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Random models for singular SPDEs

We give a simple and short proof of the convergence of the BHZ renormalized model associated with the generalized (KPZ) equation.

-Introduction

Let ζ stand for a spacetime distribution of negative regularity. Random or not we talk about it as a 'noise'. We call singular, an elliptic or parabolic semilinear partial differential equation (PDE) with real-valued unknown u, an equation of the form

L u = f (u, ∇u; ζ) (1.1)
where a formal application of Schauder estimates do not give sufficient regularity to u for the term f (u, ∇u; ζ) to make sense. Recall indeed that loosely speaking the product of a distribution of regularity a with a function of regularity b is well-defined if and only if a + b > 0. A typical example of a singular PDE is provided by the two dimensional parabolic Anderson model equation

(∂ t -∆)u = uξ,
where ξ stands for the random realization of a space white noise on the two dimensional torus. The distribution ξ has almost surely Hölder regularity -1-ε for all ε > 0; this gives u an a priori Hölder regularity 1-ε which is not sufficient to make sense of the product uξ. Coupled systems of singular PDEs are characterized by the same product problem. Such equations/systems typically appear as the probabilistic large scale limit of random microscopic equations/systems where the strength of the nonlinearity and the randomness balance each other. The study of singular stochastic PDEs was launched by the groundbreaking works of M. Hairer on regularity structures [START_REF] Hairer | A theory of regularity structures[END_REF] and Gubinelli, Imkeller & Perkowski on paracontrolled calculus [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. While [START_REF] Hairer | A theory of regularity structures[END_REF] and [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] use different tools to build an equation-dependent setting where to make sense of it and provide a robust solution theory for a large family of equations, both works share the same guidelines. 1. Work in a restricted space of potential solutions characterized by the fact that they 'look like' some linear combination of reference objects that depend only on the noise ζ. The choice of language used to give sense to the expression 'look like' distinguishes regularity structures from paracontrolled calculus. 2. Point 1 brings back the initial problem of making sense of the ill-defined products involving u in (1.1) to the problem of giving sense to some ill-defined products of quantities that only involve the noise ζ, typically some polynomial expression P ( in a naive formulation of the equation turns out to provide a well-defined equation that can be solved uniquely in an appropriate function space. We talk of a 'renormalized equation' and its solution. [START_REF] Bruned | Singular KPZ Type Equations. 205[END_REF]. Of course a proper interpretation of the solution of the renormalized equation is needed. In the end one can prove that it is the limit, in a probabilistic sense, of solutions to equations of the form

L u ε = f (u ε , ∇u ε ; ζ ε ) + g ε (u ε ) in which ζ has been regularized into ζ ε
and some ε-dependent, a priori diverging, counterterm g ε (•) has been added into the dynamics. The parameter ε > 0 goes to 0 in the limit.

The analytic machinery introduced by Hairer in [START_REF] Hairer | A theory of regularity structures[END_REF] was complemented in subsequent joint works with Bruned & Zambotti [START_REF] Bruned | Algebraic renormalization of regularity structures[END_REF], Chandra [START_REF] Chandra | An analytic BPHZ theorem for regularity structures[END_REF] and Bruned, Chandra & Chevyrev [START_REF] Bruned | Renormalising SPDEs in regularity structures[END_REF] to provide a robust solution theory for a large class of (systems of) equations. The work [START_REF] Bruned | Algebraic renormalization of regularity structures[END_REF] provided a systematic study of the algebraic setting needed to analyse singular stochastic PDEs from a regularity structures point of view. The work [START_REF] Chandra | An analytic BPHZ theorem for regularity structures[END_REF] proved the convergence of a general algorithm used to construct the random variables P (ζ, . . . , ζ)(ω) as limits in some appropriate spaces of quantities of the form

P ζ ε (ω), . . . , ζ ε (ω) - Q c ε Q Q ζ ε (ω), . . . , ζ ε (ω)
for some finite sums of polynomial expressions Q of ζ ε and ε-dependent, a priori diverging, constants c ε Q . We call BHZ renormalization this construction, after the initials of the authors of the work [START_REF] Bruned | Algebraic renormalization of regularity structures[END_REF]. (Amusingly these initials are very close to the initials BPHZ used to name the renormalization algorithm of Feynman graphs introduced by Bogoliubov & Parasiuk in the 50s, and clarified later by some works of Hepp and Zimmermann. The BHZ renormalization algorithm is an elaboration of the BPHZ renormalization prescription on different types of objects.) The work [START_REF] Bruned | Renormalising SPDEs in regularity structures[END_REF] proved point 4 above. In the end for any given equation of a well-identified class of subcritical singular elliptic/parabolic semilinear stochastic PDEs there exists, under a small parameter condition, a unique solution to that equation in an appropriate equation-dependent function space. This solution depends continuously on the realization ζ(ω) of the random enhanced noise. To contrast things, note that ζ(ω) itself is only a measurable function of ζ(ω). We refer the reader to the overviews [START_REF] Chandra | Stochastic PDEs, regularity structures and interacting particle systems[END_REF][START_REF] Corwin | Some recent progress in singular stochastic PDEs[END_REF] of Chandra & Weber and Corwin & Shen for non-technical introductions to the domain of semilinear singular SPDEs, to the books [START_REF] Friz | A Course on Rough Paths, With an introduction to regularity structures[END_REF][START_REF] Berglund | An Introduction to Singular Stochastic PDEs[END_REF] of Friz & Hairer and Berglund for a mildly technical introduction to regularity structures, and to Bailleul & Hoshino's Tourist's Guide [START_REF] Bailleul | A tourist guide to regularity structures and singular stochastic PDEs[END_REF] for a thorough tour of the analytic and algebraic sides of the theory. Our previous work [START_REF] Bailleul | Locality for singular stochastic PDEs[END_REF] gives a short proof of a generalization of point 4, and some aspects of the renormalization problem are described in Hairer's lecture notes [START_REF] Hairer | Renormalization of parabolic stochastic PDEs[END_REF].

