech - CNRS
†is with University of Lorraine

1 Introduction

The motivation behind this study arises from the dif-
ficulties faced in evaluating the quality of 3D recon-
struction in large-scale environments. Typically, the
evaluation of 3D reconstruction quality aims to pro-
vide a single metric that reflects the overall quality
of the reconstruction. Nonetheless, in the context
of a robot autonomously mapping a large-scale en-
vironment for inspection or monitoring purposes, it
becomes interesting to obtain a localized measure of
map quality. Indeed, the map quality may not neces-
sarily be homogeneous throughout a large-scale envi-
ronment.

This study specifically focuses on this scenario,
where the robot’s 3D-lidar observations construct the
map. In this case, the prevailing map representation
is the 3D grid, where each voxel encodes informa-
tion. Traditionally, this 3D grid encodes the occu-
pancy likelihood for each voxel. However, in this
common scenario, the conventional measures of re-
construction quality, namely surface coverage and re-
construction accuracy, may not always hold signif-
icant meaning, especially when dealing with large-
scale environments that are not only sparse but also
unstructured. We will demonstrate it in this study,
by emphasizing the specific case of mapping a large-
scale, sparse, unstructured environment, such as a
natural environment.

In the case of “unstructured” environments, dis-
tinct challenges arise compared to those encountered
when mapping “structured” environments. The liter-
ature often focuses on large-scale 3D-reconstructions
in “structured” environments like urban areas, as
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demonstrated by extensive research conducted on the
Kitti Dataset [1]. However, when it comes to work in
natural environments, such as those explored in [2],
[3], [4] or [5], the differentiation between structured
and unstructured, dense and sparse environments be-
comes more prominent due to the unique challenges
involved. The 3D-reconstruction in a large-scale nat-
ural environment is both unstructured and sparse. It
consists predominantly of empty space, with only a
few points where the 3D-lidar actually hits an object,
further complicated by the increased noise level in-
herent to natural environments. For instance, trees,
by their very structure, are sparse because they offer
only an aggregation of small surfaces to the Lidar.
Although the sampling of a trunk from a Lidar could
be dense, the sampling of small branches or leaves,
will generally not be high enough to recover the un-
derlying structure. Moreover, from a laser’s perspec-
tive, trees can behave as semi-transparent structures,
thereby inducing errors in the measurements. The
reason is that when laser-rays – light cones in prac-
tice – reach a small object, like a branch, often only
a portion of the energy is reflected, causing inaccu-
rate distance readings. Two other causes of errors in
laser measurements, that are particularly abundant
in large-scale natural environments, are linked to the
distance to the objects and the incidence angle: the
error increases with each of them [6]. Finally, the lo-
calization of the robot in the map is also a source of
errors because the 3D-reconstruction is a probabilis-
tic accumulation of all the point-clouds transformed
in the localization frame. This study does not di-
rectly evaluate various mapping algorithms applied to
large-scale natural environments. Instead, our main
emphasis lies in addressing the challenges associated
with assessing the quality of 3D reconstruction in
such environments.
In a large-scale environment, which could also be

both sparse and unstructured, the question arises:
How can we evaluate the local quality of the re-
construction? Are the conventional metrics capable
of delivering meaningful measurements? This study
specifically centers around evaluating various 3D-
reconstruction metrics, including both conventional
and less conventional ones, with a specific focus on
assessing their effectiveness in accurately measuring

the reconstruction quality. First, we begin by select-
ing six relevant metrics: surface coverage, reconstruc-
tion accuracy, average Hausdorff Distance, Cohen’s
Kappa coefficient, Kullback-Leibler Divergence, and
Wasserstein Distance. Then, we introduce a method-
ology that enables the comparison of reconstruction
to ground-truth at a local level. This is accomplished
by extracting cuboid regions from both the ground-
truth and the reconstruction, and by assessing the
reconstruction quality with the previously mentioned
metrics. Later on, we propose an additional method-
ology to evaluate the capability of the selected met-
rics in measuring various degradation models, when
the 3D reconstruction is directly derived from the
ground-truth. Finally, we empirically compare the
metrics in situations where the 3D reconstruction is
built from point clouds obtained from the robot’s
observations. Ultimately, we present a comparison
of the selected metrics, highlighting their properties,
along with guidelines towards the choice of the metric
depending on the application.

2 Related Workd

2.1 Map building

Building a map consists in building a representation
of the perceived environment that aligns with the in-
tended purpose of the map. In robotics, the maps are
commonly built with the primary objective of opti-
mal navigation planning, such as [7]. However, there
are cases where the purpose is to reconstruct a scene
to enable its monitoring, such as [8]. When the pur-
pose of mapping is to reconstruct a scene, the most
common maps are volumetric maps, or 3D-grids, and
meshes, or 3D-surface maps. Meshes are generally
obtained from either a Lidar point-cloud or from the
point-cloud derived from visual odometry. In a mesh,
the surface is described by connected triangles. An
optimization algorithm is applied on the point-cloud
to build the mesh. Among the most widely used tech-
niques, we can cite Ball-Pivoting Algorithm [9], Pois-
son Surface Reconstruction [10] or Delaunay triangu-
lations [11], mainly applied to mesh a single object.
Other methods tackle large-scale meshing, such as [7]
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who includes texture in the mesh to improve its visual
aspect, or [8] who build a semantic mesh representa-
tion of a large-scale environment with the Las Vegas
Reconstruction Toolkit [12]. Recently, other meth-
ods have been presented to build meshes with deep
learning techniques, such as Voxel2Mesh [13].

In this paper, we focus on the prevailing map rep-
resentation for outdoor robotics: volumetric maps.
Such a map is the discretization of the space into
voxels, each voxel containing some information, such
as its occupancy likelihood. Several methods provide
means to build 3D-grids from 3D-Lidar point-clouds.
For instance, Voxblox [14] builds 3D grids where the
truncated signed distance field (TSDF) is stored for
each voxel. Although that method is developed to
produce high quality maps, it tends to struggle when
the environment size increases. Other methods have
been proven efficient to build large 3D-grids, such as
Octomap. Even though Octomap might not be the
most efficient, as shown in [15], it is still one of the
most widely used methods.

