Andrés Felipe González Barragán

David M Cerna
email: dcerna@cs.cas.cz

Mauricio Ayala-Rincón

Temur Kutsia
email: kutsia@risc.jku.at

On Anti-unification in Absorption Theories

The anti-unification problem for theories with absorption constants and operators such as zero for product or true and false for disjunction and conjuction is addressed. A proved sound algorithm that computes generalizations is introduced. Although the problem is at least of type infinitary, the algorithm computes a finite set of final configurations from which the least general generalizations are built.

Introduction

Several identification problems, searching for similarities and analogies, are related to equational questions. In particular, problems such as matching and unification look for identifications through computational procedures over algebraic expressions. In contrast, generalization procedures look for similarities or regularities in the structure of expressions. Generalization, known as anti-unification, is a dual problem to unification. Over half a century ago, anti-unification was formulated by Plotkin [START_REF] Plotkin | A note on inductive generalization[END_REF] and Reynolds [START_REF] Jhon | Transformational system and the algebric structure of atomic formulas[END_REF] as a question on generalizing first-order algebraic terms. Nevertheless, it has been studied on numerous equational theories, for example, theories with associative, commutative [START_REF] Alpuente | A modular order-sorted equational generalization algorithm[END_REF], idempotent [START_REF] Cerna | Idempotent anti-unification[END_REF] operators, and unital theories [START_REF] Cerna | Unital Anti-Unification: Type and Algorithms[END_REF][START_REF] Alpuente | Order-sorted equational generalization algorithm revisited[END_REF], and combinations of these properties on the semiring theory [START_REF] David | Anti-unification and the theory of semirings[END_REF]. This document discusses antiunification for one of the theories that many common operators have, known as absorption theories (Abs). These theories contain binary operator(s) f with related absorption constant ε f . The operators satisfy the axioms f (x, ε f) ≈ ε f and/or f (ε f , x) ≈ ε f . It is possible to find the absorption theories in Semirings, Rings for one operation, and in Boolean algebras for both operations.

Preliminaries

We consider an alphabet consisting of a set F of function symbols with their arities, and a countable set of variables V with the symbol ' ' (anonymous variable). Terms over this alphabet, T (F, V), have the grammar t ∶∶= x | f (t 1 , . . . , t n), where x ∈ V and f ∈ F with arity n ≥ 0. When n = 0, f is called a constant. Abs denotes an equational theory with one or more absorption symbol(s). Equality of terms modulo Abs is denoted as s ≈ Abs t. For a substitution θ, Dom(θ) and Rvar(θ) denote the sets of variables in the domain of θ and the variables occurring in the range of θ. Var(e) will denote the set of variables occurring in an expression. The composition of substitutions σ and ρ is written as ρσ and θ n 0 abbreviates n compositions: θ 0 θ 1 . . . θ n .

Definition 1 (Abs-generalization, ⪯ Abs , lgg, solution). The precedence generalization relation of Abs, holds for terms r and s, r ⪯ Abs s, if a substitution σ exists such that rσ ≈ Abs s, read as "r is more general than s." Also, ≺ Abs and ≃ Abs denote the strict precedence and equivalence relations induced by ⪯ Abs , respectively. If r ⪯ Abs s and r ⪯ Abs t, r is said to be an Abs-generalization of s and t.

A least general generalization (lgg) of the terms s and t modulo Abs , is a term r that is an Abs-generalization of s and t, and such that for all other Abs-generalization r ′ of s and t, r ≃ Abs r ′ .

Each Abs-generalization r of s and t is associated with two substitutions σ and ρ such that rσ ≈ Abs s and rρ ≈ Abs t. The triple ⟨r, σ, ρ⟩ is the Abs-solution associated to the Abs-generalization r.

Example 1.1. Consider the terms ε f and f (f (b, c), a) over the Abs theory. Notice that f (f (b, x), a) is an lgg of ε f and f (f (b, c), a) modulo Abs.