The fantastic work [START_REF] Chandra | An analytic BPHZ theorem for regularity structures[END_REF] of Chandra & Hairer on the convergence of the BHZ renormalized models is fairly difficult. It holds under a very general set of conditions on the law of the translation invariant (possibly multi-dimensional) noise that involve its cumulants. Recently Linares, Otto, Tempelmayr & Tsatsoulis [START_REF] Linares | A diagram-free approach to the stochastic estimates in regularity structures[END_REF] devised a different approach to the renormalization problem within the setting devised by Otto, Sauer, Smith & Weber [START_REF] Otto | A priori bounds for quasi-linear SPDEs in the full sub-critical regime[END_REF] for the study of a class of quasilinear singular stochastic PDEs. While the latter shares many features with the setting of regularity structures devised for the study of semilinear singular equations the setting introduced in [START_REF] Otto | A priori bounds for quasi-linear SPDEs in the full sub-critical regime[END_REF] is different; it involves in particular no tree indexed objects even though its construction is inductive. More importantly for us they prove their convergence result for the renormalized regularized models assuming a spectral gap inequality for the law of the random noise rather than making assumptions on its cumulants. We follow this idea and give in the present work a simple and short proof of the convergence of the BHZ renormalized model used in a regularity structures analysis of the iconic generalized (KPZ) equation. 

Denote by M

ε = (Π ε , g ε )
Π ε z τ -Π ε ′ z τ , ϕ λ z L 2 (Ω) o ε∨ε ′ (1) λ |τ | , (1.2) 
for all symbols τ of the regularity structure with negative homogeneity |τ |. Think here of ϕ λ z as a regular λ-approximation of a Dirac distribution at the point z -proper notations will be introduced below. Linares, Otto, Templmayr & Tsatsoulis take profit from their spectral gap assumption to bound the L 2 (Ω) norm of the quantity of interest

Π ε z τ -Π ε ′ z τ , ϕ λ z L 2 (Ω) ≤ E Π ε z τ -Π ε ′ z τ , ϕ λ z + d Π ε z τ -Π ε ′ z τ , ϕ λ z L 2 (Ω)
by its expectation and the norm of its Malliavin derivative. In the setting of [START_REF] Linares | A diagram-free approach to the stochastic estimates in regularity structures[END_REF] the control of the above expectation comes at low cost from their choice of renormalization procedure. The control of the L 2 -norm of the derivative is way more involved and done inductively by seing first dΠ ε as part of an extended model. (The very recent work [START_REF] Otto | Lecture notes on tree-free regularity structures[END_REF] of Otto, Seong and Tempelmayr gives a reader's guide digest of [START_REF] Linares | A diagram-free approach to the stochastic estimates in regularity structures[END_REF].) Right after a first version of this work was finished Hairer & Steele [START_REF] Hairer | The BPHZ Theorem for Regularity Structures via the Spectral Gap Inequality[END_REF] released a work in which they implement the approach of [START_REF] Linares | A diagram-free approach to the stochastic estimates in regularity structures[END_REF] in a tree regularity structures setting, for a more general case revisiting the analytical part. We take advantage in the present of the small number of noises needed to construct the set of trees of negative homogeneity for the generalized (KPZ) equation. This results in a short and elementary work compared to [START_REF] Hairer | The BPHZ Theorem for Regularity Structures via the Spectral Gap Inequality[END_REF][START_REF] Chandra | An analytic BPHZ theorem for regularity structures[END_REF][START_REF] Linares | A diagram-free approach to the stochastic estimates in regularity structures[END_REF].

We follow in the present work the insight of [START_REF] Linares | A diagram-free approach to the stochastic estimates in regularity structures[END_REF] and implement the spectral gap strategy in the form of Stroock formula. For a symbol τ built from |τ | ζ noise symbols one has

Π ε z τ -Π ε ′ z τ , ϕ λ z L 2 (Ω) ≤ |τ | ζ -1 k=0 E d k (Π ε z τ -Π ε ′ z τ ), ϕ λ z + d |τ | ζ (Π ε z τ -Π ε ′ z τ ), ϕ λ z . (1.3)
The norms • are Hilbert-Schmidt type norms. Note that the |τ | ζ -th derivative term in the right hand side is not random anymore. As in [START_REF] Linares | A diagram-free approach to the stochastic estimates in regularity structures[END_REF] the control of the size of the terms given by the expectations comes at low cost from the renormalization prescription, here the BHZ renormalization procedure from [START_REF] Bruned | Algebraic renormalization of regularity structures[END_REF]. Note that

d |τ | ζ (Π ε z τ -Π ε ′ z τ ) = d |τ | ζ (Π ε z τ -Π ε ′ z τ ).
The inductive structures of the trees τ and the naive model Π ε allow to control recursively the norm of the corresponding term in the above estimate. We treat the BPHZ renormalization by hand in our study of the generalized (KPZ) equation; this is due to the fact that we only have to deal with one subdivergence involving two noises. We treat these divergences drawing ideas from [START_REF] Bruned | Singular KPZ Type Equations. 205[END_REF][START_REF] Bruned | Convergence of space-discretised gKPZ via Regularity Structures[END_REF] where a renormalization by telescopic sums has been proposed. We describe in Section 2 the generalized (KPZ) equation, its associated regularity structure and the BHZ renormalized model. We prove its convergence in Section 3. The useful notion of mirror graph is introduced in Section 2.2 and we talk in Section 2.3 of Malliavin derivatives of trees and their expectation as this is what appears in Stroock's formula (1.3). The proof of convergence of the BHZ model to a limit model is done in Section 3.2; its main ingredient is recalled in Section 3.1.

Notations -We denote by z = (t, x) a generic spacetime point, with parabolic norm

z s • • = |t| + |x| 2 .
We will freely use all the notions and tools of regularity structures. Denote by H the Hilbert space L 2 ([0, 1] × T). All random variables below will be defined on a fixed probability space (Ω, F , P).

