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ABSTRACT

Context. The extremely low density of several long-period exoplanets in mature systems is still unexplained – with HIP 41378 f being
archetypical of this category. It has been proposed that such planets could actually have normal densities but be surrounded by a ring
observed approximately face on, mimicking the transit depth of a puffy planet. This configuration would imply that the equator of the
planet is nearly perpendicular to its orbit plane, which is at odds with the formation process of gas giants. Yet, in the context of the
Solar System planets, it has recently been shown that after gigayears of evolution, the tidal migration of a moon can naturally lead to a
very tilted planet with a ring.
Aims. As exomoons are expected to be ubiquitous around giant exoplanets, this mechanism may be responsible for the anomalous
radii of some observed exoplanets. In preparation for the future discoveries of the PLATO mission, we present a simple method for
checking the plausibility of this mechanism for a given exoplanet.
Methods. Analytical formulas give the probability density function of the relevant precession harmonics of the planet. For each har-
monic, simple criteria set the moon mass and other properties required for the mechanism to operate.
Results. We applied this methodology to HIP 41378 f, and we show that in order to reproduce the observed configuration, a hypo-
thetical former moon should have had a moon-to-planet mass ratio of a few times 10−4 (i.e. roughly the mass of our Moon) and have
migrated over a distance of a few planet’s radii on a gigayear timescale. These orders of magnitude match the properties of moons
expected to exist around gaseous exoplanets.
Conclusions. We conclude that the migration of a former moon is a viable formation pathway for the proposed ring and tilt of
HIP 41378 f. This example strengthens the ring hypothesis and motivates its application to other promising targets.

Key words. planets and satellites: dynamical evolution and stability – planets and satellites: rings –
planets and satellites: individual: HIP 41378 f

1. Introduction
The so-called super-puff exoplanets have moderate masses (typ-
ically ≲15 M⊕) but surprisingly large radii (≳6 R⊕), giving
them extremely low bulk densities (≲0.3 g cm−3; see e.g. Lee
& Chiang 2016). Although relatively rare, super-puffs form a
growing class of exoplanets. Among the puffiest exoplanets with
the longest orbital periods, we can cite the iconic HIP 41378 f,
Kepler-87 c, Kepler-79 d, Kepler-177 c, and Kepler-51 b, c, and
d. Super-puffs must be distinguished from inflated hot Jupiters,
which show a correlation between stellar irradiation and radius
inflation (see e.g. Laughlin et al. 2011; Lopez & Fortney 2016).
This correlation indicates that hot Jupiters have extended atmo-
spheres connected in some way to their close proximity to the
star (see e.g. Burrows et al. 2000; Chabrier & Baraffe 2007;
Batygin et al. 2011; Grunblatt et al. 2016). A similar conclusion
can be reached for short-period sub-Neptunes (Pu & Valencia
2017; Millholland 2019), but not for distant super-puffs, because
they have much cooler equilibrium temperatures and undergo
negligible star-planet tidal dissipation.

Initiated by the preprint of Santerne et al. (2019), the low
density of exoplanet HIP 41378 f, in particular, immediately
raised much discussion. HIP 41378 f is mature (2.1+0.4

−0.3 Gyr; Lund
et al. 2019) and has a long period (542 days) and low equilibrium

temperature (300 K). Its low density (0.09 ± 0.02 g cm−3)
puts this planet among the puffiest exoplanets known to date.
Even though other super-puffs are known, most of them are
likely young and/or have shorter periods (Lee & Chiang 2016).
Instead of a radius inflation, Akinsanmi et al. (2020) propose
that HIP 41378 f could be a standard Neptune-sized planet sur-
rounded by an inclined opaque ring that would mimic the transit
depth of an inflated planet. As no significant distortion is visible
in the transit ingress and egress of HIP 41378 f, the hypothetical
ring should be optically thick and seen roughly face on. This con-
figuration would imply that the obliquity of the planet1 is nearly
90◦.

The ring hypothesis was investigated by Piro & Vissapragada
(2020) for other super-puff exoplanets. Good candidates
are Kepler-87 c, Kepler-79 d, and Kepler-177 c, even though
their moderate temperatures – as that of HIP 41378 f – do not
allow for water ice to exist around them. Therefore, unlike Sat-
urn’s ring, their rings would need to be composed of porous

1 Not to be confused with the stellar obliquity (i.e. the angle between
the spin axis of the star and the orbit pole of a given planet). Through-
out this article, the term obliquity is exclusively used for the planetary
obliquity (i.e. the angle between the spin axis of the planet and its orbit
pole).
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rocky particles. According to the results of Piro & Vissapragada
(2020), HIP 41378 f is currently the best candidate for a ring.
Its long period would protect a ring against destructive irradi-
ation levels and a strong warp due to the stellar torque; it also
results in negligible star-planet tidal dissipation, which means
that no particular mechanism would be required for the planet to
maintain a large obliquity2. The low eccentricity of HIP 41378 f
also guarantees a small level of orbital perturbations for the ring
particles.

In order to determine the planets’ atmospheric properties and
test the ring hypothesis, near-infrared transmission spectra have
been acquired for Kepler-51 b and d (Libby-Roberts et al. 2020),
Kepler-79 d (Chachan et al. 2020), and HIP 41378 f (Alam et al.
2022). These spectra ended up being featureless, ruling out clear,
low-metallicity atmospheres. The ring hypothesis is therefore not
contradicted for these planets, but flat spectra can also be pro-
duced by high-altitude hazes or high-metallicity atmospheres. In
fact, convincing atmospheric models have been put forward for
Kepler-51 b and d, as well as Kepler-79 d (see also Wang & Dai
2019; Gao & Zhang 2020; Ohno & Tanaka 2021). Interestingly,
these models of extended atmospheres appear to be inapplicable
to HIP 41378 f as it is too massive (M = 12 ± 3 M⊕), too cold,
and too old.

