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Mean field singular stochastic PDEs

We study some systems of interacting fields whose evolution is given by singular stochastic partial differential equations of mean field type. We provide a robust setting for their study leading to a well-posedness result and a propagation of chaos result.

-Introduction

Let (ξ i ) i≥1 stand for a sequence of independent, identically distributed, random spacetime distributions on the 2-dimensional torus T 2 . We will denote by (Ω, F , P) the probability space on which these random variables are defined. We assume that the ξ i are almost surely continuous functions of time with values in the space of (α -2)-Hölder regular distributions over T 2 , with 2/3 < α < 1, with null spatial mean. The archetype of such a noise is given by (the time independent) space white noise. We study a system of interacting fields whose evolution is given by the following system of 'singular' stochastic partial differential equations (SPDEs)

(∂ t -∆)u i = f (u i , µ n t ) ξ i t + g(u i , µ n t ), ( 1 
≤ i ≤ n), (1.1) 
where

µ n t • • = 1 n n i=1 δ u i t
is the running time empirical measure of the system -a probability measure on a function space. Some (possibly random) initial conditions in that function space are given. Recall the rule of thumb: One can make sense of the product of two distributions with given Hölder regularities if and only if the sum of their regularity exponents is positive. The term 'singular' in the expression 'singular SPDE' refers to the fact that the regularity of the noise is too low for the regularizing effect of the heat resolvent to give sufficient regularity to the u i to make sense of the products f (u i , µ n t ) ξ i . The diffusivity term f (u i , µ n t ) is expected to have at best parabolic regularity α, while the product f (u i , µ n t ) ξ i is well-defined if and only if α + (α -2) > 0. This condition does not hold in our case where α < 1. The settings of regularity structures and paracontrolled calculus have been developed in the last ten years to deal precisely with this kind of problem and one can indeed use either of them to make sense of equation (1.1) as an equation of the form (∂ t -∆)u = f(u) ξ [1,n] + g(u), (1.2) for some n-dimensional unknown u and noise ξ [1,n] , and identify conditions on f and g under which (1.2) has a unique solution over a given time interval. This way of proceding does not take profit from the specific structure of the mean field type equation (1.1). It is in particular unclear how to prove a propagation of chaos result for the interacting field system from this point of view. The necessity of a point of view tailor-made to mean field-type dynamics gets even clearer if one looks at what should most naturally be the limit dynamics of a given field of system
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(1.1) when n tends to ∞, say the field with label i = 1. Based on symmetry/exchangeability considerations this field is expected to be a solution of the equation

(∂ t -∆)u = f (u, L(u t )) ξ + g(u, L(u t )), (1.3) 
where L(u t ) stands for the law of the random variable u t and ξ stands for a random distribution with the same law as the ξ i . Our first aim in this work is to develop a setting within which one can make sense of system (1.1) and equation (1.3) in a unified way, for a large class of spacetime noises ξ.

Denote by z and z ′ generic spacetime points. The choice of functions f and g in equations of the form (1.1) and (1.3) is guided by the physics of the phenomenon modeled by system (1.1).

To make things concrete we consider in this introduction the case where f (u, µ) and g(u, µ) depend linearly on their measure argument and are of the form

z → F u(z), v(z ′ ) k(z, z ′ )dz ′ µ(dv) = E F u(z), V (z ′ ) k(z, z ′ )dz ′ (1.4)
for u a function on T 2 , for a random function V with law µ and a real-valued function F on R 2 . Think of the kernel k as a parameter that captures the range of the interaction between the different fields in the system, with extreme cases k(z, z ′ ) = 1 and k(z, z ′ ) = δ z (z ′ ), and intermediate cases represented by C 2 kernels for instance. The physics behind the two extreme cases is very different and we will technically deal with them in a different way. We will be able to work with functions that depend polynomially on their measure argument. Our main result reads informally as follows. We fix some initial conditions. So there is propagation of chaos for system (1.1), with mean field dynamics given by the mean field type equation (1.3).

While equation (1.3) and system (1.1) share the common feature of being singular, in the sense that they involve some ill-defined products, the mean field interaction in (1.3) causes a different kind of problem. A close situation was studied by Bailleul, Catellier & Delarue in their analysis of mean field type random rough differential equations [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]. We design in the present work an approach similar to [START_REF] Bailleul | Solving mean field rough differential equations[END_REF] for the study of equation (1.3), using the language of paracontrolled calculus to build our setting. The original form of paracontrolled calculus was introduced by Gubinelli, Imkeller & Perkowski in [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]; one can find a nice short account of the basics of paracontrolled calculus in Gubinelli & Perkowski's lecture notes [START_REF] Gubinelli | Lectures on singular stochastic PDEs[END_REF]. Recall that we work with a noise with null spatial mean. Denote by ω ∈ Ω a generic chance element and write X(ω) for -(∂ t -∆) -1 (ξ(ω)), and X for an independent copy of the random variable X. As in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF] we use a notion of paracontrolled field that is tailor made to capture not only the paracontrolled structure of u needed to make sense of its product with ξ but also of the structure needed to describe the mean field specific spacetime function

(t, x) → f u t , L(u t ) (x).
This comes under the form of a definition saying that a random field u(ω) is ω-paracontrolled by a reference field X(ω) of parabolic Hölder regularity α if one has almost surely

u(ω) ≃ P (δzu)(ω) X(ω) + E P (δµu)(ω,•) X(•) (1.5)
up to a remainder of parabolic regularity 2α, for some random functions (δ z u)(ω) and (δ µ u)(ω, •) that depend on ω and an additional independent chance element that is averaged out in the E expectation, where X(•) = (∂ t -∆) -1 (ξ(•)) and ξ has the same law as ξ and is independent of ξ, and • stands for the chance element argument. A precise definition, conveying in particular the meaning of the notations δ z u, δ µ u, is given in Section 4.2. This definition will play a key role in our construction of a robust setting where to make sense of equation (1.3) and prove a well-posedness result for it.

Setting up a framework for the study of a given singular stochastic PDE driven by a random noise ξ(ω) usually requires that we enhance the noise with the additional datum of quantities that do not make sense analytically ω-wise. In the archetypal example of the 2-dimensional parabolic Anderson model equation

(∂ t -∆)v = vξ,
where ξ is a space white noise that is almost surely of space Hölder regularity -1 -η for all η > 0, enhancing the noise consists in building a random variable that plays the role of the ω-wise ill-defined product of ξ(ω) and ∆ -1 (ξ(ω)). This random variable, suggestively denoted by ξ∆ -1 (ξ) (ω), is given by the L 2 (Ω, P) limit of the renormalized regularized quantity

ξ ε ∆ -1 (ξ ε ) -C ε ,
where ξ ε stands for a smooth regularization of ξ that converges to ξ in the space of distributions with Hölder regularity -1 -η, and C ε is an explicit constant that diverges to +∞ as a multiple of |log ε|. The fact that the naive approximation ξ ε ∆ -1 (ξ ε ) is not converging leads to the interpretation of the solution v to the parabolic Anderson model equation as a limit in probability of solutions v ε to the renormalized equation

(∂ t -∆)v ε = v ε ξ ε -C ε v ε ,
rather than as a limit of solutions to the parabolic Anderson model equation driven by the regularized noise ξ ε . We talk in this setting of the pair of random variables (ξ, ξ∆ -1 (ξ)) as an 'enhanced noise'. A richer enhancement of the noise ξ is needed in the analysis of the mean field equation (1.3). Not only do we need to add the random variable ξ∆ -1 (ξ) (ω) to our notion of enriched noise, but the description (1.5) of an ω-controlled field should make it plain that we also need to add a doubly random variable that plays the role of the analytically ill-defined product of ξ(ω) and (∂ t -∆) -1 (ξ(̟)), where (ω, ̟) ∈ Ω 2 and we work with the product probability P ⊗2 on (Ω 2 , F ⊗2 ). Luckily, the independence of ξ and ξ allows to define a doubly random variable ξ(∂ t -∆) -1 (ξ) (ω, ̟) as the L 2 (Ω 2 , P ⊗2 ) limit of the regularized quantity

ξ ε (∂ t -∆) -1 (ξ ε )
without the need of any renormalization. This will lead us to the interpretation of a solution to equation (1.3) as the limit in probability as ε > 0 goes to 0 of the solution u ε to the renormalized equation

(∂ t -∆)u ε = f (u ε , L(u ε t )) ξ ε -C ε (f f ′ ) u ε , L(u ε t ) + g(u ε , L(u ε t ))
, where f ′ stand for the derivative of f with respect to its first argument.

Organization of this work. We treat the elementary case of systems (1.1) and equation (1.3) with additive noise (f = 1) in Section 2. Very robust results can be obtained in this simple setting, leading in particular to a simple proof of propagation of chaos for the corresponding system of interacting fields for an essentially arbitrary random noise with values in C T C α-2 . No tools from paracontrolled calculus are needed to deal with this case. We use the language of paracontrolled calculus to study more general equations or systems. We recall what we need from this domain in Section 3.1 and study equation (1.3) in the simple setting of a diffusivity with form (1.4) and C 2 kernel k in Section 3.3. The notion of mean field enhancement of the noise is introduced in Section 4.1, with an associated notion of paracontrolled structure described in Section 4.2. The well-posed character of equation (1.3) is the object of Section 4.3. The quantitative regularity result that we obtain for the solution u of equation (1.3) as a function fo the enhanced noise entails in Section 5 a propagation of chaos result for system (1.1).

Notations. We gather here a number of notations that we will use frequently.

-We fix some regularity exponents 2 3 < β < α < 1.

-For γ ∈ R, we denote by C γ = C γ (T 2 ) the Besov space B γ ∞∞ (T 2 ), with norm • γ . For any Banach space E and γ ≥ 0 we set

C γ T E • • = C γ ([0, T ], E) and write L ∞ T E for L ∞ ([0, T ]; E).
We will also need the parabolic Hölder space

C α T on [0, T ] × T 2 , which is isometric to C α/2 T L ∞ (T 2 ) ∩ C T C α (T 2
) equipped with its natural norm. We will denote (P t ) t≥0 the semigroup generated by the Laplace-Beltrami operator ∆ on an ad hoc function space. Recall the elementary estimate

P t u C γ+δ T t -δ/2 u C γ , for δ > 0 and 0 < t ≤ T .
-We denote by L p (Ω, E) the space of E-valued random variables in L p (Ω, F , P).

-For an integrability exponent 1 ≤ p < ∞ we denote by P p (E) the set of probability measures on E that has a moment of order p and by W p,E the p-Wasserstein metric on P p (E). We define a distance on

L ∞ T P p (C α ) setting d L ∞ T W p,C α (µ, µ ′ ) • • = sup t∈[0,T ] W p,C α (µ t , µ ′ t ).
-We denote by L(Z) the law of a random variable Z.

-For a measure µ on a metric space E and φ ∈ C b (E) write µ(φ) for φ dµ.

-Additive noise

Fix 0 < T 0 < ∞ and 1 ≤ p < ∞. Let ζ ∈ C T0 C α-2 be an arbitrary random element. Following Coghi, Deuschel, Friz & Maurelli [START_REF] Coghi | Pathwise McKean-Vlasov theory with additive noise[END_REF] we begin our work by studying the case of a mean field type equation with additive noise

(∂ t -∆)u = ζ + g(u, L(u t )) (2.1)
and random initial condition u 0 , assuming that the random variable

(ζ, u 0 ) is an element of L p Ω, C T0 C α-2 × C α .
No singular product is involved in the study of this equation and we will be able to solve it with classical tools. We prove in Section 2.1 that equation (2.1) is wellposed under proper Lipschitz assumptions on g and that the law of its solution is a Lipschitz continuous function of the law of (ζ, u 0 ) in the Wasserstein p-space. This strong result leads in Section 2.2 to a propagation of chaos result for an associated field system.

2.1 -Additive mean field equation. For µ ∈ P p (C T0 C α ) and t ∈ [0, T 0 ], we write µ t for the image measure of µ in C α by the t-time

coordinate map u ∈ C T0 C α → u t ∈ C α .

Assumption (H

g ) -There exists a constant L such that for every v 1 , v 2 ∈ C α and ν 1 , ν 2 ∈ P p (C α ) we have g(v 1 , ν 1 ) -g(v 2 , ν 2 ) p C α-2 ≤ L p v 1 -v 2 p C α + W p,C α (ν 1 , ν 2 ) p .

-Proposition. Suppose Assumption (H

g ) holds. For any µ ∈ P p (C T0 C α ), u 0 ∈ C α and ζ ∈ C T0 C α-2 the equation (∂ t -∆)u = ζ + g(u, µ) (2.2) with initial condition u 0 has a unique solution u ∈ C T0 C α . Proof -Set Z t := t 0 P t-s (ζ s ) ds
and recall the well-known Schauder type bound

Z CT 0 C α T0 ζ CT 0 C α-2 .
(2.3)

One can rewrite equation (2.2) in integral form

u t = P t (u 0 ) + Z t + t 0 P t-s g(u s , µ s )ds. (2.4)
The estimate (2.3) ensures that the map

Φ : u ∈ C T0 C α → P t (u 0 ) + Z t + t 0 P t-s g(u s , µ s )ds ∈ C T0 C α
is well-defined. For u, u ′ ∈ C T0 C α , using Assumption (H g ) and (2.3), we have

Φ(u) t -Φ(u ′ ) t C α ≤ t 0 P t-s g(u s , µ s ) -P t-s g(u ′ s , µ s ) C α ds ≤ t 0 L u s -u ′ s C α ds.
Denote by ∆ k (0, t) the simplex {0 ≤ s 1 ≤ • • • ≤ s k ≤ t} and write ds for ds 1 . . . ds k . An iteration of the previous bound gives

Φ •k (u) t -Φ •k (u ′ ) t C α ≤ L k ∆ k (0,t) u s k -u ′ s k C α ds ≤ (LT ) k k! u -u ′ CT C α .
The map Φ •k is thus contracting for k large enough, so it has a unique fixed point.

