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In this paper, we study the arrangement of lines in the euclidean plane constructed from the geometric clique graph generated by the regular n-gon. The vertices of this clique arrangement are located on nite concentric circles that we call orbits. We focus especially on the numbers of orbits and the number of vertices inside and outside the regular n-gon. Combinatorics in nite sets of quadruplets of integers provide information on the way the orbits are distributed. Next, using cyclotomic elds, we give galoisian properties of the radii of the orbits and their cardinalities.

Introduction, notation and historical notice

Let n be an integer and let C n be the regular n-gon with vertices z m = exp 2Imπ n , where 0 ≤ m < n and I = √ -1. If i, j, k, ℓ are four conveniently chosen indices then the two straight-lines D i,j and D k,ℓ dened respectively by the two couples (z i , z j ) and (z k , z ℓ ) are secant and we denote z i,j,k,ℓ as their intersection point. Let K n the geometric graph which consists of the union of C n together with the sets of straight lines D i,j and intersection points z i,j,k,ℓ . We partition K n in three sets as follows K n = C n ∪ K e,n ∪ K i,n , by dening respectively z ∈ K e,n and K i,n if and only if |z| > 1 and |z| < 1. The arrangement of lines in the plane which consists of the various straight lines D i,j , passing through the points z i and z j for all indices i ̸ = j may be referred as the clique arrangement constructed from C n .

The aim of this paper is to state that all the intersection points z i,j,k,ℓ are located on circular orbits centered at the origin, but also to characterize the radii of these orbits and to describe accurately their distribution. We will denote by M e,n and M i,n the respective numbers of exterior and interior orbits of the arrangement K n . We set M n = 1+M e,n +M i,n which stands for the total number of orbits. Likewise, we will denote by N e,n and N i,n the respective cardinalities of the two sets K e,n and K i,n . Let N n = n + N e,n + N i,n the whole number of intersection points. The sequence (N n ) n≥3 is referred as A146212 in Sloane's OEIS and starts as follows For odd n, it has been noted that N n = 1 8 n(n 3 -7n 2 + 15n -1) (see [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]). We shall prove in Section 3 that these values N n , which are not provided from a closed formula, may be however upper-bounded using inequalities on number lines by the sequence which starts as follows Many researchers have been interested in describing and enumerating intersection points and polygons generated from an arrangement of lines and in particular from the diagonals of a regular n-gon. We may cite of course the results obtained by G. Bol ( [START_REF] Bol | Beantwoording van prijsvraag no. 17[END_REF]), H. Steinhaus ([11,[START_REF] Steinhaus | [END_REF]), H. Harborth ([2, 3]), C.E. Tripp ([13]), J.F. Rigby ( [START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF]) and especially those presented by B. Poonen and M. Rubinstein in [START_REF] Poonen | The number of intersection points made by the diagonals of a regular polygon[END_REF], who were the rst to provide two remarkable formulas for the number of interior intersection points made by the diagonals of a regular n-gon and the associated number of regions. Let us mention that the two authors provide also a brief but very interesting historical notice on the subject.

As an alternative of the formulas of Theorems 1 and 2 in [START_REF] Poonen | The number of intersection points made by the diagonals of a regular polygon[END_REF] related respectively to the number of interior points N i,n and the number of regions, one may devise two friendly written algorithms yielding those numbers.

It is remarkable that the nal outputs of these algorithms are polynomials on each residue class modulo 2520.

Here are the rst values of N i,n referenced as A006561 in OEIS This sequence is dened, for n odd given only, through the formula N e,n = n(2n 3 -15 2 + 34n -21)/24. The authors also compute the number of regions formed by the diagonals, by using Euler's formula V -E +F = 2.

In a very recent paper [START_REF] Ryckelynck | On cyclotomic arrangements of lines in the plane[END_REF], we got interest in cyclotomic arrangements of lines in the plane. We initiated a new approach to the problem of enumerating convex connected components (known as chambers), depending on their shapes and their compacity. We presented, in an analogous problem, the description of each chamber of the boundication of the space dened as the complement of a arrangement of lines associated to the regular n-gon. Symmetry, circular orbits, goniometric functions are the core of this paper. Nevertheless, the whole program of work given in [START_REF] Ryckelynck | On cyclotomic arrangements of lines in the plane[END_REF] was too much dicult to replicate in the case of the clique arrangement K n of the present paper, and we take as an objective to explain the way the intersection points are in fact regularly distributed along some concentric circles.

Let us present the notation used throughout this paper. First, ♯(S) denotes the cardinality of some nite set S, ℑ(f ) denotes the range of the mapping f : S 1 → S 2 . As usual, if x ∈ R then [x] denotes the greatest integer function. Let us use the abbreviation pq ± = (p±q) π n for convenient integer indices p and q. Although we may use indices modulo n, we impose instead the inequalities 0 ≤ i ≤ n -1 over all subsequent indices.

Next, φ(n) denotes as usual the Euler's totient function. Let ζ n = exp( 2π n I) be a n-th primitive root of unity so that ζ n n = 1, and let Q(ζ n ) be the cyclotomic eld generated by ζ n . For various integers n, i, j, k, ℓ, such that i + j -(k + ℓ) is not a multiple of n we set

J n (i, j, k, ℓ) = cos 2 (ij -) + cos 2 (kℓ -) -2 cos(ij -) cos(kℓ -) cos(ij + -kℓ + ) sin 2 (ij + -kℓ + )
When k + ℓ ̸ ≡ 0 mod n and i + j ≡ 0 mod n, we set

J n (i, j, k, ℓ) = cos 2 (ii + ) + cos 2 (kℓ -) -2 cos(ii + ) cos(kℓ -) cos(kℓ + ) sin 2 (kℓ + ) Let us consider the following nite set R n = ℑ(J n ) ∪ ℑ( J n ).
The numbers in R n are nothing but the squares of the radii of the orbits containing the vertices of K n . We have

R n ⊂ [0, sin π n -2 ]. Dening R n shall al- low to characterize the numbers M i,n and M e,n since M i,n = ♯(R n ∩[0, 1[) and M e,n = ♯(R n ∩]1, sin π n -2 ]).
The rest of this paper is organized as follows. Section 2 presents some properties of the geometric graph associated to the clique while Section 3 focuses mainly on the mappings J n and J n which give the radii of the circles on which lie the intersection points of the graph K n . Section 4 is devoted to combinatorics inside the domain of J n consisting in quadruplets (i, j, k, ℓ) of integers constrained by some specic inequalities. In Section 5, we use galoisian properties of Q(ζ 2n ) in order to highlight the number of orbits associated to K n and the numbers of vertices lying on those orbits. In Section 6, we conclude with open problems.

The geometric graph associated to the clique arrangement

In this section, we determine the coordinates of the intersection points of the clique arrangement K n as well as the modulii of these points. Next, we deal with symmetries and multiplicities.

To dene properly z i,j,k,ℓ , we may assume that 0

≤ i < j ≤ n -1, 0 ≤ k < ℓ ≤ n -1, i ≤ k. Lemma 2.1. We have {i, j} ∩ {k, ℓ} ̸ = ∅ ⇔ z i,j,k,ℓ ∈ C n .
Proof. The implication (⇒) is obvious. The converse implication relies on the following property resulting from a convexity argument: no three distinct vertices z i , z j and z k of the regular n-gon are aligned.