Indeed, σ = {x ↦ ε f } and ρ = {x ↦ c} satisfy f (f (b, x), a)σ = f (f (b, ε f), a) ≈ Abs ε f and f (f (b, x), a)ρ = f (f (b, c), a), then ⟨f (f (b, x), a), σ, ρ⟩ is an Abs-solution.
Definition 2 (Anti-unification equation (AUE) and valid set of AUEs). An anti-unification equation (AUE) is a triple of the form s x ≜ t, where x is the label of the AUE, and s and t are terms. The set of labels of a set of AUEs, A, is denoted as labels(A). A valid set of AUEs is a set of AUEs where all the labels are different. Definition 3 (Minimal complete set of generalizations). A minimal complete set of generalizations (mcsg) over the equational theory E, of the terms s and t, denoted as mcsg E (s, t), is a set of terms such that:

1. Each r ∈ mcsg E (s, t) is an E-generalization of s and t, 2. for each E-generalization r of s and t, there exist r ′ ∈ mcsg E (s, t) such that r ⪯ E r ′ and, 3. if r, r ′ ∈ mcsg E (s, t) and r ⪯ E r ′ then r = r ′ . Definition 4 (Anti-unification type). The anti-unification type of the equational theory E is said to be unitary or finitary if mcsg E (s, t) is unitary or finite, for all terms s and t, respectively. It is nullary if mcsg E (s, t) does not exist for some terms s and t. Otherwise, it is said to be infinitary.

A sound algorithm for anti-unification modulo Abs

The algorithm is built from a set of inference rules that transform quadruples, called configurations, of the form ⟨A; S; T ; θ⟩, where A is the valid set of unsolved AUEs; S is the store, the valid set of solved AUEs; T is the abstraction, the valid set of AUEs, which store the comparisons through anonymous variables in an expansion of some absorption constant. The anonymous variables are assumed to mimic the structure of the other term in the AUE. Finally, θ is a substitution mapping the labels of the AUEs to their respective generalizations. We only consider configurations with the following properties:

(i) The sets labels(A), labels(S), labels(T) and Dom(θ) are pairwise disjoint.

(ii) Rvar(θ) = labels(A) ∪ labels(S) ∪ labels(T).

(Dec ⇒) ⟨{f (s 1 , . . . , s n) x ≜ f (t 1 , . . . , t n)} ⊍ A; S; T ; θ⟩ ⟨{s 1 y1 ≜ t 1 , . . . , s n yn ≜ t n } ∪ A; S; T ; θ{x ↦ f (y 1 , . . . , y n)}⟩
where f is an n-ary function symbol with n ≥ 0, and y 1 , . . . , y n are fresh variables.

(ExpLA1 ⇒) ⟨{ε f x ≜ f (t 1 , t 2)} ⊍ A; S; T ; θ⟩ ⟨{ε f y1 ≜ t 1 } ∪ A; S; { y2 ≜ t 2 } ∪ T ; θ{x ↦ f (y 1 , y 2
)}⟩ where f is an absorption function symbol, and y 1 , y 2 are fresh variables.

(ExpLA2 ⇒) ⟨{ε f x ≜ f (t 1 , t 2)} ⊍ A; S; T ; θ⟩ ⟨{ε f y2 ≜ t 2 } ∪ A; S; { y1 ≜ t 1 } ∪ T ; θ{x ↦ f (y 1 , y 2
)}⟩ where f is an absorption function symbol, and y 1 , y 2 are fresh variables.

(ExpRA1 ⇒) ⟨{f (s 1 , s 2) x ≜ ε f } ⊍ A; S; T ; θ⟩ ⟨{s 1 y1 ≜ ε f } ∪ A; S; {s 2 y2 ≜ } ∪ T ; θ{x ↦ f (y 1 , y 2
)}⟩ where f is an absorption function symbol, and y 1 , y 2 are fresh variables.

(ExpRA2 ⇒) ⟨{f (s 1 , s 2) x ≜ ε f } ⊍ A; S; T ; θ⟩ ⟨{s 2 y2 ≜ ε f } ∪ A; S; {s 1 y1 ≜ } ∪ T ; θ{x ↦ f (y 1 , y 2
)}⟩ where f is an absorption function symbol, and y 1 , y 2 are fresh variables. The algorithm Ant Unif is an exhaustive application of the inference rules in Table 1 to transform an initial configuration ⟨A; ∅; ∅; ι⟩ into a set of final configurations with an empty set of unsolved AUEs of the form ⟨∅, S, T, θ⟩ and there are no different AUEs with the same terms s, t and with a different label. The starting substitution ι is given by a set of bindings of the form {x st ↦ x | x ∈ labels(A)}, where each x st is a distinguished starting label. The final substitution θ instantiates the initial labels into the common structure of pairs of terms in each initial AUE s x ≜ t, so that xθ is an Abs-generalization of s and t. The final store S determines the manner in which Abs-solutions ⟨xθ, σ, ρ⟩ are built from the generalization, so that xθσ ≈ Abs s and xθρ ≈ Abs s.