The question of the possible physical composition of
HIP 41378 f was explicitly tackled by Belkovski et al. (2022).
The authors show that photoevaporation is not nearly enough to
explain the extreme density disparity between planet f and other
planets in the system. Moreover, the observed mass and radius
of HIP 41378 f would require an envelope-to-core mass fraction
larger than 75% together with a high entropy (e.g. produced by
recent collisions). Such a massive envelope is unlikely from the
perspective of planetary formation, as it would require runaway
gas accretion to have started precisely during the dissipation of
the gas disc, and planet HIP 41378 f may not be massive enough
anyway to have triggered runaway accretion.

Hence, the ring hypothesis appears to be favoured for
HIP 41378 f, and it may apply as well to a restricted number of
other observed super-puffs. Tidal rings are confined below the
Roche limit, very close to their host planets. As such, they are
strongly coupled to the centrifugal bulge of the planets, and they
directly materialise their equatorial planes. In order to produce a
substantial increase in a planet’s transit depth (i.e. a very notice-
able super-puff), its ring must be oriented roughly in the sky
plane. This means that the planet’s spin axis must point roughly
along the observer’s direction; its obliquity is therefore ε ≈ 90◦
as proposed by Akinsanmi et al. (2020). Such an exotic config-
uration may seem questionable from a formation point of view.
Because of the angular momentum acquired during gas accre-
tion, gaseous planets are expected to form with low obliquities.
The obliquities of the Solar System giant planets are there-
fore interpreted as strong tracers of their dynamical evolution,
and much effort is put into understanding their origin (see e.g.
Tremaine 1991; Ward & Hamilton 2004; Hamilton & Ward 2004;
Boué et al. 2009; Boué & Laskar 2010; Morbidelli et al. 2012;
Vokrouhlický & Nesvorný 2015; Rogoszinski & Hamilton 2020,
2021; Saillenfest et al. 2020, 2021a, 2022; Salmon & Canup
2022; Rufu & Canup 2022; Wisdom et al. 2022). In this con-
text, the ring hypothesis for super-puffs would greatly benefit

2 High-obliquity equilibrium states also exist for short-period planets
(Millholland & Laughlin 2019; Millholland & Spalding 2020); however,
because of tidal despinning and obliquity damping, their obliquity needs
to be continuously forced through dynamical interactions involving
several planets (see also Su & Lai 2022a,b).

from an underlying mechanism that may be responsible for their
unusual configuration. The existence of such a mechanism would
not certify whether a given planet does possess a ring or not, but
it would show whether known dynamical processes are able to
(or are even likely to) produce the proposed configuration.

In the Solar System, a substantial tidal migration of moons
has recently been observed to be at play around gaseous plan-
ets (see Lainey et al. 2009, 2017, 2020; Jacobson 2022) –
even though it involves mechanisms of energy dissipation that
are vastly different from those responsible for the well known
rapid migration of our Moon (see e.g. Farhat et al. 2022).
These results have strong implications for the orbital dynamics
of moons around gaseous planets, but also for the gigayear-
timescale dynamics of planetary spin axes. Indeed, moons affect
the spin-axis precession rate of planets in a way that is intimately
related to their distance (see e.g. Boué & Laskar 2006). The
migration of a moon is therefore accompanied with a variation in
the planet’s spin-axis precession rate. In turn, this variation can
drive the planet into a so-called secular spin-orbit resonance, that
is, a resonance between the planet’s spin-axis precession and one
harmonic of its orbital nodal precession. As a matter of fact, this
kind of resonances abound in multi-planetary systems. Provided
that a planet has a substantially massive migrating moon, it may
therefore be guaranteed to encounter one of these resonances
sooner or later during its evolution. Once captured in resonance,
the still ongoing migration of the moon produces a gradual tilting
of the planet’s spin axis (unless, as for the Earth, resonances are
so numerous that they overlap massively; see Laskar & Robutel
1993; Néron de Surgy & Laskar 1997). This phenomenon is
probably responsible for the 27◦ obliquity of Saturn (Saillenfest
et al. 2021a,b; Wisdom et al. 2022), and it is predicted to happen
to Jupiter in the future (Saillenfest et al. 2020). It may also have
played a role in the tilting of Uranus (Saillenfest et al. 2022).

When the planet’s obliquity reaches ε ≳ 70◦, however, reg-
ular moons are known to be unstable in some range of distance
(Tremaine et al. 2009). Interestingly, the migration of a single
moon makes the system converge to this unstable zone, putting a
dramatic end to the tilting process (see Saillenfest & Lari 2021;
Saillenfest et al. 2022). At this point, the moon may be ejected
or be destructed below the planet’s Roche limit, eventually form-
ing a tidal disc of debris. In the latter case, the final state of
the system is a ringed planet with very high obliquity. This final
state recalls the exotic configuration proposed for super-puff exo-
planets. It would therefore be valuable to determine whether
this mechanism could apply to them and provide a plausible
dynamical background to the ring hypothesis.