-The generalized (KPZ) equation

Let T stand for the one dimension torus and ζ stand for a spacetime white noise on R × T. It has almost surely parabolic Hölder regularity -3/2κ, for every κ > 0. We fix κ once and for all. The generalized (KPZ) equation has unknown a function u : [0, T ] × T → R and reads

(∂ t -∂ 2 x )u = f (u)ζ + g(u)(∂ x u) 2 , (2.1) 
for C 4 bounded real valued functions f, g with bounded derivatives. The time horizon T is not fixed and is part of the problem. As we expect from Schauder estimates that u has parabolic regularity 1/2κ the products f (u)ζ and (∂ x u) 2 are not well-defined, let alone g(u)(∂ x u) 2 .

Recall here for later use Hairer's notation

|||K||| a,m • • = sup |k|s≤m sup z z |k|s-a s ∂ k K(z)
for the size of a kernel with a singularity at 0. Here |k| s is defined as

|k| s = |(k 0 , k 1 )| s • • = 2k 0 + k 1 .
The heat kernel P has a finite ||| • ||| 1,m size for any fixed m ≥ 0. Pick a smooth non-increasing function χ : [0, ∞) → [0, 1] equal to 1 on [0, 1/2] and 0 on (1, ∞). Rather than working with the heat kernel P we work with K • • = (Pc)χ, with the constant c is chosen for K to have null mean -a useful technical property that does not destroy the behaviour of K as z approaches the spacetime point 0. The corresponding two convolutions operators coincide up to a smoothing operator and |||K||| 1,m < ∞.

The regularity structure and the BHZ renormalized model

We describe in this section the regularity structure associated with the generalized (KPZ) equation and the BHZ renormalized model. A reader familiar with the theory can skip this section.

The regularity structure -Let I and I (0,1) stand for abstract 'integration' symbols; they are formal placeholders for the convolution operator with K and its space derivative. Let Ξ stand for the symbol playing in the regularity structure the role of ζ. The regularity structure associated with the generalized (KPZ) equation (2.1) is generated by the following rule R that describes the local structure of its (decorated) trees. Write [I] ℓ for an ℓ-tuple of operators I. One has

R(Ξ) = {∅}, R(I) = R(I (0,1) ) = [I] ℓ , ([I] ℓ , I (0,1) ), [I] ℓ , I (0,1) , I (0,1) , I (0,1) , Ξ ℓ∈N Polynomial decorations (k = (k 0 , k 1 ) ∈ N 2
) are added on the nodes of these trees: k 0 is for time monomial and k 1 is for spatial monomial. We denote by B the family of all (polynomially) decorated trees satisfying the rule R. The empty tree is added to B and denoted by 1. To define the homogeneity |τ | of an element τ ∈ B we set

|1| • • = 0, |Ξ| • • = -3/2 -κ,
and define inductively for k ∈ N 2 , σ, τ ∈ B |X k τ | • • = |τ | + |k| s , |I(τ )| • • = |τ | + 2, |I (0,1) (τ )| • • = |τ | + 1, |στ | • • = |σ| + |τ |.
One has X k = X k0 0 X k1 1 where the X i are identified with the canonical basis of N 2 . In the sequel, we will write X instead of X 1 . Call 'noises' the elements of B of negative homogeneity and denote their collection by B -. Recall that one can build inductively the set of noises using the operators µ → I (0,1) (µ),

(µ, ν) → µI(ν), (µ, ν) → I (0,1) (µ) I (0,1) (ν), (2.2) 
starting from the initial collection of noises {Ξ, XΞ}. Write • for Ξ and use the blue symbol for the product symbol X•. With a plain line for the operator I and a dotted line for the operator I (0,1) we can list the elements of B -according to their homogeneity.

-Elements of B -of homogeneity -1 -2κ

, .

-Elements of

B -of homogeneity -1/2 -3κ , , , , , , , . 
-Elements of B -of homogeneity -4κ

, , , , , , , , , , , , , , , , , , , , , , . 
-Elements of B -of homogeneity -2κ

, , , X , , , , , . 
For τ ∈ T denote by |τ | ζ the number of noises in τ . We have |τ | ζ ≤ 4 for the trees of B with |τ | < 0. We thus see from Stroock formula (1.3) that for trees with four noises only the terms k = 0 and k = 2 will give a non-null contribution in the sum. For trees with three nodes only the term k = 1 will give a non-null contribution in the sum. This small number of noises in trees of negative homogeneity is the reason why we can develop an elementary approach to the convergence of the BHZ renormalized model.

Denote by (T, ∆), (T + , ∆ + ) and (T, δ), (T -, δ -), (T + , δ + ) the BHZ regularity and renormalization structures associated to that equation -see e.g. [START_REF] Hairer | Renormalization of parabolic stochastic PDEs[END_REF][START_REF] Bailleul | A tourist guide to regularity structures and singular stochastic PDEs[END_REF].

The BHZ model -Let ζ ε stand for a regularization of ζ by convolution with a smooth function of the form

ρ ε (z) = ε -3 ρ(ε -2 t, ε -1 x)
, with ρ ≥ 0 of unit integral and equal to 1 in 0. Denote by M ε = Π ε , g ε the naive admissible model on the BHZ regularity structure of the generalized (KPZ) equation associated with the smooth noise ζ ε . Given a character ℓ on the algebra T -generated by the trees of T of non-positive homogeneity the maps

ℓ = (ℓ ⊗ Id)δ : T → T, ℓ + = (ℓ ⊗ Id)δ + turn the pair M ε • • = Π ε • ℓ, g ε • ℓ +
into a model; this is part of Theorem 6.15 in [START_REF] Bruned | Algebraic renormalization of regularity structures[END_REF] -see also Theorem 2.6 in Section 5 of [START_REF] Bailleul | A tourist guide to regularity structures and singular stochastic PDEs[END_REF]. Bruned, Hairer & Zambotti proved in Theorem 6.15 of [START_REF] Bruned | Algebraic renormalization of regularity structures[END_REF] the existence of a unique character ℓ ε on T - such that M ε is admissible and satisfies for all τ ∈ B -and all y the identity

