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React to the Worst: Lightweight and
proactive protection of location privacy

Emilio Molina, Mirko Fiacchini, Sophie Cerf, and Bogdan Robu

Abstract— This work presents a novel optimal control
method for privacy protection of mobility data. Protection
is based on data obfuscation, consisting in sending to
the geolocated service a finely tuned fake location. The
objective is twofold, keeping privacy values at an accept-
able level and guaranteeing a reasonable utility loss, with a
lightweight algorithm able to run on mobile devices. The
proposed method consists of an offline modeling stage,
based on privacy worst-case anticipation, and a fast algo-
rithm executed online. In the offline stage, the algorithm
computes the average amount of allowed utility loss neces-
sary to maintain the privacy value of the following h steps
above a given lower bound. For this purpose, the worst
possible scenario over the future steps is computed and
compared with the privacy function of the solution obtained
by an MPC method. The online stage uses the information
computed offline to solve an optimization problem whose
decision variable is the location to transmit and whose
objective is to maintain the privacy value above a minimal
level, by avoiding large utility losses. The method is val-
idated on an instance of a database of real records and
compared with a state-of-the-art competitor.

Index Terms— Control applications, optimal control, op-
timization, predictive control for linear systems.

I. INTRODUCTION

MASSIVE flows of data are constantly generated by
connected devices. Among those, location data are

notably sensitive, as they can reveal the identity of anonymous
users [1], their homes and workplaces, favorite venues, and
even social relationships, sexual orientation, or religion [2].
Leveraging of the shared information is needed to preserve
privacy while ensuring the utility of geolocated services
(navigation, recommendations, etc.) [3]. Mechanisms realizing
privacy protection can be: (i) based on theoretical privacy
definitions [4], [5], hardly usable in practice due to limited
utility performance [6]; (ii) an optimal defense against an
attack [7], therefore with limited robustness to different attacks
and user profiles [8]. Most approaches are computed offline
and require the knowledge of the entire mobility dataset, hence
trust in a third-party [9]. The limitation of the literature relies
on the practicality of protection mechanisms, to offer scalable
and lightweight protection for individual users.
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This work tackles the privacy protection challenge with a
dynamic system’s perspective. Privacy control with a reac-
tive PI controller [10] allows for protection with negligible
computing overhead; however, with limited precision and
slow reaction. Model Predictive Control significantly improves
privacy performances [11], but requires the knowledge of
future locations and has a high computing cost. The objective
of this work is to achieve a lightweight protection able to
prevent the privacy levels to be lower than a reference value.
More precisely, the objective is to keep acceptable values of
privacy, higher than a given bound, by using worst-case pre-
dicted information to anticipate a violation of this constraint,
without solving online any nonconvex optimization problem.
To achieve this objective, the transmitted locations are used as
control variables.

This work presents a scheme divided in two phases. The first
phase, performed offline, learns the obfuscation needed on the
actual location, at each step, to prevent the violation of a given
bound on the privacy values, for keeping it at acceptable levels.
This phase uses historical data and the MPC method proposed
in [11]. The second phase is performed online: based on the
information obtained in the first phase, an optimal obfuscated
location is computed using the analytical solution of the
optimization problem. Calculations in this phase are fast and
lightweight, allowing its implementation on mobile devices.
Compared to previous work [11], this approach does not need
all-knowing prediction of future locations, as it is based on
worst-case anticipation. Additionally, it is lightweight, hence
feasible in practice, while the previous MPC solution requires
computationally demanding solvers. Moreover, the proposed
scheme permits to preserve a minimal privacy level with a
high probability, property not present in [11].

Notation: : We denote by lk = (x(k), y(k)) ∈ R2 the
actual location of a user at time τk, and l̄k = (x(k), y(k)) ∈
R2 the obfuscated location transmitted at time τk to a third-
party service. For a fixed finite duration T > 0 and a time 0 ≤
T ≤ τk we denote with N the number of locations transmitted
in [τk−T, τk], with {τk−N+1, τk−N+2, . . . , τk−1, τk} ⊂ [τk−
T, τk] the respective transmission times.

II. PROBLEM STATEMENT

With the aim of preventing any external agent to infer
sensitive locations to protect user privacy, we consider the
problem of obfuscation of user mobility data by transmitting
modified locations l̄k. The main objective is to maintain the
privacy level p(t) above a threshold p with a reduced amount



of utility loss q(t) (quality of service). Moreover, to obtain
an anticipative effect, the optimization objective considers the
privacy and the utility loss over a horizon of h future locations.