In this article, we aim to present a generic methodology to
assess whether the migrating-moon mechanism can realistically
produce a tilted ring around a given exoplanet. Even though
the number of known distant super-puffs is small today, the
future PLATO mission (Rauer et al. 2014, 2016) will consider-
ably increase our knowledge of the population of long-period
exoplanets – including their masses through an intensive radial-
velocity follow-up. In this context, we need efficient methods for
a routine characterisation of the newly discovered planets and
identification of the most interesting targets for follow up. For
this reason, we design our methodology to be applicable even if
the minimum amount of information about the planetary system
is available (masses, periods, and sky-plane inclinations).

The article is organised as follows. In Sect. 2, we recall
the basics of the tilting mechanism. In Sect. 3, we compute
the probability density function of the dominant orbital pre-
cession frequencies of a planet, and we present an example of
application to the super-puff exoplanet HIP 41378 f. From these
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results, we estimate in Sect. 4 the mass and migration rate that
a moon around this planet would need in order to trigger the
full tilting mechanism. In Sect. 5, we check that the resonance is
large enough to enable an adiabatic capture and tilting, and we
illustrate this mechanism with numerical simulations. We then
discuss our results in Sect. 6 and conclude in Sect. 7.

2. Basic mechanism

As shown by Saillenfest & Lari (2021), the tilting of a planet
from a low obliquity ε up to ε ≈ 90◦ can be achieved on a
gigayear timescale via the tidal migration of a moon. This pro-
cess occurs through the adiabatic drift of the system along the
centre of a secular spin-orbit resonance. In this section, we recall
the physical quantities involved and the conditions required to
trigger this process.

We write I the orbital inclination of the planet and Ω its
longitude of ascending node. We decompose the inclination
dynamics of the planet in a quasi-periodic series truncated to
N terms:

ζ = sin
I
2

exp(iΩ) =
N∑

j=1

S j exp[i ϕ j(t)], (1)

where S j is a positive real constant, and ϕ j(t) = ν j t+ϕ(0)
j evolves

linearly over time t with frequency ν j. Resonance capture from
a low obliquity is possible only for resonances with a harmonic
having a negative frequency ν j such that |ν j| ⩾ p, where

p =
3
2

GM⋆

a3(1 − e2)3/2

J2

ωλ
(2)

is the characteristic spin-axis precession rate of the planet. In
this expression, G is the gravitational constant, M⋆ is the mass
of the star, a and e are the semi-major axis and eccentricity of
the planet on its orbit around the star, J2 is the second zonal
gravity coefficient of the planet, ω is its spin rate, and λ is its
normalised polar moment of inertia. The parameters J2 and λ
must be defined through the same normalising radius R (which
is generally chosen as the equatorial radius of the planet).

The influence of a regular moon on the long-term spin-axis
dynamics of the planet can be quantified by its non-dimensional
‘mass parameter’ η defined by

η =
1
2

m
M

r2
M

J2R2 , (3)

where m is the mass of the moon, M is the mass of the planet,
and rM is the following characteristic length3:

r5
M = 2

M
M⋆

J2R2 a3(1 − e2)3/2. (4)

Under the hypothesis that the moon’s mass ratio m/M is small
(which does not necessarily imply that η is small), Saillenfest
& Lari (2021) show that all resonances with a nodal harmonic
having a negative frequency ν j verifying

p ⩽ |ν j| ⩽ p
η

2
(5)

3 rM is called ‘mid-point radius’ by Saillenfest & Lari (2021). It is
sometimes defined as the Laplace radius in other publications, either
with or without the leading factor 2.
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Fig. 1. Level curves of the planet’s spin-axis precession rate (adapted
from Saillenfest et al. 2022 for a moon mass-parameter η = 20). If the
planet is trapped in a secular spin-orbit resonance, the system evolves
along one of these curves as the moon migrates. The condition in Eq. (5)
corresponds to the pink region; the left and right inequalities are the
green and red curves, respectively. In the blue area, the moon is unsta-
ble.

can allow the planet’s obliquity to grow from ε = 0◦ to ε = 90◦.
This condition is illustrated in Fig. 1. Knowing the harmonics
ν j of the planet’s orbital precession, Eq. (5) allows one to com-
pute the minimum mass required for the moon to produce the
tilting. As resonances converge to an unstable region, the moon
is ultimately lost at the end of the tilting process (see Fig. 1).

When Eq. (5) is verified, the adiabatic capture and tilting of
the planet within a given resonance requires an adequate hierar-
chy of timescales. First, we introduce the timescale τ of secular
oscillations of the moon around its equilibrium ‘Laplace plane’
(see Tremaine et al. 2009) as τ = 2π/κ, where

κ2 =
9
4

M⋆

M
r3

M

a3(1 − e2)3

GM⋆

a3 . (6)

An adiabatic capture in resonance requires that τ is much shorter
than the spin-axis precession timescale of the planet T = 2π/p;
this conditions is generally well verified in practice.