We denote by u µ (ζ, u 0 ) the solution to equation (2.2). We now work with (ζ, u 0 ) random, an element of

L p Ω, C T0 C α-2 × C α .
3 -Proposition. For every µ ∈ P p (C T0 C α ) the law of u µ (ζ, u 0 ) belongs to P p (C T0 C α ).

Proof -Write δ 0 for Dirac distribution on the null function 0. We have from the integral formulation (2.4) the estimate

u µ t C α ≤ C u 0 C α + Z t C α + t 0 g(u µ s , µ s ) C α ds ≤ C u 0 C α + Z t C α + t 0 g(0, δ 0 ) + L u s C α + W p,C α (µ s , δ 0 ) ds ≤ C u 0 C α + Z t C α + T 0 g(0, δ 0 ) C α + T 0 W p,CT 0 C α (µ, δ 0 ) + CL t 0 u s C α ds,
for some positive constant C. We get the inequality

u t C α ≤ C u 0 C α + Z t C α + T 0 g(0, δ 0 ) C α + T 0 W p,CT C α (µ, δ 0 ) e CLt
from Gronwall lemma, from which the conclusion follows.

Set

Ψ : P p (C T0 C α ) × L p (Ω, C T0 C α-2 × C α ) → P p (C T0 C α ) µ, (ζ, u 0 ) → L u µ (ζ, u 0 )
We define a solution to equation ( 

W p,CT 0 C α L(u(ζ, u 0 )), L(u(ζ ′ , u ′ 0 )) g,p,T0 W p,CT 0 C α-2 ×C α L(ζ, u 0 ), L(ζ ′ , u ′ 0 ) . (2.5)
Proof -Fix (ζ, u 0 ) and use the shorthand notation Ψ ζ,u0 (•) for Ψ •, (ζ, u 0 ) . For µ, µ ′ ∈ P p (C T C α ) write u µ and u µ ′ for u µ (ζ, u 0 ) and u µ ′ (ζ, u 0 ), respectively. One has

u µ t -u µ ′ t = t 0 P t-s g(u µ s , µ s ) -P t-s g(u µ ′ s , µ ′ s ) ds, and 
u µ t -u µ ′ t p C α ≤ C t 0 u µ s -u µ ′ s p C α + W p µ [0,s] , µ ′ [0,s] p ds,
for some constant C, so we get from Gronwall lemma the estimate

W p,CtC α L(u µ [0,t] ), L(u µ ′ [0,t] ) p ≤ Ce CT0 t 0 W p,CsC α µ [0,s] , µ ′ [0,s] p ds.
A direct iteration gives

W p,CT 0 C α Ψ •k ζ,u0 (µ 1 ), Ψ •k ζ,u0 (µ 2 ) p ≤ (Ce CT0 ) k ∆ k t W p,Cs k C α µ [0,s k ] , µ ′ [0,s k ] p ds ≤ (Ce CT0 ) k 1 k! W p,CT 0 C α µ, µ ′ p , so the map Ψ •k ζ,u0
is contracting for k sufficiently large and equation (2.1) has a unique solution. Let now ζ, ζ ′ ∈ C T0 C α-2 be two noises and u 0 , u ′ 0 ∈ C α be two initial conditions. Pick µ ∈ P p (C T0 C α ) and write u and u ′ for u(ζ, u 0 ) and u ′ (ζ, u 0 ), respectively. We can assume without loss of generality that ζ, ζ ′ , u 0 , u ′ 0 are such that the p-th moment of u -

u ′ CT 0 C α is equal to the p-Wasserstein distance between L(u(ζ, u 0 )) and L(u(ζ ′ , u ′ 0 )). Since u s -u ′ s = P s (u 0 -u ′ 0 ) + Z s -Z ′ s + s 0 P s-r (g(u r , µ r )) -P s-r (g(u ′ r , µ r )) dr,
we have

sup s∈[0,t] u s -u ′ s C α ≤ u 0 -u ′ 0 C α + Z -Z ′ CT C α + C t 0 u s -u ′ s C α ds u 0 -u ′ 0 C α + ζ -ζ ′ CT C α-2 + C t 0 u s -u ′ s C α ds and E sup s∈[0,t] u s -u ′ s p C α p u 0 -u ′ 0 p C α + E ζ -ζ ′ p CT C α-2 + t 0 E sup r∈[0,s] u r -u ′ r p C α ds.
We get the Lipschitz estimate (2.5) from Gronwall lemma.

Note that we do not assume that the noise ζ and the initial condition u 0 are independent.

-Propagation of chaos.

Let now (ζ i , u i 0 ) i≥1 be a sequence of independent, identically distributed, random variables with common distribution the law of (ζ, u 0 ). Denote by (Ω, F , P) the probability space on which this sequence of random variables is defined, with ω ∈ Ω a generic element of Ω. Fix ω ∈ Ω. For an integer n ≥ 1 consider the interacting system of fields u 1,n (ω), . . . , u n,n (ω) with initial conditions u 1 0 (ω), . . . , u n 0 (ω) and dynamics

(∂ t -∆)u i,n (ω) = ζ i (ω) + g u i,n (ω), µ n t (ω) , µ n t (ω) • • = 1 n n k=1 δ u k,n t (ω) , (2.6) 
for 1 ≤ i ≤ n. H. Tanaka [START_REF] Tanaka | Limit theorems for certain diffusion processes with interaction[END_REF] was the first to notice that system (2.6) is actually, for each ω ∈ Ω, an equation of the form (2.1) set on the finite probability space {1, . . . , n} equipped with the uniform probability measure λ n . Following [START_REF] Bailleul | Propagation of chaos for mean field rough differential equations[END_REF], we call this observation 'Tanaka's trick'. Random variables on the space {1, . . . , n} are n-tuples indexed by 1 ≤ i ≤ n. Denote by L λn (X) the law under λ n of an arbitrary random variable X defined on {1, . . . , n}. Denote also by U n : j → j the canonical random variable on {1, . . . , n}. Tanaka's trick says that a solution to the system

(∂ t -∆)u i (ω) = ζ i (ω) + g u i (ω), L λn (u Un(•) (ω)) , ( 1 
≤ i ≤ n)
with parameter ω and chance element i ∈ {1, . . . , n}, is precisely given by the n-tuple u 1,n (ω), . . . , u n,n (ω)

of solutions to the field system (2.6).

Recall that a sequence (µ n ) n≥1 of probability measures on E n , invariant by the action on E n of the permutation group of n elements, is said to be µ-chaotic if for every 1 ≤ k ≤ n and φ 1 , . . . φ k ∈ C b (E), we have

µ n φ 1 ⊗ • • • ⊗ φ k ⊗ 1 ⊗(n-k) -→ n→∞ k i=1 µ(φ i ).
A well-known criterion of µ-chaoticity is given by the convergence in law of the empirical mean of an iid n-sample of µ n to the measure µ itself -see for instance Proposition 2.2 in Sznitman's lecture notes [START_REF] Sznitman | Topics in propagation of chaos[END_REF]. Now the law of large numbers tells us that the empirical mean

1 n n i=1 δ (ζ i ,u i 0 )(ω) converges P-almost surely in W p,CT 0 C α-2 ×C α to L(ζ, u 0 ).
The following fact is thus a consequence of the Lipschitz estimate (2.5) and Sznitman's criterion. In the next statement we write u ∈ L p (Ω, C T0 C α ) for the solution to equation (2.1).

-Corollary.

For any integer k ≥ 1, the law of the k-tuple (u 1,n , . . . , u k,n ) converges weakly to L(u) ⊗k when n tends to ∞.

-Basics on paracontrolled calculus and long range mean field equations

The study of equation (1.3) with a non-constant diffusivity f (•) requires that we use one of the languages that have been developed in the last ten years for the study of a large class of singular stochastic PDEs. The problem involved in this class of equations is best illustrated on the toy example of the parabolic Anderson model equation

(∂ t -∆)u = uξ set on T 2 ,
with ξ a space white noise. Recall ξ has almost surely Hölder space regularity -1 -ε for all ε > 0. One expects from the Schauder estimates satisfied by the resolvent of the heat operator that u has parabolic regularity (α -2) + 2 = α. This regularity is not sufficient for making sense of the product uξ since α + (α -2) < 0. There are at least two languages one can use to circumvent this problem and set a robust solution theory for this equation and a whole class of equations involving the same pathology. We choose to work here with the language of paracontrolled calculus first introduced by Gubinelli, Imkeller & Perkowski in [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. We recall in Section 3.1 the notions and results from paracontrolled calculus that we will use; we refer the reader to [START_REF] Gubinelli | Lectures on singular stochastic PDEs[END_REF][START_REF] Gubinelli | A panorama of singular SPDEs[END_REF][START_REF] Gubinelli | An introduction to singular SPDEs[END_REF] for accounts of the basics on the subject. These results are sufficient to deal with the soft case of a mean field equation (1.3) with diffusivity given by the model function (1.4) with a C 2 kernel k. We deal with that case in Section 3.3 as a warm-up for Section 4.

3.1 -Basics on paracontrolled calculus. We will use the notations h 1 < h 2 and h 1 ⊙ h 2 for the paraproduct and the resonant operators on space distributions h 1 , h 2 , defined from the Littlewood-Paley projectors. From its definition h 1 < h 2 is well-defined for all distributions h 1 , h 2 on T 2 and has high Fourier modes that are modulations of the high Fourier modes of h 2 by low Fourier modes of h 1 . On that ground, it makes sense to think of h 1 < h 2 as a distribution that 'looks like' h 2 . Recall from Lemma 2.4 of [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] that the corrector

C(a, b, c) • • = (a < b) ⊙ c -a (b ⊙ c) has a continuous extension from C 2 × C 2 × C 2 to C α1 × C α2 × C α3 with values in C α1+α2+α3 if α 2 + α 3 < 0 and 0 < α 1 + α 2 + α 3 < 1.
The following continuity estimate from [START_REF] Bailleul | High order paracontrolled calculus[END_REF], Proposition 14 therein, will also be useful. One has

a < (b < c) -(ab) < c C α 2 +α 3 a L ∞ b C α 2 c C α 3 , (3.1) 
for all a ∈ L ∞ , b ∈ C α2 with α 2 in (0, 1) and c ∈ C α3 with -3 < α 3 < 3. (The regularity exponent 3 has no particular meaning; it is purely technical.)

Definition -Pick a reference distribution Λ ∈ C ρ , with ρ ∈ R. A distribution v on T 2 is
said to be paracontrolled by Λ if there exists a positive regularity exponent γ and functions

v ′ ∈ C γ and v # ∈ C γ+ρ such that v = (v ′ < Λ) + v # .
We denote by D γ (Λ) the space of all such couples (v ′ , v # ); it is equipped with the norm

(v ′ , v # ) D γ • • = v ′ C γ + v # C γ+ρ . (3.2) For reference distributions Λ 1 , Λ 2 ∈ C ρ and v 1 = (v ′ 1 , v # 1 ) ∈ D γ (Λ 1 ) and v 2 = (v ′ 2 , v # 2 ) ∈ D γ (Λ 2 ) we set d D γ (v 1 , v 2 ) • • = v ′ 1 -v ′ 2 C γ + v # 1 -v # 2 C γ+ρ .
The expression 'Gubinelli derivative of v' is sometimes used to talk about v ′ . Note that the exponent γ in D γ (Λ) does not refer to the regularity of v but rather to the regularity exponents of v ′ and v ♯ . Indeed the distribution v is C ρ . Let a and b be two functions on T 2 with a ∈ D β (b) for β > 0, with Gubinelli derivative a ′ . Bony's paralinearization result implies that if h stands for a C 3 b function from R into itself then h(a) ∈ D β (b); we denote by h(a) ′ = h ′ (a)a ′ its Gubinelli derivative and by h(a) ♯ its remainder term. (See e.g. Section 2.3 of [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF].)

We will denote by k 1 ≺ k 2 the modified paraproduct on spacetime distributions introduced in Section 5 of [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. It is a parabolic version of the paraproduct operator < that has the same analytic properties in the scale of Besov parabolic function spaces as the operator < in the scale of spatial Besov function spaces. When applied to parabolic distributions

k 1 ∈ C α/2 T L ∞ , k 2 ∈ C T C β the
two paraproducts are related by the continuity relation

k 1 < k 2 -k 1 ≺ k 2 CT C α+β k 1 C α/2 T L ∞ k 2 CT C β . (3.3) 
We further note the useful estimate

(∂ t -∆)(k 1 ≺ k 2 ) -k 1 ≺ (∂ t -∆)k 2 CT C α+β-2 k 1 C α T k 2 CT C β .
(These two results are the content of Lemma 5.1 of [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF].) We use the ≺ paraproduct and a slightly different notion of size to deal with parabolic functions paracontrolled by a reference parabolic function Ξ.