The intersection points z i,j,k,ℓ are divided into two classes, depending on whether or not the indices i + j and k + ℓ are equal to n or equivalently whether or not D i,j and D k,ℓ are vertical straight lines. Let us mention that when the integers i, j, k, ℓ are chosen in such a way that i + j = k + ℓ = n then the two straight-lines (z i , z j ) and (z k , z ℓ ) are parallel and disjoint and consequeltly, no intersection point occurs.

The rst class of intersection points is described as follows.

Lemma 2.2. We suppose that i+j, k +ℓ, n are three dierent integers. Let θ = ij + -kℓ + = (i + j -(k + ℓ)) π n be the parallax of the unit circle seen from z i,j,k,ℓ . Then the cartesian coordinates of the intersection point z i,j,k,ℓ = D i,j ∩ D k,ℓ are equal to x i,j,k,ℓ = sin(ij+) cos(kℓ-) -cos(ij-) sin(kℓ+) sin(ij+) cos(kℓ+) -cos(ij+) sin(kℓ+) = sin(ij+) cos(kℓ-) -cos(ij-) sin(kℓ+) sin(θ) , y i,j,k,ℓ = cos(ij-) cos(kℓ+) -cos(ij+) cos(kℓ-) sin(ij+) cos(kℓ+) -cos(ij+) sin(kℓ+) = cos(ij-) cos(kℓ+) -cos(ij+) cos(kℓ-) sin(θ) , while |z i,j,k,ℓ | 2 = Jn(i, j, k, ℓ).

(

Proof. Straightforward computations provide the equation of the straight line D i,j passing through z i and z j (i ̸ = j and i + j ̸ = n)

D i,j : y = -cot (ij + ) x + cos (ij -) sin (ij + ) .
Solving the system of equations for D i,j and D k,ℓ yields the cartesian coordinates of z i,j,k,ℓ . Squaring and adding these coordinates gives the formula for the square of the modulus.

The second class of intersection points consists in the points z i,j,k,ℓ where i + j or k + ℓ is equal to n.

Lemma 2.3. Let us choose integers i, j, k, ℓ such that i + j = n and k + ℓ ̸ = n. Then the cartesian coordinates of the intersection point D i,j ∩ D k,ℓ are equal to

x i,j,k,ℓ = cos(ii + ) , y i,j,k,ℓ = cos(kℓ -) -cos(kℓ + ) cos(ii + ) sin(kℓ + ) , (2) 
while

|z i,j,k,ℓ | 2 = J n (i, j, k, ℓ). (3) 
In the case where the integers i, j, k, ℓ are such that i + j ̸ = n and k + ℓ = n, x i,j,k,ℓ , y i,j,k,ℓ and |z i,j,k,ℓ | are obtained by replacing the quadruplet (i, j, k, ℓ) by (k, ℓ, i, j).

The proof is similar to the previous one by considering that this time D i,j (or D k,ℓ ) is a vertical straight line.

Let us recall by the way that, given two straight lines with slopes s 1 , s 2 , the angle θ between these lines veries the relationship tan θ = s1-s2 1+s1s2 . If we consider D i,j and D k,ℓ , their slopes being given by s 1 = -cot(ij + ) and s 2 = -cot(kℓ + ), we have

tan θ = cot(ij + ) -cot(kℓ + ) 1 + cot(ij + ) cot(kℓ + ) = (cot(kℓ + -ij + )) -1 ,
using the addition formula for cotangent. Hence, θ = π n |k + ℓ -i -j|. This angle is the analog of the parallax in astronomy since it subtends any chord from z i or z j to z k or z ℓ .

The upper bound for the number of intersection points N n given in the introduction is nothing else than

N n ≤ q ′′ n = n + ♯{(i, j, k, ℓ), i < j, k < ℓ, i < k, j ̸ = ℓ, j ̸ = k, i + j -(k + ℓ) ̸ ≡ 0 mod n}.
These various inequalities and constraints forbid the intersection points to be over-counted.

Let us introduce now the rotation ρ with center at origin and angle 2π n dened as ρ(z) = z exp 2Iπ n in the euclidean plane C ≃ R 2 . Obviously, we have ρ n = Id, ρ(z p ) = z p+1 and ρ m (z p ) = z p+m for all m ∈ N and for all p ∈ {0, . . . , n -1}. We see also that ρ(D i,j ) = D i+1,j+1 and that the intersection point z i,j,k,ℓ transforms as follows

ρ(z i,j,k,ℓ ) = ρ(D i,j ∩ D k,ℓ ) = D i+1,j+1 ∩ D k+1,ℓ+1 = z i+1,j+1,k+1,ℓ+1 .
As a consequence,

x i+1,j+1,k+1,ℓ+1 = x i,j,k,ℓ cos Å 2π n ã -y i,j,k,ℓ sin Å 2π n ã , y i+1,j+1,k+1,ℓ+1 = x i,j,k,ℓ sin Å 2π n ã -y i,j,k,ℓ cos Å 2π n ã .
More generally, ρ m (z i,j,k,ℓ ) = z i+m,j+m,k+m,,ℓ+m for all m ∈ N. In addition, symmetry considerations provide the following results z i,j,k,ℓ = z k,ℓ,i,j , z i+n,j+n,k,ℓ = z i,j,k+n,ℓ+n = z i,j,k,ℓ .

(

The central symmetry holds only for even n and is contained in the following formula.

-

z i,j,k,ℓ = z i+ n 2 ,j+ n 2 ,k,ℓ = z i,j,k+ n 2 ,ℓ+ n 2 .
So, according to rotations, we see that each orbit contains a multiple of n points. Let us order the orbits ω 1 , . . . , ω Mn of K n by increasing values of radius. For each p, the number of vertices of ω p is a multiple ν n,p n of n. We conclude that

N 2n = 1 + n M2n-1 p=1 ν 2n,p ≥ 1 + n(M 2n -1) , N 2n+1 = n M2n+1 p=1 ν 2n+1,p ≥ nM 2n+1 . (5) 
We give below, for n = 8, 9, 10, for the sake of conciseness, the cardinalities of the orbits of K n . But we must be cautious about the parity of n so we introduce the sequence Γ n of lengths M i,n + 1 + M e,n as follows

Γ n = ß ( 1 
, (nν n,p ) p∈{2,...,Mn} ) for n even (nν n,p ) p∈{1,...,Mn} for n odd .

In order to locate the n-gon C n , we underline its cardinality.

. Γ 8 =(

. Γ 9 =(9,9,9,18,9,18,9,18,18,9,9,9,9,18,9,18,18,9,18,18,18,9,18,9,9),

. Γ 10 = [START_REF] Bol | Beantwoording van prijsvraag no. 17[END_REF][START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF][START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF][START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF][START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF]20,[START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF]20,[START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF][START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF]20,20,[START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF][START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF][START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF]20,20,[START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF]20,20,[START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF]20,[START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF]20,20,20,[START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF]20,[START_REF] Rigby | Multiple intersections of diagonals of regular polygons, and related topics[END_REF]20,20,20).

Proposition 2.1. For any integer m ≥ 1, the sequences (M mn ) n≥1 , (M e,mn ) n≥1 , (M i,mn ) n≥1 , (N mn ) n≥1 , (N e,mn ) n≥1 , (N i,mn ) n≥1 are increasing.

Proof. Indeed, for any integer m, if z i,j,k,ℓ is a vertex of K n then this point coincides with the vertex z mi,mj,mk,mℓ of K mn . Moreover, the inclusion keeps the various properties of being inside or being outside the unit-circle. Similarly, each straight line D i,j of K n coincides with the straight line D mi,mj of K mn . So the sets of vertices and of edges of K n are included in the respective sets of vertices and of edges of K mn .

