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Abstract

The anti-unification problem for theories with absorption constants and operators such
as zero for product or true and false for disjunction and conjuction is addressed. A proved
sound algorithm that computes generalizations is introduced. Although the problem is
at least of type infinitary, the algorithm computes a finite set of final configurations from
which the least general generalizations are built.

1 Introduction

Several identification problems, searching for similarities and analogies, are related to equational
questions. In particular, problems such as matching and unification look for identifications
through computational procedures over algebraic expressions. In contrast, generalization pro-
cedures look for similarities or regularities in the structure of expressions. Generalization, known
as anti-unification, is a dual problem to unification. Over half a century ago, anti-unification
was formulated by Plotkin [6] and Reynolds [7] as a question on generalizing first-order alge-
braic terms. Nevertheless, it has been studied on numerous equational theories, for example,
theories with associative, commutative [1], idempotent [4] operators, and unital theories [5, 2],
and combinations of these properties on the semiring theory [3]. This document discusses anti-
unification for one of the theories that many common operators have, known as absorption
theories (Abs). These theories contain binary operator(s) f with related absorption constant
εf . The operators satisfy the axioms f(x, εf) ≈ εf and/or f(εf , x) ≈ εf . It is possible to find
the absorption theories in Semirings, Rings for one operation, and in Boolean algebras for both
operations.

1.1 Preliminaries

We consider an alphabet consisting of a set F of function symbols with their arities, and a
countable set of variables V with the symbol ‘ ’ (anonymous variable). Terms over this alphabet,
T (F ,V), have the grammar t ∶∶= x ∣ f(t1, . . . , tn), where x ∈ V and f ∈ F with arity n ≥ 0. When
n = 0, f is called a constant. Abs denotes an equational theory with one or more absorption
symbol(s). Equality of terms modulo Abs is denoted as s ≈Abs t. For a substitution θ, Dom(θ)
and Rvar(θ) denote the sets of variables in the domain of θ and the variables occurring in the
range of θ. Var(e) will denote the set of variables occurring in an expression. The composition
of substitutions σ and ρ is written as ρσ and θn0 abbreviates n compositions: θ0θ1 . . . θn.
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Definition 1 (Abs-generalization, ⪯Abs, lgg, solution). The precedence generalization relation of
Abs, holds for terms r and s, r ⪯Abs s, if a substitution σ exists such that rσ ≈Abs s, read as “r is
more general than s.” Also, ≺Abs and ≃Abs denote the strict precedence and equivalence relations
induced by ⪯Abs, respectively. If r ⪯Abs s and r ⪯Abs t, r is said to be an Abs-generalization of s
and t.

A least general generalization (lgg) of the terms s and t modulo Abs , is a term r that is
an Abs-generalization of s and t, and such that for all other Abs-generalization r′ of s and t,
r ≃Abs r

′.
Each Abs-generalization r of s and t is associated with two substitutions σ and ρ such that

rσ ≈Abs s and rρ ≈Abs t. The triple ⟨r, σ, ρ⟩ is the Abs-solution associated to the Abs-generalization
r.

Example 1.1. Consider the terms εf and f(f(b, c), a) over the Abs theory. Notice that
f(f(b, x), a) is an lgg of εf and f(f(b, c), a) modulo Abs. Indeed, σ = {x ↦ εf} and
ρ = {x ↦ c} satisfy f(f(b, x), a)σ = f(f(b, εf), a) ≈Abs εf and f(f(b, x), a)ρ = f(f(b, c), a),
then ⟨f(f(b, x), a), σ, ρ⟩ is an Abs-solution.

Definition 2 (Anti-unification equation (AUE) and valid set of AUEs). An anti-unification

equation (AUE) is a triple of the form s
x
≜ t, where x is the label of the AUE, and s and t are

terms. The set of labels of a set of AUEs, A, is denoted as labels(A). A valid set of AUEs is
a set of AUEs where all the labels are different.