Octomap [16] is a method to build and store an
octree instead of a 3D-grid, saving memory and com-
putation. The open-source ROS Octomap library 1

implements the complete probabilistic map building
process. The map is constructed in a given map
frame, and every point-cloud in the Lidar frame up-
dates the map. For each point in the point-cloud,
a ray-casting operation is performed. Between the
robot and the returned point, the probability of oc-
cupancy of the leaves in the octree is decreased. The
returned points are updated as occupied, their prob-
ability of occupancy is increased. A thorough update
process has been implemented to be robust to noise in
the Lidar’s point-cloud. Moreover, the leaves in the
octree encode the likelihood of occupancy, or empti-
ness, only if a point has been observed. Therefore, the
octree encodes the unknown volume, i.e. the volume
represented by absent leaves, a feature that could be
useful in different robotics applications, such as ex-
ploration. We use Octomap to build the probabilistic
volumetric map denoted as “reconstruction” in this
study.

It is also important to note that the quality of

1http://wiki.ros.org/Octomap

the map is intrinsically linked to the precision of the
robot localization and that solving the localization
in large-scale natural environment is still challeng-
ing. Since the point-clouds are expressed in the Li-
dar frame (which is based on the robot’s localization),
any error in the transformation from the Lidar frame
to the map frame will lead to errors in the map [4].
For those reasons, in this study, we evaluate the dif-
ferent metrics through the scope of the localization
precision with different level of noise in simulation.

2.2 3D-reconstruction metrics

2.2.1 Classic 3D reconstruction metrics in
robotics

Generally, when considering 3D-reconstruction,
whether it be for robotics applications or not, mea-
suring 3D reconstruction quality consists in compar-
ing two surfaces. Often, those are the mesh gener-
ated from the 3D-point cloud, and the ground-truth
mesh. Traditional metrics in that case are based on
surface distance errors. They consist in calculating,
for all surface points of one surface, the distance to
the closest on the other surface, and then extract
some statistics. Common surface distance errors are
the Hausdorff Distance, that we will detail later, the
Root Mean Square Error (RMSE) or the MAE (Mean
Average Error) (used respectively in [17], [18], [19] for
instance).

In the context of robotics, the prevailing metrics of
reconstruction quality are the surface coverage and
the reconstruction accuracy. Both are derived from
those surface distance errors, and applied either on
the meshes or on the 3D-grids. In the latter case,
two sets of points are compared. Provided we want
to compute the surface coverage, we are interested on
the proportion of the set of points from the ground-
truth accurately reconstructed. To do so, if the dis-
tance between a ground-truth point and its closest
reconstructed point is less than a registration dis-
tance, the ground-truth point is considered as recon-
structed (i.e valid). The metric is the proportion of
such points ([20, 21]). Similarly, the reconstruction
accuracy corresponds to the proportion of accurately
reconstructed points in the set of points from the re-
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construction, that is, points whose distance to the
closest ground-truth point is below a registration dis-
tance.

2.2.2 Other reconstruction metrics

Some metrics have been proved efficient when it
comes to evaluate the quality of the semantic segmen-
tation predicted by deep-learning models, although
most of them have been used outside the field of
computer vision for decades. The idea with those
metrics is to evaluate at the same time the classifi-
cation accuracy and the correctness of the localiza-
tion. Among them, we can cite the accuracy, the
precision, the recall, or even the Intersection Over
Union (IoU, Jaccard Index), or the F1 score. [22]
provides a thorough review and comparison of the
existing segmentation metrics for 3D-medical image
segmentation tasks. Building upon [22], [23] com-
pares some of those metrics depending on the size
of the regions of interest to segment. As [22], build-
ing on the fact that we are working on 3D-grids, we
can consider our problem a 3D-segmentation prob-
lem. We can then consider each voxel is assigned the
class ”empty” or ”occupied” based on its occupancy
likelihood. In large-scale environments, the volume is
mostly empty space, with sparse objects whose con-
tours represent the occupied space. [23] shows that
two metrics are particularly sensitive when it comes
to measuring segmentation quality of small objects in
an image: the Average Hausdorff Distance and Co-
hen’s Kappa coefficient.
The Hausdorff Distance (HD) is, as the other met-

rics seen before, a spatial distance metric, widely used
to evaluate 3D-reconstruction [17, 24]. HD is a com-
mon measure of distance between two point sets, but
it is sensitive to outliers. [22] proposes to use instead
the Average Hausdorff Distance (AHD), introduced
in [25]. The AHD averages the HD over all the points,
becoming more stable and less sensitive to outliers
than HD.
The other interesting metric pointed out by [23],

is the Cohen’s Kappa coefficient (KAP). Unlike the
metrics seen previously, KAP is not a spatial distance
metric but a probabilistic metric. It was first pro-
posed in [26]: it provides a score measuring the agree-

ment between two samples. As an advantage over
other measures, KAP takes into account the agree-
ment caused by chance, which makes it more robust.
That is, KAP is in [-1,1], where 1 corresponds to com-
plete agreement, -1 to complete opposition, and 0 to
random.

2.3 Comparing probabilities

Since we are building a probabilistic volumetric map
with Octomap, we could take advantage of that
framework to measure the quality of the map. Each
voxel in the probabilistic map has a probability of oc-
cupancy between 0%, the absolute certainty that the
voxel is empty, and 100%, the absolute certainty that
the voxel is occupied. Leveraging the probabilities
inside a 3D-grid is not a novelty, and has been ex-
plored in [20]. However, they do not propose a mean
to compare the reconstructed volume to a reference
one. They calculate the entropy of the voxels, which
represents their distance to the unknown, thereby in-
dicating the quantity of observation for each voxel,
but not a measure of the reconstruction quality.

In this paper, we propose a methodology to com-
pare two volumetric maps with probabilistic val-
ues. Different methods allow comparing probabili-
ties. The most common is probably the Kullback-
Leibler Divergence (DKL). The DKL [27] is a mea-
sure of how different a probability distribution is from
another probability distribution. With the DKL, we
can measure how the probability distribution of the
reconstruction is different from the probability distri-
bution of the ground-truth.