Definition -Pick a reference function

Ξ ∈ C ρ T , with ρ > 0. A parabolic function u on [0, T ] × T 2 is said to be paracontrolled by Ξ if there exists a function u ′ ∈ C β T , with β > 0, such that u # • • = u -u ′ ≺ Ξ ∈ C ρ T and sup t∈(0,T ] t β/2 u # t C β+ρ < +∞.
We denote by D ρ,β T (Ξ) the space of all such couples (u ′ , u ♯ ); it is equipped with the norm

(u ′ , u ♯ ) D ρ,β T • • = u ′ C β T + u # C ρ T + sup t∈(0,T ] t β/2 u # t C β+ρ .
For two reference functions

Ξ 1 , Ξ 2 ∈ C ρ T and u 1 = (u ′ 1 , u # 1 ) ∈ D ρ,β T (Ξ 1 ) and u 2 = (u ′ 2 , u # 2 ) ∈ D ρ,β T (Ξ 2 ) we set d D ρ,β T (u 1 , u 2 ) • • = u ′ 1 -u ′ 2 C β T + u # 1 -u # 2 C ρ T + sup t∈(0,T ] t β/2 u # 1 -u # 2 β+ρ .
3.2 -Noise enhancement and product definition. Fix a positive time horizon T 0 , set

L • • = (∂ t -∆)
and write L -1 for the resolvent operator with null initial condition at time 0. Define

L : C T0 C ∞ × C([0, T 0 ], R) -→ C T0 C ∞ × C T0 C ∞ (ℓ, c) -→ ℓ, L -1 (ℓ) ⊙ ℓ -c .
The letter L is chosen for 'lift'. The space N of enhanced noises is the closure in

C T0 C α-2 × C T0 C 2α-2 of the range of L. As a shorthand notation, for c ∈ C([0, T 0 ], R), we set L c (•) • • = L(•, c). (3.4) 
We denote by

ζ = (ζ, ζ (2) 
) a generic element of N and set here

Z • • = L -1 (ζ) ∈ C α T0 .
The natural norm of ζ as an element of the product space is denoted by ζ . The following statement provides a large class of random noises with a natural enhancement as random element of N. It is proved in Appendix A. We write P t for e t∆ . 6 -Theorem. Let (ξ t ) 0≤t≤T0 stand for a time-dependent Gaussian random distribution on T 2 with covariance of the form E (ξ t , φ)(ξ s , ψ) = c(t, s) ψ ⋆ C, φ L 2 for some distribution C on T 2 . We assume that the Fourier transform of C satisfies for some η < 1 -α the condition | C(k)| |k| η , and that the function c satisfies the inequality

0 ≤ c(t, t) + c(s, s) -2c(s, t) ≤ |t -s| δ for some positive exponent δ. Then one defines a random variable X ⊙ ξ ∈ L 1 (Ω, C T C 2α-2 ) setting X ⊙ ξ)(t) • • = t 0 P t-s (ξ s ) ⊙ ξ t -E[P t-s (ξ s ) ⊙ ξ t ] ds (3.5) One further has X ⊙ ξ ∈ L p (Ω, C T C 2α-2 ) for all 1 ≤ p < ∞ and if ξ ε stands for a space regularization of ξ then L X ε ⊙ ξ ε , E[X ε ⊙ ξ ε ] converges in L p (Ω, C T C 2α-2 ) to X ⊙ ξ as ε > 0 goes to 0.
The end of this section deals with deterministic enhanced noises. The datum of an element of N allows to give a definition of some a priori ill-defined product.

-Definition

. Pick ζ ∈ N and β > 2 -2α and 0 < t ≤ T 0 . Let u ∈ C([0, T ] × T 2 ) be such that for each t ∈ [0, T ] one has u t ∈ D β (Z t ). We define the product u t ζ t as the element of D β (ζ t )
specified by the decomposition

u t ζ t • • = u t < ζ t + (u t ζ t ) # ,
where

(u t ζ t ) # • • = ζ t < u t + u # t ⊙ ζ t + C u ′ t , Z t , ζ t + u ′ t ζ (2) t and (u t ζ t ) # C α+β-2 u D β (Zt) ζ t C α-2 + Z t C α ζ t C α-2 + ζ (2) t C 2α-2 . (3.6) For ζ i = ζ i , ζ i(2) ∈ N, Z i = L -1 (ζ i ) and u i t ∈ D β (Z i t ), with i ∈ {1, 2}, set m • • = max i∈{2,3} ζ i C α-2 , ζ i(2) C 2α-2 , u i t D β (Z i t )
. The proof of the following proposition can be found in [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF], Theorem 3.7 therein.

-Proposition. We have the local Lipschitz estimate

(u 1 t ζ 1 t ) # -u 2 t ζ 2 t # C α+β-2 m d D β u 1 t , u 2 t + ζ 1 -ζ 2 N ,
and the function t

→ u t ζ t is in C T C α-2 for u ∈ D α,β T (X).
The starting point of the next statement is the description for each time of the right hand side of a parabolic equation as a < paracontrolled distribution whenever this makes sense. The statement provides as an outcome a description of the solution of the equation as a ≺ paracontrolled function. This can be read as a kind of Schauder-type estimate in the setting of paracontrolled calculus. See Section 5 of [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] for a proof.

-Proposition. Pick a positive regularity exponent

b. For π ∈ C T C α-2 let Π ∈ C α
T be the solution of the equation (∂ t -∆)Π = π with null initial condition at time 0. Then for every w ′ , w # ∈ C α T such that sup t∈(0,T ]

t β/2 w # t (α-2)+β < ∞ (3.7)
and u 0 ∈ C α , the solution u to the equation

(∂ t -∆)u = w ′ < π + w # , u(0) = u 0 , (3.8) 
belongs to D α,β T (Π) and u ′ = w ′ . We further have the estimate

(u ′ , u ♯ ) D α,β T (Π) u 0 C α + T (α-β)/2 w ′ C α T 1 + π CT C α-2 + sup t∈(0,T ] t β/2 w # t C (α-2)+β .
For different w ′ i , w # i satisfying condition (3.7), initial conditions u i,0 and noises

π i ∈ C T C α-2 , for i ∈ {1, 2}, setting m ′ • • = max i∈{1,2} 1, w ′ i C α T , π i CT C α-2
and denoting by u 1 , u 2 the corresponding solutions to equation (3.8) with corresponding paracontrolled decomposition u 1 , u 2 , we have

d D α,β T (u 1 , u 2 ) u 1,0 -u 2,0 C α + P (m ′ ) T (α-β)/2 w ′ 1 -w ′ 2 C α T + π 1 -π 2 CT C α-2 + sup t∈(0,T ] t β/2 w # 1 (t) -w # 2 (t) C (α-2)+β ,
for some quadratic polynomial P .

-Long range mean field equations.

As a direct application of the results of Section 3.1 we treat in this section a particular case of mean field singular stochastic PDE where the function f in (1.3) has a simple structure. Let a function

F ∈ C 3 b (R 2 , R) and a C 2 b kernel k(z, z ′ )
on the torus T 2 be given, together with a constant β ∈ (2/3, α). For a ∈ C α and µ ∈ P p (C α ) we set in this section

f (a, µ)(z) = C α T 2 F a(z), b(z ′ ) k(z, z ′ ) dz ′ µ(db). (3.9)
This is a linear function of its measure argument. The setting and results of Section 3.1 are sufficient to deal with the mean field equation

(∂ t -∆)u = f (u, L(u t ))ζ + g(u, L(u t )), (3.10) 
when f has the form (3.9) and g satisfies the following Lipschitz condition.

Assumption (A g ) -One has g a 1 , µ 1 -g a 2 , µ 2 C (α-2)+β a 1 -a 2 C α + W p,C α µ 1 , µ 2 .
We first deal with the paracontrolled structure of f (a, µ). Fix t > 0 and some reference function

X t ∈ C α . 10 -Proposition. For a ∈ D β (X t ) and µ ∈ P p (C α ) one has f (a, µ) = f (a, µ) ′ < X t + f (a, µ) # with f (a, µ) ′ (z) = C α T 2 ∂ 1 F a(z), b(z ′ ) k(z, z ′ ) dz ′ µ(db), and 
f (a, µ) # C α+β 1 + X t 2 C α 1 + a ′ C β + a # C α 1 + a ′ C β + a # C α+β .
Furthermore, for

X i t ∈ C α and a i ∈ D β (X i t ), µ i ∈ P p (C α ), for 1 ≤ i ≤ 2, one has f (a 1 , µ 1 ) # -f (a 2 , µ 2 ) # C α+β d D β a 1 , a 2 + W p,C α µ 1 , µ 2 + X 1 t -X 2 t C α , (3.11) 
for an implicit constant that is a polynomial of degree 3 on

max i=1,2 1, a i D β (X i ) , W p,C α (µ i , δ 0 ), X i t C α .
Proof -We paralinearize with respect to the z variable, with z ′ in the role of a parameter in the paraproducts below. We use the shorthand notations

k z ′ (z) • • = k(z, z ′ ), F b(z ′ ) (w) • • = F (w, b(z ′ )).
With these notations one has

F (a, b(z ′ )) = ∂ 1 F (a, b(z ′ )) < a + F b(z ′ ) (a) ♯ = ∂ 1 F (a, b(z ′ ))a ′ < X t + ∂ 1 F (a, b(z ′ )) < a # + ∂ 1 F a, b(z ′ )) < (a ′ < X t ) -∂ 1 F a, b(z ′ ) a ′ < X t + F b(z ′ ) (a) ♯ and f (a, µ) = a ′ T 2 ×C α ∂ 1 F a, b(z ′ ) k z ′ dz ′ µ(db) < X t + T 2 ×C α ∂ 1 F a, b(z ′ ) a ′ < X t k z ′ -k z ′ ∂ 1 F a, b(z ′ ) a ′ < X t dz ′ µ(db) + T 2 ×C α k z ′ ∂ 1 F (a, b(z ′ )) < (a ′ < X t ) -∂ 1 F (a, b(z ′ ))a ′ < X t dz ′ µ(db) + T 2 ×C α k z ′ F b(z ′ ) (a) ♯ dz ′ µ(db) + C α T 2 ∂ 1 F (a, b) < a # k z ′ dz ′ µ(db) = • • a ′ T 2 ×C α ∂ 1 F a, b(z ′ ) k z ′ dz ′ µ(db) < X t + f (a, b) # .
We estimate each term separately to show that the remainder is regular, using commutator type estimates when needed. First, since k z ′ is C 2 b and α + β < 2 we have from (3.1) the continuity estimate

∂ 1 F a, b(z ′ ) a ′ < X t k z ′ -k z ′ ∂ 1 F a, b(z ′ ) a ′ < X t C α+β k z ′ C 2α ∂ 1 F a, b(z ′ ) a ′ C β X t C α k C 2 b 1 + a C α a ′ C β X t C α 1 + X t 2 C α 1 + a ′ 2 C β + a # 2 C α and ∂ 1 F (a, b(z ′ )) < (a ′ < X t ) -∂ 1 F (a, b(z ′ ))a ′ < X t C α+β ∂ 1 F (a, b(z ′ )) C β a ′ C β X t C α 1 + a C α a ′ C β X t C α 1 + X t 2 C α 1 + a ′ 2 C β + a # 2 C α and k z ′ F b(z ′ ) (a) ♯ C α+β F b(z ′ ) C 3 b 1 + a 2 C α 1 + X t 2 C α 1 + a ′ 2 C β + a # 2 C α and ∂ 1 F (a, b(z ′ )) < a # k z ′ C α+β 1 + a C α a # C α+β 1 + X t C α 1 + a ′ C β + a # C α a # C α+β .
Integrating over z ′ and summing we get

f (a, µ) # C α+β 1 + X t 2 C α 1 + a ′ C β + a # C α 1 + a ′ C β + a # C α+β .
We leave the proof of the estimate (3.11) to the reader as it is similar to what is above.