Definition 3 (Minimal complete set of generalizations). A minimal complete set of general-
izations (mcsg) over the equational theory E, of the terms s and t, denoted as mcsgE(s, t), is
a set of terms such that:

1. Each r ∈ mcsgE(s, t) is an E-generalization of s and t,

2. for each E-generalization r of s and t, there exist r′ ∈mcsgE(s, t) such that r ⪯E r′ and,

3. if r, r′ ∈mcsgE(s, t) and r ⪯E r′ then r = r′.

Definition 4 (Anti-unification type). The anti-unification type of the equational theory E is
said to be unitary or finitary if mcsgE(s, t) is unitary or finite, for all terms s and t, respectively.
It is nullary if mcsgE(s, t) does not exist for some terms s and t. Otherwise, it is said to be
infinitary.

2 A sound algorithm for anti-unification modulo Abs

The algorithm is built from a set of inference rules that transform quadruples, called configura-
tions, of the form ⟨A;S;T ; θ⟩, where A is the valid set of unsolved AUEs; S is the store, the valid
set of solved AUEs; T is the abstraction, the valid set of AUEs, which store the comparisons
through anonymous variables in an expansion of some absorption constant. The anonymous
variables are assumed to mimic the structure of the other term in the AUE. Finally, θ is a sub-
stitution mapping the labels of the AUEs to their respective generalizations. We only consider
configurations with the following properties:

(i) The sets labels(A), labels(S), labels(T ) and Dom(θ) are pairwise disjoint.

(ii) Rvar(θ) = labels(A) ∪ labels(S) ∪ labels(T ).
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Table 1: generalization rules for Abs theory

(
Dec

Ô⇒)
⟨{f(s1, . . . , sn)

x
≜ f(t1, . . . , tn)} ⊍A;S;T ; θ⟩

⟨{s1
y1

≜ t1, . . . , sn
yn

≜ tn} ∪A;S;T ; θ{x↦ f(y1, . . . , yn)}⟩
where f is an n-ary function symbol with n ≥ 0, and y1, . . . , yn are fresh variables.

(
Sol

Ô⇒)
⟨{s

x
≜ t} ⊍A;S;T ; θ⟩

⟨A;{s
x
≜ t} ∪ S;T ; θ⟩

where head(s) ≠ head(t) and they are non-related absorption symbols.

(
ExpLA1

Ô⇒ )
⟨{εf

x
≜ f(t1, t2)} ⊍A;S;T ; θ⟩

⟨{εf
y1

≜ t1} ∪A;S;{
y2

≜ t2} ∪ T ; θ{x↦ f(y1, y2)}⟩
where f is an absorption function symbol, and y1, y2 are fresh variables.

(
ExpLA2

Ô⇒ )
⟨{εf

x
≜ f(t1, t2)} ⊍A;S;T ; θ⟩

⟨{εf
y2

≜ t2} ∪A;S;{
y1

≜ t1} ∪ T ; θ{x↦ f(y1, y2)}⟩
where f is an absorption function symbol, and y1, y2 are fresh variables.

(
ExpRA1

Ô⇒ )
⟨{f(s1, s2)

x
≜ εf} ⊍A;S;T ; θ⟩

⟨{s1
y1

≜ εf} ∪A;S;{s2
y2

≜ } ∪ T ; θ{x↦ f(y1, y2)}⟩
where f is an absorption function symbol, and y1, y2 are fresh variables.

(
ExpRA2

Ô⇒ )
⟨{f(s1, s2)

x
≜ εf} ⊍A;S;T ; θ⟩

⟨{s2
y2

≜ εf} ∪A;S;{s1
y1

≜ } ∪ T ; θ{x↦ f(y1, y2)}⟩
where f is an absorption function symbol, and y1, y2 are fresh variables.