Nonetheless, since we are considering a grid of
probabilistic voxels, we have access to another infor-
mation: the Euclidean distance between voxels. As
an example, if a point is erroneously reconstructed 5
cm away from an actual object, the reconstruction is
better than if the erroneous point is 50 cm away. The
DKL is not sensitive to this difference. An alterna-
tive solution is then to find the Optimal Transport
plan, linking one probability distribution to another
one, with a cost function depending on the geome-
try [28]. From this Optimal Transport plan, we can
calculate a distance, the Wasserstein Distance which
is a generalization of the concept of Earth Mover’s
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Distance (EMD). Computing the Optimal Transport
Plan may be cumbersome, because it is an optimiza-
tion problem that is not necessarily convex. To by-
pass computational issues, [29] regularizes the opti-
mal transport problem by adding an entropic term,
and solves it using a Sinkhorn’s fixed point iteration.
[30] provides an open source Python library imple-
menting several solvers for Optimal Transport prob-
lems, including [29]’s algorithm. With this regular-
ized Wasserstein Distance, we can measure the qual-
ity of the 3D-reconstruction, comparing not only the
ground-truth and reconstructed values of probabilis-
tic maps but also taking into account the Euclidean
distances in the errors.

3 Comparison Methodology

The objective of this study is to evaluate vari-
ous 3D-reconstruction metrics with the expectation
that these metrics will provide a meaningful mea-
sure of the reconstruction quality at a local level.
Firstly, we present our methodology for extract-
ing cuboid regions that enable the comparison of
3D-reconstruction to ground truth. Secondly, we
describe the computation process for each consid-
ered 3D-reconstruction metric within these cuboid re-
gions. Thirdly, we outline our methodology for eval-
uating the effectiveness of these metrics in measuring
the reconstruction quality. This evaluation is con-
ducted using controlled 3D-reconstruction obtained
through the controlled degradation of the ground
truth. All the code is available open-source2.

3.1 Cuboid region extraction

To enable the comparison of the local reconstruc-
tion and the ground-truth, we extract cuboids regions
from both the reconstruction and the ground-truth.
To do so, we discretize both volumes into two 3D-
grids, of the same resolution RES and in the same
reference frame Rf . A local region is then a cuboid
C. To compare the two local regions, we compute

2https://github.com/stephanie-aravecchia/
3d-reconstruction-metrics

the metrics described in Sec. 3.2 between intersect-
ing cuboids. Alg. 1 summarizes this section.

The ground-truth is the mesh of the scene used in
simulation, the 3D-reconstruction is the full proba-
bility map constructed by Octomap from the robot’s
observations.

For the ground-truth, we first slice the ground-
truth mesh with horizontal planes, with a vertical
space of res, our spatial resolution (with res < RES ).
In each plane, we then calculate the intersection of
the mesh and the plane, and we store it in a 3D ma-
trix of voxel size res. Each voxel on the intersection is
occupied and has a value of 1.0, all the remaining vox-
els are empty with a value of 0.0. Our ground-truth
dataset, Dgt, is then a 3D matrix of size (h1,w1,n1).
Its associated volume in space, in the reference frame
Rf , is the bounding-box Bbox1

.

For the reconstruction, we first create a full proba-
bility map with Octomap in the same reference frame
Rf , and with the same resolution res. From this oc-
tree, and its bounding-box in Rf , we initialize a 3D
matrix as unknown space, i.e. values of 0.5, corre-
sponding to the equal probability of the voxel to be
occupied or empty. We then iterate on all the leaves
in the octree. For each leaf, we set the probability
of its associated voxels in the 3D matrix to the prob-
ability of the leaf (the unknown space is implicitly
described in Octomap with absent leaves). We fi-
nally obtain the reconstruction dataset, Drec, a 3D
matrix of size (h2,w2,n2), with a voxel resolution res,
with its associated bounding-box, Bbox2 , in the same
reference frame, Rf .

Finally, we do the comparison in Bbox1
∩ Bbox2

.
First, we load the intersection of both datasets in
two 3D matrices, Mgt and Mrec: a voxel vijkgt from

Mgt corresponds to the same volume in Rf than vijkrec

from Mrec. Second, we go through both 3D matrices,
and compare, cuboid region by cuboid region, the
reconstruction and the ground truth. A cuboid region
is a group of n × n × n voxels in each 3D matrix,
and is noted Cgt or Crec. Those cuboid regions are
in fact large voxels of size RES = n × res, in the
3D-grid Bbox1

∩ Bbox2
, in Rf , and each element in

Crec and Cgt stores the occupancy likelihood of its
corresponding voxel of size n in Rf . Fig. 1 shows an
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example of a cuboid where n = 10.

3.2 Comparison metrics

This section explains how, for each cuboid region, we
compute different metrics to indicate the quality of
the reconstruction.
Since this method is developed with the objective

to work also on large-scale environments with sparse
objects, the reconstructed volume may contain more
empty space than actual objects to reconstruct. A
measure that would give information on occupied
space only may not be representative of the com-
plete volume. For this reason, we found it interesting
to measure not only how well objects have been re-
constructed, but also how well the empty space has
been reconstructed. To do so, we first define two
sets: Uocc , the set of the cuboids regions containing
at least one occupied voxel in Cgt and Uempty , its
complement. Then, we measure the reconstruction
quality of the cuboids with a different metric in each
set: one of the considered reconstruction metrics for
the cuboids in Uocc , the L1 norm for the cuboids
in Uempty . This study focuses on the evaluation of
metrics in Uocc.
Furthermore, because measuring reconstruction

quality of unknown space is pointless, we consider
a threshold before calculating our metrics. If all
the probabilities in Crec are close to the unknown
(0.5 ± 0.1), we do not calculate the metrics, but set
them to default values.

3.2.1 Surface Distance Metrics

The three surface distance metrics we consider here
(surface coverage, reconstruction accuracy and Av-
erage Hausdorff Distance) are based on spatial dis-
tances between sets of points. To compute them, we
define the following constants:

• p̂ is an occupancy likelihood threshold,

• dr is a registration distance.