In the following 3. Elementary properties of the radius mappings J n (i, j, k, ℓ) and J n (i, j, k, ℓ)

In this section, i, j, k, ℓ denote indices lying in [0, n-1] and such that ♯{i, j, k, ℓ} ≥ 3. We have two formulas expressing symmetry by change of pairs of lines, J n (k, ℓ, i, j) = J n (i, j, k, ℓ), J n (k, ℓ, i, j) = J n (i, j, k, ℓ). We notice that, for any index m, we have the obvious relations

J n (i, j, k, ℓ) = J n (i + m, j + m, k + m, ℓ + m), and J n (i, j, k, ℓ) = J n (i + m, j + m, k + m, ℓ + m).
These relations mean that the functions J n and J n are in a sense invariant by rotations. So one may assume i = 0 without loss of generality when studying those mappings. Taking modulii in (4) and squaring, we get the identity

J n (i + n, j + n, k, ℓ) = J n (i, j, k + n, ℓ + n) = J n (i, j, k, ℓ).
The following property results from the examination of the explicit formulas given in Section 2. Lemma 3.1. Let {i, j, k, l} such that the intersection point z i,j,k,ℓ exists. Then the following four numbers

x i,j,k,ℓ , y i,j,k,ℓ , z i,j,k,ℓ = x i,j,k,ℓ + Iy i,j,k,ℓ , |z i,j,k,ℓ | 2 = J n (i, j, k, ℓ) ∈ Q(ζ 2n ).
belong to the cyclotomic eld

Q(ζ 2n ),
We emphasize on the fact that all the points z m of the starting regular n-gon are in the cyclotomic eld

Q(ζ n ), but however, the intersection points z i,j,k,ℓ ̸ ∈ C n lie in a larger eld Q(ζ 2n ).
When this is possible, in compliance with Galois's theorem, we may give explicit algebraic values of squared radii of orbits

Ξ n = ¶ |z i+n,j+n,k,ℓ | 2 ©
, which is the goal of Section 5. Although Ξ n being sets, we have sorted the values by increasing order. One has for instance 1 3 , 1 2 , 1, 3, 7 and by using old-school algebra

Ξ 3 = {1}, Ξ 5 = ¶ 7- √ 5 2 , 1, 7+3 √ 5 2 © , Ξ 6 = 0,
Ξ 10 ⊃ {0, 1, 4 √ 5 + 11, 5 + 2 √ 5, 1 2 (7 + 3 √ 5), 1 2 (7 -3 √ 5), 1 2 (7 + √ 5), 4 - √ 5, 4 + √ 5, 1 2 (3 + √ 5)}.
For the sake of conciseness, the list has been volontarily shorten up but all the values do have explicit expressions. The method of Archimedes allows to compute explicitly and algebraically each radii of each set Ξ 2 n starting with Ξ 4 = {0, 1}. We have for example

Ξ 8 = {0, 3 -2 √ 2, 1 - 1 2 √ 2, 1 2 , 9 -6 √ 2, 1, 1 + 1 2 √ 2, 5 -2 √ 2, 3, 2 + √ 2, 3 + 2 √ 2, 5 + 2 √ 2, 9 + 6 √ 2}.
But the formulas, although being known explicitly, become of a large complexity mainly due to Viète's formula.

Lemma 3.2. Let w ∈ Q(ζ N ) be of modulus one, then there exists some integer m such that the w = ζ m N and conversely.

See [START_REF] Washington | ntroduction to Cyclotomic Fields[END_REF] for the proof. Lemma 3.3. We have ♯{i, j, k, ℓ} = 3 if and only if

J n (i, j, k, ℓ) = 1 or J n (i, j, k, ℓ) = 1.
Proof. If a quadruplet is such that ♯{i, j, k, ℓ} = 3 with i ̸ = j and k ̸ = ℓ, it must be of the shape (i, j, i, ℓ) or (i, j, k, i) or (i, j, k, j) or (i, j, j, ℓ). Without loss of generality, we may suppose that i = 0 and that kℓ = 0. The value of the function J n is equal to 1 in view of the equation

cos i π n 2 + cos j π n 2 -2 cos i π n cos j π n cos (i -j) π n = sin (i -j) π n 2 .
Let us suppose that ♯{i, j, k, ℓ} = 4. We show that the requirement J n (or J n ) is equal to 1 is contradictory. Indeed, by using Lemma 3.2, if J n (or J n ) is equal to 1, the point z i,j,k,ℓ in Q(ζ 2n ) has modulus equal to 1, so it is a root of unity, i.e. z i,j,k,ℓ = z m for some index m ∈ {0, . . . , n -1}. So the index m is repeated twice which induces the a contradiction.

From now on in this section, we assume that ♯{i, j, k, ℓ} = 4.

Lemma 3.4. Let us suppose that j -i = ℓ -k, dierence that we denote t 1 and let us denote

t 2 = k + ℓ -i -j. Then J n (i, j, k, ℓ) = 1 2 Ç cos( t1π n ) cos( t2π 2n ) å 2 .
Moreover, if η is such a value, so is 1 4η . Lastly, thenumber of these values is (n -1)(n -2). Proof. The explicit computation of J n relies on the duplication formulas for sine and cosine. Since ♯{i, j, k, ℓ} = 4, the equality t 1 = 1 2 t 2 does not occur; indeed, otherwise j = k = i + t 1 . So the value of J n may not be equal to 1

2 . Let η = J n (i, j, k, ℓ) with j -i = ℓ -k = t 1 . Since we have t 2 = 2(k -i), t 2 must be even. Now, 1 4η = 1 2 Ç cos( tπ 2n ) cos( mπ n ) å 2 = J n (i ′ , j ′ , k ′ , ℓ ′ )
where the indices i ′ , j ′ , k ′ , ℓ ′ are chosen so that

j ′ -i ′ = ℓ ′ -k ′ = t 2 2 , k ′ + ℓ ′ -i ′ -j ′ = 2t 1 . We get j ′ = i ′ + t2 2 , k ′ = i ′ + t 1 , ℓ ′ = i ′ + t 1 + t2
2 . These four integers are distinct and satisfy the hypothesis in the lemma, i.e. j ′ -i ′ = ℓ ′ -k ′ . Lastly, the number of those values is equal to n-1

2

(n -2). Indeed, we choose arbitrarily the integer t2

2 = k -i in [1, n -1] and next an integer t 1 ∈ [1, n -1] distinct of t2 2 .
The following lemma is quite intuitive since its geometrical interpretation deals with the parallax of orbits. When parallaxes increase, radii necessarily increase also. We suppose in the following lemma that the quadruplets (i, j, k, ℓ) under consideration share the same values of p = j -i and q = ℓ -k. If we set r = k + ℓ -(i + j), we easily nd that the sum p + q + r = 2(ℓ -i) is a positive even integer and computing, we recover (i, j, k, ℓ) as j = i + p, k = i + r 2 , ℓ = i + r 2 + q. Help to these three relations, the following relation holds

J n (i, i + p, k, k + q) = (cos(p π n )) 2 + (cos(q π n )) 2 -2 cos(p π n ) cos(q π n ) cos(θ) (sin θ) 2
where θ is the parallax angle. Now, Lemma 3.5. Let us x n as well as the integers p and q. Then the radii J n (i, j, k, ℓ) and J n (i, j, k, ℓ) are increasing with respect to r.