(
Mer

Ô⇒)
⟨∅;{s

x
≜ t, s

y
≜ t} ∪ S;T ; θ⟩

⟨∅;{s
y
≜ t} ∪ S;T ; θ{x↦ y}⟩

The algorithm Ant Unif is an exhaustive application of the inference rules in Table 1 to
transform an initial configuration ⟨A;∅;∅; ι⟩ into a set of final configurations with an empty
set of unsolved AUEs of the form ⟨∅, S, T, θ⟩ and there are no different AUEs with the same
terms s, t and with a different label. The starting substitution ι is given by a set of bindings of
the form {xst ↦ x ∣ x ∈ labels(A)}, where each xst is a distinguished starting label. The final
substitution θ instantiates the initial labels into the common structure of pairs of terms in each

initial AUE s
x
≜ t, so that xθ is an Abs-generalization of s and t. The final store S determines

the manner in which Abs-solutions ⟨xθ, σ, ρ⟩ are built from the generalization, so that xθσ ≈Abs s
and xθρ ≈Abs s.

The rules in Table 1 read as: Decompose (
Dec

Ô⇒), Solve (
Sol

Ô⇒), Expansions for Left Absorp-

tion, (
ExpLA1

Ô⇒ ), (
ExpLA2

Ô⇒ ) and for Right Absorption (
ExpRA1

Ô⇒ ), (
ExpRA2

Ô⇒ ), and Merge (
Mer

Ô⇒).

Lemma 2.1 (Preservation of configurations under Ant Unif). If Ant Unif is applied to any
configuration ⟨A;S ∶ T ; θ⟩ the result is a configuration too.

Proof. Initial configurations hold the conditions of a configuration. And, by case analysis, it is
proved that the conditions are preserved after each rule application.

Theorem 2.1 (Termination). The procedure Ant Unif is terminating. Particularly, for any
configuration ⟨A;S;T ; θ⟩, it outputs a finite set of configurations of the form ⟨∅;S′;T ′; θ′⟩.
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Proof. Observe that the sum of the length of the terms in the AUEs in A of the configurations
strictly decreases after each application of any of the rules except for the rule (Mer). However,
the rule (Mer) is only applied when the set of AUEs in the configuration is empty, decreasing
the number of AUEs in the store. Therefore the procedure terminates.

Furthermore, since for any configuration, Ant Unif generates at most two recursive calls
by König Lemma, the output is a finite set of configurations. Notice that only the branching
instructions in lines 7 and 13 of the procedureAnt Unif generate two branches in the execution
flow, obtained after applications of rules (ExpLA1), (ExpLA2), (ExpRA1), and (ExpRA2).

From termination, for each ⟨A;S;T ; θ⟩, Ant Unif returns a finite number of final configu-
rations, we denoted this set by Ant Unif(⟨A;S;T ; θ⟩), the set of computed configurations.

Definition 5 (Left and right substitutions related to a set of AUEs). Let W be a finite valid
set of AUEs. The left and right substitutions related to W are defined as follows:

σW = {y ↦ s ∣ s
y
≜ t ∈W}, and ρW = {y ↦ t ∣ s

y
≜ t ∈W}.

Definition 6 (Computed solutions). Let D be a derivation from a configuration to a final
configuration: ⟨A;S;T ; θ⟩Ô⇒∗ ⟨∅;S′;T ′; θ′⟩ . The computed generalization is defined as

⟨{xθ′}x∈L, σD, ρD⟩

Above, L = labels(A) ∪ labels(S) ∪ labels(T ) and σD = σS′∪T ′ and ρD = ρS′∪T ′ .

Theorem 2.2 (Soundness). If ⟨A0;S0;T0; θ0⟩ Ô⇒
∗ ⟨∅;Sn;Tn; θ

n
0 ⟩ is a derivation from the

configuration ⟨A0;S0;T0; θ0⟩ to a final configuration, then for each s
x
≜ t ∈ A0 ∪S0 ∪ T0, xθ

n
0 is a

generalization of s and t, and xθn0 σD ≈Abs s and xθn0 ρD ≈Abs t, where ⟨{xθ
n
0 }x∈L, σD, ρD⟩ is the

computed solution.