We also define the following variables:

• Urec is the set of points P from Crec whose
occupancy likelihood is above p̂,

• Ugt is the set of occupied points from Cgt,

• nrec is the number of points in Urec,

• ngt is the number of points in Ugt,

• ∥PS∥ is the Euclidean Distance between a point
P from Urec to the closest S in Ugt,

• ∥SP∥ is the Euclidean Distance between a point
S from Ugt to the closest P in Urec.

As an example, in Fig. 1, the points from Ugt and
Urec correspond respectively to the white voxels in
Cgt and Ĉrec.

3.2.2 Surface Coverage

To compute COV, we apply the classical methodol-
ogy in a 3D-grid, as [20], to our cuboids. We first
compute the number of reconstructed points, krec,
that is, points in Ugt we consider correctly recon-
structed, and then we compute the surface cover-
age, COV, the proportion of correctly reconstructed
points.

krec =
∑

S∈Ugt

1B(∥SP∥ ≤ dr) (1)

where 1B(b) = 1 if b, 0 otherwise.

COV = krec/ngt (2)

3.2.3 Reconstruction Accuracy

To compute ACC, we proceed similarly: we first com-
pute the number of accurate points, kacc, that is,
points in Urec we considered valid, and then we com-
pute the reconstruction accuracy, ACC, the propor-
tion of valid points.

kacc =
∑

P∈Urec

1B(∥PS∥ ≤ dr) (3)

ACC = kacc/nrec (4)

3.2.4 Mean Average Distance

To compute AHD, we follow [22]. The Hausdorff
Distance measures the distance between two sets of
points. We compute two Hausdorff Distances: the
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Figure 1: Visualization of a cuboid (10x10x10 voxels). On the left part of the figure, each row of images
correspond to a single cuboid, each column in the row to a slice of the cuboid. The color encodes the
occupancy likelihood, from free space in black, to occupied space in white, as shown in the colorbar. The
grey corresponds to the unknown. The first row is the ground-truth cuboid, Cgt. The second row is the
reconstruction cuboid, Crec, encoding the occupancy likelihood. The last row is the binary version of Crec:
Ĉrec, where the voxels whose occupancy likelihood is above 0.8 are set to occupied, the others to empty.
DKL and WDocc are computed directly Crec, whereas COV, ACC, AHD and KAP are computed on Ĉrec.
The right part of the figure displays in green Cgt, in blue the thresholded Ĉrec.

distance from reconstruction to ground-truth dPS ,
and the distance from ground-truth to reconstruction
dSP :

dPS =
1

np

∑
P∈Urec

∥PS∥ (5)

dSP =
1

ns

∑
S∈Urec

∥SP∥ (6)

Then, we compute the Average Hausdorff Distance,
which consists in the maximum between the two dis-
tances:

AHD = max(dPS , dSP ) (7)

3.2.5 Cohen’s Kappa

The metric Cohen’s Kappa, KAP, provides a score in
[-1, 1] ([worst, best]). This score provides a measure
of agreement between two sets of classification. Un-
like surface distance metrics seen before, we compare
here directly the elements of Crec and Cgt. In the
cuboids, we consider our problem as a binary clas-
sification problem: each voxel is assigned either the
class occupied or empty. In Cgt, each voxel already
has a value 0 (class empty) or 1 (class occupied). In
Crec, we consider a voxel occupied if its occupancy

likelihood p > p̂, else, we consider it empty and call
the resulting binary cuboid Ĉrec. Fig. 1 provides an
example. We iterate on all the voxels or of Ĉrec, com-
pare them to their corresponding voxel in Cgt, and we
count FP (occurrence of false positive), FN (false
negative), TP (true positive), TN (true negative).

Then, to compute KAP, we follow [22]. Let N be
the number of voxels in a cuboid:

fc =
(TN+ FN)(TN+ FP) + (FP+ TP)(FN+ TP)

N
(8)

KAP =
(TP+ TN)− fc

N − fc
(9)

3.2.6 Kullback-Leibler Divergence

The DKL provides a measure of how a probability
distribution is different from a reference probability
distribution. The DKL metric we use in this work is
the sum of the DKL between the probability distribu-
tions derived from the elements of the cuboids. Let p0

be the occupancy likelihood of a voxel in Crec, g
0 the

occupancy likelihood of the same voxel in Cgt. For
numerical reasons, we saturate p0 and g0 in [m, 1-m],
where m is a small number. The saturated values are
p and g. Then, we iterate on the N = n× n× n ele-
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ments of the cuboids, and we compute the DKL met-
ric as follows:

DKL =

k=N∑
k=1

[
(1− pk) · log

(1− pk)

(1− gk)
+ pk · log pk

gk

]
(10)

3.2.7 Wasserstein Distance

The Wasserstein Distance is derived from the opti-
mal transport plan to “move” the mass distribution
from a query vector to match the mass distribution
of a reference vector. The cost of moving the mass
being a function of the Euclidean distance it has to
be moved by. Here, we calculate the Wasserstein Dis-
tance between two cuboid regions.
As this Wasserstein Distance is defined on his-

tograms, that is, vectors that sum to 1, we first
need to remap all the elements of Cgt and Crec

into two vectors of doubles, Vgt and Vrec, such that
∀(i, j, k) ∈ 0, n, V∗(i ·n2+ j ·n+ k) = C∗(i, j, k). Sec-
ond, we derive from each vector, two different vec-
tors. From Vgt, we derive V occ

gt = max (2Vgt − 1, 0)

and V free
gt = max (1− 2Vgt, 0). They contain respec-

tively the probability of an element to correspond to
an occupied voxel, and the probability of an element
to correspond to an empty voxel. We then normalize
each vector by their sum and obtain two histograms
P occ
gt and P free

gt . Similarly, from Vrec, we obtain P occ
rec

and P free
rec . We do this partition between occupancy

and emptiness because we observed that the Wasser-
stein Distance between P occ

rec and P occ
gt , which em-

beds in each element the distance from its probability
of occupancy to the unknown, contains more signal.
Moreover, this corresponds better to what we intend
to measure with this metric, that is how well the oc-
cupied space has been reconstructed. Using the same
mapping between voxels and elements of the vector,
we set the cost matrix M to contain the squared Eu-
clidean distance between the voxels associated to the
elements of the vector.
Finally, we calculate WDocc the regularized