Some definitions concerning the privacy preservation prob-
lem are introduced. At time t, the privacy, as function in [9],
is:

p(k) =
1

N

k∑
j=k+1−N

∥l̄j − c(k)∥2, (1)

where c(k) ∈ R2 is the centroid of N locations l̄1, . . . , l̄N
transmitted in [t− T, t], computed as:

c(k) = (xc(k), yc(k)) =
1

N

k∑
j=k+1−N

l̄j . (2)

where lN = l(t). The privacy function p(k) measures the
spatial spread of the data transmitted within the horizon N .
Low values of p(k) represent significant stops of a user and
then points of interest to be obfuscated. Note that this function
is differentiable and then well adapted to use in mathematical
optimization.1

The utility loss function at time τk is defined as the distance
between the actual location lk and the transmitted obfuscated
location l̄k, that is :

q(k) = ∥lk − l̄k∥. (3)

The bigger distance, the higher the service degradation.
Since the aim of this work is to guarantee a certain minimal
level of privacy with the minimal possible utility loss within a
future horizon, the problem is posed in terms of a dynamical
system whose state is the vector of locations transmitted within
the past interval, as in [11], recalled hereafter. Consider a
time interval, discretized in M points {τk}Mk=1, over which
the future privacy evolution is evaluated.

The actual location at time τk is (x(k), y(k)) and, since at
any time transmission might or might not have occurred, a
binary variable n(k) is defined, taking value 1 if the location
at time τk is transmitted and 0 otherwise. The state z(k) =
(x(k),y(k),n(k)) ∈ RN × RN × {0, 1}N acts as a buffer,
storing the N transmission values in the time window [τk −
T, τk]. Vectors x and y are the location states, and the vector n
is the state of transmission occurrences. The transition system
is defined as:

z(k + 1) = A · z(k) + B · u(k) (4)

where

A =

 A 0 0
0 A 0
0 0 A

 , B =

 b 0 0
0 b 0
0 0 b


with u(k) = (x(k + 1), y(k + 1), n(k + 1)) and

1An alternative expression of the privacy is p(k) =
1

N

k∑
j=k+1−N

∥l̄j −

c(k)∥, not differentiable at the origin, though.

A =


0 1 0 . . . 0
0 0 1 . . . 0

...
. . .

...
0 0 0 . . . 1
0 0 0 . . . 0

 ∈ RN×N , b =


0
0
...
0
1

 ∈ RN

Note that as solution of this system we obtain:

xi(k) = x(k + i−N),

yi(k) = y(k + i−N),

ni(k) = n(k + i−N)

where i correspond to the ith coordinate of vectors x,y and
n.

Using this notation, the centroid can be expressed as

xc(z) =

N∑
i=1

xi · ni

N∑
i=1

ni

, yc(z) =

N∑
i=1

yi · ni

N∑
i=1

ni

(5)

and then the privacy function

p(k) =

N∑
i=1

((xi(k)− xc(k))
2 + (yi(k)− yc(k))

2) · ni(k)

N∑
i=1

ni(k)

.

(6)
Thus, we solve the following non-convex optimization prob-

lem:
min

D, (δxi,δyi)hi=0

D2

p(z̃(k + i)) ≥ p i ∈ {0, .., h},
z̃(k + i) = Az̃(k + i− 1) + Bū(k + i− 1), i ∈ {1, .., h},

ū(k + i− 1) =

 x(k + i) + δxi

y(k + i) + δyi
n(k + i)

 , i ∈ {1, .., h},

δx2
i + δy2i = q2(k) ≤ D2, i ∈ {0, .., h},

z̃(k) = z̄h(k),
(7)

where x and y denote the actual locations and z̄ the transmit-
ted, obfuscated position. The variable D corresponds to the
utility loss upper bound which is minimized. Variables δxi

and δyi represent the spatial perturbation to be applied to the
actual positions. Finally, z̄ and ū are auxiliaries variables of
the optimization problem, related to z and u in (4). See [11]
for more details.

III. PRELIMINARIES

The aim of this work is to propose a lightweight method
to maintain the privacy values above a given bound in the
following h steps by using a minimal utility loss, without the
need of solving online any optimization problem.