E (Π ε τ )(y) = 0. (2.3) 
The map M ε can be described using a preparation map R ε defined from a splitting map δ r , with the index 'r' for 'root', defined similarly as the splitting map δ but extracting from any τ ∈ T only one diverging subtree of τ with the same root as τ at a time, and summing over all possible such subtrees -see Definition 4.2 in [START_REF] Bruned | Recursive formulae for regularity structures[END_REF]. One can also provide a recursive definition of this multiplicative map by first defining

δ ′ r (•) • • = • ⊗ 1 + 1 ⊗ •, for • ∈ 1, X i , Ξ , δ ′ r (I a τ ) • • = (I a ⊗ Id)δ ′ r τ + k∈N 2 X k k! ⊗ I a+k (τ ).
where for a ∈ N 2 the I a are abstract integration symbol encoding the convolution operator with ∂ a K. We define also an abstract derivative D a satisfying the Leibniz rule and such that

D a I b (τ ) = I a+b (τ ), D a X k = X k-a .
This derivative corresponds to the differential operator ∂ a . In the sequel we will denote D (0,1) by D. The infinite sum in the definition of δ ′ r makes perfect sense using a bigraduation introduced in [8, Section 2.3]. Then δ r is obtained by applying the projection π -that keeps only decorated trees with negative homogeneity

δ r • • = (π -⊗ Id)δ ′ r . Using Sweedler's notations δ r τ = τ ⊗ 1 + (τ )
τ (1) ⊗ τ (2) , the τ (1) have stricly less edges than τ due to the extraction of a subtree of negative homogeneity. Given any character ℓ on the algebra

T -set R = R ℓ • • = ℓ(•) ⊗ Id δ r (2.4) with Π R defined by Π R Ξ = Π R,× Ξ = ξ ε ,
and the maps Π R and Π R,× defined inductively by the relations

Π R = Π R,× R, Π R,× (τ σ) = (Π R,× τ )(Π R,× σ), Π R,× (I a τ ) = D a K ⋆ (Π R τ ).
It follows from this definition and the fact that R leaves fixed the elements of T of the form I a τ that the map Π R satisfies the admissibility condition

Π R (I a τ ) = D a K ⋆ (Π R τ ).
We recall the definition of the space T + which is the linear span of

X k n i=1 I + ai (τ i ) ; τ i ∈ B, |I ai (τ i )| > 0 .
We use a different symbol I + a instead of I a to stress that T + is not a subspace of T . We are now able to provide the definition of the renormalised model. Recall that the co-action δ :

T → T ⊗ T + satisfies the induction relations δ(•) • • = • ⊗ 1, for • ∈ 1, X i , Ξ , δ(I a τ ) • • = (I a ⊗ Id)δτ + |k+m|<|Iaτ | X k k! ⊗ X m m! I + a+k+m (τ ),
and set

Π R z τ • • = Π R ⊗ (g R z ) -1 δ with (g R z ) -1 I + a τ • • = -D a K ⋆ Π R z τ (z). The model Π R z satisfies the following identity Π R z τ (y) = Π R,× z Rτ (y), Π R,× z (τ σ) = (Π R,× z τ ) (Π R,× z σ), Π R,× z (I a τ ) (y) = D a K ⋆ Π R z τ (y) - |k|≤|Iaτ | (y -z) k k! D a+k K ⋆ Π R z τ (z).
We see from the property of the τ (1) in Sweedler's decomposition of δ r τ that there is a unique character ℓ such that ℓ(•) = E (Π R ℓ •)(0) ; this character is called the BHZ character and one has for this particular choice of character

Π R ℓ = Π ε .

Tree-like graphs and their mirror graphs

The functions Π ε τ or Π ε τ will eventually be integrated against some smooth test functions ϕ.

We introduce a graphical notation for that operation

Π ε τ, ϕ • • = (Π ε τ )(y)ϕ(y)dy = • • Π ε τ .
We use a green line to denote the integration operation and a green bullet • to represent the test function. It turns out to be useful for the computations to represent the function Π ε τ with the same graphical notation as τ itself. The ε-dependence of the analytic object disappears in this notation but the context makes it clear. So we will write τ for (Π ε τ )(y)ϕ(y)dy.

The definition of a mirror graph is best illustrated by a self-explaining example rather than by formal definition. Here is an example of a tree representation of a test operation together with its mirror graph.

,

In the mirror graph a purple • represents the 'merging' of two regularized noises, in our case the spacetime convolution operator with the kernel (ρ ε ⋆ ρ ε ). Note that the kernel converges to δ 0 (z ′z) as the regularization parameter ε > 0 goes to 0. We will use below a black • to denote the convolution operator with the Dirac distribution. A plain edge in a mirror graph represents a spacetime convolution with the function K and a dotted line a spacetime convolution with the kernel ∂ x K. In the above example the diagram on the right hand side represents a double integral of the form ϕ(y)ϕ(y ′ ) M ε (τ )(y, y ′ ) dydy ′ .

(2.5)

Its formal limit as ε goes to 0 would be a simple integral of the form ϕ(y) 2 M 0 (τ )(y, y) dy, due to the δ correlation of spacetime white noise. We use here the generic notation M for 'mirror'.

Here are two other examples of tree representations of test operations together with their mirror graphs.

, ,

Here again the two diagrams on the right hand side represent a double integral of the form (2.5). More generally mirror diagrams are defined in the obvious way from any connected finite graphs built with the bricks •, , • and the solid and dotted edges. We talk of a tree-like graph if it corresponds to the quantity obtained by testing a polynomial function of the regularized noise against a test function ϕ. We call it 'tree-like' rather than 'tree' as is associated analytic object does not necessarily have a tree structure. As an example the following quantities are tree-like graphs , , .

On can define more generally tree-like graphs where each edge represents a kernel that may depend not only on the two integration variables associated with the vertices of the edge but also on the other integration variables. This is what happens when we replace a kernel by a Taylor remainder of that kernel based at some point different from the two vertices variables. The introduction here of the mirror graphs is motivated by the fact that for a tree-like graph τ with two noises one has

Var τ ≤ ϕ(y)ϕ(y ′ ) M ε (τ )(y, y ′ ) dydy ′ ,
and for an arbitrary tree τ

d |τ | ζ (Π ε z τ -Π ε ′ z τ ), ϕ λ z 2 ϕ(y)ϕ(y ′ ) M ε (τ )(y, y ′ ) dydy ′ .