Wasserstein Distance between P occ
rec and P occ

gt , com-
puted using the Sinkhorn algorithm described in [29],
following the implementation of [30]. This algorithm

is an optimization that seeks an optimal coupling
which minimizes the displacement cost of a discrete
measure, P occ

rec in our case, to a discrete measure,
P occ
gt , with respect to a cost, a transport matrix, M ,

under an entropic constraint. The optimal value of
the optimal transport problem is the Wasserstein Dis-
tance, defined as follows, with γ1 = P occ

rec , γ
T1 = P occ

gt

and γ ≥ 0:

WDocc = min
γ

⟨γ,M⟩+ α · Ω(γ) (11)

Where M is the previously defined cost matrix,
Ω is the entropic regularization term: Ω(γ) =∑

i,j γi,j log(γi,j), α is an entropic regularization fac-
tor and ⟨., .⟩ is the Frobenius dot-product. In this
study, we set the regularization factor α = 1.0.

3.2.8 L1 norm

In a cuboid region of the ground-truth in Uempty,
all the voxels have a probability of occupancy of 0.
Therefore, when comparing the reconstruction to the
ground-truth, we are comparing a vector containing
some probabilities of occupancy Vrec to a vector of the
same size containing only zeros (absolute certainty of
emptiness). Such a measure is given by the L1 norm
of Vrec: the distance between Vrec and the vector of
zeros that represent the empty space. We do not
evaluate L1 in this study, but simply provide it to
the reader, because we found it convenient in other
works.

3.3 Evaluation Methodology

3.3.1 Controlled 3D-reconstruction

This section describes the evaluation of the metrics,
with a specific focus on examining their behavior in
the context of decreasing reconstruction quality. We
present the methodology using a single ground-truth
cuboid. The key approach involves initially measur-
ing the reconstruction quality when it is perfect, in-
dicated by Crec = Cgt. Then, we introduce vari-
ous degradation models that are iteratively applied
to the reconstructed cuboid, progressively degrading
the quality of the reconstruction. Let us assume v is
a voxel randomly sampled in the cuboid Crec, p(v)
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Algorithm 1 Reconstruction and ground-truth com-
parison

// Dgt and Drec are the datasets
Dgt(Bbox1 , (h1, w1, n1), Rf ), Drec(Bbox2 , (h2, w2, n2), Rf )
Bbox ← Bbox1 ∩Bbox2
Mgt ← Dgt(Bbox),Mrec ← Drec(Bbox)
for all cuboid ∈ Bbox do:

Cgt ←Mgt(cuboid), Crec ←Mrec(cuboid)
if isObserved(Crec) then:

if cuboid ∈ Uocc then:
cuboid.metrics← computeMetrics(Crec, Cgt)

else:
cuboid.metrics← computeL1(Crec)

end if
else:

cuboid.metrics← maxMetrics
end if

end for

the occupancy likelihood of v, and v′ a direct neigh-
bor of v. The degradation models considered in this
study are:

1. random occ: p(v) = 1;

2. random free: p(v) = 0;

3. random unknown: p(v) = 0.5;

4. random random: p(v) ∼ [0, 1]

5. random shift: p(v′) = p(v), p(v) = p(v′)

6. random flip: p(v) = 1− p(v)

3.3.2 Metric Evaluation and Comparison

We evaluate the different metrics with a consistent
perspective, focusing on their ability to discriminate
reliably “good” from “less good” reconstructions. Be-
fore going further, it is important to note that some
metrics are distance metrics (the lower, the better):
DKL, AHD, WDocc, whereas the others are score
metrics (the higher, the better): COV, ACC, KAP.
First, we define the threshold n̂ that divides the pop-
ulation of Crec in two, the “good” ones, and the “less
good” ones: n̂ is simply a fixed level of degradation of
the cuboid (i.e 20%). Second, we define the thresh-

old θ̂ that divides the population of Crec in two: the
cuboids measured as “good” and those “less good”.
In the case of distance metrics, a measure θ smaller
than θ̂ indicates a “good” measured reconstruction
(conversely for score metrics). Finally, we consider

our problem as a classification problem, and we popu-
late a confusion matrix by evaluating all the cuboids,
at all the iterations as explained in Tab.1. It should
be noted that the definition of true / false positive /
negative described here are different from the quanti-
ties used to compute Cohen’s Kappa, where the clas-
sification was made on the voxels.

score metric distance metric

true positive (n ≤ n̂) & (θ > θ̂) (n ≤ n̂) & (θ ≤ θ̂)

true negative (n > n̂) & (θ ≤ θ̂) (n > n̂) & (θ > θ̂)

false positive (n > n̂) & (θ > θ̂) (n > n̂) & (θ ≤ θ̂)

false negative (n ≤ n̂) & (θ ≤ θ̂) (n ≤ n̂) & (θ > θ̂)

Table 1: Condition tested on a cuboid to populate
the Confusion Matrix

From the confusion matrix, where we count the oc-
currence of true positive TP, true negative TN, false
positive FP, and false negative FN, we compute the
precision and recall of the metric:

precision = TP/(TP+ FP) (12)

recall = TP/(TP+ FN) (13)

We repeat the process for different thresholds θ̂ for
each metric. From this data, we are able to compare
the precision recall curves for the different metrics.

4 Experimental Setting

This section explains how we generate the simulated
worlds to conduct the metric evaluation with the con-
trolled 3D-reconstruction (3.3.1). Then, with the
same worlds, we conduct experiments, in simulation.
The simulations are run within the ROS framework
with Gazebo and a Clearpath Husky robot equipped
with a 3D Lidar Ouster OS1-16 (16 planes of 512
points).