Then, a given observed planet may have been adiabatically
tilted via a resonance only if the timescale Tlib of libration inside
the resonance is much smaller than the age of the system. For
a given secular spin-orbit resonance, the value of Tlib near the
resonance centre can be computed as Tlib = 2π/µ, where

µ2 = (p′)2
(

β2

sin2 ε0
+ β sin ε0

)
. (7)

In this expression, ε0 is the planet’s obliquity at the resonance
centre and p′ is a modified version of p that takes into account
the presence of the planet’s moon (see Saillenfest & Lari 2021).
We define the non-dimensional variables γ = ρ1/p′ and β =
ρ2/p′, where

ρ1 = −

νk − 2
N∑

j=1

ν jS 2
j

 ,
ρ2 = −S k

2νk + νkS 2
k − 2

N∑
j=1

ν jS 2
j

 ,
(8)

and k is the index in Eq. (1) of the considered resonance. Tlib
depends on the distance of the moon through p′ and ε0. How-
ever, an upper bound for Tlib is obtained at the time of resonance
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capture, for which γ2/3 + β2/3 = 1 (see Henrard & Murigande
1987; Saillenfest et al. 2019). In this case, p′ is equal to p′ =
(ρ2/3

1 + ρ2/3
2 )3/2, and the planet’s obliquity at the centre of the

resonance is

cos ε0 = γ − γ
1/3 +

√
γ2 + γ2/3 − γ4/3. (9)

Thanks to these expressions, we can compute Tlib from Eq. (7)
as a mere function of the planet’s orbital dynamics in Eq. (1).

3. Orbital precession modes of the planet

To apply this mechanism to a given planet, we need to know
its orbital precession spectrum, which depends on planet-planet
mutual interactions. However, the masses and orbital elements
of exoplanets are generally not well known. For given param-
eters and their uncertainties, the most simple way to explore
the variety of possible long-term orbital solutions is to use the
Lagrange–Laplace system (see e.g. Murray & Dermott 1999).

3.1. The Lagrange–Laplace proper modes

The Lagrange–Laplace system is a secular theory at second order
in eccentricity and inclination. As such, it assumes that all eccen-
tricities and inclinations are small and it neglects the long-term
influence of mean-motion resonances. Small mutual inclinations
are indeed strongly favoured in multi-planetary systems in which
most planets are observed to transit their star. This is the case of
HIP 41378, around which the transits of five planets are observed
(Vanderburg et al. 2016). Eccentricities are also expected to be
small in multi-planetary systems for stability reasons. More-
over, according to the statistical distribution of multi-planetary
systems (Xie et al. 2016) and to theoretical arguments about
chaotic diffusion (which leads to the statistical equipartition of
angular momentum deficit; see Laskar & Petit 2017), planets
having small mutual inclinations tend to have small eccentric-
ities, and vice versa. Hence, the use of the Lagrange–Laplace
theory is generally justified in this regard for multi-planetary
systems. Neglecting the long-term effect of mean-motion reso-
nances may seem more questionable, as many pairs of exoplanets
are observed to be close to important resonances (see e.g.
Fabrycky et al. 2014). Yet, the strongest mean-motion resonances
in planetary systems – and those enabling smooth captures – are
of eccentricity type. As such, they mainly affect eccentricities.
Here, instead, we are only interested in the inclination degree of
freedom of the planets because it is by far the main driver of their
long-term spin-axis dynamics. The planets’ eccentricity dynam-
ics only enter into play at order three and beyond (see Saillenfest
et al. 2019), so mean-motion resonances can safely be ignored in
this analysis.

As above, we describe the nodal precession and inclina-
tion dynamics of a planet k in the planetary system through the
complex variable

ζk = sin
Ik

2
exp(iΩk), (10)

where Ik is the orbital inclination of planet k and Ωk is its longi-
tude of ascending node. The Lagrange–Laplace system gives the
linear equation of motion

dζ
dt
= iB ζ, (11)

in which ζ is the vector containing the ζk variable of all planets
and B is a constant matrix that only depends on the masses and
semi-major axes of the planets (see e.g. Laskar & Robutel 1995).
The solution of this equation for a given planet k has the form of
a quasi-periodic series as in Eq. (1):

ζk(t) =
Np∑
j=1

S j exp
[
i
(
ν j t + ϕ(0)

j

)]
, (12)

where the number of terms N is equal to the number of plan-
ets Np in the system. Equation (12) is a linear combination of
proper modes whose frequencies ν j are the eigenvalues of the
matrix B. As B only depends on the masses and semi-major
axes of the planets, this is also the case of the frequencies ν j.
Because of the conservation of total angular momentum, one of
the frequencies ν j is identically equal to zero; the related constant
term in Eq. (12) gives the orientation of the system’s invariant
plane.

Thanks to the fast computation of the solution of the
Lagrange–Laplace system (which amounts to a mere matrix
inversion), millions of trials can be performed at virtually no
cost. In order to explore the distribution of possible values for
the frequencies ν j, the first step is to draw the masses and semi-
major axes of the Np planets from their respective statistical
distributions – which represent our knowledge of their values.
A similar approach was followed by Becker & Adams (2016) in
their study of the compact multi-planetary systems observed by
Kepler. Each sequence of masses and semi-major axes for the Np
planets represents a possible realisation of the planetary system.
In case the mass of a given planet has not been measured, a broad
distribution of mass can be adopted (e.g. a uniform distribution
in a given interval, or a law drawn for an assumed mass-radius
relationship; see below). From a large number of realisations of
the planetary system, a histogram for each frequency ν j can be
computed. These histograms define the possible locations of sec-
ular spin-orbit resonances given our current knowledge of the
planetary system.