Proof. Let γ 1 = cos 2 (p π n ) + cos 2 (q π n ), γ 2 = 2 cos(p π n ) cos(q π n ) and x = cos rπ n . If we dene f (x) = γ1-γ2x 1-x 2 , we obtain J n (i, j, k, ℓ) = f (x) and f ′ (x) = -γ2x 2 -2γ1x+γ2 (1-x 2 ) 2
. Since γ 2 < γ 1 , sgn(γ 2 -γ 1 ) = sgn(γ 2 -2γ 1 ) = -1, and γ 2 x 2 -2γ 1 x + γ 2 admits a constant positive sign on ] -1, 1[. The function f ′ (x) being negative, f is decreasing with respect to x = cos rπ n and thus is increasing with respect to r. The same reasoning applies to J n by using

γ 1 = cos 2 (2i π n ) + cos 2 ( π n (ℓ -k)) and γ 2 = 2 cos(2i π n ) cos( π n (ℓ -k)).

The combinatorics of quadruplets of indices of intersection points.

Let us denote Q n ⊂ [0, n -1] 4 as the set of quadruplets of integers (i, j, k, ℓ), 0 ≤ i, j, k, ℓ ≤ n -1 with i ̸ = j, k ̸ = ℓ. Hence Q n is in bijection with the set of pairs of well-dened lines (D i,j , D k,ℓ ) being parallel or concurrent through some vertex of K n . The commutative group Z/nZ × Z/2Z acts transitively on Q n as follows: if (g, b) is in this group, then b • (i, j, k, ℓ) = (k, ℓ, i, j) and g • (i, j, k, ℓ) ≡ (i + g, j + g, k + g, ℓ + g) mod n.

The group Z/2Z acts as the identity on the set of vertices of the arrangement while Z/nZ acts as the rotation group on this set of vertices.

Lemma 4.1. The direct image of J n is included in the direct image of J n while being distinct. Proof. Let η ∈ ℑ( J n ) then there exist i, j, k, ℓ with j = n -i such that η = J n (i, j, k, ℓ) = |z i,j,k,ℓ | 2 . We choose any integer p such that 2p ≡ 0 mod n and 2p + k + ℓ ̸ ≡ 0 mod n. In view of the properties of ρ, we have also η = |z i+p,j+p,k+p,ℓ+p | 2 = J n (i + p, j + p, k + p, ℓ + p), the indices characterizing the quadruplet avoiding the case of vertical straight lines as explained in section 2. So η ∈ ℑ(J n ).

We may synthetize the proof by saying that, without changing the value of J n (i, j, k, ℓ) or J n (i, j, k, ℓ), one may apply a transformation (i, j, k, ℓ) → (i + p, j + p, k + p, ℓ + p), so either to remove the condition i + j ≡ 0 mod n or to impose it.

Let Q (3) n ⊂ Q n denote the subset of quadruplets such that #{i, j, k, ℓ} = 3. Orbits of Q n are either contained in Q (3) n or in Q n -Q (3) n . In each orbit contained in Q n -Q (3)
n , one may nd a representative such that i < j and k < ℓ and i < k and j ̸ = ℓ. This allows us to dene the set Q ′ n of quadruplets (i, j, k, ℓ)

verifying 0 ≤ i < j ≤ n -1, 0 ≤ k < ℓ ≤ n -1, i < k, j ̸ = ℓ. Now, the orbits contained in Q n -Q (3) 
n are identied with the set of admissible intersection points z i,j,k,ℓ ̸ ∈ C n , and of points that do not exist due to parallelism, since some of these quadruplets fail to dene properly any intersection point because the underlying straight-lines (D i,j , D k,ℓ ) are parallel. Let us denote Q ′′ n the subset of Q ′ n with elements (i, j, k, ℓ) ∈ Q ′ n satisfying i + j ̸ = k + ℓ mod n, so that z i,j,k,ℓ exists, since in that case the parallax |i + j -k -ℓ| π n is not at nor equal to zero. When (i, j, k, ℓ) ∈ Q ′ n the value of |i + j -k -ℓ| is less than 2n -2 so the condition i + j ̸ = k + ℓ mod n is equivalent to k + ℓ -i -j / ∈ {-n, 0, n} and it is easy to nd examples with any of these three values. We dene q ′ n = n + #(Q ′ n ), and q ′′ n = n + #(Q ′′ n ), the summand n counting the vertices of C n .

In this section we will give explicit formulas for these two integer sequences. Although the conditions in Q ′ n are not necessary nor sucient to dene properly z i,j,k,ℓ , because the action of the group Z/2Z × Z/nZ do not preserve them while stabilizing the intersection points, they allow a crude estimation of the sequence

(N n ) since we have: Proposition 4.1. One has #(Q ′ n ) = 1 8 n(n 3 -6n 2 + 11n + 2) and #(Q ′′ n ) = 1 16 n(2n 3 -14n 2 -(-1) n + 30n -3).
Furthermore,

N n ≤ n + ♯(Q ′′ n ).
Proof. We rst compute the cardinality of the set Q ′ n . To do this, we split the cardinality as a sum of two triple sums of characteristic functions as follows

#(Q ′ n ) =   n-4 i=0 n-1 j=i+1 j-1 k=i+1 + n-4 i=0 n-1 j=i+1 n-1 k=j+1   # {ℓ, ℓ ̸ = j, ℓ > k} = s 1 + s 2 ,
the triple sum being distributed over the characteristic functions and where we have set

s 1 = n-4 i=0 n-1 j=i+1 j-1 k=i+1 (n -k -2), s 2 = n-4 i=0 n-1 j=i+1 n-1 k=j+1 (n -k -1).
Internal sums are easily computed:

j-1 k=i+1 (n -k -2) = 1 2 (2nj -j 2 -3j -2ni -2n + i 2 + 5i + 4) and n-1 k=j+1 (n -k -1) = 1 2 (n 2 -3n -2nj + j 2 + 3j + 2). So we obtain s 1 = 1 2 n-4 i=0 n-1 j=i+1 (2nj -j 2 -3j -2ni -2n + i 2 + 5i + 4), s 2 = 1 2 n-4 i=0 n-1 j=i+1 (n 2 -3n -2nj + j 2 + 3j + 2).
Once again we compute internal sums and nd that they are equal respectively to

s ′ 1 = 1 2 n-1 j=i+1 (j 2 -3j -2ij + i 2 + 3i + 2) = 1 3 (-3n 2 i -6n 2 + 3i 2 n + 12ni + 11n + n 3 -i 3 -6i 2 -11i -6), s ′ 2 = 1 2 n-1 j=i+1 (n 2 -3n -2nj + j 2 + 3j + 2) = 1 6 (n 3 -6n 2 + 11n -3n 2 i + 12ni -11i -6 + 3i 2 n -6i 2 -i 3 ).
Now, adding those expressions to rule out the sum

s 1 + s 2 = n-4 i=0 (s ′ 1 + s ′ 2 ) leads easily to #(Q ′ n ) = 1 8 n(n 3 -6n 2 + 11n + 2).
The adaptation of these calculations to compute ♯(Q ′′ n ) leads to intractable computations depending on the parity of n and we choose instead a distinct approach. To do this, we observe that the positive integers q

′ n -q ′′ n = #(Q ′ n ) -#(Q ′′ n ) enumerate admissible quadruplets (i, j, k, ℓ) in (Q ′ n )
for which the straight-lines D i,j and D k,ℓ are parallel.