The rules in Table 1 Proof. Initial configurations hold the conditions of a configuration. And, by case analysis, it is proved that the conditions are preserved after each rule application.

Theorem 2.1 (Termination). The procedure Ant Unif is terminating. Particularly, for any configuration ⟨A; S; T ; θ⟩, it outputs a finite set of configurations of the form ⟨∅; S ′ ; T ′ ; θ ′ ⟩.

Proof. Observe that the sum of the length of the terms in the AUEs in A of the configurations strictly decreases after each application of any of the rules except for the rule (Mer). However, the rule (Mer) is only applied when the set of AUEs in the configuration is empty, decreasing the number of AUEs in the store. Therefore the procedure terminates.

Furthermore, since for any configuration, Ant Unif generates at most two recursive calls by König Lemma, the output is a finite set of configurations. Notice that only the branching instructions in lines 7 and 13 of the procedure Ant Unif generate two branches in the execution flow, obtained after applications of rules (ExpLA1), (ExpLA2), (ExpRA1), and (ExpRA2).

From termination, for each ⟨A; S; T ; θ⟩, Ant Unif returns a finite number of final configurations, we denoted this set by Ant Unif(⟨A; S; T ; θ⟩), the set of computed configurations.

Definition 5 (Left and right substitutions related to a set of AUEs). Let W be a finite valid set of AUEs. The left and right substitutions related to W are defined as follows:

σ W = {y ↦ s | s y ≜ t ∈ W }, and ρ W = {y ↦ t | s y ≜ t ∈ W }.
Definition 6 (Computed solutions). Let D be a derivation from a configuration to a final configuration: ⟨A; S; T ; θ⟩ ⇒ * ⟨∅; S ′ ; T ′ ; θ ′ ⟩ . The computed generalization is defined as

⟨{xθ ′ } x∈L , σ D , ρ D ⟩ Above, L = labels(A) ∪ labels(S) ∪ labels(T) and σ D = σ S ′ ∪T ′ and ρ D = ρ S ′ ∪T ′ .
Theorem 2.2 (Soundness). If ⟨A 0 ; S 0 ; T 0 ; θ 0 ⟩ ⇒ * ⟨∅; S n ; T n ; θ n 0 ⟩ is a derivation from the configuration ⟨A 0 ; S 0 ; T 0 ; θ 0 ⟩ to a final configuration, then for each s

x ≜ t ∈ A 0 ∪ S 0 ∪ T 0 , xθ n
0 is a generalization of s and t, and

xθ n 0 σ D ≈ Abs s and xθ n 0 ρ D ≈ Abs t, where ⟨{xθ n 0 } x∈L , σ D , ρ D ⟩ is the computed solution.
Proof. The induction is over the length derivation that the configuration reaches the final configuration.

Base Case. We consider a final configuration. Hence, for all s x ≜ t ∈ S 0 ∪ T 0 , xθ 0 = x, by the first condition of configuration. Also, xθ 0 σ D = s and xθ 0 ρ D = t hold.

Induction Step. Consider a derivation of the form:

⟨A 0 ; S 0 ; T 0 ; θ 0 ⟩ ⇒ ⟨A 1 ; S 1 ; T 1 ; θ 1 0 ⟩ ⇒ n ⟨∅; S n+1 ; T n+1 ; θ n+1 0 ⟩ Above ⟨∅; S n+1 ; T n+1 ; θ n+1
0 ⟩ is a final configuration. We assume the hypothesis for the derivation ⟨A 1 ; S 1 ; T 1 ; θ 1 0 ⟩ ⇒ n ⟨∅; S n+1 ; T n+1 ; θ n+1 0 ⟩. Notice that, by the first condition of configuration, and for any s

x ≜ t ∈ A 1 ∪ S 1 ∪ T 1 , it holds xθ n+1 0 = xθ n+1 2 .
Similarly, for any s

x ≜ t ∈ A 0 ∪ S 0 ∪ T 0 , it holds xθ n+1 0 = xθ n+1 1 .
The first step depends on the rule application.

(Dec).