In practice, the largest values of the Lagrange–Laplace
matrix B in Eq. (11) are often located along its diagonal (mean-
ing that the planetary system is only weakly coupled); this
implies that each planet k has its own dominant proper mode,
which appears in Eq. (12) as the term with largest amplitude.
The frequency of the dominant proper mode of planet k is usually
noted sk. In the context of the Lagrange–Laplace approximation,
the quasi-periodic series in Eq. (12) contains exactly N = Np
terms and the frequencies ν j are each equal to one of the sk.
More generally, the orbital evolution of any planet in a stable sys-
tem can be written as in Eq. (12), but where N tends to infinity
and each harmonic ν j is a linear combination of the fundamental
frequencies of the system (see Sect. 2). The first few strongest
harmonics of the series are however proper modes given by the
Lagrange–Laplace approximation; hence, the analysis presented
here can be thought of as the dominant component of a more
general theory.

While building the histogram for each proper mode sk, a
complication may arise. Indeed, if the masses and semi-major
axes of the planets have large uncertainties, the distributions of
the various frequencies may overlap. In this case, identifying
each eigenvalue ν j of matrix B as the correct proper mode sk
requires some caution. As the hierarchy of proper modes depends
on the planetary system considered, a specific identification pro-
cess is required. As an example, we subsequently present the case
of the HIP 41378 system.
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Table 1. Parameters of planets in the HIP 41378 system used in this article.

k Name Mk (M⊕) Pk (day) ak (au) Ik (o)

1 b 6.89 ± 0.88 15.57208 ± 0.00002 0.1283 ± 0.0015 88.75 ± 0.13
2 c 4.4 ± 1.1 31.70603 ± 0.00006 0.2061 ± 0.0024 88.48 ± 0.07
3 g 7.0 ± 1.5 62.06 ± 0.32 0.3227 ± 0.0036 88
4 d 12.7 ± 6.0 278.3618 ± 0.0005 0.88 ± 0.01 89.80 ± 0.02
5 e 12 ± 5 369 ± 10 1.06 ± 0.03 89.84 ± 0.07
6 f 12 ± 3 542.0798 ± 0.0002 1.37 ± 0.02 89.97 ± 0.01

Notes. Parameters are the mass Mk, period Pk, semi-major axis ak, and inclination Ik with respect to the sky plane. By convention, inclinations are
given with values Ik ⩽ 90◦, but transit and radial velocity data cannot discriminate between an inclination value Ik or 180◦ − Ik. Uncertainties are
assumed to be Gaussian; quoted intervals are 1σ. Parameters come from the preprint by Santerne et al. (2019) except the mass of planet d (see text).
The star mass is taken to be 1.16± 0.04 M⊙ for consistency with the other parameters of Santerne et al. (2019). The inclination of the non-transiting
planet g is assumed to be 88◦ as in Santerne et al. (2019).

3.2. Application to the HIP 41378 system

HIP 41378 is bright F-type star4 which harbours at least five
planets called b, c, d, e, and f (Vanderburg et al. 2016). Dynam-
ical analysis reveals that planets b and c are slightly off the
2:1 mean-motion resonance, similarly to many Kepler planets
(see e.g. Fabrycky et al. 2014). A tentative detection of a sixth
planet – planet g – is reported in the preprint of Santerne et al.
(2019) close to the 2:1 mean-motion resonance with planet c.
As of today, only planets b, c, and f have been observed dur-
ing successive transits (see Vanderburg et al. 2016; Becker et al.
2019; Bryant et al. 2021; Alam et al. 2022) and unambiguously
detected in radial velocity (Santerne et al. 2019). Therefore, only
planets b, c, and f have secured periods and masses.

Two transits of planet d have been observed by the K2 mis-
sion but they are separated by a three-year observation gap,
leading to a discrete set of possible periods (Becker et al. 2019).
From stability considerations, and thanks to additional observa-
tions by TESS, this discrete set is further reduced to only two
likely values (278 and 371 days; see Berardo et al. 2019; Lund
et al. 2019; Grouffal et al. 2022). In contrast, only one tran-
sit of planet e has been observed so far, so its period suffers
from large uncertainties. The best period estimate for planet e
is 260+160

−60 days (Lund et al. 2019). The period of 369 ± 10 days
obtained by Santerne et al. (2019) is compatible with this esti-
mate, and it results in a mass of 12± 5 M⊕ for planet e. The mass
of planet d, however, is unknown.

As explained in Sect. 1, planet HIP 41378 f is a paradigmatic
case of distant super-puff. Its period is about 542 days, and it
has a radius of 9.2 ± 0.1 R⊕ and mass 12 ± 3 M⊕, giving it a
bulk density of 0.09 ± 0.02 g cm−3 (Santerne et al. 2019). Under
the ring hypothesis, current data suggests a planet with radius
R = 3.7±0.3 R⊕ surrounded by a ring with radius 2.6±0.2 R and
inclination 25 ± 4◦ from the sky plane (Akinsanmi et al. 2020).
This new planetary radius yields a bulk planet density of 1.2 ±
0.4 g cm−3, similar to that of Uranus. The hypothetical equatorial
ring provides an indirect measure of the obliquity of the planet,
namely5 ε = 92 ± 7◦.