Let us consider the clique K n associated to C n with vertices set E(K n ) = {z m } 0≤m≤n-1 . This is a geometric graph that we may convert in a digraph, i.e. a directed graph, in 2 1 2 n(n-1) ways. Let us choose some orientation among them, giving rise to a transitive tournament. Let ϕ : E(K n ) → [0, n[ be the 1-to-1 mapping sending each vertex z m to its rank ϕ(m) in a complete tournament on the vertices, so that an edge (z i , z j ) appears if and only if ϕ(z i ) < ϕ(z j ). Now we consider a regular N -gon with N = n 2 = 1 2 n(n -1) vertices, being pairs {z i , z j }, with indices 0 ≤ i < j ≤ n -1. Let E(K (2) n ) be this set of pairs {z i , z j }. To a choice of the mapping ϕ corresponds in an unambiguously dened mapping ψ : E(K

(2) n ) → [0, N [ given by ψ(z i , z j ) → ϕ(z i ) + ϕ(z j ).
In order to dene a tournament on the set E(K

n ), we must exclude inconsistent quadruplets {{z i , z j }, {z k , z ℓ }}, for which ψ(z i , z j ) = ψ(z k , z ℓ ). Especially inconsistent triplets, for which #{z i , z j , z k , z ℓ } = 3, must be removed. This being, an ordering may be chosen on the vertices set, by setting {z i , z j } ⪯ {z k , z ℓ } when ψ(z i , z j ) < ψ(z k , z ℓ ). This sequence corresponds to the number of binary strings of length n + 1 with exactly one pair of adjacent 0's and exactly two pairs of adjacent 1's, and constitutes the entry A080838 in Sloane OEIS. It results therefore that the number of inconsistent quadruplets is equal to

1 16 n(2n 2 -8n + 7 + (-1) n ) With this preparation, one has #(Q ′′ n ) = 1 16 n(2n 3 -14n 2 -(-1) n + 30n -3). Indeed, the proof is nothing but substracting #(Q ′ n ) -#(Q ′′ n ) from #(Q ′ n ) computed earlier. It remains to prove that N n ≤ n + ♯(Q ′′ n ).
To do this, we recast Lemma 3.3 as follows: let (i, j, k, ℓ

) such that 0 ≤ i < j < n, i < k < ℓ < n and k + ℓ -i -j / ∈ {-n, 0, n}. Then ♯ {i, j, k, ℓ} = 3 ⇔ |z i,j,k,ℓ | = 1 ⇔ z i,j,k,ℓ ∈ C n ⇔ (i, j, k, ℓ) / ∈ Q ′ n . (6) 
Indeed, under the assumptions of Lemma 3.3, the intersection point z i,j,k,ℓ exists. The equivalences between the three rst statements are a consequence of Lemma 3.3 together with its proof while the equivalence between the fourth and the rst statements is easy. Now, ♯(Q ′′ n ) is an upper bound of N e,n + N i,n in view of the contraposition [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]. Adding the n points located on C n we obtain the upper bound mentioned in the proposition. Let us discuss now the multiplicities and the directions of parallelism of the clique arrangement. We refer to [START_REF] Wetzel | On the Division of the Plane by Lines[END_REF] and [START_REF] Ryckelynck | On cyclotomic arrangements of lines in the plane[END_REF] for the background and denitions.

The sequence q

′ n = n + #(Q ′ n ) begins
Proposition 4.2. 1. The multiplicity of the origin is 0 if n is odd and n 2 if n is even.

The number of quadruplets

(i, j, k, ℓ) ∈ Q ′′ n such that z i,j,k,ℓ = 0 is 0 if n is odd and n 2 -1 2 if n is even. 3. The multiplicity of z m ∈ C n is n -1. 4. The number of quadruplets (i, j, k, ℓ) ∈ Q ′′ n such that z i,j,k,ℓ = z m is n-1 2 . 5.
The number of directions for which more than one parallel occurs is equal to n. 6. The number of quadruplets (i, j, k, ℓ) ∈ Q ′′ n such that the lines D i,j and D k,ℓ are parallel is equal to n 2 . Proof. 1. The multiplicity of the origin is the number of couples of straight lines (D i,j , D k,ℓ ) with D i,j ∩ D k,ℓ = 0. But when n is odd, if z m ∈ C n for some index m ∈ {0, . . . , n -1} then -z m / ∈ C n since (-z m ) n = (-1) n = -1. When n is even, all the n 2 straight lines D i, i 2 are concurrent through the origin.

2. The number of quadruplets (i, j, k, ℓ) such that z i,j,k,ℓ = 0, i.e. such that z i and z j (respectively z k and z ℓ ) are symmetric with respect to the origin, is the number of quadruplets of the shape (i, i+ n 2 , k, k+ n 2 ), with 0 ≤ i < k < n 2 whence the formula.

3. Indeed, the n -1 straight lines D i,m are concurrent through the point z m , m ∈ {0, . . . , n -1}. 4. The quadruplets we are looking for are congruent modulo Z/2Z × Z/nZ to quadruplets of the shape (m, i, m, j) where 0 ≤ i < j < n and i ̸ = m, j ̸ = m whence the result. 5. Let us x an integer i. All quadruplets of the shape (i, i + 1, i -k, i + 1 + k) are such that the straight lines D i,i+1 and D i-k,i+1+k . Let us consider the two mid-points 1 2 (z i + z i+1 ) and 1 2 (z i-k + z i+1+k ). The line passing through these mid-points is the bisection of the segments [z i , z i+1 ] and [z i-k , z i+1+k ] and thus is perpendicular to these segments. So the lines supporting them are parallel.

6. Since we have i ∈ {0, . . . , n -1} and k ∈ {1, . . . , [ n-1 2 ]}, the result holds.

5. The Galoisian properties of the values of squared moduli J n (i, j, k, ℓ).

The cyclotomic eld Q(ζ n ) is a galoisian extension of the rationals Q of degree φ(n) with ring of integers Z[ζ n ] and with Galois's group (Z/nZ) * of which the operation on Q(ζ n ) is done through exponentiation ζ n → ζ g n . We denote as usual by Φ n (z) ∈ Z[z] the cyclotomic polynomial of index n and degree φ(n), which is the minimal polynomial of ζ n and whose roots are all primitive roots of unity.

In this section we give formulas for J n (i, j, k, ℓ) and J ′ n (i, j, k, ℓ) in the eld Q(ζ 2n ). In other words we concentrate on formulas such as those given in the following result:

Proposition 5.1. For all integers n ≥ 1 there exists a smaller integer b n such that for all (i, j, k, ℓ) ∈ Q ′′ n , one may nd a vector of integers (λ m ) such that one has the formula

J n (i, j, k, ℓ) = 1 b n φ(2n)-1 m=0 λ m ζ m n .
Proof. When n is clear from the context we shall denote ζ = ζ 2n . For all integer k, we have cos(k

π n ) = cos(k 2π 2n ) = 1 2 (ζ k + ζ -k ) = 1 2 (ζ k + ζ 2n-k ). Hence cos 2 (k π n ) = 1 4 (ζ 2k + ζ 2n-2k + 2). So if (i, j, k, ℓ) ∈ Q ′′ n , and
if we set p = j -i, q = ℓ -k, r = k + ℓ -i -j, (with p + q + r an even positive integer) we get

J n (i, j, k, ℓ) = cos 2 (p 2π 2n ) + cos 2 (q 2π 2n ) -2 cos(p 2π 2n ) cos(q 2π 2n ) cos(r 2π 2n ) 1 -cos 2 (r 2π 2n )
and so

J n (i, j, k, ℓ) = 4 + ζ 2p + ζ 2n-2p + ζ 2q + ζ 2n-2q -(ζ p + ζ 2n-p )(ζ q + ζ 2n-q )(ζ r + ζ 2n-r ) 2 -ζ 2r -ζ 2n-2r .
This is the evaluation at z = ζ 2n of the rational function N/D where we have set