Proof. The induction is over the length derivation that the configuration reaches the final
configuration.

Base Case. We consider a final configuration. Hence, for all s
x
≜ t ∈ S0 ∪T0, xθ0 = x, by the

first condition of configuration. Also, xθ0σD = s and xθ0ρD = t hold.
Induction Step. Consider a derivation of the form:

⟨A0;S0;T0; θ0⟩Ô⇒ ⟨A1;S1;T1; θ
1
0⟩Ô⇒

n
⟨∅;Sn+1;Tn+1; θ

n+1
0 ⟩

Above ⟨∅;Sn+1;Tn+1; θ
n+1
0 ⟩ is a final configuration. We assume the hypothesis for the deriva-

tion ⟨A1;S1;T1; θ
1
0⟩Ô⇒

n ⟨∅;Sn+1;Tn+1; θ
n+1
0 ⟩.

Notice that, by the first condition of configuration, and for any s
x
≜ t ∈ A1 ∪S1 ∪ T1, it holds

xθn+10 = xθn+12 . Similarly, for any s
x
≜ t ∈ A0 ∪ S0 ∪ T0, it holds xθn+10 = xθn+11 . The first step

depends on the rule application.

1. (Dec). Assume that the derivation is of the form:

⟨{f(s1, . . . , sm)
y
≜ f(t1, . . . , tm)} ⊍A

′;S0;T0; θ0⟩
Dec

Ô⇒

⟨{s1
x1

≜ t1, . . . , sm
xm

≜ tm} ⊍A
′;S1;T1; θ0{y ↦ f(x1, . . . , xm)}⟩Ô⇒

n
⟨∅;Sn+1;Tn+1; θ

n+1
0 ⟩

By induction hypothesis, all the AUEs in A1 are generalized by the substitution θn+10 .
This implies that xiθ

n+1
0 is a generalization of si and ti, for 1 ≤ i ≤m; i.e., xiθ

n+1
2 σD ≈Abs si

and xiθ
n+1
2 ρD ≈Abs ti for 1 ≤ i ≤ m. Hence, yθn+10 ρD = f(x1θ

n+1
2 ρD, . . . , xmθn+12 ρD) ≈Abs

f(s1, . . . , sm) and yθn+10 σD = f(x1θ
n+1
2 σD, . . . , xmθn+12 σD) ≈Abs f(t1, . . . , tm).
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2. (Sol). Assume that the derivation is of the form:

⟨{s
y
≜ t} ⊍A′;S0;T0; θ0⟩

Sol

Ô⇒ ⟨{A′;{s
y
≜ t} ∪ S0;T0; θ0}⟩Ô⇒

∗
⟨∅;Sn+1;Tn+1; θ

n+1
0 ⟩

By induction hypotheses, θn+10 generalize all the AUEs with labels in S1 then yθn+10 is a
generalization of s and t.

3. (ExpLA1). Assume that the derivation is of the form:

⟨{εf
y
≜ f(s, t)} ⊍A′;S0;T0; θ0⟩

ExpLA1

Ô⇒

⟨{εf
x1

≜ s} ∪A′;S1;{
x2

≜ t} ∪ T0; θ0{y ↦ f(x1, x2)}⟩Ô⇒
n
⟨∅;Sn+1;Tn+1; θ

n+1
0 ⟩

By induction hypothesis all the AUEs in S1 and T1 are generalized by the substitution
θn+10 . This implies that x1θ

n+1
2 is a generalization of εf and s, x2θ

n+1
2 is a generaliza-

tion of and t with the substitutions σD and ρD, respectively. Additionally, yθn+10 σD =
f(x1θ

n+1
2 σD, x2θ

n+1
2 σD) ≈Abs f(εf , ) ≈Abs εf and yθn+10 ρD = f(x1θ

n+1
2 ρD, x2θ

n+1
2 ρD) ≈Abs

f(s, t). Hence, yθn+10 is a generalization of the terms εf and f(s, t).