4.1 World Generation

We generate randomly several environments. Each
environment is a plane of dimension 60m × 60m on
which we place assets with a Poisson Cluster Point
Process, to reproduce the natural spatial distribution
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Figure 2: Illustration of the different assets used
in simulation: rectangular cuboid, cross-extruded
shape, helicoidal cone, simulated tree.

of trees. The assets (illustrated in Fig. 2) can be,
with an increasing level of difficulty with respect to
the reconstruction, either rectangular cuboids, cross-
extruded shapes, helicoidal cones, or randomly se-
lected in our 15-trees library mimicking winter bare
trees. Those trees are created with a space coloniza-
tion algorithm 3. Due to computational considera-
tions in Gazebo, we create only trees without leaves.
Random factors are applied on the assets’ dimensions
and orientation.

With the same point process generation, we cre-
ate four different synthetic environments, one with
each type of assets. With the open-source Blender
software 4, we create a single shapefile (.stl) for each
environment. This ensures that the mesh we slice to
obtain the 3D-grid ground-truth is the same used in
Gazebo to infer the collisions of the Lidar, hence to
construct the map.

We generate 12 environments (3 different spatial
distributions with 4 different types of asset).

From those environments, we either build 3D-
reconstructions from the robot’s observations in sim-
ulation, as explained thereafter (Sec. 4.2), or we sam-
ple randomly 1500 cuboids to apply the controlled
3D-reconstruction evaluation (Sec. 3.3.1).

Figure 3: Illustration of an experiment, with the
Husky robot at the center in an environment con-
taining only trees.

4.2 Experimental Simulation

An experiment, illustrated in Fig.3, consists in load-
ing one of the environments described previously in
Gazebo, teleporting the robot randomly in the envi-
ronment, accumulating the point-cloud, and teleport-
ing it again, for 100 iterations. A mixture of noise is
applied to the Lidar to simulate better the behavior
of a Lidar in outdoor natural environments. Since the
quality of the reconstruction is directly linked to the
localization of the robot, we incrementally add noise
in this localization. For each noise level, we build
a probabilistic map with Octomap. To obtain the
different noise levels, we use the perfect localization
from Gazebo on which we apply a Gaussian noise on
the position and on the orientation. The noise lev-
els considered in this study are (with the standard
deviations σp, on position, in meter, σq, on orienta-
tion, in radian): 0. perfect localization; 1. σp = 0.005,
σq = 0.005; 2. σp = 0.05, σq = 0.01.

Errors in the orientation estimation lead to large
errors in the position of far away points (i.e a 0.01
radian error in the orientation leads to a 0.20m error
in the position of a 20m distant point in the Lidar
point-cloud). In this study, the sensor range is set
to 20m, the map resolution to res = 0.1m, and the
cuboid resolution to RES = 1m.

For each of the 12 environments, for each of the 3
noise levels, we run 28 simulations, for a total of 1008

3https://github.com/dsforza96/tree-gen
4https://www.blender.org/
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experiments in simulation.

5 Results

5.1 Theoretical Metrics Comparison

We compare the metrics when the reconstruction
moves further from the ground-truth, following the
methodology in Sec. 3.3.1, and we distinguish the ex-
periments by type of world.
As described in Sec. 3.2, some metrics depends on

constants (occupancy likelihood threshold, registra-
tion distance). In this study, we run the experiments
with the following values, but display the results only
for the values in bold, because even though the value
of the metric is slightly influenced by the value of the
constants, the general behavior remains the same:

• p̂: 0.7, 0.8 (COV, ACC, KAP, AHD),

• dr: 0.05, 0.1, 0.15 meters (COV, ACC).

Fig. 4 displays the results for the 1500 sampled
cuboids from Sec. 4.2. The figure display one line per
metric, one column per type of degradation applied
to the ground-truth, and one color per type of world
(that is, per type of asset in the world). Keeping in
mind that DKL, AHD and WDocc are distance met-
rics, whereas COV, ACC and KAP are score metrics,
we can see on this graph that the different metrics
we consider are differently sensitive to the type of
transformations we apply on the ground-truth,
A ”good” metric is expected to: be sensitive to

all the types of transformations, vary monotoni-
cally when the reconstruction moves further from the
ground-truth, be independent of the type of world,
and give measurements in a range that does not de-
pend too drastically on the transformations. Fig. 4
shows that no metric satisfies all those conditions.
From each graph in Fig. 4 corresponding to a cou-

ple (metric, type of degradation), we can distinguish
three tendencies, depending on how θ vary when n
increases.

• no variation, the curve is flat: the metric is not
sensitive to the type of degradation;

• a small variation (gentle slope): the metric is
slightly sensitive to the type of degradation;

• a huge variation: the metric is highly sensitive
to the type of degradation.

DKL, WDocc, AHD, ACC and KAP are highly sen-
sitive to additional points (random occ). The high
sensitivity to random points (random random) and
random flip may only be linked to the sensitivity to
additional points, since a random point may have
a high occupancy likelihood, and flip tends to add
new points in the cuboids we consider (containing
more empty voxels than occupied voxels). Unlike the
other four, KAP seems to remain slightly sensitive
to the other types of degradation. Not surprisingly,
COV and ACC are totally insensitive to some trans-
formations: COV is not sensitive to additional re-
constructed points, as long as all the ground-truth
points are covered. Similarly, ACC is not sensitive to
missing points in the ground-truth, as long as all the
reconstructed points are indeed accurate. Similarly,
WDocc is not sensitive to missing points, or to diffu-
sion (random shift). AHD is less sensitive to missing
points or diffusion, than to other types of transfor-
mations, but still remains a bit sensitive.

Additionally, we can see in Fig. 4 that the met-
rics are generally dependent on the type of world.
The areas corresponding to 80% of the measures in
TREES environments (red) are larger and the me-
dians are different from the areas corresponding to
80% of RECT environments for instance (blue). That
tends to indicate that not only the measure pro-
vided by the metrics are noisier in challenging envi-
ronments, but also the very value supposedly depen-
dent only on the reconstruction quality also depends
highly on the type of environment.

In real world applications, the noise model is prob-
ably a combination of all the degradation models con-
sidered here, and a central question is: is there a
threshold to discriminate reliably “good” and “less
good” reconstructions for the chosen metric ?