For ζ ∈ N we write Z • • = L -1 (ζ), so Z ∈ C α T .
We emphasize below the fact that u is paracontrolled in the product of f (u t , µ t ) with ζ t by writing f (u t , µ t )ζ t . (A g ) holds and fix 0 < T 0 < ∞. For every initial condition u 0 ∈ C α , for every enhanced noise ζ ∈ N and any µ ∈ P p (C α T0 ) there exists a positive time horizon T ≤ T 0 and a unique solution to the equation

-Proposition. Assume Assumption

(∂ t -∆)u = f (u t , µ t )ζ t + g(u t , µ t ) (3.12) in D α,β T (Z).
This solution is a locally Lipschitz function of u 0 ∈ C α , µ ∈ P p (C α T ) and ζ ∈ N. Proof -Rewrite equation (3.12) as the fixed point equation

u t = P t u 0 + t 0 P t-s f (u s , µ s )ζ s + g(u s , µ s ) ds.
We get from Proposition 10 and Proposition 8 that

f (u s , µ s )ζ s + g(u s , µ s ) is for each s an element of D α (ζ s ) with Gubinelli derivative f (u s , µ s ) and remainder (f (u s , µ s )ζ s ) # + g(u s , µ s ). With Proposition 9 in mind we check that f (u, µ) ∈ C α T0 and (f (u s , µ s )ζ s ) # + g(u s , µ s ) satisfies (3.7). Take u ∈ D α,β T (Z). First one has for (s, x), (t, y) ∈ [0, T 0 ] × T 2 f (u t , µ t )(y) -f (u s , µ s )(x) = T 2 ×C α T F u t (y), v t (z) k(y, z) -F u s (x), v s (z) k(x, z) dzµ(dv) ≤ T 2 ×C α T F u t (y), v t (z) k(y, z) -k(x, z) + F u t (y), v t (y) -F u s (x), v s (x) |k(x, z)| dzµ(dv) T 2 ×C α T |x -y| + u C α T + v C α T |x -y| α + |t -s| α/2 dzµ(dv) 1 + u C α T + W p,C α T (v, δ 0 ) |x -y| α + |t -s| α/2
, so we have the norm estimate 

f (u, µ) C α T 0 1 + Z C α T 0 1 + u D α,β T 0 + W p,C α T 0 (µ, δ 0 ) . Second, one gets for 0 < T ≤ T 0 sup t∈(0,T ] t β/2 f (u t , µ t )ζ t # + g(u t , µ t ) α+β-2 1 + ζ 3 N 1 + u 2 D α,β T + W p,C α T µ, δ 0 . ( 3 
Φ ζ,u0,µ : D α,β T (Z) → D α,β T (Z) which associates to u ∈ D α,β T (Z) the solution w of the equation L w = f (u, µ)ζ + g(u, µ),
with initial condition w 0 = u 0 , is well-defined and satisfies the estimate 

Φ ζ,u0,µ (u) D α,β T u 0 C α + T α-β 2 1 + ζ 3 N 1 + u 2 D α,β T (X) + W p,C α T µ, δ 0 . (3.14) One can then find M = M u 0 α ∨ ζ N ∨ W p,C α T µ, δ 0 and T = T u 0 α ∨ ζ N ∨ W p,C α T µ,
M ′ = M max i=1,2 u 0i C α ∨ ζ i N ∨ W p,C α T µ i , δ 0 . For u D α,β T ≤ M ′ , Proposition 9 tells us that d D α,β T Φ ζ1,u01,µ1 (u 1 ), Φ ζ2,u02,µ2 (u 2 ) u 01 -u 02 C α + T (α-β)/2 d D α,β T u 1 , u 2 + ζ 1 -ζ 2 N + W p,C α T µ 1 , µ 2 . So choosing T small ensures that the map Φ ζ,u0,µ has a unique fixed point u = (u ′ , u ♯ ) which depends in a locally Lipschitz way on u 0 ∈ C α , µ ∈ P p (C α T ) and ζ ∈ N.
Before we can consider the case where ζ is random and formulate a fixed point equation to get µ t = L(u t ) we need a setting where the local solution to equation (3.12) can be turned into a fixed horizon solution. The following statement is a first step to do that. It gives an explosion criterion. It is a small variation on a similar result in Theorem 5.4 of [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF].

12 -Lemma. For every R > 0, the solution u to equation (3.12) is defined up to the time

T * = inf t ≥ 0, u(t) L ∞ ≥ R .
Proof -The existence time T from Proposition 11 is a decreasing function

T = T u 0 C α , ζ N , W p,C α T (µ, δ 0 )
of its arguments. One fixes here ζ and µ and consider T as a function of u 0 C α . We obtain below a constant bound for u C α that is valid as long as

u L ∞ ≤ R. As u CT C α ζ u D α,β T we actually prove that u D α,β T µ, ζ 1 + u 2 CT L ∞ . This is done as follows. Since u ′ t = f (u t , v t ), we have u ′ C β T µ 1 + u C β T .
Yet since u = u ′ ≺ X + u # where u ′ appears as an L ∞ contribution we have

u ′ C β T µ, ζ,R 1 + u # C β T .
We now use the fact that

(∂ t -∆)u # = Φ # (3.15) where Φ # = f (u, µ)ζ -f (u, µ) ≺ ζ + g(u, µ
). The refined paralinearization lemma C.1 from [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] ensures that 

f u ′ ≺ X + u # , µ -f ′ u ′ ≺ X + u # , µ ≺ u ′ ≺ X + u # C α+β µ 1 + u ′ ≺ X 2 C α + u # 2 L ∞ 1 + u # C α+β ζ,µ 1 + u 2 L ∞ 1 + u # C α+β ,
Φ # C α+β-2 ζ,µ 1 + u 2 CT L ∞ 1 + u C α T + u # C α+β ζ,µ 1 + u 2 CT L ∞ 1 + u # C α T + u # C α+β ,
where the constant is a polynomial in ζ N of degree 3. Schauder estimates -Lemma 5.3 of [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF], ensure that

sup 0<t<T t β/2 u # C α+β u0 1 + sup 0<t<T t β/2 Φ # C α+β-2 , (3.16 
)

and u # C α T u0 1 + sup 0<t<T t β/2 Φ # C α+β-2 , (3.17) 
so we have

sup 0<t≤T t β/2 Φ # α+β-2 u0,µ, ζ 1 + u 2 CT L ∞ 1 + sup 0<t≤T t β/2 Φ # C α+β-2 . (3.18)
The coefficient in front of the sup term in the right hand side does not allow a priori to absorb that term in the left hand side. We follow [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] and use a scaling argument to isolate the Φ # terms. Let

(Λ λ u)(t, x) • • = u(λ 2 t, λx) and T 2 λ = R/(2πλ -1 Z) 2 .
We have

(∂ t -∆) • Λ λ = λ 2 Λ λ • (∂ t -∆) and ζ λ • • = λ 2-α Λ λ ζ, ζ λ α-2 ≃ ζ C α-2
, a deterministic estimate, and

u λ • • = Λ λ u is a solution of the equation (∂ t -∆)u λ = λ α f (u λ , µ λ )ζ λ + λ 2 g(u λ , µ λ ).
We now rewrite (3.18) for the rescaled equation, that is replacing f with λ α f and g with λ 2 g, the bound for Φ # becomes for λ ≤ 1

Φ #,λ C α+β- (λ α + λ 2 ) 1 + u λ 2 CT L ∞ 1 + u #,λ C α T + u #,λ C α+β λ α 1 + u λ 2 CT L ∞ 1 + u #,λ C α T + u #,λ C α+β , so sup 0≤t≤T /λ 2 t β/2 Φ #,λ C α+β-2 λ α 1 + u 2 CT L ∞ 1 + sup 0≤t≤T /λ 2 t β/2 Φ #,λ C α+β-2 ,
and choosing λ small enough we finally get after inverse scaling

sup 0≤t≤T t β/2 Φ # C α+β-2 u0, ζ,µ 1 + u 2 CT L ∞ .
In the end we obtain from the estimates (3.16) and (3.17) the bound

u # C α T + sup 0≤t≤T t β/2 u # C α+β u0, ζ,µ 1 + u 2 CT L ∞ .
We are thus looking now for a condition on f that ensures a good control of the L ∞ norm of the solution to equation (3.12). We follow Proposition 3.28 of Cannizzaro, Friz & Gassiat's work [START_REF] Cannizzaro | Malliavin calculus for regularity structures: The case of gPAM[END_REF] and introduce the following assumption to control the L ∞ norm of the solution u to (4.5).

Assumption (B) -There exists a positive constant

C 0 such that f (±C 0 , µ) = 0, g(±C 0 , µ) = 0 for all µ ∈ P p (C α ).
Examples of such functions can be constructed from functions F such that F (•, µ) is compactly supported with a support independent of µ. Alternatively one can think of functions of the form F (c, µ) = F 1 (c)F 2 (µ) with separate variables, with F 1 (±C 0 ) = 0. We now specialize the result of Proposition 11 to the case where ζ is the random enhancement ξ of a random noise ξ provided by Theorem 6. We emphasize that point by writing u ξ for the solution to equation (3.12) in that case. Given ε n > 0 set

c n • • = E[X εn ⊙ ξ εn ].
13 -Lemma. There is a sequence ε n > 0 converging to 0 such that one has u = lim n+∞ u n where u n stands for the well-defined solution in 0, T ( u 0 C α ) of the equation

(∂ t -∆)u n = f (u n (t), µ t )ζ εn t -c n f (u n (t), µ t )f (u n (t), µ t ) ′ + g(u n (t), µ t ) (3.19)
Proof -The enhanced noise ζ is the limit in N of the sequence of enhanced smooth noises

ζ n • • = (ζ n , (X ⊙ ζ) n ) where (X ⊙ ζ) n • • = ζ n ⊙ X n -c n .
So it follows from Proposition 11 that the function u is the limit in C α of the sequence u n where u n is the solution to equation (3.12) with noise ζ n . We have

f ( u n , µ)ζ n + g( u n , µ) = f ( u n , µ) < ζ n + ζ n < f ( u n , µ) + f ( u n , µ) # ⊙ ζ n + C f ( u n , µ) ′ , X n , ζ n ) + f ( u n , µ) X ⊙ ζ n + g( u n , µ) = f ( u n , µ)ζ n -c n (f f ′ )( u n , µ) + g( u n , µ), so u n is a solution of the equation (∂ t -∆) u n = f ( u n (t), µ t )ζ εn t -c n (f f ′ )( u n (t), µ t ) + g( u n (t), µ t )
, and one has indeed u n = u n . 

-Proposition. Under the assumptions (A

g -B), if u 0 L ∞ ≤ C 0 then u ξ is
u D α,β T ζ,u0,µ 1 + u 2 CT L ∞ ξ,u0,µ 1 + C 0
with an implicit multiplicative constant that is polynomial function in ξ N of degree 3.

-Theorem. Fix T 0 > 0. Suppose that f and g satisfy assumptions (A g -B) and pick 1 ≤ p < ∞. There exists a positive time T ≤ T 0 with the following property. For every u 0 ∈ C α there exists a unique solution to the mean field equation (3.10) in L p (Ω, C α T0 . It is a locally Lipschitz continuous function of the initial condition u 0 and the enhanced noise ξ ∈ L 12p (Ω, N). Furthermore u is the limit in L p Ω, C α T0 of the solutions u ε of the renormalized equations

(∂ t -∆)u ε = f u ε , L(u ε (t)) ζ ε -c ε (t)(∂ 1 f f ) u ε , L(u ε (t)) + g u ε , L(u ε (t)) . Proof -Pick 0 < T ≤ T 0 . Write u µ ξ,u0
for the solution to equation (3.12). We define from Proposition 11 a map Ψ ξ,u0 from L p (Ω, C α T ) into itself setting Ψ ξ,u0 (µ) = u µ ξ,u0 .

One has from the estimate (3.14)

u µ ξ,u0 D α,β T u 0 C α + T (α-β)/2 1 + ξ 3 N 1 + u µ ξ,u0 2 D α,β T (X) + W p,C α T µ, δ 0 u 0 C α + T (α-β)/2 1 + ξ 3 N 1 + u µ ξ,u0 1/2 D α,β T (X) 1 + u 0 C α + W p,C α T µ, δ 0 3/2 + W p,C α T µ, δ 0 .

Integrating and using Cauchy-Schwarz inequality we get for

E u µ ξ,u0 2p D α,β T 2 the upper bound u 0 4p C α + T 4pδ 1 + E ξ 12p N E u µ ξ,u0 2p D α,β T 1 + u 0 C α + W p,C α T µ, δ 0 6p + W p,C α T µ, δ 0 4p . So for T = T W p,C α T µ, δ 0 sufficiently small we have E u µ ξ,u0 2p D α,β T 1 2p u 0 C α + T δ 1 + E ξ 12p N 1 4p W p,C α T µ, δ 0 . We have u C α T (1 + X C α T ) u µ ξ,u0 D α,β
T (X) , so we have from Cauchy-Schwarz inequality

E u µ ξ,u0 p C α T 1 p E u µ ξ,u0 2p D α,β T 1 2p 1 + E ξ 2p N 1 2p (3.20) 1 + u 0 C α 1 + E ξ 12p N 1 3p 1 + T δ W p,C α T µ, δ 0 . ( 3 

.21)

Pick A > 0. For M sufficiently big and T = T (M, A) even smaller, for every u 0 ∈ C α with u 0 C α ≤ A, the map Ψ ξ,u0 sends the ball

µ ∈ L p (Ω, C α T ) ; W p,C α T (µ, δ 0 ) ≤ M into itself. Now pick µ 1 , µ 2 in L p (Ω, C α T ), two initial conditions u 01 , u 02 in C α and ξ 1 , ξ 2 in L 12p (Ω, N) such that one has E ξ i 8p N ∨ u 0i C α ≤ A, W p,C α T µ i , δ 0 ≤ M, for 1 ≤ i ≤ 2. Write u i for Φ ξi,u0i (µ i ) and define the random variable R • • = ξ 1 N + ξ 2 N .
We have from the Schauder estimates of Proposition 9

d D α,β T u 1 , u 2 R u 01 -u 02 C α+ T δ ξ 1 -ξ 2 N + d D α,β T (u 1 , u 2 ) + W p,C α T µ 1 , µ 2 R u 01 -u 02 C α+ T δ ξ 1 -ξ 2 N + d D α,β T (u 1 , u 2 ) 1 2 + W p,C α T µ 1 , µ 2
, for some implicit positive multiplicative constant that is a polynomial of R, which is of degree 5, combining Proposition 9, Proposition 10 and Proposition 8. Integrating and using Cauchy-Schwarz inequality we obtain the estimate

E d D α,β T u 1 , u 2 2p 2 u 01 -u 02 4p C α + E ξ 1 -ξ 2 4p N + T 4pδ E d D α,β T u 1 , u 2 2p + W p,C α T (µ 1 , µ 2 ) 4p
, so taking T > 0 deterministic, small enough, independently of u 0i and ξ i , ensures that we have

E d D α,β T u 1 , u 2 2p 2 u 01 -u 02 4p C α + E ξ 1 -ξ 2 4p + T 4pδ W p,C α T (µ 1 , µ 2 ) 4p . We have moreover u 1 -u 2 C α T 1 + X 1 C α T d D α,β T (u 1 , u 2 ) + X 1 -X 2 C α T u 2 D α,β T (X2)
, so we obtain from Cauchy-Schwarz inequality that

E u 1 -u 2 p C α T 2 1 + E[ X 1 2p C α T ] E d D α,β T (u 1 , u 2 ) 2p + E X 1 -X 2 2p C α T E u 2 2p D α,β T (X2) , hence W p,C α T (Ψ(µ 1 ), Ψ(µ 2 )) u 01 -u 02 4p C α + E ξ 1 -ξ 2 4p N + T δ W p,C α T (µ 1 , µ 2
). We conclude that equation (1.3) has a unique local solution u in P p (C α T ), and that the law L(u) ∈ P p (D α,β T (X)) of u depends continuously on ξ ∈ L 12p (Ω, N) and on u 0 ∈ C α . We remark that the integrability exponent 12p in the condition ξ ∈ L 12p (Ω, N) in Proposition 15 comes from both the nonlinearity and the use of the Cauchy-Schwarz inequality when passing from D α,β T to C α T . In the next section we obtain a better exponent 8p as the last step is skipped, working directly in D α,β T . For the class of Gaussian noises of Theorem 6 we have ξ ∈ L q (Ω, N) for all 1 ≤ q < ∞.