N = 4 + z 2p + z -2p + z 2q + z -2q -z r+p+q -z r+p-q -z r-p+q -z r-p-q -z -r+p+q -z -r+p-q -z -r-p+q -z -r-p-q and D = 2 -z 2r -z 2n-2r . Let us x any quadruplet (i, j, k, ℓ) ∈ Q ′′
n and let us denote p, q, r the positive

integers p = j -i , q = ℓ -k , r = k + ℓ -i -j (7) 
by noting that p + q + r is even. We introduce (at the time indetermined) integers (λ m ) 0≤m<φ(2n) and a common denominator b n in order to dene the following polynomial with rational coecients

P (z) = 1 b n φ(2n)-1 m=0 λ m z m .
With p, q, r, b n being xed, let us show how to characterize in a unique way the sequence (λ m ) so that P (z)

satises the identity b n • (4 + z 2p + z -2p + z 2q + z -2q -z r+p+q - -z r+p-q -z r-p+q -z r-p-q -z -r+p+q -z -r+p-q -z -r-p+q -z -r-p-q ) = = (2 -z 2r -z 2n-2r ) φ(2n)-1 m=0
λ m z m , modulo the ideal generated in the Laurent algebra of rational functions Q[z, z -1 ] by the cyclotomic polynomial Φ 2n (z).

To obtain a matricial system for the vector 1 bn (λ m ), we compute the remainder of the euclidean division of the numerator of N (z)/D(z) -P (z) by the cyclotomic polynomial Φ 2n (z) ∈ Z[z], and require vanishing of all its coecients. This determines in one and only one way the coecients 1 bn (λ m ). Now, the computation of b n is nothing but searching the g.c.d. of all denominators of all characteristic vectors.

The following result gives an application to Chebyshev polynomials of the rst kind.

Corollary 5.1. For any integer n ≥ 3 and (p, q, r) with p + q + r even, if (λ m ) is dened as in Proposition 5.1, the following polynomial

b n (T p (x) + T q (x) -2T p (x)T q (x)T r (x)) -(1 -T r (x) 2 ) φ(2n)-1 m=0 λ m x m is a multiple of the cyclotomic polynomial Φ n (x).
Proof. Let us choose any quadruplet (i, j, k, ℓ) such that [START_REF] Poonen | The number of intersection points made by the diagonals of a regular polygon[END_REF] holds. This is possible since p + q + r is even.

Since we have T k (cos θ) = cos(kθ) for any integer k and any real θ, we get

J n (i, j, k, ℓ) = T p (α) + T q (α) -2T p (α)T q (α)T r (α) 1 -T r (α) 2
where α = cos( π n ). Using the previous proposition, we see that the rational fraction (T p (x) + T q (x) -2T p (x)T q (x)T r (x))/(1 -T 2 r (x)) and the polynomial P :

x → P (x) = 1 bn φ(2n)-1 m=0
λ m x m agree at the point x = α so the polynomial in the claim is a multiple of the minimal polynomial of α.

Remark 5.1. To compute the lattice vectors λ, one may devise the following algorithm. First, obtain g.c.d. between the numerator and the denominator of the fraction occuring in Corollary 5.1, next write the long division of this fraction, and at last, write a Bezout identity involving Chebyshev and cyclotomic polynomials. In this respect, we may refer to the work of Rayes, Trevisan and Wang (see [START_REF] Rayes | Factorization Properties of Chebyshev Polynomials[END_REF]) for properties like Bezout identities, resultants, g.c.d., for the family of polynomials (T k ). Nevertheless, the extension of those results to the required family of polynomials used in the previous procedure is very complicated to handle.

We continue this section with the study of the action of the Galois's group of

Q(ζ 2n ) on the sets Q ′ n and Q ′′ n . If σ is an automorphism of Q(ζ 2n
) then there exists an integer g prime to 2n such that one has σ(ζ 2n ) = ζ g 2n and conversely. Thus we have an isomorphism of groups σ : g → σ g and we get σ g (

ζ h 2n ) = ζ g h 2n
for all integer h ≥ 0. The following proposition is intended to transfer the action of the Galois group on the eld to an action on the sets of admissible quadruplets.

Proposition 5.2. The Galois group

(Z/2nZ) * of Q(ζ 2n ) acts faithfully on Q n as follows. Let g ∈ (Z/2nZ) * and (i, j, k, ℓ) ∈ Q n then σ g (i, j, k, ℓ) ≡ (i ′ , j ′ , k ′ , ℓ ′ ) modulo Z/2Z × Z/nZ with i ′ ≡ i , j ′ -i ′ ≡ g(j -i) , ℓ ′ -k ′ ≡ g(ℓ -k) , k ′ + ℓ ′ -i ′ -j ′ ≡ g(k + ℓ -i -j) mod n. (8) 
Each transformation σ g preserves Q ′ n and Q ′′ n . The orbits under the action of the Galois group have cardinalities divisors of φ(2n). The conjugate of values of J n (resp. J n ) are themselves values of J n (resp. J n ). The mappings J n and J n are contravariant with respect to these actions, i.e. σ • J n = J n • σ for all σ ∈ (Z/2nZ) * . The Galois group acts as permutation group on the set of lattice vectors of radii cyclotomic representations. Proof. First, we prove that (8) determines without any ambiguity the quadruplet (i, j, k, ℓ). If we replace congruence modulo n by stricto sensu equalities, and if we use the triplet (p, q, r) in [START_REF] Poonen | The number of intersection points made by the diagonals of a regular polygon[END_REF], the transformation becomes p ′ = gp, q ′ = gq, r ′ = gr with p ′ + q ′ + r ′ = g(p + q + r) even. In this way, we obtain the solution of ( 8) as

(i ′ , j ′ , k ′ , ℓ ′ ) ≡ (i, i + gp, i + g(k -i), i + g(k -i) + gq) mod Z/2Z × Z/nZ.
Obviously, σ g preserves by denition the set Q ′ n and since when r ̸ ≡ 0 mod n, we have also gr ̸ ≡ 0 mod n, we see also that σ g preserves also Q ′′ n in view of Gauss lemma.

The formulas [START_REF] Rayes | Factorization Properties of Chebyshev Polynomials[END_REF] give rise to an equivalence relation since reexivity occurs by choosing g = 1, symmetry holds by using g ′ such that gg ′ ≡ 1 mod 2n, and transitivity holds with g ′′ = gg ′ which is prime to 2n. By Lagrange's theorem on nite groups, each equivalence class has cardinality being a divisor of the order of (Z/2nZ) * which is φ(2n). The previous formulas show that orbits have maximal cardinalities φ(2n) when j -i, k -i and ℓ -k are prime to n. Let g ∈ (Z/2nZ) * to which we associate an automorphism σ in the Galois group. For any quadruplet (i, j, k, ℓ) we may compute the conjugate σ(J n (i, j, k, ℓ)) as

σ(J n (i, j, k, ℓ)) = 4 + ζ 2gp + ζ 2gn-2gp + ζ 2gq + ζ 2gn-2gq -(ζ gp + ζ 2gn-gp )(ζ gq + ζ 2gn-gq )(ζ gr + ζ 2gn-gr ) 2 -ζ 2gr -ζ 2gn-2gr
where p = j -i, q = ℓ -k and r = k + ℓ -i -j. Expanding numerator and denominator shows that

σ(J n (i, j, k, ℓ)) = J n (i ′ , j ′ , k ′ , ℓ ′ ),
where the quadruplet (i ′ , j ′ , k ′ , ℓ ′ ) is given by ( 8). Now we deal with lattice vectors of radii cyclotomic

representations. If J n (i, j, k, ℓ) = 1 b n n-1 m=0 λ m ζ m , we obtain σ(J n (i, j, k, ℓ)) = 1 b n n-1 m=0
λ m ζ gm . This implies that the lattice vectors of J n and σ • J n are permuted vectors in Z φ(2n) . The remainder of the proof is straightforward.