Assume that the derivation is of the form:

⟨{f (s 1 , . . . , s m) y ≜ f (t 1 , . . . , t m)} ⊍ A ′ ; S 0 ; T 0 ; θ 0 ⟩ Dec ⇒ ⟨{s 1 x1 ≜ t 1 , . . . , s m xm ≜ t m } ⊍ A ′ ; S 1 ; T 1 ; θ 0 {y ↦ f (x 1 , . . . , x m)}⟩ ⇒ n
⟨∅; S n+1 ; T n+1 ; θ n+1 0 ⟩ By induction hypothesis, all the AUEs in A 1 are generalized by the substitution θ n+1 0 . This implies that x i θ n+1 0 is a generalization of s i and t i , for 1 ≤ i ≤ m; i.e., x i θ n+1 2 σ D ≈ Abs s i and

x i θ n+1 2 ρ D ≈ Abs t i for 1 ≤ i ≤ m. Hence, yθ n+1 0 ρ D = f (x 1 θ n+1 2 ρ D , . . . , x m θ n+1 2 ρ D) ≈ Abs f (s 1 , . . . , s m) and yθ n+1 0 σ D = f (x 1 θ n+1 2 σ D , . . . , x m θ n+1 2 σ D) ≈ Abs f (t 1 , . . . , t m).

(Sol).

Assume that the derivation is of the form:

⟨{s y ≜ t} ⊍ A ′ ; S 0 ; T 0 ; θ 0 ⟩ Sol ⇒ ⟨{A ′ ; {s y ≜ t} ∪ S 0 ; T 0 ; θ 0 }⟩ ⇒ * ⟨∅; S n+1 ; T n+1 ; θ n+1 0 ⟩
By induction hypotheses, θ n+1 0 generalize all the AUEs with labels in S 1 then yθ n+1 0 is a generalization of s and t.

(ExpLA1).

Assume that the derivation is of the form:

⟨{ε f y ≜ f (s, t)} ⊍ A ′ ; S 0 ; T 0 ; θ 0 ⟩ ExpLA1 ⇒ ⟨{ε f x1 ≜ s} ∪ A ′ ; S 1 ; { x2 ≜ t} ∪ T 0 ; θ 0 {y ↦ f (x 1 , x 2)}⟩ ⇒ n ⟨∅; S n+1 ; T n+1 ; θ n+1 0 ⟩
By induction hypothesis all the AUEs in S 1 and T 1 are generalized by the substitution θ n+1 0 . This implies that x 1 θ n+1 2 is a generalization of ε f and s, x 2 θ n+1 2 is a generalization of and t with the substitutions σ D and ρ D , respectively. Additionally, yθ n+1

0 σ D = f (x 1 θ n+1 2 σ D , x 2 θ n+1 2 σ D) ≈ Abs f (ε f ,) ≈ Abs ε f and yθ n+1 0 ρ D = f (x 1 θ n+1 2 ρ D , x 2 θ n+1 2 ρ D) ≈ Abs f (s, t). Hence, yθ n+1
0 is a generalization of the terms ε f and f (s, t).

4. The analysis of (ExpLA2), (ExpRA1) and (ExpRA2) rules is analogous to the analysis of the rule (ExpLA1).

(Mer)

Assume that the derivation is of the form: Definition 7 (Abstraction). Let t be a term in Abs-normal form and σ be a substitution with images in Abs-normal form. The abstraction of t with respect to σ is the set: If the anonymous variables occur within a term t ∈ Abstract y (T, S), we interpret each occurrence as an arbitrary (possibly different) ground term. For instance, in the term h(f (v,)) of the Example 2.1, we can substitute any ground term s in place of the anonymous variable, resulting in h(f (v, s))σ ≈ Abs t.

Abstract(t, σ) ∶= {r | rσ ≈ Abs t, r is an Abs-normal form, and V ar(r) ⊆ { } ∪ Dom(σ)} Example 2.1. Let t = h(ε f) and σ = {y ↦ a, v ↦ ε f }. Then: Abstract(t, σ) = {h(ε f), h(v), h(f (v,)), h(f (, v)), h(f (v, v)), h(f (f (v,),
After applying the algorithm Ant Unif, it is possible to obtain less general generalizations by considering each possible substitution of τ . This can potentially lead to an infinite set of generalizations, depending on the cardinality of the abstraction sets.