4. The analysis of (ExpLA2), (ExpRA1) and (ExpRA2) rules is analogous to the anal-
ysis of the rule (ExpLA1).

5. (Mer) Assume that the derivation is of the form:

⟨∅;{s
y
≜ t, s

z
≜ t}∪S′;T0; θ0⟩

Mer

Ô⇒ ⟨{∅;{s
z
≜ t}∪S′;T0; θ0{y ↦ z}}⟩Ô⇒∗ ⟨∅;Sn+1;Tn+1; θ

n+1
0 ⟩

Notice that θ10 = θ0{y ↦ z}, where z is the label of the AUE {s
z
≜ t} ∈ S0. By induction

hypothesis zθn+12 is a generalization of s and t. Then, yθn+10 = y{y ↦ z}θn+12 = zθn+12 is a
generalization of s and t with substitutions σD and ρD, respectively.

Definition 7 (Abstraction). Let t be a term in Abs-normal form and σ be a substitution with
images in Abs-normal form. The abstraction of t with respect to σ is the set:

Abstract(t, σ) ∶= {r ∣ rσ ≈Abs t, r is an Abs-normal form, and V ar(r) ⊆ { } ∪Dom(σ)}

Example 2.1. Let t = h(εf) and σ = {y ↦ a, v ↦ εf}. Then:

Abstract(t, σ) = {h(εf), h(v), h(f(v, )), h(f( , v)), h(f(v, v)), h(f(f(v, ), )), . . .}

Definition 8 (Abstraction substitution). Given a configuration ⟨A;S;T ; θ⟩ with T ≠ ∅, an
abstraction substitution of this configuration is any substitution τ such that (i) Dom(τ) =
labels(T), and (ii) for each y ∈ Dom(τ), yτ ∈ Abstracty(T,S),

Above the set Abstracty(T,S) is defined as Abstracty(T,S) = Abstract(t, ρS) if {
y
≜ t} ⊆

T ; or as Abstracty(T,S) = Abstract(s, σS) if {s
y
≜ } ⊆ T . The set of all possible abstraction

substitutions of this configuration is denoted as Ψ(T,S).
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If the anonymous variables occur within a term t ∈ Abstracty(T,S), we interpret each
occurrence as an arbitrary (possibly different) ground term. For instance, in the term h(f(v, ))
of the Example 2.1, we can substitute any ground term s in place of the anonymous variable,
resulting in h(f(v, s))σ ≈Abs t.

After applying the algorithm Ant Unif, it is possible to obtain less general generalizations
by considering each possible substitution of τ . This can potentially lead to an infinite set of
generalizations, depending on the cardinality of the abstraction sets.

Example 2.2. We illustrate how the algorithm Ant Unif and the application of the possible
τ solves the anti-unification problem εf ≜ f(a, f(h(a), b)). The initial configuration is given by

⟨εf
x
≜ f(a, f(h(a), b));∅;∅; ι⟩.

Branch 1. ⟨{εf
x
≜ f(a, f(h(a), b))};∅;∅; ι⟩

ExpLA1

Ô⇒

⟨{εf
y
≜ a};∅;{

z
≜ f(h(a), b)}; ι{x↦ f(y, z)}⟩

Sol

Ô⇒

⟨∅;{εf
y
≜ a};{

z
≜ f(h(a), b)}; ι{x↦ f(y, z)}⟩

Since Abstractz(f(h(a), b),{y ↦ a}) = {f(h(a), b), f(h(y), b)}, then the set of substitutions
generated by the abstraction is Ψ(T,S) = {{z ↦ f(h(a), b)},{z ↦ f(h(y), b)}}. Hence, the lggs
of this branch are given by f(y, f(h(a), b)) and f(y, f(h(y), b) with the substitutions given by
the store: σ1 = {y ↦ εf}, ρ1 = {y ↦ a}.