Malliavin derivatives of trees and their expectation

For 0 ≤ k ≤ |τ | ζ -1 denote by d k Π ε
x τ the kth order Malliavin derivative of Π ε x τ ; this is an element of L H ⊗k , L 2 (Ω, P) . On the example of the 'integrated' tree τ = here is a piece of dΠ ε τ (h), ϕ h .

As ζ has the same law as -ζ only quantities with an even number of noises have possibly non-null expectation. The first Malliavin derivative of a 4-linear functions of the noise being 3-linear it has null expectation. Here are pieces of d 2 Π ε τ (h 1 , h 2 ), ϕ for the preceding tree

h 1 h 2 , h 2 h 1 , h 1 h 2 .
We are interested in the expectation of such quantities, which produce elements of the space of Hilbert-Schmidt operators on H ⊗k that are tree-like graph maps where the former noise arguments •, from Section 2.2 are now elements of H. We will use a common notation • for the norms on these spaces. The square norm of a tree-like graph map is bounded above by its corresponding mirror diagram, where the pairing of an element of H with its mirror element produces a • vertex in the mirror diagram. So while the mirror diagrams of trees involve only the convolution operator • in addition to the convolution operator with K and ∂ x K, the mirror diagrams of a derivative tree also involve the convolution operator •. As an example here are pieces of E d 2 Π ε τ (h 1 , h 2 ), ϕ , for the same tree τ as above

h 1 h 2 , h 2 h 1 , h 1 h 2 .
The loop in the third diagram is a constant annihilated by the kernel K, so the diagram represents the null function. We see on that example that looking at E d 2 Π ε τ (h 1 , h 2 ), ϕ for the BHZ renormalized model Π ε removes exactly the diverging contribution of the first graph in the sum giving E d 2 Π ε τ (h 1 , h 2 ), ϕ ; the other terms are converging as the regularization parameter ε is sent to 0.

Noise derivative operators -We formalize the noise differentiation at the level of the regularity structure by introducing derivative operators on trees that replace a noise with new noise symbols Ξ j with homogeneity equal to |Ξ j | = -κ. In the context of the generalized (KPZ) equation we are interested in stochastic iterated integrals having at most four noises, so the index j will belongs to the finite set {1, 2, 3, 4}. We define the derivative operators D Ξj by

D Ξj Ξ • • = Ξ j , D Ξj • • • = 0, for • ∈ 1; X i ; Ξ ℓ , 1 ≤ ℓ ≤ 4 , D Ξj (τ τ ′ ) = D Ξj τ τ ′ + τ D Ξj τ ′ , D Ξj I a (τ ) = I a (D Ξj τ ).
We define B - j as the decorated trees obtained by applying the iterated derivative operator D Ξj • • • D Ξ1 to an element of B -. As no element of B - j has a subtree of negative homogeneity containing a special noise Ξ j one has

δ r D Ξj = Id ⊗ D Ξj δ r , which implies that RD Ξj = D Ξj R.
We extend the definition of the pre-model and the model to B - j by associating to each noise Ξ j a variable h j ∈ H. For the pre-model we set

Π R Ξ j (h 1 , . . . , h 4 ) = Π R,× Ξ j (h 1 , . . . , h 4 ) = h j ,
For the model we use a different homogeneity | • | + that assigns the same number to Ξ j as to Ξ

|Ξ j | + • • = - 3 2 -κ,
and is defined as | • | on the rest of the decorated trees. For τ ∈ B - j , one has

Π R,× z (I a τ ) (y, h 1 , . . . , h j ) = D a K ⋆ Π R z τ (y, h 1 , . . . , h j ) - |k|≤|Iaτ |+ (y -z) k k! D a+k K ⋆ Π R z τ (z, h 1 , . . . , h j ).
(2.6)

Note the difference with the formula giving Π R,× z (I a τ )(y). Except in the trivial case where τ has only one noise, a derivative tree-like graph map

E d k Π ε τ, ϕ or E d k Π ε τ, ϕ
with k ≥ 1 is the sum of several tree-like graph maps. We will always bound the norm of the sum by the sum of the norms.

Lemma 1 -For τ ∈ B -, 0 ≤ k ≤ |τ | ζ and all z one has d k Π ε z τ = Π ε z D Ξ k . . . D Ξ1 τ .
Proof -One can proceed by induction on k and use [10, Prop 4.1] that says dΠ

ε z τ = Π ε z D Ξ1 τ .
The extension of the character ℓ to the regularity structure built for the generalized (KPZ) with the five noises Ξ, Ξ 1 , . . . , Ξ 4 retains its expression. Since we only take expectation in the analytic object with respect to the Ξ noise any counterterm involving a Ξ i noise is actually null.

-Convergence of the BHZ model

We prove in this section the convergence of the BHZ model after recalling a use criterion to get scaling bounds on mirror graphs. For a test function ϕ write ϕ z for ϕ(•z) and ϕ λ z for λ -3 ϕ s(λ)(•z) .

A workhorse

We will use as a workhorse a refinement due to Bruned & Nadeem [START_REF] Bruned | Convergence of space-discretised gKPZ via Regularity Structures[END_REF] of a result of Hairer & Quastel [START_REF] Hairer | A class of growth models rescaling to KPZ[END_REF] giving some scaling bounds on Feynman graphs -Theorem A.3 therein. We need such a refinement as renormalisations of the type (3.11) (two incoming edges on a subdivergent diagram) are not covered by the Hairer-Quastel convergence theorem [START_REF] Hairer | A class of growth models rescaling to KPZ[END_REF]. We will use it in our setting to deal with the mirror graphs that come from estimating the terms

E d k Π ε z τ, ϕ λ z .
We restrict its statement to our setting, in which our graphs always have two green vertices, with each of them attached to the remainder of the graph by one green edge that represents integration against a scaled test function ϕ λ . Except from the green edges each edge e = (e + , e -) in our graphs represents a kernel of the form