We introduce two optimization problems that will be the
key ingredient of our method:

1) since the future values of the actual location are not
available at time k, the prediction should be performed



by considering the worst-case scenario, i.e. the trajectory
leading to the minimal values of the privacy function. The
worst case location is given by the solution of

min
l̄N∈R2

1

N

N∑
k=1

∥∥∥∥∥l̄k −
∑N

j=1 l̄j

N

∥∥∥∥∥
2

; (8)

2) since no optimization problem has to be solved online, an
explicit solution is required for the problem of computing
the obfuscated location that maximizes the privacy:

max
l̄N∈R2

1

N

N∑
k=1

∥∥∥∥∥l̄k −
∑N

j=1 l̄j

N

∥∥∥∥∥
2

(9)

s.t. ∥l̄N − lN∥2 ≤ D2

for a given the value of D.
Both issues, whose solutions are addressed hereafter, are the

basis of the proposed algorithm presented in the subsequent
section.

A. Privacy Worst-Case Scenario
In this section, an explicit expression for the solution of (8)

is provided.
Proposition 1: The only solution of problem (8) is:

l̄∗N =
1

N − 1

N−1∑
k=1

l̄k. (10)

Proof: Note that the objective function is strictly convex
and smooth, so, it has a unique minimum, and we can obtain
it equaling its gradient to 0.

Writing l̄k = (x̄k, ȳk), then the function to minimize is

1

N

N∑
k=1

(
x̄k −

∑N
j=1 x̄j

N

)2

+

(
ȳk −

∑N
j=1 x̄j

N

)2

whose derivative with respect to xN is:

∂p2
∂xN

=− 2

N2

N−1∑
k=1

(
x̄k −

∑N
j=1 x̄j

N

)

+
2(N − 1)

N2

(
x̄N −

∑N
j=1 x̄j

N

)

=− 2

N2

N−1∑
k=1

x̄k +
2(N − 1)

N2
x̄N . (11)

The function (11) is null when x̄N =
1

N − 1

N−1∑
k=1

x̄k. We

prove analogously ȳN =
1

N − 1

N−1∑
k=1

ȳk.

From Proposition 1, it can be inferred that the worst future
location in terms of privacy is the centroid of the previous N−
1 transmitted ones since it makes the privacy level decrease
the most, given by

l̄∗N =

N−1∑
i=1

(xi,yi) · ni

N−1∑
i=1

ni

, (12)

in terms of the transition system state.

B. Optimal Obfuscated location

Concerning item 2 above, since problem (9) is non-convex,
it may admit many local solutions. Moreover, since we are
maximizing a strictly convex function over a compact set,
then the maximum value is reached at the boundary of the
set, implying that its solutions satisfy ∥l̄N − lN∥2 = D2.
The following proposition characterizes the solutions to the
problem (9).

Proposition 2: Given l̄∗N as in (10) and denoting by S the
solution set of (9), the following claim holds:

i) If lN = l̄∗N , i.e, if the actual location at time t is equal to
the centroid of the previous N − 1 transmitted locations,
then the solution set of (9) is

S = {l̄N ∈ R2 : ∥l̄N − lN∥2 = D2},

and the optimal privacy value is:

1

N

N−1∑
k=1

∥l̄k − lN∥2 +D2N − 1

N2
(13)

ii) Otherwise, S has just two elements:

S =

{
lN +D

l̄∗N − lN∥∥l̄∗N − lN
∥∥ , lN −D

l̄∗N − lN∥∥l̄∗N − lN
∥∥
}

(14)

Proof: Without loss of generality we can assume lN = 0,
then the condition in i) corresponds to l̄∗N = 0. We will prove
that for ∥l̄N∥2 = D2 the objective function in (9) is constant.

1

N

N∑
k=1

∥∥∥∥∥l̄k −
∑N

j=1 l̄j

N

∥∥∥∥∥
2

=
1

N

N∑
k=1

∥∥∥∥l̄k − l̄N
N

∥∥∥∥2

=
1

N

N∑
k=1

[∥∥l̄k∥∥2 − 2

〈
l̄k,

l̄N
N

〉
+

∥∥∥∥ l̄NN
∥∥∥∥2
]

=
1

N

N−1∑
k=1

∥∥l̄k∥∥2 + ∥l̄N∥2
N

+
∥l̄N∥2

N2
− 2

〈
N∑

k=1

l̄k,
l̄N
N2

〉

=
1

N

N−1∑
k=1

∥∥l̄k∥∥2 + ∥l̄N∥2
N

+
∥l̄N∥2

N2
− 2

〈
l̄N ,

l̄N
N2

〉

=
1

N

N−1∑
k=1

∥∥l̄k∥∥2 + D2

N
− D2

N2

We obtain then expression (13). Moreover, as the solution of
problem (9) is reached when ∥l̄N∥2 = D2, therefore every
point in this circumference is an optimal solution.