-Mean field type singular SPDEs

We deal in this section with a large family of mean field type singular SPDEs (1.3). The enhancement of the noise needed to make sense of (1.3) is specific to the mean field setting and described in Section 4.1. The paracontrolled structure needed to make sense of (1.3) is described in Section 4.2. This structure is proved to be stable by a certain solution map to a fixed point equation (4.5) similar to (1.3) where the measure argument is frozen and has a particular structure. The proper statement and proof of item (a) of Theorem 1 is done in Section 4.3.

4.1 -Mean field enhancement of the noise. We work here as above with the class of random Gaussian noises specified in Theorem 6. The random field ξ is initially defined on a probability space (Ω, F , P). We extend it canonically as a random variable defined on the probability space Ω 2 , F ⊗2 , P ⊗2 setting ξ(ω, ̟) = ξ(ω).

We also define ξ(ω, ̟) • • = ξ(̟); this is under P ⊗2 an independent copy of ξ. For a distribution Λ on T 2 and a positive regularization parameter ε set

Λ ε • • = Λ • e ε∆ ∈ C ∞ .
Recall T 0 stands for the time horizon that we use in our definition of the space of enhanced noises N -the interval [0, T 0 ] is our maximal interval of time. Pick 1 ≤ p < ∞. We define on Ω 2 , F ⊗2 , P ⊗2 the random variable

X • • = L -1 (ξ).

and denote by

ξ ⊙ X ∈ L 8p (P ⊗2 ), the limit of the ξ ε (ω) ⊙ L -1 (ξ ε (̟)) as ε > 0 goes to 0. We have

ξ ⊙ X (ω, •) L 8p (Ω,CT 0 C 2α-2 ) < ∞ and ξ ⊙ X (•, ̟) L 8p (Ω,CT 0 C 2α-2 ) < ∞
for P-almost every ω ∈ Ω and ̟ ∈ Ω. We will use the notation E to denote the expectation operator with respect to ̟ on the product probability space.

-Definition. The mean field enhancement of the random noise ξ is the random variable

ξ + (ω, ̟) • • = ξ(ω), (ξ ⊙ X)(ω), ξ(̟), ξ ⊙ X (ω, ̟) ∈ N 2 ,
defined on Ω 2 , F 2 , P ⊗2 . We define on (Ω, F , P) the random variable

ξ + ω • • = ξ(ω) CT 0 C α-2 + ξ (2) (ω) CT 0 C 2α-2 + E ξ(ω, •) 4 CT 0 C α-2 1 4 + E (ξ ⊙ X)(ω, •) 4 CT 0 C 2α-2 1 4 . (4.1)
This is an element of L 8p (Ω, R) -it actually has moments of any finite order. 

δ z v : Ω → C β and δ µ v : Ω → L 4 3 Ω, C β and v ♯ : Ω → C α+β such that one has v(ω) = (δ z v)(ω) < Λ(ω) + E (δ µ v)(ω, •) < Λ(•) + v ♯ (ω) (4.2)
for P-almost all ω ∈ Ω, and

δ z v L 2 (Ω) + δ µ v L 2 (Ω) + v ♯ L 2 (Ω) < ∞.
We simply say that v is paracontrolled by Λ. We first check that the datum of a mean field enhancement ξ + of the random noise ξ comes with a natural definition of the product of ξ by a random function v ∈ C T C α with the property that v t is paracontrolled by X t for each 0 < t ≤ T . To emphasize the fact that we use the paracontrolled structure of v to make sense of that product we write v t ξ t , using a bold letter v. Set then

(v t ξ t )(ω) • • = v t (ω) < ξ t (ω) + (v t ξ t ) ♯ (ω)
where

(v t ξ t ) ♯ (ω) • • = ξ t (ω) < v t (ω) + v # t (ω) ⊙ ξ t (ω) + C (δ z v)(ω), X(ω), ξ t (ω) + E C (δ µ v)(ω, •), X(•), ξ t (ω) + (δ z v)(ω)ξ (2) t (ω) + E (δ µ v)(ω, •) ξ ⊙ X (ω, •) .
The proof of the next statement comes from standard continuity estimates on paraproducts and correctors and from Hölder inequality in the expectation E; it is left to the reader.

-Proposition. One has P-almost surely vξ

∈ C T C α-2 and (v t ξ t ) # (ω) C α+β-2 1 + ξ + 2 ω (δ z v)(ω) C β + E δ µ v 4 3 C β 3 4 + v # (ω) C α+β .
Furthermore, for two enhanced noises ξ 1+ , ξ 2+ in our class, and with

v i ∈ C T C α with v i t paracontrolled by X i t , for integers 1 ≤ i ≤ 2, for each 0 < t ≤ T , one has (v 1 t ξ 1 t ) # (ω) -(v 2 t ξ 2 t ) # (ω) C α+β-2 (⋆) 12 (ω) δ z v 1 -δ z v 2 C β + E δ µ v 1 -δ µ v 2 4 3 C β 3 4 + v 1# -v 2# C α+β + ξ +1 -ξ +2 ω , where (⋆) 12 (ω) = P max i∈{1,2} ξ +i ω , δ z v i C α , E δ µ v i 4 3 C α 3 4 , v #i C α+β ,
for some quadratic polynomial P .

For a noise ξ ∈ C T C α-2 in our class of noises we set

X • • = L -1 (ξ) ∈ C α T . Fix t > 0.
We prove now that the class of random functions on T 2 paracontrolled by X t is stable by a certain family of nonlinear functions f : C α × W p (C α ) → C α . This comes under the form of a paralinearization formula. Our primary goal is to give a useful description of the random variable f (v t , L(v t )) when v t is paracontrolled by X t . For that purpose it will be useful to lift any function f : C α × W p (C α ) → C α into a real valued function on C α × L p (Ω, P; C α ) setting, with a slight abuse of notation,

f (v, A) • • = f v, L(A) ,
for A ∈ L p (Ω, P; C α T ). We assume in this work that f depends polynomially on its measure argument

f (u, µ)(z) = F u(z), v 1 (z), . . . , v m (z) µ ⊗m (dv 1 . . . dv m ) (4.3)
for some integer m ≥ 1, for a function F : R m+1 → R of class C 3 b -or is a linear combination of such monomials. With m = 1, and compared to the long range interaction (3.9) studied in Section 3.3, this function corresponds to a pointwise singular Dirac kernel

k(z, z ′ ) = δ z (z ′ ).
It will be useful to work on the probability space (Ω m+1 , F ⊗(m+1) , P ⊗(m+1) ) and write

(ω, ω 1 , . . . , ω m )
for an element of Ω m+1 . We set E i for the expectation operator with respect to the variable ω i and for I = (i 1 , . . . , i k ) a subset of the integer interval [[1, m]] we write E I for the expectation operator with respect to the variables (ω i1 , . . . , ω i k ). In those terms, and for A ∈ L p (Ω, P; C α T ) and µ = L(A), one has

f (v, µ)(z) = f (v, A)(z) = E [[1,m]] F v(z), A(ω 1 )(z), . . . , A(ω m )(z) . As F ∈ C 3 b ⊂ C 1 b one has F (v, A(ω 1 ), . . . , A(ω m ) C α 1 + v C α + m j=1 A(ω j ) C α , and as A ∈ C α is integrable the function f (v, A) on T 2 is indeed an element of C α . For i ∈ [[1, m]] we set ∂ i f (v, A)(z) • • = E [[1,m]] (∂ i F ) v(z), A(ω 1 )(z), • • • , A(ω m )(z) .
20 -Proposition. Fix t > 0 and assume we are given two L 8p (Ω, D α (X t )) random variables (h ′ , h ♯ ) and (k ′ , k ♯ ) with corresponding C α functions h, k on T 2 . Then f (h, k) is paracontrolled by X t in the sense of Definition 18, with

(δ z f )(h, k)(ω) = (∂ 1 f ) h(ω), k h ′ (ω) and (δ µ f )(h, k)(ω, ̟) = m j=1 E [[1,m]]\{j} ∂ j+1 F h(ω), k(ω 1 ), • • • , k(ω j-1 ), k(̟), k(ω j+1 ), • • • , k(ω m ) k ′ (̟), and 
f (h(ω), k) # C α+β 1 + X t (ω) 2 C α + E X t 4 C α 1 2 × 1 + h ′ (ω) C β + h # (ω) C α + E k ′ 4 C β 1 4 + E k # 4 C α 1 4 × 1 + h ′ (ω) C β + h # (ω) C α+β + E k ′ 4 C β 1 4 + E k # 4 C α+β 1 4
.

Moreover for ξ +i ∈ L 8p (Ω 2 , N 2 ) and h and k in L 8p (Ω, D α (X t )), for 1 ≤ i ≤ 2, we have

f h 1 (ω), k 1 # -f h 2 (ω), k 2 # C α+β (⋆) 12 (ω)× X 1 t (ω) -X 2 t (ω) C α + E X 1 t -X 2 t 4 C α 1 4 + d D β h 1 (ω), h 2 (ω) + E d D β k 1 , k 2 4 1 4 , (4.4) 
where

(⋆) 12 (ω) = P max i∈{1,2} X i t (ω) C α , E X i t 4 C α 1 4 , h i (ω) D α , E k i 4 D α 1 4
, for some polynomial P .

Proof -One has from paralinearisation

F h(ω), k(ω 1 ), . . . , k(ω m ) = ∂ 1 F h(ω), k(ω 1 ), . . . , k(ω m ) < h(ω) + m j=1 ∂ j+1 F h(ω), k(ω 1 ), . . . , k(ω m ) < k(ω j ) + R F h(ω), k(ω 1 ), . . . , k(ω m ) = ∂ 1 F h(ω), k(ω 1 ), . . . , k(ω m ) h ′ (ω) < X t (ω) + m j=1 ∂ j+1 F h(ω), k(ω 1 ), . . . , k(ω m ) k ′ (ω j ) < X t (ω j ) + R F + R 0 + m j=1 R j where R F = R F h(ω), k(ω 1 ), • • • , k(ω m ) ∈ C α+β and R 0 = ∂ 1 F h(ω), k(ω 1 ), . . . , k(ω m ) < h ′ (ω) < X t (ω) -∂ 1 F h(ω), k(ω 1 ), . . . , k(ω m ) h ′ < X t (ω) + ∂ 1 F h(ω), k(ω 1 ), • • • , k(ω m ) < h # (ω), R j = ∂ j+1 F h(ω), k(ω 1 ), • • • , k(ω m ) < k ′ (ω j ) < X t (ω j ) -∂ j+1 F h(ω), k(ω 1 ), • • • , k(ω m ) k ′ (ω j ) < X t (ω j ) + ∂ j+1 F h(ω), k(ω 1 ), • • • , k(ω m ) < k # (ω j ).
From classical results in paradifferential calculus we have

R F C α+β F C 2 1 + h(ω) 2 C α + m j=1 k(ω j ) 2 C α 1 + X t (ω) 2 C α + m j=1 X(ω j ) 2 C α × 1 + h ′ (ω) 2 C β + h # (ω) 2 C α + m j=1 k ′ (ω j ) 2 C β + k # (ω j ) 2 C α , and 
R 0 C α+β ∂ 1 F h(ω), k(ω 1 ), • • • , k(ω m ) C α h ′ (ω) C β X t (ω) C α + h # (ω) C α+β 1 + h(ω) C α + m j=1 k(ω j ) C α h ′ C β X t (ω) C α + h # (ω) C α+β 1 + X t (ω) 2 C α + m j=1 X(ω j ) 2 C α × 1 + h ′ (ω) C β + h # (ω) C α + m j=1 k ′ (ω j ) C β + k # (ω j ) C α × 1 + h ′ (ω) C β + h # (ω) C α+β + m j=1 k ′ (ω j ) C β + k # (ω j ) C α ,
and, for 1 ≤ i ≤ m, we have for R i C α+β the upper bound