Branch 2. ⟨{εf
x
≜ f(a, f(h(a), b))};∅;∅; ι⟩

ExpLA2

Ô⇒

⟨{εf
v
≜ f(h(a), b)};∅;{

u
≜ a}; ι{x↦ f(u, v)}⟩

ExpLA1

Ô⇒

⟨{εf
y
≜ h(a)};∅;{

u
≜ a,

z
≜ b}; ι{x↦ f(u, f(y, z)), v ↦ f(y, z)}⟩

Sol

Ô⇒

⟨∅;{εf
y
≜ h(a)};{

u
≜ a,

z
≜ b}; ι{x↦ f(u, f(y, z)), v ↦ f(y, z)}⟩

Since Abstractu(T,S) = Abstract(a,{y ↦ h(a)}) = {h(a)} for the label u and the set
Abstractz(T,S) = Abstract(b,{y ↦ h(a)}) = {b} for the label z, from the final abstraction T
and store S. Hence, the unique lgg of this branch is f(a, f(y, b)), with the substitutions given
by the store: σ2 = {y ↦ εf}, ρ2 = {y ↦ h(a)}.

Branch 3. ⟨{εf
x
≜ f(a, f(h(a), b))};∅;∅; ι⟩

ExpLA2

Ô⇒

⟨{εf
v
≜ f(h(a), b)};∅;{

u
≜ a}; ι{x↦ f(u, v)}⟩

ExpLA2

Ô⇒

⟨{εf
z
≜ b};∅;{

u
≜ a,

y
≜ h(a)}; ι{x↦ f(u, f(y, z)), v ↦ f(y, z)}⟩

Sol

Ô⇒

⟨∅;{εf
z
≜ b};{

u
≜ a,

y
≜ h(a)}; ι{x↦ f(u, f(y, z)), v ↦ f(y, z)}⟩

From the final abstraction T and store S. Abstractu(T,S) = Abstract(a,{z ↦ b}) = {a}
and Abstracty(T,S) = Abstract(h(a),{z ↦ b}) = {h(a)}, , the unique lgg of this branch is:
f(a, f(h(a), z)) with the substitutions given by the store: σ3 = {z ↦ εf}, ρ3 = {z ↦ b}.

Hence, all the Abs-solutions computed:

⟨f(y, f(h(a), b)), σ1, ρ1⟩, ⟨f(y, f(h(y), b), σ1, ρ1⟩, ⟨f(a, f(y, b)), σ2, ρ2⟩, ⟨f(a, f(h(a), z)), σ3, ρ3⟩.
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3 Conclusion and work in progress

Configuration preservation and termination provide the requirements to prove the soundness of
the Ant Unif algorithm. However, to conclude that the problem type is infinitary, proving it is
non-nullary is required. Furthermore, analyzing the completeness of Ant Unif will require ad-
ditional considerations and specialized notions. In particular, the notion of E-solutions (triples
of the form ⟨r, σ, ρ⟩ as given in Definition 1) is enough for analyzing soundness. In contrast, for
completeness, given a configuration ⟨A;S;T ; θ⟩ and a solution of all equational generalization

questions in the set of unsolved AUEs A = {si
xi

≜ ti}i∈I , a generalization should be given as a
“synchronized” set of generalizations and substitutions σ and ρ of the form ⟨⟨rxi⟩i∈I , σ, ρ⟩. The
same should be done for the computed solutions and, of course, such a solution should consider
the store, the abstraction and the substitution parts of the configuration.

Future work will focus on proving that for any generalization r of the AUE s
x
≜ t, it would

be possible to find a generalization xθ computed by Ant Unif and a τ generated by the
final configuration of the computation such that xθτ is less general than r. At this point,
establishing whether Ant Unif is complete depends on additional formal analysis. Still, we
expect the algorithm to be complete as it is clear that any solution must be a substitution
instance of a syntactic generalization.
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