Consider now the case l̄∗N ̸= 0, and recall the notation
l̄N = (x̄N , ȳN ). Thanks to Karush-Kuhn-Tucker theorem,
there exists µ ≥ 0 such that

− ∂p2
∂xN

+ 2µx̄N = 0, (15)

− ∂p2
∂yN

+ 2µȳN = 0 (16)



Using the equation (15) and (11), it follows

2

N2

N−1∑
k=1

x̄k −
2(N − 1)

N2
x̄N + 2µx̄N = 0

and then

x̄N =
−1

N2µ− (N − 1)

N−1∑
k=1

x̄k. (17)

Similarly, we obtain

ȳN =
−1

N2µ− (N − 1)

N−1∑
k=1

ȳk (18)

And from ∥l̄N∥2 = x2
N + y2N = D2 we get:

1

N2µ− (N − 1)
= ± D√(∑N−1

k=1 x̄k

)2
+
(∑N−1

k=1 ȳk

)2
Replacing in equations (17) and (18), we obtain

±D

N−1∑
k=1

l̄k∥∥∥∥∥
N−1∑
k=1

l̄k

∥∥∥∥∥
= ±D l̄∗N∥∥l̄∗N∥∥ .

To recover (13) and (14), when lN ̸= 0, just consider the
change of coordinates l̃k = l̄k − lN

The method proposed in the following section exploits
Propositions 1 and 2, that, based on explicit solutions, con-
siderably improve the online execution times, with no need of
optimization solvers.

IV. FAST MPC-BASED OBFUSCATION

The proposed method is composed of two stages, first an
offline data-based structure computation and then its online
implementation. The offline stage consists of learning the
value of the utility loss bound, D in (9), necessary to have
a privacy level higher than a reference value p in the next h
steps, being p ≥ 0 and h ∈ N two parameters of the method.
In addition, the value N used to compute the privacy values
will be fixed for both offline and online instances.

In the online implementation, the information learned in
the first stage is used to solve problem (9). In this stage the
objective is the same, i.e. to prevent the drop of the privacy
value below p but using faster algorithms. In the prediction,
the worst possible evolution, given by the solution of problem
(8), is considered, to react to the most adverse scenario for the
privacy. In the following, both stages are illustrated.

A. Privacy Gain Computation Stage
Given a privacy bound p and the horizon h, and an interval

{τk}Mk=1 we train the model as follows. Based on the transition
system in (4), for an index k ∈ {1, . . . ,M − h}, and
the actual location (x(k), y(k)), the points (x1(k), y1(k)),
(x2(k), y2(k)), . . . , (xh(k), yh(k)) correspond to future loca-
tions leading to the minimal value of privacy. These locations
are iteratively computed from 1 to h using (12) and the

previous N − 1 actual locations. We denote by pwc(k) the
privacy computed using (6) and the h predicted locations along
with (x(k), y(k)) and its N −h− 1 previous actual locations.

Consider a set of d upper bounds of the utility loss
{D1, . . . , Dd} ⊆ [0, Dmax] where Dmax is the maximum
value allowed for the utility loss. The procedure in the offline
stage is as follows.

Given Dj with j ∈ {1, . . . , d}, the proposed method
iterates over k ∈ {1, . . . ,M − h}. When n(k) = 1 we
compute (x1(k), y1(k)) to (xh(k), yh(k)) and then pwc(k).
Then, we solve an MPC instance using as predicted loca-
tions (x1(k), y1(k)) to (xh(k), yh(k)) and Dj as the upper
bound for the utility loss (the particular MPC method used
corresponds to the one presented in section 3.2 in [11]). We
obtain (x̄(k), ȳ(k)), (x̄1(k), ȳ1(k)),. . . , (x̄h(k), ȳh(k)) obfus-
cated locations. We use those points along with N − h − 1
previous actual locations to compute the resulting privacy at
point (x̄h(k), ȳh(k)) that we call pMPC(k). We finish the
iteration saving the value ∆pDj (k) = pMPC(k)−pwc(k) ≥ 0
and updating the transition system using the actual location .