1 + X t (ω) 2 C α + m j=1 X(ω j ) 2 C α × 1 + h ′ (ω) C β + h # (ω) C α + m j=1 k ′ (ω j ) C β + k # (ω j ) C α × 1 + h ′ (ω) C β + h # (ω) C α + k # (ω i ) C α+β + m j=1 k ′ (ω j ) C β + k # (ω j ) C α . So we have for R F + m j=0 R j C α+β the bound 1 + X t (ω) 2 C α + m j=1 X t (ω j ) 2 C α 1 + h ′ C β + h # C α + m j=1 k ′ (ω j ) C β + k # (ω j ) C α × 1 + h ′ C β + h # C α+β + m j=1 k ′ (ω j ) C β + k # (ω j ) C α+β .
Taking the E [[1,m]] expectation one gets

f (h(ω), k) = ∂ 1 f (h(ω), k)h ′ (ω) < X t (ω) + E [[1,m]] m j=1 ∂ j+1 F (h(ω), k(ω 1 ), . . . , k(ω m ))k ′ (ω j ) < X t (ω j ) + f (h(ω), k) # = ∂ 1 f (h(ω), k)h(ω) ′ < X t (ω) + m j=1 E E [[1,m]]\{j} ∂ j+1 F h(ω), k(ω 1 ), • • • , k(ω j-1 ), k(̟), k(ω j+1 ), . . . , k(ω m ) k ′ (̟) < X t (̟) + f (h(ω), k) # , with f (h(ω), k) # C α+β 1 + X t (ω) 2 C α + E X t 4 C α 1 2 × 1 + h ′ (ω) C β + h # (ω) C α + E k ′ 4 C β 1 4 + E k # 4 C α 1 4 × 1 + h ′ (ω) C β + h # (ω) C α+β + E k ′ 4 C β 1 4 + E k # 4 C α+β 1 4 
.

One proves (4.4) in a similar way.

We fix 4 ≤ p < ∞ and assume from now on that the following Lipschitz condition holds true.

Assumption (A f

) -There exists a constant L such that for every

a 1 , a 2 in C α and b 1 , b 2 in L p (Ω; C α ) we have f (a 1 , b 1 ) -f (a 2 , b 2 ) C α ≤ L a 1 -a 2 C α + E b 1 -b 2 p C α 1 p
.

We proceed as usual in two steps to prove the well-posed character of equation (1.3). We freeze the measure argument in a first step and show that the corresponding equation is wellposed. This is what Proposition 21 below is about. This gives a solution u µ that depends on the measure argument µ. Another fixed point argument is done in a second step to find a measure such that the law of u µ coincides with µ. In order to proceed in this way we need to make sure that the fixed measure dynamics is defined on a fixed interval, not on a small interval, as is typically given by fixed point arguments. Assumption (B) guarantees the long time existence.

Recall from (3.4) the definition of the maps L c , for c ∈ C([0, T 0 ], R), and the existence of functions c n ∈ C([0, T 0 ], R) such that the random variables L cn (ξ n ) are converging in L 8p (Ω, R) to the random variable ξ ⊙ L -1 (ξ). We emphasize below in the product (4.5) of f (u, v) by ξ the fact that u is seen therein as a paracontrolled function by using the bold notation u.

-Proposition

. Fix 0 < T 0 < ∞. Assume the assumptions (A f -A g -B) hold true. For every v ∈ L p Ω, D α,β T0 ( 
X) and u 0 ∈ C α there exists a positive random time

T = T ξ + ω , v, u 0 ≤ T 0 and a unique solution in u ξ + ,u0,v ∈ D α,β T (X) to the equation (∂ t -∆)u = f (u, v) ξ + g(u, v), (4.5) 
where u is ω-paracontrolled by X with null δ µ derivative. This random solution u ξ + ,u0,v (ω) satisfies the local Lipschitz property

d D α,β T u ξ + 1 ,u0,v1 (ω), u ξ + 2 ,u0,v2 (ω) ω u 01 -u 02 C α +E v 1 -v 2 L p (Ω,D α,β T ) + ξ + 1 -ξ + 2 ω . (4.6) The random function u(ω) ∈ C α
T associated with u ξ + ,u0,v is the limit in probability of the solutions u n of the equations

(∂ t -∆)u n = f (u n , v) ξ n + g(u n , v) -c n (t)(f ∂ 1 f )(u n , v), (4.7) 
with initial condition u 0 .

We should more properly write u(ω), u ′ (ω), u ♯ (ω) rather than just u, u ′ , u ♯ . Also the randomness in u ξ + ,u0,v (ω) only occurs via ξ + (ω).

Proof -Rewrite equation (4.5) as the fixed point equation

u t = P t u 0 + t 0 P t-s f (u s , v s )ξ x + g(u s , v s ) ds.
We get from Lemma 19 and Lemma 20 that

f (u s , v s )ξ x + g(u s , v s ) is for each s an element of D α (ξ s ) with Gubinelli derivative f (u s , v s ) and remainder f (u s , v s )ξ # + g(u s , v s ). With Proposition 9 in mind we check that f (u, v) ∈ C α T and f (u s , v s )ξ # + g(u s , v s ) satisfies (3.7).
Recall from (4.1) the definition of the mixed pathwise/averaged random variable ξ + ω . Take

u ∈ D α,β T (X). First one has f (u, v) C α T 1 + u C α T + E v C α T 1 + X C α T + E X(ω) 2 C α T 1 2 1 + u D α,β T + E v 2 D α,β T 1 2 1 + ξ + ω 1 + u 2 D α,β T + E v 4 D α,β T 1 4
Second, combining the estimates from Lemmas 19 and 20 one gets at some fixed time t the estimates

(f (u, v)ξ) # C α+β-2 1 + ξ + 2 ω δ z f (u, v) C β + E δ µ f (u, v) 4 3 C β 3 4 + f (u, v) # C α+β 1 + ξ + 2 ω 1 + u C α + E v C α u ′ C β + 1 + u C α + E v 2 C α 1 2 E v ′ 4 C β 1 4 + f (u, v) # C α+β 1 + ξ + 4 ω 1 + u ′ C β + u # C α + E v ′ 4 C β 1 4 + E v # 4 C α 1 4 × 1 + u ′ C β + u # C α+β + E v ′ 4 C β 1 4 + E v # 4 C α+β 1 4 
, so sup

t∈(0,T ] t β/2 (f (u t , v t )ξ t ) # C α+β-2 1 + ξ + 4 ω 1 + u 2 D α,β T + E v 4 D α,β T 1 2 
.

We have also

sup t∈(0,T ] t β/2 g(u t , v t ) C α+β-2 sup t∈(0,T ] t β/2 1 + u t C α + E v t 2 C α 1 2 1 + ξ + ω 1 + u 2 D α,β T + E v 4 D α,β T 1 2 
, so we have in the end the pathwise estimate

sup t∈(0,T ] t β/2 (f (u t , v t )ξ t ) # + g(u t , v t ) C α+β-2 1 + ξ + 4 ω 1 + u 2 D α,β T + E v 4 D α,β T 1/2 .
It follows from Proposition 9 that the map

Φ ξ + ,u0,v : D α,β T (X(ω)) → D α,β T (X(ω)) which associates to u ∈ D α,β
T (X(ω)) the solution w of the equation

(∂ t -∆)w = f (u, v)ξ + g(u, v)
with initial condition w 0 = u 0 , is well-defined and satisfies the bound

Φ ξ + ,u0,v (u) D α,β T u 0 C α + T (α-β)/2 1 + ξ + 4 ω 1 + u 2 D α,β T + E v 4 D α,β T 1/2 .
Recall 4 ≤ p < ∞. One can then find some random positive constants

M = M u 0 α ∨ E v p D α,β T ∨ ξ + ω and T = T u 0 α ∨ E v p D α,β T ∨ ξ + ω so that the map Φ ξ + ,u0,v sends the ball u ∈ D α,β T (X(ω)) ; u D α,β T ≤ M into itself. Now, given ξ + 1 , ξ + 2 in L 8p (Ω 2 , N 2 ), two initial conditions u 01 , u 02 in C α and v 1 , v 2 in L p Ω, D α,β
T0 (X(ω)) , we define a random constant

M ′ ω = M max i=1,2 u 0i C α ∨ E v i p D α,β T 0 ∨ ξ + i ω . For u D α,β T ≤ M ′ ω , Proposition 9 tells us that d D α,β T Φ ξ + 1 ,u01,v1 (u 1 ), Φ ξ + 2 ,u02,v2 (u 2 ) M ′ ω u 01 -u 02 C α + T (α-β)/2 d D α,β T u 1 , u 2 + E v 1 -v 2 L p (Ω,D α,β T ) + ξ + 1 -ξ + 2 ω . So choosing T max i=1,2 u 0i C α ∨ E v i L p (Ω,D α,β T ) ∨ ξ + i ω
small enough ensures that the map Φ ξ + ,u0,µ has a unique fixed point u ξ + ,u0,µ (ω) which satisfies the local Lipschitz property

d D α,β T u ξ + 1 ,u0,v1 (ω), u ξ + 2 ,u0,v2 (ω) M ′ ω u 01 -u 02 C α + E v 1 -v 2 L p (Ω,D α,β T ) + ξ + 1 -ξ + 2 ω .
Recall that (ξ, X ⊙ ξ) ∈ N is the limit in any L q (Ω, P) space, 1 ≤ q < ∞, of the sequence of enhanced noises

ξ n , ξ n ⊙ X n -c n = • • (ξ n , (ξ ⊙ X) n )
for some diverging function c n , and that ξ ⊙ X is the limit in L q (Ω 2 , P ⊗2 ) of ξ n ⊙ X n . We then have

f (u n , v)ξ n + g(u n , v) = f (u n , v) < ξ n + ξ n < f (u n , v) + f (u n , v) # ⊙ ξ n + C δ z f (u n , v), X n , ξ n ) + E C δ µ f (u n , v), X n , ξ n + δ z f (u n , v) X ⊙ ξ n + E δ µ f (u n , v) ξ n ⊙ X n + g(u n , v) = f (u n , v)ξ n -c n (f ∂ 1 f )(u n ) + g(u n , v),
so the function u n is a solution of the renormalized equation

(∂ t -∆)u n = f (u n , v)ξ n -c n (f ∂ 1 f )(u n ) + g(u n , v).
As we know that the solution u ξ + ,u0,v ∈ D α,β T (X) is a continuous function of ξ + ∈ N 2 , and since ξ + n converges to ξ + in probability, we see that u ξ + ,u0,v is the limit in probability in D α,β T of the sequence

(u n , f (u n , v)) ∈ D α,β T (X n ).
The following statement is the analogue of Lemma 12 in the present setting.

22 -Lemma. For every R > 0, the solution u ξ + ,u0,v (ω) to equation (4.5) is defined up to the time

T * = inf t ≥ 0, u(t) L ∞ ≥ R .
Proof -The proof is a direct adaptation of the proof of Lemma 12. We give the details for the interested reader. To lighten the notations we write u for u ξ + ,u0,v (ω). Recall that the local well-posedness time from the Picard iteration argument for u reads as a decreasing function

T = T u 0 , ξ + , E[ v p D α,β T ] .
If we fix ξ + and v, one ends up with a function T = T u 0 C α , so that it is sufficient to obtain a bound for u CT C α that depends only on the constant R. As u CT C α ξ + u D α,β T we actually show that

u D α,β T , ξ + 1 + u 2 CT L ∞ + E v 4 CT L ∞ 1/2 .
We proceed as follows. Since

u ′ t = f (u t , v t ), we have u ′ C β T 1 + u C β T + v C β T .
Yet since u = u ′ ≺ X + u # where u ′ appears as an L ∞ contribution we have

u ′ C β T , ξ + ,R 1 + u # C β T + v # C β T .
We now use the fact that

(∂ t -∆)u # = Φ # (4.8) where Φ # = f (u, v)ξ -f (u, v) ≺ ξ + g(u, v
). The refined paralinearization lemma C.1 from [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] ensures here that

F u ′ ≺ X + u # ,v ′ ≺ X + v # - ∇f u ′ ≺ X + u # , v ≺ X + v # ≺ u ′ ≺ X + u # , v ′ ≺ X + v # ) α+β 1 + u ′ ≺ X 2 C α + v ′ ≺ X 2 C α + u # 2 L ∞ + v # 2 L ∞ 1 + u # C α+β + v # C α+β 1 + X 2 C β + X 2 C α 1 + u 2 L ∞ + v 2 L ∞ 1 + u # C α+β + v #
C α+β , so that using continuity relation 3.3 and estimate from Definition 7

Φ # C α+β-2 E 1 + ξ + 3 1 + u 2 CT L ∞ + v 2 CT L ∞ × 1 + u C α T + v C α T + u # C α+β + v # C α+β 1 + ξ + 3 ω 1 + u 2 CT L ∞ + E v 4 CT L ∞ 1/2 × u # C α T + u # C α+β + E v # 4 C α T 1/4 + E v # 4 C α+β 1/4
The Schauder estimates from Lemma 5.3 of [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] ensure that

sup 0<t<T t β/2 u # C α+β u0 1 + sup 0<t<T t β/2 Φ # C α+β-2 , (4.9) 
and

u # C α T u0 1 + sup 0<t<T t β/2 Φ # C α+β-2 , (4.10) 
so we have

sup 0<t≤T t β/2 Φ # α+β-2 1 + u 2 CT L ∞ + E v 4 CT L ∞ 1/2 (4.11) × 1 + sup 0<t≤T t β/2 Φ # C α+β-2 + E v # 4 C α T 1/4 + E v # 4 C α+β 1/4 .
(4.12)