L e (z e-, z e+ ) = K e (z e+ -z e-) - |j|s<re (z e+ -z ve ) j! ∂ j K e (z ve -z e-),
a Taylor remainder of the function K e (•z e-) around an edge-dependent poin z ve . Note the strict inequality < r e , so there is no Taylor expansion at all if r e = 0. We will have r e ∈ {0, 1, 2}, so at most a first order Taylor remainder, and our edges will be either K, ∂K or ρ ε ⋆ ρ ε . We note that we always have r e = 0 for edges for which K e = ρ ε ⋆ ρ ε . We assign the green integration edge a number a e = 0 and set

a e • • = 1 if K e = K, and 
a e • • = -2 if K e = ∂K, and 
a e • • = -3 if K e = ρ ε ⋆ ρ ε .
This is the scaling degree of divergence of the kernel K e near 0. For a set V of vertices in our graph we define E int (V ) as the set of edges e in the graph with e + and e -in V . We define E ↑ (V ), resp. E ↓ (V ) as the set of edges of the graph with e -∈ V , resp. e + ∈ V . Last we define E ↑ r>0 (V ) as the set of edges e of E ↑ (V ) such that r e > 0. The following two conditions jointly define Condition (C).

• For every subset V of vertices of our graph with at least two elements we have

e∈Eint(V ) a e + e∈E ↑ r>0 (V )
1 ve∈V (a e + r e -1) -

e∈E ↓ (V ) 1 ve∈V r e < 3(|V | -1). (3.1) 
• For every subset V of vertices of our graph not containing the green vertices one has

Eint(V ) a e + e∈E ↓ (V )
1 {ve∈V }∪{re=0} (a e + r e -1) -(r e -1)

+ e∈E ↑ (V ) a e + r e 1 ve / ∈V > 3|V |. (3.2)
The number 3 in the two inequalities is the scaling dimension of the one dimensional spacetime. We denote by E the set of non-green edges of our graph G and write

I G (λ) • • = e∈E L e (z e-, z e+ ) ϕ λ (z 1 )ϕ λ (z 2 ) dz
with z 1 , z 2 the integration variables associated with the two green vertices and dz a shorthand notation for all the integration variables. We denote by V 0 the set of non-green vertices of G. where α = 3|V 0 | -e∈E a e .

The condition (3.1) checks the integrability of the Feynman diagram. It can be understood as proving the integrability on all subsets of variables by selecting a subset V of vertices. It is also an equivalent of the power counting given by [START_REF] Weinberg | High-energy behavior in quantum field-theory[END_REF] on Feynman diagrams. One can see easily that the diagrams that may fail this bound are coming from trees of negative homogeneity. The second condition (3.2) allows to get the correct scaling of λ in the end. This is the reason why the nodes in green which are already scaled in λ are excluded from the subset V .

For a spacetime point z denote by T z the translation operator

h ∈ H → h(• + z) ∈ H
on H; this is an isometry. As one has

d k Π ε z , ϕ λ z (h 1 , . . . , h k ) = d k Π ε 0 , ϕ λ 0 (T z h 1 , . . . , T z h k ) the mirror graph of E d k Π ε 0 , ϕ λ 0 provides a z-independent upper bound for the norm of E d k Π ε z , ϕ λ z .
It is then for instance elementary to check that the mirror graph associated to

d |τ | ζ Π ε z τ, ϕ λ z satisfies conditon (C) for every τ ∈ B -. One first notices that d |τ | ζ Π ε z τ = d |τ | ζ Π ε z τ, a consequence of the fact that Π ε z τ -Π ε
z τ has a number of noises strictly smaller than |τ | ζ . One gets as a direct consequence of Theorem 2 the following result.

Corollary 3 -One has for all 0 < λ ≤ 1 and every τ ∈ B -the estimates

d |τ | ζ Π ε z τ, ϕ λ z λ |τ | ,
for an implicit multiplicative constant independent of ε > 0 and z.

Proof -The condition (3.1) is satisfied due to the fact one does not see any subdivergence in a full mirror graph without contraction. For the second bound (3.2) one can proceed by induction on the construction of the diagram as in Section 4 in [START_REF] Bruned | Convergence of space-discretised gKPZ via Regularity Structures[END_REF]. The result is straightforward for a product of diagrams. (By product of diagrams we mean identifying the green vertices of two graphs G 1 and G 2 .) The most difficult part is the integration of a diagram that is the adjunction of new green vertices that are connected to the old ones (which are no longer green vertives). The new edges have their node v e equal to zero and the r e is bigger to the homogeneity of the half diagram used for constructing the mirror graph. This operation correspond to the recentering operation in the model -see (2.6). One observes that the correct choice of r e allows to get the bound (3.2). The proof here is easier than the proof in [START_REF] Bruned | Convergence of space-discretised gKPZ via Regularity Structures[END_REF] as there are no ρ ε ⋆ ρ ε edges in the complete mirror graph. The quantity α = 3|V 0 | -e∈E a e is indeed equal to |τ | in that case. Proof -Pick τ ∈ B -. Note first that the k = 3 case is trivial as it concerns only the trees with four noises, in which case the third Malliavin derivative of Π ε z τ has only one noise and null expectation. We are thus left with the 0 ≤ k ≤ 2 cases. We consider the different cases in three steps. Recall that

Proof of convergence

(Π ε z τ )(y) = σ≤τ (g ε z ) -1 (τ /σ) (Π ε σ)(y). (3.4) 
(a) Case σ = τ and k = 0. In the sum (3.4), the term σ = τ has null mean from the fundamental property (2.3) of the BHZ renormalization map.

(b) Case 1 < σ < τ . Both τ /σ and σ contain at least one noise in that case. The terms that need to be controlled are given by 1<σ<τ

E (g ε z ) -1 (τ /σ) (Π ε σ)(y) . (3.5) 
When one considers a tree τ with four noises it means that τ /σ and σ can contain at most three noises. In this case the only possible subtrees of negative homogeneity with at least two noises are , , , , .