The value ∆pDj (k) is the gain in the privacy value at k+h
obtained if the MPC-based optimized obfuscation is used with
the worst case as predicted real trajectory. At the end of the
iteration process, we can then derive statistical information
as the maximal or average gain. In this work the average is
considered, but other statistical information could be used in
future work. Using the average gain computed for every Dj ,
we build a piece-wise linear function fh : [0, Dmax]→ [0,∞)
using linear interpolation. The value fh(D) represents the
compared difference after h steps between the privacy obtained
in the worst case and the privacy got using an MPC method,
with a bound in the utility loss equal to D. We assume
fh(0) = 0. This function is the structure used to implement
the method in the online stage. The pseudocode of this stage
is in Algorithm 1.

B. Transmission Stage
Suppose we apply the online stage from a time t0 until a

time tF . Let tk > t0 be a time at which a new location has
to be transmitted. Recall that (x(k), y(k)) and (x̄(k), ȳ(k))
are the actual and the transmitted locations, respectively.
To determine the obfuscated location to be transmitted, the
method consists of these steps:

1) Compute the worst case locations in the following h
steps, i.e., (x1(k), y1(k)) to (xh(k), yh(k)). Along with
the transmitted locations (x̄(k − (N + 1 − h)), ȳ(k −
(N + 1− h)), . . . , (x̄(k − 1), ȳ(k − 1)) compute pwc(k)
and ∆p = pwc(k)− p.

2) If ∆p ≥ 0, then in the following h steps, the privacy
values will be over the lower bound, even in the worst
scenario, and thus the location obfuscation is not neces-
sary. The actual location is transmitted, i.e.

(x̄(k), ȳ(k)) = (x(k), y(k)).

3) If ∆p < 0, the function fh is used to compute D(k) =
f−1
h (−∆p) when −∆p ≤ fh(Dmax) and D(k) = Dmax

in the other case. This value represents the utility loss



Algorithm 1 Offline training
Input: actual locations (x, y, n), h, tF , {D1, . . . , Dd}
Output: function fh
for j := 1 . . . d do

k ← 0, z(0)← 0
while k ≤ tF do

z(k + 1)← A · z(k) + B · u(k)
where u(k) = (x(k + 1), y(k + 1), n(k + 1))
z1aux(0)← z(k + 1)
for i := 1, . . . , h do

(xi(k), yi(k))← l̄∗N (z1aux(i− 1)) using (12)
z1aux(i)← A · z1aux(i− 1) + B · v(i)
where v(i) = (xi(k), yi(k), 1)

end for
pwc(k)← p(z1aux(h)) using (6)
z2aux(0)← z(k + 1)
for i := 1, . . . , h do

(x̄i(k), ȳi(k))← solution of MPC−h instance
using {(xi(k), yi(k))}hi=1 and Dj

z2aux(i)← A · z2aux(i− 1) + B · w(i)
where w(i) = (x̄i(k), ȳi(k), 1)

end for
pMPC(k)← p(z2aux(h)) using (6)
∆pDj (k)← pMPC(k)− pwc(k)

end while
∆pDj

m ← mean
(
{∆pDj (k)|n(k) = 1}

)
end for
fh ← linear interpolation using

{
∆pDj

m

}d
j=1

quantity needed in average to keep the privacy value
higher than p but using no more than Dmax.

4) The problem (9) is solved using D(k) instead of D, by
comparing the objective values of two solutions in (14),
which consistently simplifies its online implementation
and speed up its resolution. Finally, the transmitted loca-
tion (x̄(k), ȳ(k)) is the obtained solution.

This algorithm keeps the privacy over p most of the time,
but since we are using average values of the privacy gain,
there could have some particular cases when privacy goes
under p. This can usually happen when ∆p > fh(Dmax)
because in that case, we use a utility loss equal to Dmax which
just guarantees that we can gain in average fh(Dmax). When
∆pDj does not take extreme values, this method should offer
good performances by requiring very limited computational
resources. The pseudocode is in Algorithm 2.