We use again a scaling argument to isolate the Φ # terms. Let

(Λ λ u)(t, x) • • = u(λ 2 t, λx)
and

T 2 λ = R/(2πλ -1 Z) 2 .
We have

(∂ t -∆) • Λ λ = λ 2 Λ λ • (∂ t -∆) and ξ λ • • = λ 2-α Λ λ ξ, ξ λ α-2 ≃ ξ C α-2
, a deterministic estimate, and

u λ • • = Λ λ u is a solution of the equation (∂ t -∆)u λ = λ α f (u λ , v λ )ξ λ + g(u λ , v λ ).
It follows from the estimate (4.11) that we have

sup 0≤t≤T /λ 2 t β/2 Φ #,λ C α+β-2 ξ + λ α 1 + u 2 CT L ∞ + E v 2 CT L ∞ 1/2 × 1 + sup 0≤t≤T /λ 2 t β/2 Φ #,λ C α+β-2 + E v # 4 C α T 1/4 + E v # 4
C α+β 1/4 , so choosing λ small enough we finally get

sup 0≤t≤T t β/2 Φ # C α+β-2 ξ + 1 + u 2 CT L ∞ + E v 2 CT L ∞ 1/2 × 1 + E v # 4 C α T 1/4 + E v # 4 C α+β 1/4 .
In the end we obtain from Proposition 4.9 and Proposition 4.10 the estimate Following what is done in the proof of the Proposition 22 we have an estimate of the form

u # C α T + sup 0≤t≤T t β/2 u # C α+β ξ + 1 + u 2 CT L ∞ + E v 2 CT L ∞ 1/2 × 1 + E v # 4 C α T 1/4 + E v # 4 C α+β 1/4 ,

-Proposition. Under assumptions (A

f -A g -B), if u 0 L ∞ ≤ C 0 then u ξ + ,
u D α,β T ξ + ,u0 1 + u 2 CT L ∞ ξ + ,u0 1 + C 0
with an implicit multiplicative constant that is polynomial function in ξ + ω of degree 3.

-Solving equation (1.3).

The proof of well-posedness of equation ( 1.3) requires a second fixed point which is the object of the next statement. We fix as above 4 ≤ p < ∞.

24 -Theorem. We assume that the assumptions (A f -A g -B) hold true. There exists a positive deterministic positive time T ≤ T 0 with the following property.

-For every u 0 ∈ C α such that u 0 L ∞ ≤ C 0 there exists a unique solution u = (u ′ , u ♯ ) to the mean field equation (1.3) in L p (Ω, D α,β T (X)). The law L(u) ∈ P p (D α,β T (X)) of u depends continuously on ξ + ∈ L 8p (Ω 2 , N 2 ) and u 0 ∈ C α .

-Write u = u ′ < X + u ♯ . The function u ∈ C α T is the limit in probability of the family of solutions of the renormalized equations

(∂ t -∆)u n = f u n , L(u n (t)) ξ n -c n (t)(f ∂ 1 f ) u n , L(u n (t)) + g u n , L(u n (t)) .
Proof -Write here u v ξ + ,u0 for u ξ + ,u0,v . We define from Proposition 21 a map Ψ ξ + ,u0 from L p (Ω, D α,β T (X)) into itself setting Ψ ξ + ,u0 (v) = u v ξ + ,u0 . One has from Proposition 9

u v ξ + ,u0 D α,β T u 0 C α + T δ 1 + ξ + 4 ω 1 + u 2 D α,β T + E v 4 D α,β T 1/2 u 0 C α + T δ 1 + ξ + 4 ω u 1 2 D α,β T 1 + u 0 C α + E v 4 D α,β T 1 2 3 2 + E v 4 D α,β T 1 2
.

Integrating and using Cauchy-Schwarz inequality we get

E u v ξ + ,u0 p D α,β T 2 u 0 2p C α + T 2pδ 1 + E ξ + 8p E u p D α,β T 1 + u 0 C α + E v 4 D α,β T 1 2 3p + E v p D α,β T 2 . So for T = T E v p D α,β
T sufficiently small we have

E u p D α,β T 1 p u 0 C α + T δ 1 + E ξ + 8p 1 2p E v p D α,β T 1 p . Pick A > C 2 0 ∨ 2E ξ + 8p
. For M sufficiently big and T = T (M, A) even smaller, for every u 0 ∈ C α with u 0 C α ≤ A the map Ψ ξ + ,u0 sends the ball

v ∈ L p (Ω, D α,β T (X)) ; v L p (Ω,D α,β T ) ≤ M into itself. Now pick v 1 , v 2 in L p (Ω, D α,β T (X)), two initial conditions u 01 , u 02 in C α and ξ + 1 , ξ + 2 in L 8p (Ω 2 , N 2 ) such that one has E ξ + i 8p ∨ u 0i C α ≤ A, E v i p D α,β T ≤ M, for 1 ≤ i ≤ 2. Write u i for Φ ξ + i ,u0i (v i ) and define the random variable R ω • • = ξ + 1 ω + ξ + 2 ω . We have d D α,β T u 1 ,u 2 Rω u 01 -u 02 C α+ T δ ξ + 1 -ξ + 2 ω + d D α,β T (u 1 , u 2 ) + E d D α,β T v 1 , v 2 4 1 4 Rω u 01 -u 02 C α+ T δ ξ + 1 -ξ + 2 ω + d D α,β T (u 1 , u 2 ) 1 2 + E d D α,β T v 1 , v 2 4 1 4 
, for some implicit positive multiplicative constant that is a polynomial of R ω , which is of degree 5 combining Propositions 9 20 and 19. Integrating and using Cauchy-Schwarz inequality we obtain the estimate

E d D α,β T u 1 , u 2 p 2 u 01 -u 02 2p C α + E ξ + 1 -ξ + 2 2p + T 2pδ E d D α,β T u 1 , u 2 p + E d D α,β T v 1 , v 2 4 p 2 
, so taking T > 0 deterministic, small enough, independently of u 0i and ξ + i , ensures that we have

E d D α,β T u 1 , u 2 p 2 u 01 -u 02 2p C α + E ξ + 1 -ξ + 2 2p + T 2pδ E d D α,β T v 1 , v 2 4 p 2 .
As 4 ≤ p < ∞, we conclude that equation (1.3) has a unique local solution u in P p (D α,β T (X)), and that the law L(u) ∈ P p (D α,β T (X)) of u depends continuously on ξ + ∈ L 2p (Ω 2 , N 2 ) and on u 0 ∈ C α .

-Propagation of chaos

Let now (ξ i , u i 0 ) be a sequence of independent and identically distributed random variables with common law L(ξ, u 0 ), defined on the probability space (Ω, F , P). We fix ω ∈ Ω and an integer n ≥ 1 and study the dynamics

(∂ t -∆)u i,n (ω) = f u i,n (ω), µ n t ξ i (ω) + g u i,n (ω), µ n t (ω) , ( 1 
≤ i ≤ n) µ n t (ω) • • = 1 n n i=1 δ u i,n t (ω) , (5.1) 
with initial conditions u 1 0 (ω), . . . , u n 0 (ω) . We suppose that f and g satisfy the assumptions (A f -A g -B). System (5.1) can either be understood as a multidimensional singular stochastic PDE driven by a multidimensional (enhanced) noise or as a mean field singular stochastic PDE.

We prove in paragraph (a) that these two interpretations coincide and prove in paragraph (b) that we have a propagation of chaos result for (5.1). We write [ [1, n]] for the set of integers between 1 and n.

(a) Singular systems of interacting fields -To lighten the notations we consider here the case that the diffusivity f is linear in the measure argument -see (5.2) below. The polynomial case is treated similarly. One can see equation (5.1) as a single multidimensional singular stochastic equation (∂ t -∆)u = f(u)ξ [1,n] + g(u) with unknown u = u 1,n , . . . , u n,n and noise ξ [1,n] = ξ 1 , . . . , ξ n , and where f is (f 1 , . . . , f n ) with

f i : u 1,n , . . . , u n,n → f u i,n , 1 n n j=1 δ u j,n = • • f (u i,n , µ n ),
with a similar definition of g. The noise ξ [1,n] needs to be enhanced to make sense of the equation. The solution will be a tuple of paracontrolled functions

u i,n = (u i,n ) ′ < X i + (u i,n ) # = f i (u 1,n , . . . , u n,n ) < X i + (u i,n ) #
so we will have from paralinearisation

f i u 1,n , • • • , u n,n = n j=1 ∂ j f i u 1,n , . . . , u n,n (u j,n ) ′ < X j + f i u 1,n , . . . , u n,n # , with ∂ j f i u 1,n , . . . , u n,n = δ i,j ∂ 1 f u i,n , µ n + 1 n ∂ 2 F u i,n , µ n , since f (u i,n , µ n ) = 1 n n j=1 F u i,n , u j,n . (5.2) 
The singular product in (5.1) then reads

f u i,n , µ n ξ i = f u i,n , µ n < ξ i + ξ i < f u i,n , µ n + f u i,n , µ n # ⊙ ξ i + C ∂ 1 f u i,n , µ n (u i,n ) ′ , X i , ξ i + 1 n n j=1 C ∂ 2 F (u i , µ n )(u j,n ) ′ , X j , ξ i + ∂ 1 f u i,n , µ (u i,n ) ′ ξ i ⊙ X j + 1 n n j=1 ∂ 2 F (u i , µ)(u j,n ) ′ ξ i ⊙ X j . (5.3) 
Our task is now to prove that (5.1) may also be understood as a mean field singular stochastic PDE with a suitable enhancement of the noise and that the two interpretations coincide. With the notations of Section 2.2, Tanaka's trick gives an interpretation of (5.1) as the mean field type equation

(∂ t -∆)u i,n (ω) = f u i,n (ω), u Un(•),n (ω) ξ i (ω) + g u i,n (ω), u Un(•),n (ω) (5.4)
studied in Section 4, but now set on the finite probability space ([[1, n]], 2 [[1,n]] , λ n ), with generic chance element i. The enhanced noise from Definition 17 is then

ξ i , ξ i ⊙ X i , ξ j , ξ j ⊙ X i 1≤i,j≤n
, where the index i plays the role of ω and j the role of ̟. Let us now clarify the meaning of the singular product. We have

δ z f u i,n , u Un(•) = ∂ 1 f u i,n , u Un(•),n u i,n ′ , and δ µ f u i,n , u Un(•) = ∂ 2 F u i,n , v Un(•),n u Un(•),n ′ .
In the sense of Section 4.2 the singular product in Equation (5.4) is defined as

f u i,n , u Un(•),n ξ i = f u i,n , u Un(•),n < ξ i + ξ i < f u i,n , u Un(•),n + f u i,n , u Un(•),n # ⊙ ξ i + C ∂ 1 f u i,n , u Un(•),n u i,n ′ , X i , ξ i + ∂ 1 f u i,n , u Un(•),n u i,n ′ ξ ⊙ X i + 1 n n j=1 C ∂ 2 F u i,n , u j,n u j,n ′ , X j , ξ i + 1 n n j=1 ∂ 2 F u i,n , u Un(•),n u Un(•),n ′ ξ i ⊙ X j .
(5.5)

We conclude from (5.3) and (5.5) that the two formulations coincide as they amount to solving the same classical PDE for the remainders (u i,n ) # .

(b) Mean field limit -We know from the continuity result of Theorem 24 that the almost sure convergence of

W p 1 n n i=1 δ ( ξ i,+ ,u i 0 )(ω) , L( ξ + , u 0 )
to 0 granted by the law of large numbers entails the convergence of W p,CT C α 1 n n i=1 δ u i,n , L(u) to 0, where u is the function associated with the solution u of the mean field dynamics (1.3). It follows then from Sznitman's Proposition 2.2 in [START_REF] Sznitman | Topics in propagation of chaos[END_REF] that there is propagation of chaos for the system (5.1) of interacting fields to the mean field limit dynamics (1.3).

-Corollary.

For any fixed integer k, the law of u 1,n , . . . , u k,n converges to L (u) ⊗k when n tends to ∞.