The first two terms are of homogeneity (-1) -whereas the last three terms are of homogeneity 0 -. They appear as subtrees of some other trees σ with other branches attached to them for trees σ of the form τ1ΞI(Ξτ2), I1(Ξτ1)I1(Ξτ2), I(Ξτ1)I1(Ξτ2), ΞI(τ1I1(Ξτ2)), I1(Ξ)I1(τ1I1(Ξτ2))

where τ1 or τ2 could be the empty tree. The tree τ1τ2 contains at most one noise. Note that the diverging subtrees of (3.6) have at most one incoming edge when seen as a subset of σ.

We briefly explain in a situation where σ = I1(Ξ)I1(ΞI(Ξ)) and τ /σ = I(Ξ) how such a renormalization works via a mere telescopic sum. The other cases are similar and left to the reader. We start by considering

(g ε z ) -1 (τ /σ) (Π ε σ)(y) instead of (g ε z ) -1 (τ /σ) (Π ε z σ)(y).
We will see below how the second term builds upon the first. After applying the expectation operator on (g

ε z ) -1 (τ /σ) (Π ε σ)(y) one gets, among various diagrams, a diagram of the form G y (3.8)
where G is a convergent diagram corresponding to the pairing of τ /σ with the deeper noise Ξ in σ. Let mention here that the other diagrams are fine as they will not contain a subgraph that fails condition 3.1; we come back on that point later in the proof. To make the following explanations more visual it will be useful to trade our notation • for the spacetime convolution operator with ρ ε ⋆ ρ ε for a purple edge. The point z is the integration variable associated to the root of the subtree with negative homogeneity. The subdivergent diagram is given by

y = K ′ (y -z1)K ′ (y -z2)(ρ ε ⋆ ρ ε )(z1 -z2)dz1dz2.
(c) Case k = 1. One looks at trees with three noises and the divergence are of same nature as in the case k = 0 and τ = σ. The only difference is that we have to work with a mirror graph as a noise Ξ has been replaced by its Malliavin derivative.

(d) Case k = 2. The trees in the regularity structure which have diverging subtrees in B -have the same form as in (3.7) but now τ1τ2 is at most a product of two planted trees as we consider only trees with four noises. Note that these diverging diagrams have at most two incoming edges.

We now explain on the example of the tree I1(Ξτ1)I1(Ξτ2) how such a renormalization works via a mere telescopic sum. One deals with the other terms of the list (3.7) in exactly the same way. Indeed one gets the following diagram for E (Π ε I1(Ξτ1)I1(Ξτ2))(y)

h 1 h 2 y (3.11)
where here, without loss of generality, we have supposed that τ1 = I(Ξ1) and τ2 = I(Ξ2). We recognise the same subdivergent diagram but this time, we have two incoming edges. We proceed with several telescopic sums as below

h 1 h 2 y = h 1 h 2 y (z 2 , 2) + h 1 h 2 y + h 1 h 2 y (3.12)
The first term is well-defined as the edge decoration (z2, 2) means a kernel of the form

K(z1 -z3) -K(z2 -z3) -(x1 -x2)∂K(z2 -z3)
that behaves like (x1 -x2) 2 when z1 is close to z2. This is sufficient for making sense of the first term in (3.12) when the ε-regularization is removed. More precisely, one can check the bounds (3.1). The orange line is encoding a multiplicative term of the form (x2 -x1)

y = (x2 -x1)K ′ (y -z1)K ′ (y -z2)(ρ ε ⋆ ρ ε )(z1 -z2)dz2dz1.
Note that this term is equal to zero when the mollifier ρ is symmetric. The last two terms in (3.12) are still ill-defined and one has to move the two edges to the root. One gets Then we apply the same reduction to the last term and obtain Repeating the operation, one has in the end The reader may wonder why we did not directly moved the edges toward the base point z. Actually the blue line corresponding to the mollifier can be understood as being as singular as a Dirac mass at a first approximation and therefore it is a sub-divergence of order 0. By adding the red line it becomes well-defined and if there is no incoming edge on the node associated with the variable z one can perform the convolution and say that K ⋆ ρ ε ⋆ ρ ε has the same behaviour as K. for an implicit multiplicative constant independent of ε.

We know from Theorem 10.7 of [START_REF] Hairer | A theory of regularity structures[END_REF] that the convergence of the BHZ model to a limit admissible model follows from estimates of the form

Π ε z τ -Π ε ′ z τ , ϕ λ z L 2 (Ω) o ε∨ε ′ (1) λ |τ | , (3.14) 
for τ ∈ B -. To prove these bounds from the previous bounds we note that the scaling bound (3.3) from Proposition 4 holds if the kernel K behaved not as |z| -1 s , as z goes to 0, but as |z| -1-η s , for η > 0 small enough. Recall from Proposition 10.17 of [START_REF] Hairer | A theory of regularity structures[END_REF] the bound

|||ρ ε ⋆ ρ ε -ρ ε ′ ⋆ ρ ε ′ ||| 3+η,1 max(ε, ε ′ ) η .
(3.15)

As in Section 5.2 of Hairer & Pardoux work [START_REF] Hairer | A Wong-Zakai theorem for stochastic PDEs[END_REF] one can decompose

Π ε z τ -Π ε ′
z as a telescopic sum where we replace one after the other the ζ ε by the ζ ε ′ . This amounts to replacing some convolution operators with ρ ε by the corresponding convolution operator with ρ ε ′ , so the corresponding term in the telescopic sum involves the difference of two terms that differ at only one place. We gain the o ε∨ε ′ (1) term in (3.14) from using the estimate (3.15) for this edge while repeating the proof of (3.13). We leave the details to the reader.

We note that it is straightforward to adapt the present work to prove the convergence of the BHZ model associated with a system of generalized (KPZ) equations, such as the system describing the random motion of a rubber on a manifold [START_REF] Bruned | Geometric stochastic heat equations[END_REF].