V. NUMERICAL EXAMPLES

We present the results of applying our method to an instance
from the datasets Cabspotting [12]. In particular, we took Oil-
rag user, and to have a uniform transmitted times distribution,
data are re-sampled to obtain intervals of 30s. Oilrag is the
location trace of a cab, its whole duration is 18.7 hours. We
used for the offline stage the first 20000s, that is, around 5.5
hours. In that period, the location was transmitted 436 times.
Figure 1 shows the function fh that we obtained in the offline
stage for h = 4 and Dmax = 2000. We also plot the lines

Algorithm 2 Online implementation
Input: actual locations (x, y, n), h, fh, p, tF
Output: obfuscated locations (x̄, ȳ)
Start: k ← 0, z(0)← 0
while k ≤ tF do

z(k + 1)← A · z(k) + B · u(k)
where u(k) = (x(k + 1), y(k + 1), n(k + 1))
zaux(0)← z(k + 1)
for i := 1, . . . , h do

(xi(k), yi(k))← l̄∗N (zaux(i− 1)) using (12)
zaux(i)← A · zaux(i− 1) + B · v(i)
where v(i) = (xi(k), yi(k), 1)

end for
pwc(k)← p(zaux(h)) using (6)
∆p← pwc(k)− p
if ∆p ≤ 0 then

if −∆p ≤ fh(Dmax) then
D(k)← f−1

h (−∆p)
else

D(k)← Dmax

end if
l̄± ← l̄∗∗N using (14)
(x̄(k), ȳ(k))← argmax(l+, l−)

else
(x̄(k), ȳ(k))← (x(k), y(k))

end if
end while

corresponding to percentiles related to 5% and 95%, giving
us information about the data distribution.
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Fig. 1. Privacy gained comparing h steps in the future.

We assess online performance using the data from 20000s
to 30000s (duration of 2.7 hours). In figure 2 we show three
different scenarios, low (p = 5 · 105), regular (p = 106)

and high (p = 1.5 · 106) values for the lower bound of the
privacy. We observe that the percentage of failure is low in
every instance (lower than 3%). Fails increase with the lower
bound value, due to the fact that the maximal utility loss, equal
to 2000, might not always be high enough to raise the privacy
over the higher lower bound, in a sort of saturation effect.



2 2.2 2.4 2.6 2.8 3

·104

0

2

4

·106

time [s]

pr
iv

ac
y

real
p = 5 · 105

p = 106

p = 1.5 · 106
limits
Geo-I

20 22 24 26 28 30

·103

0

1

2

3

·103

time [s]

ut
ili

ty
lo

ss

Geo-I
p = 5 · 105

p = 106

p = 1.5 · 106

Fig. 2. Privacy and utility through time obtained in online implementa-
tion and Geo-I.

The performance of our method are compared with those
of the state-of-the-art Geo-I mechanism [13]. This mechanism
adds spatial noise using the expression:

l̄(t) = l(t)− 1

ϵ

[
W−1

(
α(t)− 1

e

)
+ 1

](
cos θ(t)
sin θ(t)

)
(19)

where W−1 is the Lambert W function (the -1 branch), e is
Euler’s number, α(t) is drawn uniformly in [0, 1) and θ(t) in
[0, 2π). Taking ϵ = 0.00275 we obtain privacy values of the
order of those given by the method proposed here. In table I
and figure 2 we note that Geo-I has a higher utility loss than
our method while obtaining similar privacy values. Moreover,
its associated privacy has several oscillations, violating the
lower bound in many times.

method av. privacy improvement av. utility loss % fails
p = 5 · 105 6137799 5.5% 253.6 0.6%

p = 106 6465300 11.1% 478.7 1.4%

p = 1.5 · 106 6885697 18.3% 662.5 2.8%
Geo-I 6581841 13.1% 698.9 N.A.

TABLE I
PERFORMANCE OF THE THREE SCENARIOS AND Geo − I .

IMPROVEMENTS REGARDING REAL PRIVACY VALUE 5815745. THE

LAST COLUMN SHOWS THE PERCENTAGE OF TIMES WHEN PRIVACY IS

LOWER THAN p. AVERAGE VALUES OVER TIME.

VI. CONCLUSION

This paper presents a lightweight obfuscation approach,
based on MPC, to ensure a minimal privacy level by reducing
the required utility loss. Particular attention is given to com-
putational feasibility on mobile devices. The proposed method
is consists of two phases, one offline and one online, and is
based on worst case anticipation of future privacy. The instance
solved shows promising results, respecting almost always the
privacy constraint, with utility loss lower than the state-of-the-
art Geo-I for similar privacy value. Future works will consider
testing and evaluating the method on more datasets, analyzing
the computation overhead and runtimes, a sensitivity analysis
of the solutions with respect to the design parameters h, p and
D.
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