Proposition 5.3. The number of orbits with rational value of J n (i, j, k, ℓ) is at least equal to the remainder of dividing N n by φ(n).

Proof. Indeed, the eld Q(ζ 2n ) is a galoisian extension, and, for any σ ∈ (Z/2nZ) * , σ generates (Z/2nZ) * so σ has no xed point except rational numbers. Otherwise, the subeld of invariant of σ won't be equal to Q, contrarily to Galois's theorem. So, for any (i, j, k, ℓ) ∈ Q ′′ n , J n (i, j, k, ℓ) is irrational if and only if the equivalence class of J n (i, j, k, ℓ) modulo the Galois's group has cardinality φ(2n), or, translated in the action of (Z/2nZ) * over Q ′′ n , the quadruplet (i, j, k, ℓ) spans an orbit of cardinality φ(2n). Similarly, rational values of J n (i, j, k, ℓ) give rise to distinct equivalence class in Q ′′ n modulo (Z/2nZ) * with cardinality 1. So, if M r,n (respectively M s,n ) denote the numbers of rational (respectively irrational, with surds) values of J n (i, j, k, ℓ), one has ♯(Q ′′ n ) = M s,n φ(2n) + M r,n . This implies our statement. Now, we conclude with concrete situations giving rise to explicit cyclotomic representations of the square radii. For the sake of brevity, we give only three examples, for n equal to 7, 8, 9.

Example 5.1. Let us consider the case n = 7 where φ(14) = 6 and Φ 14 (z) = z 6 -z 5 + z 4 -z 3 + z 2 -z + 1.

Let ζ = ζ 14 be a primitive root of unity of order 14, satisfying Φ 14 (ζ) = 0. Consider for instance the radius

j = -2(ζ 4 -2ζ 3 + 3ζ 2 -2ζ + 1) • ζ -1 • (ζ 2 -2ζ + 1) -1 ≃6.493959.
Then the equations for the sequence λ = (λ 5 , . . . , λ 0 ) are

λ 0 + λ 3 -2λ 4 = 4, λ 2 -λ 3 -λ 4 + λ 5 = 0, -λ 3 + λ 4 + λ 5 = -2, λ 1 -2λ 2 + 2λ 4 -λ 5 = -2, -2λ 0 + λ 1 -λ 3 + 2λ 4 -λ 5 = -6, λ 0 -2λ 1 + λ 2 + λ 3 -2λ 4 + λ 5 = 4.
Solving we nd what we call the characteristic vector λ = (λ 6 , . . . , λ 0 ) ∈ Z 6 of the radius j, and in this case it is precisely (λ) = (-2, 0, 0, 2, 0, 4). More generally, computing with Maple, we obtain b 7 = 1 and the following representations of the various squares of radii starting with j 0 = 1. Then we list them by increasing height, that is to say by increasing sum of absolute values of the coecients of the representation. The height is a good and simple test to recognize that algebraic values are conjugates since in that case we deal with two vectors (λ m ) cyclically permuted and thus of same height. For the following pair of square of radii, we see that the components share the same integer vector (λ m ) and so are congruent by the automorphism σ : ζ 14 → ζ 5 14 , with g = 5, j 6 = 2ζ 4 -2ζ 3 + 4, j 7 = -2ζ 5 + 2ζ 2 + 4, with height 8. Of height 9 is j

1 = 2ζ 5 + ζ 4 -ζ 3 -2ζ 2 + 3.
Of height 10 are j 6 = 2ζ 5 -2ζ 4 + 2ζ 3 -2ζ 2 + 2 and j 2 = ζ 5 -3ζ 4 + 3ζ 3 -ζ 2 + 2, but they are not conjugates for the vectors (λ m ) are not cyclically permuted. Of height 15 is j 4 = -3ζ 5 + 2ζ 4 -2ζ 3 + 3ζ 2 + 5. Of height 20 now is j 7 = 3ζ 5 + 4ζ 4 -4ζ 3 -3ζ 2 + 6. The sequence ends with two squares of raddi with height 24, j 8 = 4ζ 5 -7ζ 4 + 7ζ 3 -4ζ 2 + 2, and with height 29, j 9 = -7ζ 5 + 3ζ 4 -3ζ 3 + 7ζ 2 + 9.

Example 5.2. Now we deal with the case n = 9 where φ(9) = 6 and Φ 18 (z) = z 6 -z 3 + 1. Let ζ = ζ 18 be a primitive root of unity of order 18, satisfying Φ 18 (ζ) = 0. Computing with Maple, we obtain b 9 = 12 and we may obtain the cyclotomic representations of the all squares of radii each multiplied by 12. Then we see that the distribution of orbits is as follows. First we get seven isolated such circles, with rational values of square of radii and of increasing heights from 12 to 54 with orbits having each 9 vertices. Six of these orbits are inside the regular nonagon C 9 . After 12, is of height 20 the radius -4ζ 5 + 4ζ 4 + 12, is of height 24 the radius -4ζ 5 + 4ζ 2 + 4ζ + 12, is of height 32 the radius of an internal orbit given by 8ζ 5 -4ζ 4 -4ζ 2 -4ζ + 12, is of height 36 the radius -4ζ 5 -4ζ 4 + 8ζ 2 + 8ζ + 12 is of height 48 the radius -12ζ 5 + 12ζ 4 + 24, is of height 54 the radius -12ζ 5 + 3ζ 4 + 9ζ 2 + 9ζ + 21. It is quite interesting to note that the radius of the six external orbits are increasing w.r.t. ordinary ordering. Next come two internal orbits with conjugate and distinct radii 12ζ 4 -12ζ 2 -12ζ + 24, 12ζ 5 -12ζ 2 -12ζ + 24 of height 60, and then three other such conjugate external orbits with squared radii having lattice vectors dened by (-12, 24, -12, -12, 48), (24, -12, -12, -12, 48), (-24, 12, 12, 12, 48), all having height 108. At last, we nd thirteen other values, that we may list by increasing value of the height 120, 168, 192, 264, 264, 300, 303, 366, 408, 768, 852, 1020, 1164 of the square radii. Since heights are distinct, these 13 orbits are non conjugate, and thus all these quantitites are rational numbers. Among the orbits, six are internal, seven are external, and the ordering with numerical order is not respected.

Example 5.3. The last example is given by n = 8 where φ(16) = 8 and Φ 16 (z) = z 8 + 1. This example is far more complicated. Let ζ = ζ 16 be a primitive root of unity of order 16, satisfying Φ 16 (ζ) = 0. We have b 8 = 226. We do not here provide the whole list of the sixteen squares of radii, but instead a few comments.