Fig. 5 shows the very challenge of setting thresh-
olds to discriminate “good” and “less good” re-
constructions. This figure show the precision-recall
curves obtained following Sec. 3.3.2, where the
threshold θ̂ for each metric vary in a range corre-
sponding to the min and max values of the y-axis of
Fig.4 for the considered metric. For each metric, the
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Figure 4: Illustration of the different metrics behavior when the reconstruction moves further from the
ground-truth. One line per metric, one column per type of degradation applied to the gt. For each sub-
figure, the x-axis is the number of iteration n, the y-axis the value of the metric θ. The results are grouped
by type of asset in the world. In each sub-figure, the line corresponds to the median value from all cuboids
in the type of world and the filled area shows the spread of 80% of the population.

curves are drawn with 10 values of θ̂, and we high-
light three particular values with the circle, diamond
and star markers. Fig. 5 shows that, with the same θ̂
(one of the markers), a metric can be very good when
it comes to some degradation models, but very bad
at others. This figure also shows that, even though
with a different threshold, AHD and KAP seem able
to deal with all the degradation models, whereas the
other metrics always struggle with at least one degra-
dation model.

5.2 Metrics Comparison on experi-
mental reconstructions

In this section, we compare the metrics when the map
is built from the robot’s observation.

Fig. 6 shows the distribution of the different met-
rics per type of world. We consider only the cuboids
in Uocc, and we display also the distribution of ngt

and nrec, the occurrence of occupied voxels in the
ground-truth and reconstruction cuboids Cgt and
Crec (Sec. 3.2). The general trend of the histograms
remain the same when we split the population of
cuboids per noise level in the localization. Therefore,
we present only here the synthesis. In the large-scale
environments populated with sparse objects we con-
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Figure 5: Precision-Recall curves when we vary the value of the threshold θ̂ for each metric. One line per
metric, one column per type of degradation, one color per type of world. The three markers display precision-
recall points for three values of θ̂ for each metric. The results are displayed for a level of degradation of the
cuboid of 20%. The points in (0,0) corresponds to points where it is not possible to compute precision and
recall (division by 0 in Eq. 12 and 13)

sider in this study, not only ngt is generally small,
but nrec is even smaller. The histograms embed also
in blue a particular case: when nrec = 0, we denote
such cuboids C0

rec. Those cuboids, where not a single
point have been reconstructed, are likely to be “not
good” reconstructions. Fig. 6 also shows that not
only the choice of the metric becomes difficult when
the world becomes more challenging with respect to
the reconstruction, but also that it is not straight-
forward to set a meaningful threshold above (or be-
low) which the reconstruction is deemed good. The
graphs are arranged from top to down in increasing
level of difficulty in the reconstruction, from RECT
(basic geometrical shape), to TREES (unstructured

objects).

Fig. 6 shows two trends:

• The metric is likely to be noisy: the cuboids of
C0

rec are spread on all the range of values.

• The range of the values the metric provides
shrinks when the complexity of the world in-
creases.

From those two trends, we can hypothesize that
DKL and WDocc are likely to be noisy. We can also
hypothesize that AHD is the most capable of pro-
viding measures when the difficulty in the world in-
creases: the proportion of cuboids where the value is
not in the first bar is the largest. Additionally, AHD
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Figure 6: Distribution of the values of the metrics among the cuboids from Uocc in the experiments. The
blue corresponds to the values of the cuboids where nrec = 0. The orange to the other cuboids. The values
are computed only for “observed” cuboids (at least one voxel in Crec has p < 0.4 or p > 0.6, explained in
Sec. 3.3). The figure display one line per type of world and one column per metric, with two extra-columns
showing nrec and ngt.

provides measures only when there is at least a re-
constructed point, making it easier to identify C0

rec

cuboids.

We have shown in Sec. 5.1 that all the metrics are
not sensitive to the same type of errors, with a con-
trolled reconstruction. What happens when the re-
construction is built from the robot’s observations ?
To answer this question, Figure 7 shows the correla-
tion matrix of the different metrics computed on the
cuboids containing at least one reconstructed point,
in all the experiments. We computed this same cor-
relation matrix by type of world, and by noise level in
the localization, and although the level of correlation
may change, the trend remains the same.

From that matrix, we can see that KAP is highly
correlated with COV, and moderately with ACC, but
also slightly correlated with all the other metrics. We
can also see that AHD is moderately correlated to
WDocc, but also slightly with COV and KAP. DKL
is the metric the least correlated with the others.
We can hypothesize that the metrics the least corre-

lated are sensitive to different information and may
be combined for a more reliable estimate of the recon-
struction quality. Such combination is not straight-
forward. It would require normalizing the combined
metrics in a range in which they all are meaningful,
and add weighting factors. We leave that to future
work.

Finally, Table 2 shows the computation time for
each metric. It should be noted that no effort was
made to optimize any of the implementations, and
that the computation of WDocc would benefit from
running on GPU. What is interesting here, is that
some metrics that appear to be moderately correlated
have drastically different computation time. KAP is
faster to compute than both COV and ACC, whereas
AHD is faster to compute than WDocc. It is worth
noting that ACC is faster to compute than COV be-
cause there are generally fewer points in the recon-
struction than in the ground-truth. That computa-
tion time could directly influence the choice of the
metric, or, if different metrics are to be combined,
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Figure 7: Correlation Matrix of the metrics. The
correlation can be positive or negative depending on
the type of metric (score or distance).

their selection.

time (µs) ±std
DKL 12 ±1
WDocc 137x103 ±63x103

COV 230 ±53
ACC 11 ±17
AHD 241 ±57
KAP 5 ±1

Table 2: Comparison of the computation time

5.3 Qualitative comparaison

In this section, we intend to compare qualitatively
the metrics on different reconstructions of the same
ground-truth cuboid. To enable this comparison, we
design another experiment in simulation, in a world
with either a rectangular cuboid or a simulated tree.
We create two sets of experiments. In the first set,
FRONT, the robot drives in a straight line towards
the object. In the second set, LAT, the robot drives
in a straight line with the object on the side. We

then build the reconstructions from the robot’s obser-
vations, with different noise level in the localization
(Sec.4.2).