In order to compute the orbital precession modes of
HIP 41378 f, our choice of prior for the masses and semi-major

4 Also known as K2-93 and EPIC 211311380.
5 The ring obtained by Akinsanmi et al. (2020) is inclined by ir =
25 ± 4◦ from the sky plane and rotated by θ = 95 ± 17◦ from the
transit direction. The spin-orbit obliquity ε of the planet is given by
cos ε = cos I cos ir + sin I sin ir cos θ, where I = 89.97 ± 0.01◦ is the
orbital inclination of HIP 41378 f.

axes of the planets must reflect our partial knowledge of the
HIP 41378 system. We sort the planets by increasing orbital peri-
ods such that the indexes k = (1, 2, 3, 4, 5, 6) correspond to the
planets (b, c, g, d, e, f). We assume all masses and semi-major
axes to have Gaussian distributions centred on the best-fit val-
ues of Santerne et al. (2019) given in Table 1. Planet d needs a
specific treatment: even though its period has tentatively been
confirmed by Grouffal et al. (2022), it has still not been detected
by the radial velocity method, so its mass is highly uncertain.
We choose to remain as agnostic as possible as regards its mass,
and draw it from a Gaussian fit to the mass-radius distribution of
all known exoplanets having a radius between 3 and 4 R⊕ and a
mass measurement. From the NASA Exoplanet Archive6 on date
2022-11-23, we obtain a central mass value of 12.7 M⊕ and a
standard deviation of 6.0 M⊕. The high tail of this distribution
may not be compatible with radial velocity measurements; yet,
this broad interval gives us confidence that the actual mass of
planet d is contained in our analysis. The low tail of the distri-
bution (from which we cut the portion < 0.1 M⊕) corresponds to
cases in which planet d barely exists at all. The system may also
contain additional massive planets that have not been discovered
yet. Hence, we stress that the analysis below represents our cur-
rent knowledge of the system and it may need to be revisited in
the future.

For the HIP 41378 system as considered in Table 1, a look
at the diagonal and off-diagonal values in the Lagrange–Laplace
matrix B reveals a peculiar hierarchical configuration. The sys-
tem is composed of two weakly coupled subsystems: i) the inner
subsystem (planets 1–2–3) is characterised by planets 1 and 3
interacting with each other and affecting the motion of the low-
mass planet 2; and ii) the outer subsystem (planets 4–5–6) is
made of the two strongly coupled planets 4 and 5, interacting as
a whole with planet 6.

This peculiar hierarchy can be visualised by solving the
Lagrange–Laplace system a first time using reasonable values
for the parameters. The exact values of the parameters do not
matter for now; this first step only serves as a guide to iden-
tify the frequencies and choose an adequate naming convention.
Figure 2 shows an example obtained from the nominal masses
and semi-major axes of the planets. We name the proper frequen-
cies according to their qualitative role in the dynamics: s1 is the
precession frequency of planets 1 and 3 about their total angular
momentum vector; s2 is the precession frequency of the low-
mass planet 2 under the action of planets 1 and 3; s3 is the slow

6 https://exoplanetarchive.ipac.caltech.edu
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Fig. 2. Example of inclination evolution of the six planets in the HIP 41378 system. In this example, the Lagrange–Laplace equation is solved
using the nominal masses and semi-major axes of all planets given in Table 1. The initial conditions ζk are set from the nominal inclinations Ik (all
assumed to be Ik ⩽ 90◦) and random longitudes of node Ωk in a 0.2◦-wide interval; this choice is commented in Sect. 5.

rigid precession of the inner and outer subsystems (planets 1–2–
3 and 4–5–6); s4 is the precession frequency of planets 4 and 5
about their total angular momentum vector; s5 is identically zero;
s6 is the precession frequency of planet 6 and planets 4-5 about
their total angular momentum vector. We stress that all preces-
sion modes actually appear in the dynamics of all planets (see
Eq. (12)), but this qualitative description gives us a good idea of
the relative importance of each term in the orbital evolution of
each planet.

In order to compute the probability density function of each
frequency s j given our current knowledge of the planetary sys-
tem, we drew 106 realisations of the star’s mass and planets’
masses and semi-major axes. For each of these realisations, we
computed the eigenvalues of the Lagrange–Laplace matrix B and
identified them to the frequencies s j according to their qualita-
tive role described above. In practice, this identification can be
made by choosing fictitious initial conditions ζk(t = 0) designed
to magnify the specific term we are looking for. For instance, the
frequency s3 would appear as strongly dominant for all planets
if we set ζk(t = 0) = 0 for k = {1, 2, 3} and ζk(t = 0) =

√
2/2 for

k = {4, 5, 6}. Then, one may identify s2 as the dominant term
in the solution of planet 2 by setting ζ2(t = 0) =

√
2/2 and

ζk(t = 0) = 0 for k , 2, etc. This way, all frequencies can be cor-
rectly identified one by one. Moreover, we remind the reader that
the frequencies s j only depend on the masses and semi-major
axes of the planets, so they do not depend on the fictitious ini-
tial conditions chosen here, and they are not plagued with our
ignorance of the actual orientations of the planets’ orbital planes.

Figure 3 shows the frequency distribution for each incli-
nation proper mode obtained from our 106 realisations of the
system. Frequency s4 has a broad distribution due to the large
uncertainties in the masses of planets d and e. Frequency s3,
on the contrary, is very peaked, which means that the hierar-
chy of the two subsystems is a robust property of the HIP 41378
system – unless it contains additional massive planets yet to be
discovered. In order to quantify the relative importance of each
parameter in the value of each frequency, a correlation analysis
can be performed on our large sample of realisations. Here, the
small spread in frequency s3 results to be essentially due to the
uncertainty in the mass of planet d (see Appendix A).
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Fig. 3. Probability density of the inclination proper modes of the
HIP 41378 system. Histograms are built from 106 realisations of the
Lagrange–Laplace system with the mass and semi-major axis uncertain-
ties in Table 1. The histogram for frequency s4 has a long tail extending
beyond the left border of the figure (with 99.7% occurrences above
−1850′′ yr−1 and 95.4% above −1000′′ yr−1). The histogram for fre-
quency s3 peaks above the top border of the figure. Frequency s5 is
identically equal to zero from the conservation of angular momentum.
The upper axis shows the minimum moon mass needed for HIP 41378 f
to be fully tilted through a resonance with a given frequency value (see
Sect. 4).