If these squared radii are each multiplied by 226, the height are increasing w.r.t. the sequence 0, 113, 226, 452, 452, 678, 886, 886, 886, 904, 904, 1338, 1338, 1808, 1808, 2658. In this way we obtain three sets of conjugate circles, one of cardinal 3 and two others of cardinal 2. When two vectors (λ) = (λ 7 , . . . , λ 0 ) ∈ Z 8 appear and are obviously permutations one of the other, then these lattice vectors are conjugate through a galoisian morphism. This situation holds on six orbits forming three group of two orbits, dened help to the characteristic vectors (λ) = (λ 7 , . . . , λ 0 ) ∈ Z 8 : (0, 0, 0, 0, 113, 0, -113, 226), (0, 0, 0, 0, -113, 0, 113, 226), (0, 0, 0, 0, -226, 0, 226, 452), (0, 0, 0, 0, 226, 0, -226, 452), (0, 113, 0, -226, -452, 113, 452, 452), (0, 113, 0, -226, 452, 113, -452, 452).

Orbits with characterist vectors λ = (λ 7 , . . . , λ 0 ) ∈ Z 8 where small changes of signs are done appear also by pairs and are not conjugate. This is the case of the three pairs We observe in this case the appearance of radii of which some conjugates are removed. This is easily understood and arise because some orbits of Q ′ 8 have non void intersections together with Q ′′ 8 and Q ′ 8 -Q ′′ 8 .

Remark 5.2. Let ξ n = 2 cos( 2π

n ) = ζ n + ζ -1
n and let Q(ξ n ) = Q(ζ n ) ∩ R be the maximal real subeld contained in the eld Q(ζ n ) and generated by ζ n . The minimal polynomial Ψ n (z) ∈ Z[z] of ξ n over the rationals has been explicitly computed by Lehmer ([4]). For n ≥ 3, it is a non-zero monic polynomial of degree 1 2 (φ(2n)-1) with integer coecients. The preceding formulas for x i,j,k,ℓ , y i,j,k,ℓ , J n (i, j, k, ℓ), J ′ n (i, k, ℓ), in both cases of Lemma 1 and Lemma 2, show that all these quantities are algebraic numbers belonging to Q(ξ 2n ). As a consequence, they may be written under the form a m ξ m 2n , for convenient and uniquely dened integers a m , depending on i, j, k, ℓ and b n depending only on n. Since dealing with the non-monic polynomial 2 1 2 φ(2n) Ψ 2n (z/2) ∈ Z[z] closely related to Lehmer's polynomial is far from being easy, we do not take in account the reality of algebraic numbers.

Open problems

In this section we conclude this work with some perspectives. We may compare the clique arrangement K n , to which this paper is devoted, and the cyclotomic arrangement R n , see [START_REF] Ryckelynck | On cyclotomic arrangements of lines in the plane[END_REF], since their construction relies on C n . But the analogy ends there since geometrical, topological and combinatorial properties of K n are far more complicated.

We suggest as a rst open problem the enumeration of the polygonal compact or non-compact chambers of R 2 -K n together with the description as it has been done in [START_REF] Ryckelynck | On cyclotomic arrangements of lines in the plane[END_REF] for R n . In our opinion, this problem is the main one. Even if Poonen and Rubinstein have provided formula for the number of regions included in the unit disk |z| ≤ 1, they did not characterize their geometry nor than the number of regions outside the disk.

Let us discuss one important step in the preceding program linked to the connectivity of the geometric graph K n . We must deal at rst with the adjacency relation in the set of vertices in this geometric graph. If z i,j,k,ℓ and z i ′ ,j ′ ,k ′ ,ℓ ′ denote two intersection points, let us consider their connectivity z i,j,k,ℓ ∼ z i ′ ,j ′ ,k ′ ,ℓ ′ . The straight line joining these two intersection points must coincide necessarily with two of the four straight lines D i,j , D i ′ ,j ′ , D k,ℓ or D k ′ ,ℓ ′ so we have for instance (i, j) = (i ′ , j ′ ). Next, the abscissas of z i,j,k,ℓ and z i ′ ,j ′ ,k ′ ,ℓ ′ along to D i,j must be close one to the other in the sense that no other abscissa of z i,j,k ′ ,ℓ ′ lies between the two previous ones. Experimentations with K n with n = 3, . . . , 12, have led us to nd explicit boolean adjacency matrices µ n ∈ M Nn of a shape in a way similar to the adjacency matrix presented in [START_REF] Ryckelynck | On cyclotomic arrangements of lines in the plane[END_REF]. We propose as an open problem to nd and prove such adjacency matrices. We suggest that the generation of µ n relies on a lexicographic ordering of the vertices using rst increasing values of the radii and next,increasing values of the polar angle along the orbits. To obtain this lexicographic order, one must convert K n in a lattice in the euclidean plane by using polar coordinates as depicted in the gure above.

A third interesting problem concerns the multiplicities of the intersection points. To do that, one must solve pair of trigonometric equations x i,j,k,ℓ = x 0 and y i,j,k,ℓ = y 0 and convert them into diophantine ones. This seems a very dicult problem.

Figure 1 :

 1 Figure 1: The cyclotomic clique arrangement for n = 8 together with its circular orbits

  values to the total number points of the graph and the points on the unit circle, i.e. by calculating N e,n = N n -n -N i,n , we get the sequence of exterior points numbers of the cliques arrangements referenced also in OEIS as A146213
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Figure 2 :

 2 Figure 2: Polar representation of the geometric graph of the clique for n = 8

Table 1 :

 1 Numbers of intersection points and orbits

	n	Nn Ne,n Ni,n	Mn Me,n Mi,n
	3	3	0	0	1	0	0
	4	5	0	1	2	0	1
	5	15	5	5	3	1	1
	6	37	18	13	6	2	3
	7	91	49	35	10	5	4
	8	145	88	49	14	7	6
	9	333	198	126	25	14	10
	10	471	300	161	32	18	13

table we give for 3 ≤ n ≤ 10, the values of cardinalities N n , N e,n , N i,n , and the numbers of various orbits M n , M e,n , M i,n . This table illustrates both Proposition 2.1 and formulas (5).

  This table allows to recover the table given in the introduction. When we divide those numbers (except the very rst one) by the number n ≥ 1 of points in C n , one obtains a new interesting sequence of integers, This last sequence is made of successive blocks of four increasing integers in arithmetic progression (a, a + b, a + 2b, a + 3b), with a ratio b belonging itself to the arithmetic progression made by the integers N while the starting point a of each quadruplet belongs to a sequence of shifted triangular numbers.

	n 3 4 5	6		7	8	9	10		11	12	13	14	. . .
	q ′ n	3	7	20	51		112	218	387	640	1001	1497	2158	3017	. . .
	The numbers of lost points of intersection regarding to parallel straight lines D i,j and D k,ℓ begins as
		n		3	4	5	6	7	8	9	10	11	12	13	14	. . .
		q ′ n -q ′′ n	0	2	5	12	21	36	54	80	110	150	195	252	. . .
	namely													
	0, 0, 1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28,. . .				
								as follows					

  they constitute strange gifts of the computation. We note also that the height takes three times the value 886 without giving rise to three conjugate orbits, only two of them being conjugates. This being so, we may analyze in the case n = 8 the geometry of this clique arrangement help to the explicit values:

	(-68, -8, 132, -144, 116, 120, -172, 578), (68, -8, -132, -144, -116, 120, 172, 578),		
	(204, -24, -396, -432, -348, 360, 516, 378), (-204, -24, 396, -432, 348, 360, -516, 378),	
	(68, -8, -132, -144, -116, 120, 172, 126), (-68, -8, 132, -144, 116, 120, -172, 126),		
	0, 1, 4 ±	√ 5, 5 ± 2 √	5, 1 2 ± 1 10	√	5, 3 2 ± 1 2	√	5, 7 2 ± 3 2	√	5, 7 2 + 1 2	√	5, 6 +	√	5, 11 + 4	√	5, 3 8 -1 8	√	5

and