Fig. 8 and Fig. 9 shows the results for the same
cuboid, in the RECT and TREES environments, and
the three reconstructions built from the two respec-
tive driving behaviors. We focus first on Fig. 8.
In the context of an autonomous robot building a
map, based on our expectations, we can presume that
the maps from LAT are better than the maps from
FRONT. Indeed, the group of reconstructions at the
bottom of the figure appear ”better” than the group
at the top. We then expect the metrics to measure
better reconstructions in LAT compared to FRONT.
Nonetheless, the metrics yield divergent results when
assessing the reconstruction quality, as they are not
equally sensitive to all types of errors. For instance,
COV measures a better reconstruction in LAT com-
pared to FRONT, as a larger portion of the object
has been reconstructed. Conversely, ACC measures
a better map in FRONT compared to LAT, as the
few points in FRONT are reconstructed more accu-
rately. KAP is highly sensitive to noise in the local-
ization: it penalizes erroneous points, regardless of
the Euclidean error distance. Due to errors in the
localization, discretization errors, or aliasing, an off-
set of one voxel, or pixel, is very likely, and a metric
that penalizes such errors is very strict. We can see
such errors in Fig.8. As a consequence, the variation
of KAP’s measures in LAT includes the range of val-
ues of those in FRONT. In other words, with KAP,
one LAT reconstruction is measured as better than
the all FRONT reconstructions, whereas another one
is measured as worse. On the contrary, AHD and
WDocc are robust to that type of errors, as they are
to noise in the localization. They provide a measure
that is consistent with what one would expect in the
context of autonomous robot mapping, that is, LAT
are better than FRONT. DKL is dominated by the
unknown volume of the map. It does not appear use-
ful in this example, but it might provide information
complementary to the other metrics, for instance in
an exploration task, where reducing the unknown is
a central feature.

Fig. 9 shows the results in the most challenging
simulated environment: TREES. First, when we an-
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Figure 8: Example of a cuboid in a RECT environment. In the left, the first group of rows corresponds
to the cuboids reconstructed with the FRONT driving behavior. GT is the ground-truth cuboid, F0, F1,
F2 correspond to the reconstructions obtained with three noise level in the robot localization. The second
group of rows corresponds to the LAT driving behavior. L0, L1, L2 to the reconstructions with the three
noise levels. Two slices of the cuboids (3 and 8) remain mostly unknown: the Lidar used in this study is a
16-plane Lidar, and those slices remain situated between two of those planes during the experiments. The
right part of the figure displays the values of the metrics, with the two different driving behaviors. Distance
and score metrics are displayed with different colors to facilitate the interpretation (distance: lower is better,
score: higher is better). The errorbars display the variation between the min and the max of each metric, for
each driving behavior, when the reconstruction is built with the three noise levels in the robot localization.

alyze this figure, we cannot reach an obvious con-
clusion, as with the previous example. Visually, the
reconstructions from LAT experiments do not ap-
pear significantly better compared to FRONT ex-
periments. However, this trend is still what is indi-
cated by all the metrics but WDocc. This illustrates
our claim that measuring 3D-reconstruction quality
in such an environment is a challenging task in itself.

Also, we can point out that the metrics are gener-
ally sensitive to the density of points, either in the
ground-truth or in the reconstruction. When one or
both is really low, we reach the limit of all those met-
rics.

5.4 Summary

To summarize, we have seen that no metric is able
to provide a meaningful measure in all the situa-
tions. Mainly, it depends on the intent of the 3D-
reconstruction measurement. Table 3 shows a sum-
mary of the metrics properties. In the context of au-
tonomous robot mapping in large scale environment,
we believe a key feature is noise-robustness. When
the environment is unstructured, AHD is probably
a good choice of metric. AHD may be combined
to DKL in the context of autonomous exploration,
where it would also be interesting to have informa-
tion on the remaining unknown volume. When the
environment is structured, ACC or COV might still
be good choices too, if the intent of the measure is to
assess either the extent of the ground-truth surface
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Figure 9: Example of a cuboid in a TREE environment. The figure display the same information that Fig. 8.
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A
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K
A
P

sensitive to additional points 2 2 0 2 2 2
sensitive to missing points 1 0 2 0 1 2
informative wrt unknown volume 2 0 0 0 0 0
fast to compute 2 0 1 2 1 2
sensitive to Euclidean distance error 0 2 2 2 2 0
robust to noise 1 2 1 1 2 0
robust to point density 0 0 0 0 1 0
already normalized 0 0 1 1 0 1

Table 3: Summary of the metric properties. 0: the metric does not have this property, 1: it has it, but it is
not a significant feature, 2: the property is significant

observed (COV), or the precision of the reconstructed
points (ACC), but not both at the same time. In a
structured environment, their lack of robustness to
point-density is counterbalanced with the underly-
ing density of the ground-truth. Nonetheless, if the
aim of the metric is to provide a robust measure of
the reconstruction quality, then AHD remains a good
choice, both in structured and unstructured environ-
ments.

6 Conclusion

In this study, we have highlighted the challenges as-
sociated with assessing the 3D reconstruction qual-
ity in large scale environments. We have also shown
that these challenges are amplified when dealing with
unstructured environments. We have proposed a
methodology for comparing the 3D-reconstruction
built from the robot’s observations to the ground-
truth, at a local level. While our method specifically
uses Octomap’s octree, it can be adapted to other
mapping techniques, as long as the produced map
can be converted to a 3D-grid representation. Fur-
thermore, we have demonstrated that the different
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metrics used for evaluating 3D reconstruction quality
exhibit distinct properties and sensitivities to specific
types of errors. Therefore, the choice of the metric
should be carefully considered, based on the specific
error modes we want to quantify. We have also ob-
served that comparing the local quality of 3D recon-
structions is generally feasible. However, determin-
ing an absolute threshold that reliably indicates a
good reconstruction is not feasible for this set of met-
rics in a general case. In conclusion, our study pro-
vides practical recommendations for future research
focused on evaluating the quality of 3D reconstruc-
tion in large-scale environments.
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