As illustrated in Fig. 2, frequency s3 is expected to have a
strong contribution in the motion of all planets. Next to it, the
dominant inclination proper mode of planet f has frequency s6.
This frequency would produce a strong (if not the strongest) sec-
ular spin-orbit resonance for this planet. Figure 3 shows that
despite observational uncertainties, frequency s6 has a rela-
tively peaked distribution. Its most probable value is −136′′ yr−1,
with 68.3% occurrences within [−181,−97]′′ yr−1, 95.4% occur-
rences within [−241,−65]′′ yr−1, and 99.7% occurrences within
[−405,−35]′′ yr−1. As shown in Appendix A, the value of s6
is essentially set by the mass of the perturbing planet e, with
a Spearman correlation coefficient ρS ≈ −0.8. The value of
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s6 is only weakly (|ρS|≲0.3) correlated with the parameters of
planet f itself. This low correlation allows us to investigate dif-
ferent values for the frequency s6 independently of the mass and
semi-major axis of planet f (that we fix, from now on and in the
rest of the article, to their nominal values in Table 1).

4. Properties of the hypothetical former moon

Knowing the dominant harmonics in the orbital precession of
a planet, Eq. (5) gives the conditions required to tilt the planet
and form a ring through the tidal migration and disruption of a
moon. In addition to the mass and orbital elements of the planet,
Eq. (5) depends on the planet’s normalising radius R, its oblate-
ness coefficient J2, and the product ωλ. For a given super-puff
exoplanet, we may assume that the anomalous planet’s density is
entirely due to the existence of a ring; therefore, the value of R
can be chosen so as to produce a conventional bulk density (e.g.
that of Uranus or Neptune). In the specific case of HIP 41378 f,
Akinsanmi et al. (2020) show that, under the ring hypothesis,
its true radius would be 3.7+0.3

−0.2 R⊕. Hence, we adopt the value
R = 3.7 R⊕ below as our normalising radius.

For given values of the parameters J2 and ωλ, Eq. (5) pro-
vides a direct relation between the frequency ν j of the resonance
and the minimum mass mmin of the former moon. Even though
J2 and ωλ are completely unknown for exoplanets, we know that
they are related, and in first approximation J2 ∝ ω

2 (planets spin-
ning faster are more flattened; see e.g. Chandrasekhar 1969). For
a given moon mass m, the condition |ν j| ⩽ pη/2 in Eq. (5) cor-
responds to a power law J2 ∝ ω

5/2. Because of the coincidental
near match between these two exponents (2 and 5/2), our total
ignorance of J2 and ωλ does not affect much our estimate of
mmin: we may just set J2 and ωλ to realistic values (e.g. obtained
from the Solar System planets) and be assured to obtain rele-
vant results – unless the planet has a particularly exotic internal
structure which violates J2 ∝ ω2. This property is verified in
Appendix B in the case of planet HIP 41378 f. As the mass and
radius proposed by Akinsanmi et al. (2020) for HIP 41378 f are
relatively close to those of Uranus, we choose to apply Eq. (5)
using the parameters J2 and ωλ of Uranus (see e.g. Yoder 1995).

Independently of the resonance considered, Eq. (5) can be
fulfilled only if the mass parameter η of the moon is η ⩾ 2.
Using the J2 value of Uranus, this condition translates into
m/M ⩾ 1.2 × 10−4. This is the minimum mass ever that the for-
mer moon of HIP 41378 f should have had. For a larger moon,
the minimum mass mmin needed to tilt the planet is proportional
to the frequency ν j of the considered resonance. The top hori-
zontal axis in Fig. 3 shows the values of mmin computed from
Eq. (5) using the parameters J2 and λω of Uranus (the tics start
at 1.2 × 10−4 and go from right to left).

The characteristic spin-axis precession rate of HIP 41378 f
computed from Eq. (2) is p ≈ 25′′ yr−1. According to the left
inequality in Eq. (5), this value almost certainly rules out a res-
onance with frequency s3, because frequency s3 sharply peaks
at s3 = −15.7′′ yr−1 (see Fig. 3). The fact that p > |s3| means
that the s3 resonance is located in the green portion of Fig. 1;
therefore no capture from a low obliquity is possible in this res-
onance whatever the mass of the moon. Frequency s6, on the
contrary, is the closest resonance reachable by HIP 41378 f. This
resonance is expected to be strong for planet f, if not the strongest
(see Sect. 3). Figure 3 shows that a capture and full tilting within
the s6 resonance requires a moon with minimum mass ratio rang-
ing between about 2 × 10−4 and 10 × 10−4. This corresponds to
an absolute mass ranging roughly between Triton’s mass and

the mass of our Moon, respectively. More precisely, when the
parameters J2 and ωλ of Uranus are assumed for HIP 41378 f,
the value of frequency s6 = −136+101

−269
′′ yr−1 obtained in Sect. 3

translates into a minimum moon mass mmin/M = 6+13
−5 ×10−4 (3σ

uncertainty).
This mass range seems realistic when viewed in the con-

text of the regular moons of the Solar System giant planets. For
comparison, the moon-to-planet mass ratio of Titan is 2 × 10−4,
and the summed masses of the largest moons of Jupiter and
Uranus yield ratios of about 2 × 10−4 and 1 × 10−4, respectively.
This similarity among planets motivated the work of Canup &
Ward (2006), who found that the formation mechanism of moons
around the Solar System giant planets may naturally lead to a
common mass scaling, with final mass ratios of a few times 10−4.
Yet, these results do not rule out the existence of larger moons,
either because of differing external conditions during their for-
mation, or because of different formation processes (see e.g. the
discussion by Saillenfest et al. 2022).