  , . . . , ζ) of ζ. This is where working with random distributions ζ saves the day. While the random variable ω → P ζ(ω), . . . , ζ(ω) does not make sense one can construct in a consistent way a random variable, suggestively denoted here ω → P (ζ, . . . , ζ)(ω), that plays the role of P ζ(ω), . . . , ζ(ω) . This is what renormalization is about and the collection ζ(ω) of all the random variables P (ζ, . . . , ζ)(ω) needed in the analysis of a given equation is called the enhanced noise. On a technical level the above polynomial expressions of the noise come under the form of models over a regularity structure. 3. Replacing the formal quantities P ζ(ω), . . . , ζ(ω) by the renormalized quantities P (ζ, . . . , ζ)(ω)

Theorem 2 -

 2 If our graph G satisfies assumption (C) then there exists a constant c depending only on G |I G (λ)| ≤ cλ α e∈E K e ae,1

Proposition 4 -≤

 4 There exists a positive finite constant C such that one has for all τ ∈ B -and 0 ≤ k ≤ |τ | ζ -1, and all test functions ϕ of a given regularity and support in the parabolic ball of radius 1/2, the bound E d k Π ε z τ, ϕ λ z Cλ |τ | . (3.3)

2 y

 2 The terms (• • • ) are well-defined with the correct Taylor expansions added. The other terms correspond exactly to the counter-terms that are removed by the BPHZ renormalization. Indeed if we apply a 'local product' R(y) depending possibly on the spacetime point one hasR(y) I1(Ξτ1)I1(Ξτ2) = I1(Ξτ1)I1(Ξτ2) + ℓ(I1(Ξ)I1(Ξ))(y)τ1τ2 + ℓ(I1(ΞX)I1(Ξ))(y)D (τ1τ2) .

  where ℓ(I1(Ξ)I1(Ξ))(y) =y , ℓ(I1(ΞX)I1(Ξ))(y) =y Extraction elsewhere in the trees is not possible as τ1 and τ2 may contain only the noises Ξ1 and Ξ2. For controlling the quantity E Π ε z I1(Ξτ1)I1(Ξτ2), ϕ λ z one has to check that the recentering bounds are not modified by the telescopic sum. This is verified in Proposition 5.4 and 5.7 in[START_REF] Bruned | Convergence of space-discretised gKPZ via Regularity Structures[END_REF].

Corollary 5 -

 5 Given the results of Corollary 3 and Proposition 4 the following fact follows as a consequence of Stroock formula One has for all 0 < λ ≤ 1 and every τ ∈ B -the estimates

We compensate the subdivergence in (3.8) by a Taylor expansion on some incoming edge. We use a telescopic sum to make appear this renormalisation The first term is well defined as the decoration (z, 2) means a kernel of the form K(z1 -z3) -K(y -z3) -(x1 -x)∂K(y -z3) that behaves like (x1 -x) 2 when z1 is close to y = (t, x). For the first term of (3.9) one can check the integrability condition (3.1) or apply alternatively Lemma 10.14 of [START_REF] Hairer | A theory of regularity structures[END_REF] on the spacetime convolution of singular kernels with singularity at 0 of the form • -a s . In the third term of (3.9) the orange line is encoding a term of the form (x1 -x)

Now the two problematic terms are the last two terms of (3.9). They are removed by the renormalization. Indeed one has R(y)σ = σ + ℓ(I1(Ξ) 2 )(y) I(Ξ) + ℓ(I1(Ξ)I1(XΞ))(y) I1(Ξ) by using the definition of R given by (2.4). Then we conclude by noticing that

(We kept track of the point y in the above computations to stress that the formulation is robust in the non-translation invariant case. In this case we obtain renormalization functions instead of renormalization constants. We could have removed the dependency in y.) One can observe that the telescopic sums are a local procedure that detaches incoming edges from a diverging subgraph associated in fact to a subtree of negative homogeneity. These edges are therefore attached to the root of the diverging subtree and then we obtain a diverging constant that could be detached if one has translation-invariance. Moreover one has also the same changes in the decorations provided by the order of the telescopic sum. One gets in the end a one to one correspondance with the procedure of extraction/contraction of a subtree given by R. This has been previously observed in [START_REF] Bruned | Convergence of space-discretised gKPZ via Regularity Structures[END_REF].

It remains to check that the diagrams have the good scaling in λ by looking at the correct quantity which is (g ε z ) -1 (τ /σ) (Π ε z σ)(ϕ λ z ). We can perform the same telescopic sum with a priori recentering on some of the edges. One has a new telescopic sum given by

where z0 = (t0, x0). Now (3.9) becomes

where z0 is a green vairable coming from ϕ λ z . From Corollary 3, one can deduce that the right hand side satisfies (3.2) but may a priori fail (3.1) due to sub graphs coming from subtrees of negative homogeneity. From Proposition 5.7 in [START_REF] Bruned | Convergence of space-discretised gKPZ via Regularity Structures[END_REF] one sees that recentering bounds are preserved for this transformation. Then, this implies by Proposition 5.4 in [START_REF] Bruned | Convergence of space-discretised gKPZ via Regularity Structures[END_REF] that the bounds are also satisfied for the other terms of (3.12) if one includes the correct recentering which is coming from (3.4). Indeed in the telescopic sum we can move along the way the recentering -see beginning of Section 5 in [START_REF] Bruned | Convergence of space-discretised gKPZ via Regularity Structures[END_REF]. The crucial point is to have r ′ ≥ r which always happens in the diagrams we have to treat. The second term above is well recentered with the same length of the Taylor expansion as the right hand side. The third term does not need any recentering due to the extra derivative added. We let apart a number of diagrams to concentrate on diagram that have the form (3.8). For other trees, one may have some recentering inside the sub divergent graph. In that case, it is removed at the end in order to make appear the renormalisation constant. The condition (3.2) is easily satisfied on the extra terms produced -see Proposition 5.10 in [START_REF] Bruned | Convergence of space-discretised gKPZ via Regularity Structures[END_REF]. One moves from (g ε z ) -1 (τ /σ) (Π ε σ)(ϕ λ z ) to (g ε z ) -1 (τ /σ) (Π ε z σ)(ϕ λ z ) by collecting the correct recentering in (3.5).

Such reasoning works the same when we apply one or two Malliavin derivatives as they commute with the model by replacing noises of type Ξ by Ξ1 and Ξ2, from Lemma 1.