A -Enhancing random noises

We prove Theorem 6 in this section. Recall from (3.5) the definition of the random variable X ⊙ ξ. Write e k for the function x → exp(i(k, x)) and ξ(k) for (ξ, e k ). Our noises satisfy the identity

E ξ t (k) ξ s (-k ′ ) = 1 k=k ′ c(t, s) η(k).
(A.1) We denote below by Var(A) the variance of a random variable A. 26 -Lemma. There exists a positive constant λ such that on has for all ℓ ∈ N, s, t, a, b ∈ R + and

x ∈ T 2 , the estimate

Var ∆ ℓ P t ξ s ⊙ ξ a (x) 2 2ℓ 2 2ℓη t e -λt2 2ℓ c(s, s) c(a, a) + c(s, a) 2 and Var ∆ ℓ (Id -P b )P t ξ s ⊙ ξ a (x) b 2 2ℓ 2 2ℓη t e -λt2 2ℓ-1 c(s, s) c(a, a) + c(s, a) 2 .
Proof -The proof follows closely the proof of Lemma 5.2 in [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. We have

∆ ℓ P t ξ s ⊙ ξ a (x) = (2π) -2 k∈Z 2 e i(k,x) ρ ℓ (k)F P t ξ s ⊙ ξ a (k) = (2π) -4 k1,k2∈Z 2 |i-j|≤1 ρ ℓ (k 1 + k 2 )ρ i (k 1 ) e -t|k1| 2 ξ s (k 1 ) ρ j (k 2 ) ξ a (k 2 ) e k1+k2 (x),
then Var ∆ ℓ (P t ξ s ⊙ ξ a )(x) is equal to (2π) 4 η(k 1 ) η(k 2 ) ρ ℓ (k 1 + k 2 ) 2 ρ i (k 1 ) ρ j (k 2 ) × c(s, s) c(a, a) ρ i ′ (k 1 ) ρ j ′ (k 2 )e -2t|k1| 2 + c(s, a) 2 ρ i ′ (k 2 )ρ j ′ (k 1 ) e -t|k1| 2 -t|k2| 2 .

(2π) -8 k1,k2,k ′ 1 ,k ′ 2 |i-j|≤1 |i ′ -j ′ |≤1 ρ ℓ (k 1 + k 2 ) ρ i (k 1 ) e -t|k1| 2 ρ j (k 2 ) × ρ ℓ (k ′ 1 + k ′ 2 ) ρ i ′ (k ′ 1 ) e -t|k ′ 1 | 2 ρ j ′ (k ′ 2 ) Cov ξ s (k 1 ) ξ a (k 2 ), ξ s (k ′ 1 ) ξ a (k ′ 2 ) e k1+k2+k ′
(k ′ 1 ) ξ a (k ′ 2 ) = E ξ s (k 1 ) ξ a (k 2 ) ξ s (k ′ 1 ) ξ a (k ′ 2 ) -E ξ s (k 1 ) ξ a (k 2 ) E ξ s (k ′ 1 ) ξ a (k ′ 2 ) = E ξ s (k 1 ) ξ s (k ′ 1 ) E ξ a (k 2 ) ξ a (k ′ 2 ) + E ξ s (k 1 ) ξ a (k ′ 2 ) E ξ s (k ′ 1 ) ξ a (k 2 ) = (2π) 4 η(k 1 ) η(k 2 ) 1 k1=-k ′ 1 ,k2=-k ′
The factors ρ i (k 1 ) ρ i ′ (k 1 ) and ρ i (k 1 ) ρ j ′ (k 1 ) ensure that one can restrict the sum on i and i ′ to couples (i, i ′ ) such that 1 µ |i| ≤ |i ′ | ≤ µ|i| for some constant µ, which will be denoted by i ∼ i ′ . Likewise the factor ρ ℓ (k 1 + k 2 ) enables us to restrict the sum to |i| ≥ 1 µ ′ l for some µ ′ . There exists some λ 0 > 0 such that e -2t|k| 2 e -tλ2 2i for k ∈ supp(ρ i ), so that for some λ > 0 hence the first estimate. For the second estimate we notice that the e -t|k1| 2 is replaced by (1 -e -b|k1| 2 ) e -t|k 2 1 | and that

(1 -e -b|k1| 2 ) e -t|k 2 1 | ≤ b|k 1 | 2 e -t|k1| 2 ve -t|k1| 2 /2 The remainder of the proof is the same as for the first estimate.

We can now prove Theorem 6. We will estimate E X ⊙ ξ (t) -X ⊙ ξ (s) 

A i • • = A i -E A i (i ∈ [[1, 3]]).
The quantity E X ⊙ ξ (t) -X ⊙ ξ (s) 2p Finally we see that

E X ⊙ ξ (t) -X ⊙ ξ (s) 2p B 2α-2 2p,2p (t -s) 1/2 + c 1/2 st + (t -s) 1-α-η 2p
|t -s| 2pm , with m • • = min 1/2, δ/2, 1 -α -η . From Kolmogorov continuity criterion and Besov embedding, for every α < 1 and 1 ≤ p < ∞ the process X ⊙ ξ is almost surely an element of C m-1/p T C 2α-2-1/p (T 2 ). The mollifier approximation result in the statement of Theorem 6 comes from the same arguments and calculations writing

(X ⊙ ξ)(t) -(X ε ⊙ ξ ε )(t) -E (X ε ⊙ ξ ε )(t) = t 0 P t-a (ξ a -ξ ε a ) ⊙ ξ t -E P t-a (ξ a -ξ ε a ) ⊙ ξ t da + t 0 P t-a ξ ε a ⊙ (ξ t -ξ ε t ) -E P t-a ξ ε a ⊙ (ξ t -ξ ε t ) da.
If ϕ is the fourier transform of the mollifier, we have

ξ ε (k) = ϕ(kε) ξ(k),
and the same calculations as in the proof of Lemma 26 give

Var ∆ ℓ (P t-a (ξ a -ξ ε a ) ⊙ ξ t )(x)

i,i ′ ,j,j ′

1 l i 1 i∼i ′ ∼j∼j ′ k1,k2
(1 -ϕ(k 1 ε))1 supp(ρ ℓ ) (k 1 + k 2 )1 supp(ρi) (k 1 )1 supp(ρj ) (k 2 )2 2iη e -2tλ2 2i i 1 ℓ i k1,k2

(1 -ϕ(k 1 ε))1 supp(ρ ℓ ) (k 1 + k 2 )1 supp(ρi) (k 1 )1 supp(ρj ) (k 2 )2 2iη e -2tλ2 2i .

For some integer N = N (ε), one can decompose the last sum as So that choosing N (ε) such that N (ε) → ∞ and εN (ε) → 0 as ε goes to zero, one gets

Var ∆ ℓ P t-a (ξ a -ξ ε a ) ⊙ ξ t (x) ψ ℓ (ε) 2 2ℓ(1+η) t -a e -λ(t-a)2 2ℓ , where 0 ≤ ψ ℓ (ε) ≤ 1 tends to 0 as ε > 0 goes to 0. Likewise one has

Var ∆ ℓ P t-a ξ ε a ⊙ (ξ t -ξ ε t )(x) ψ ℓ (ε) 2 2ℓ(1+η) t -a e -λ(t-a)2 2ℓ .

The same calculations as above give for

E (X ⊙ ξ)(t) -(X ε ⊙ ξ ε )(t) -E (X ε ⊙ ξ ε )(t) 2p B 2α-2 2p,2p
the bound

ℓ≥0 ψ ℓ (ε) 2 ℓ(2α+2η-2) t 0 E ∆ ℓ A 3 (a) 2 1 2 da
The result follows from dominated convergence argument as the series

ℓ≥0 2 ℓ(2α+2η-2) t 0 E ∆ ℓ A 3 (a) 2 1
2 da is seen to be convergent.
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 1 Theorem. One can design a setting where equation (1.3) makes sense. (a) Under proper regularity and growth assumptions on f and g there exists a positive time T such that system (1.1) and equation (1.3) have unique solutions on the time interval [0, T ]. (b) The law of any fixed tuple of fields in the field system (1.1) converges to a tuple of independent, identically distributed, solutions of (1.3) as n tends to ∞, on the time interval [0, T ].

  .13) from Proposition 10 and Proposition 8. It follows from Proposition 9 that the map

  δ 0 such that the map Φ ζ,u0,µ sends the ball u ∈ D α,β T (Z) ; u D α,β T ≤ M into itself. One can choose M as an increasing function of its arguments and T as a decreasing function of its arguments. Given ζ 1 , ζ 2 in N, two initial conditions u 01 , u 02 in C α and µ 1 , µ 2 in P p (C α T ), set

  so using the continuity relation (3.3) and the estimate (3.6) from Definition 7 we obtain

  defined globally in time. Proof -For every n ∈ N the constant function C 0 is a sub-solution and -C 0 is a super-solution of renormalized regularized equation (3.19). It follows from the classical comparison principle that one has |u n (t, x)| ≤ C 0 for all t ≤ T and x ∈ T 2 . The local Lipschitz continuity of u ξ as a function of ξ and the convergence in N of ξ εn ensure that u n is converging to u in C T L ∞ . It follows that we have u(t) L ∞ ≤ C 0 for all 0 ≤ t ≤ T . The result of the statement follows from the explosion criterion of Lemma 12. -Proposition. If u 0 L ∞ ≤ C 0 the random variable u D α,β T (ω) has moments of any order. Proof -Following what was done in the proof of the Proposition 22 we have an estimate

  u0,v is defined globally in time and u D α,β T (ω) has moments of order p.Proof -The global in time existence is a direct consequence of the explosion criterion of Lemma 14 and the maximum principle applied to the solution u n of the renormalized equation (4.7).

1 +k ′ 2

 12 (x).Using Wick theorem and the identity A.1 one gets Cov ξ s (k 1 ) ξ a (k 2 ), ξ s

2

  c(s, s) c(a, a) + 1 k1=-k ′ 2 ,k2=-k ′ 1 c(s, a) 2 , consequently Var ∆ ℓ (P t ξ s • ξ a )(x) = k1,k2 |i-j|≤1 |i ′ -j ′ |≤1

Var

  ∆ ℓ (P t ξ s • ξ a )(x) c(s, s) c(a, a) + c(s, a) 2 i,i ′ ,j,j ′ 1 ℓ i 1 i∼i ′ ∼j∼j ′ k1,k2 1 supp(ρ ℓ ) (k 1 + k 2 ) × 1 supp(ρi) (k 1 )1 supp(ρj ) (k 2 )2 2iη e -2tλ2 2i c(s, s) c(a, a) + c(s, a) 2 i,l i 2 2i 2 2ℓ 2 2iη e -2tλ2 2i c(s, s) c(a, a) + c(s, a) 2 2 2ℓ 2 2ℓη t e -2tλ2 2ℓ ,

0 ( 0 A 1 0 A 2

 00102 continuity criterion and Besov embedding. For 0 < s ≤ t, writet 0 P t-a (ξ a ) ⊙ ξ t da -s 0 P s-a (ξ a ) ⊙ ξ s da = s P t-s -Id)P s-a (ξ a ) ⊙ ξ t da + s 0 P s-a (ξ a ) ⊙ (ξ t -ξ s ) da + t s P t-a (ξ a ) ⊙ ξ t da =:s (a) da + s (a) da + t s A 3 (a) da, and set

2 E 0 ∆ ℓ A 1 (a) da + s 0 ∆ ℓ A 2 .From gaussian hypercontractivity we have E s 0 ∆ ℓ A 1 (a) da + s 0 ∆ ℓ A 2 (EBS 1 + S 2 + S 3 0 E ∆ ℓ A 1 E

 2010201021301 ∆ ℓ X ⊙ ξ (t) -X ⊙ ξ (s) (a) da + t s ∆ ℓ A 3 (a) da 2p ∆ ℓ A 3 (a) 2 1/2 da 2p So that the bounds for E X ⊙ ξ (t) -X ⊙ ξ (s) 2pWe now use Lemma 26 to estimate the E ∆ ℓ A i (a)2 . First we haveE ∆ ℓ A 1 (a) 2 = Var ∆ ℓ (P t-s -Id)P s-a ξ a ⊙ ξ t (t -s) 2 2ℓ 2 2ℓηs -a e -λ(s-a)2 2ℓ c(s, s) c(a, a) + c(s, a)2 andE ∆ ℓ A 2 (a) 2 = Var ∆ ℓ P s-a ξ a ⊙ ξ t -ξ s ) 2 2ℓ 2 2ℓη s -a e -λ(s-a)2 2ℓ c(a, a) c(t, t) + c(s, s) -2c(s, t)andE ∆ ℓ A 3 (a) 2 = Var ∆ ℓ P t-a ξ a ⊙ ξ t 2 2ℓ 2 2ℓη t -a e -λ(t-a)2 2ℓ c(t, t)c(a, a) + c(t, a) 2 .So, writing c st for c(t, t) + c(s, s) -2c(s, t), we gets ∆ ℓ A 3 (a) 2 1/2 da 2 ℓ 2 2ℓηt s e -λ(t-a)2 2ℓ-1 da (t -a) 1/2 .

2 ( 3 ℓ≥- 1 2

 231 2α+2η-1) e -λ(s-a)2 2x-1 dx da (s -a) 1/a) -α-η y 2α+2η-2 e -λy 2 /2 dy da a) -α-η y 2α+2η-2 e -λy 2 /2 dy da andS ℓ(2α-1) t s e -λ(t-a)2 2ℓ-1 da (t -a) 1/2 t s +∞ 0(t -a) -α-η y 2α+2η-2 e -λy 2 /2 dy da.

( 1 -( 1 - 1 -

 111 ϕ(k 1 ε))1 supp(ρ ℓ ) (k 1 + k 2 )1 supp(ρi) (k 1 )1 supp(ρj ) (k 2 )2 2iη e -2tλ2 2i ϕ(k 1 ε))1 supp(ρ ℓ ) (k 1 + k 2 )1 supp(ρi) (k 1 )1 supp(ρj ) (k 2 )2 2iη e -2tλ2 2i sup |x|≤N ϕ(xε) 2 2ℓ 2 2ℓη t -a e -λ(t-a)2 2ℓ + 2 2N 2 2N η t -a e -λ(t-a)2 2N