Example 2.2. We illustrate how the algorithm Ant Unif and the application of the possible τ solves the anti-unification problem ε f ≜ f (a, f (h(a), b)). The initial configuration is given by

⟨ε f x ≜ f (a, f (h(a), b)); ∅; ∅; ι⟩. Branch 1. ⟨{ε f x ≜ f (a, f (h(a), b))}; ∅; ∅; ι⟩ ExpLA1 ⇒ ⟨{ε f y ≜ a}; ∅; { z ≜ f (h(a), b)}; ι{x ↦ f (y, z)}⟩ Sol 3

Conclusion and work in progress

Configuration preservation and termination provide the requirements to prove the soundness of the Ant Unif algorithm. However, to conclude that the problem type is infinitary, proving it is non-nullary is required. Furthermore, analyzing the completeness of Ant Unif will require additional considerations and specialized notions. In particular, the notion of E-solutions (triples of the form ⟨r, σ, ρ⟩ as given in Definition 1) is enough for analyzing soundness. In contrast, for completeness, given a configuration ⟨A; S; T ; θ⟩ and a solution of all equational generalization questions in the set of unsolved AUEs A = {s i xi ≜ t i } i∈I , a generalization should be given as a "synchronized" set of generalizations and substitutions σ and ρ of the form ⟨⟨r xi ⟩ i∈I , σ, ρ⟩. The same should be done for the computed solutions and, of course, such a solution should consider the store, the abstraction and the substitution parts of the configuration. Future work will focus on proving that for any generalization r of the AUE s x ≜ t, it would be possible to find a generalization xθ computed by Ant Unif and a τ generated by the final configuration of the computation such that xθτ is less general than r. At this point, establishing whether Ant Unif is complete depends on additional formal analysis. Still, we expect the algorithm to be complete as it is clear that any solution must be a substitution instance of a syntactic generalization.

≜

 t} ⊍ A; S; T ; θ⟩ ⟨A; {s x ≜ t} ∪ S; T ; θ⟩ where head(s) ≠ head(t) and they are non-related absorption symbols.

≜

 t} ∪ S; T ; θ⟩ ⟨∅; {s y ≜ t} ∪ S; T ; θ{x ↦ y}⟩

Lemma 2 . 1 (

 21 Preservation of configurations under Ant Unif). If Ant Unif is applied to any configuration ⟨A; S ∶ T ; θ⟩ the result is a configuration too.

≜= y{y ↦ z}θ n+1 2 = zθ n+1 2

 22 t}∪S ′ ; T 0 ; θ 0 ⟩ Mer ⇒ ⟨{∅; {s z ≜ t}∪S ′ ; T 0 ; θ 0 {y ↦ z}}⟩ ⇒ * ⟨∅; S n+1 ; T n+1 ; θ n+1 0 ⟩ Notice that θ 1 0 = θ 0 {y ↦ z}, where z is the label of the AUE {s z ≜ t} ∈ S 0 . By induction hypothesis zθ n+1 2 is a generalization of s and t. Then, yθ n+1 0 is a generalization of s and t with substitutions σ D and ρ D , respectively.

)), . . . } Definition 8 (Abstraction substitution). Given a configuration ⟨A; S; T ; θ⟩ with T ≠ ∅, an abstraction substitution of this configuration is any substitution τ such that (i) Dom(τ) = labels(T), and (ii) for each y ∈ Dom(τ), yτ ∈ Abstract y (T, S), Above the set Abstract y (T, S) is defined as Abstract y (T, S) = Abstract(t, ρ S) if { y ≜ t} ⊆ T ; or as Abstract y (T, S) = Abstract(s, σ S) if {s y ≜ } ⊆ T . The set of all possible abstraction substitutions of this configuration is denoted as Ψ(T, S).

Table 1 :

 1 generalization rules for Abs theory

Acknowledgments. The preparation of this paper has been supported by the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES), under the PrInt program. It is partially supported by the Austrian Science Fund (FWF), under project P 35530, the Georgian Rustaveli National Science Foundation Project FR-21-16725, and by the Czech Science Foundation Grant No. 22-06414L, and the Cost Action CA20111 EuroProofNet.

Since Abstract u (T, S) = Abstract(a, {y ↦ h(a)}) = {h(a)} for the label u and the set Abstract z (T, S) = Abstract(b, {y ↦ h(a)}) = {b} for the label z, from the final abstraction T and store S. Hence, the unique lgg of this branch is f (a, f (y, b)), with the substitutions given by the store:

From the final abstraction T and store S. Abstract u (T, S) = Abstract(a, {z ↦ b}) = {a} and Abstract y (T, S) = Abstract(h(a), {z ↦ b}) = {h(a)}, , the unique lgg of this branch is: f (a, f (h(a), z)) with the substitutions given by the store:

Hence, all the Abs-solutions computed:

⟨f (y, f (h(a), b)), σ 1 , ρ 1 ⟩, ⟨f (y, f (h(y), b), σ 1 , ρ 1 ⟩, ⟨f (a, f (y, b)), σ 2 , ρ 2 ⟩, ⟨f (a, f (h(a), z)), σ 3 , ρ 3 ⟩.