In order to fully incline the planet starting from a low obliq-
uity, the distance that the migrating moon needs to cover depends
on the resonance considered, but Fig. 1 shows that one can expect
in general a migration from am ≈ 0.5 rM to 1 rM. Using the J2
value of Uranus, Eq. (4) gives a characteristic length rM ≈ 11 R
for planet HIP 41378 f, which implies that the moon would need
to migrate from roughly 5 to 10 R. Given that rM is proportional
to J1/5

2 , other realistic values of J2 may change these distances
by a small amount (see discussion in Appendix B).

The HIP 41378 system is 2.1+0.4
−0.3 Gyr-old (Lund et al. 2019).

As the whole tilting mechanism must have been completed
before today, the required migration range for the moon can
be translated into a minimum migration rate. In the case of
HIP 41378 f, we obtain a migration rate of about 6 cm yr−1 in
average. This velocity is comparable to the Moon’s migration
rate from the Earth (Williams & Boggs 2016), and about two
times less than the migration rates of Ganymede from Jupiter
(Lainey et al. 2009) or Titan from Saturn (Lainey et al. 2020).
In order to power this migration through tidal dissipation within
the planet, classical formulas with constant parameters (see e.g.
Efroimsky & Lainey 2007) imply that the planet’s dissipation
coefficient needs to be higher than k2/Q ≈ 3 × 10−5 for a moon
mass m/M = 2 × 10−4, and higher than k2/Q ≈ 6 × 10−6 for a
moon mass m/M = 10−3. For comparison, the value measured
for Jupiter’s satellite Io is k2/Q = 1.102 ± 0.203 × 10−5 (Lainey
et al. 2009), and the value measured globally for Saturn’s main
satellites is k2/Q = 1.59 ± 0.74 × 10−4 (Lainey et al. 2017) with
a large spread for individual moons extending to much higher
values (see Lainey et al. 2020; Jacobson 2022).

5. Adiabatic resonance capture

The analysis above shows that when assuming realistic values for
the unknown parameters J2 and ωλ, the constraints obtained for
the planet HIP 41378 f and its hypothetical former moon match
well the properties expected for giant planets and moons (i.e.
distance, mass, migration rate, and tidal dissipation), at least
when viewed in the context of the Solar System. Yet, in order
for a planet to be captured and adiabatically tilted within a given
resonance, this resonance must be large enough. The width of
secular spin-orbit resonances scales as the square root of the
amplitude of the term in the orbital series (see Eq. (1)). The
s6 term is expected to be among the dominant terms for planet
HIP 41378 f, but its amplitude may still be small, depending on
the mutual inclinations between the planets’ orbital planes. In
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order to compute the mutual inclinations of the planets, we need
their orbital inclinations Ik and longitudes of ascending nodes
Ωk.

As shown in Table 1, the orbital inclinations Ik of transiting
planets with respect to the sky plane are tightly constrained from
observations, apart from the mirror degeneracy with respect to
90◦. As for the longitudes of nodes Ωk in the sky plane, they are
not constrained from transit photometry, but we know that their
values are likely to be close to each other. Indeed, for a given
set of orbital inclinations Ik, mutual inclinations between the
planets’ orbital planes are minimum if their longitudes of node
Ωk are equal. As a general rule, low mutual inclinations min-
imise the planets’ orbital excitation, and a low orbital excitation
is expected in multi-planetary systems for stability reasons.

In systems observed by the transit method, low mutual incli-
nations are expected also because they maximise the probability
of observing several transiting planets. Gravitational interactions
produce a precession of the planets’ orbital planes, possibly mak-
ing some of them evolve in and out of transit configuration (see
e.g. Becker & Adams 2016). Using the Lagrange–Laplace the-
ory, it is straightforward to compute the fraction of time that a
planet spends in and out of transit configuration (see e.g. Fig. 2).
In the HIP 41378 system as described in Table 1, only the inner-
most planet may possibly transit 100% of the time, even if we set
all theΩk values of the planets to be equal. Due to orbital preces-
sion, the probability to observe five transiting planets (as today)
is 30% at best, and the probability to observe six is lower than
5%. As such, the HIP 41378 system would not be classified as
‘continually mutually transiting’ (Becker & Adams 2016, 2017).

The level of orbital excitation of a planetary system can be
quantified as a function of the dispersion of their longitudes of
ascending node Ωk in the sky plane. As shown in Appendix C,
allowing for just a few degrees dispersion in Ωk can increase the
amplitude S j of several modes in Eq. (12) by orders of magni-
tude, drastically reducing transit probabilities. In the HIP 41378
system, the level of dispersion of the planets’ longitudes of node
Ωk is therefore likely to be very small, perhaps less than 1◦, but
their actual values are unknown.

Here, we are interested in the possibility for a planet to be
captured in secular spin-orbit resonance from a low initial obliq-
uity. In this context, the larger the resonance, the easier the
capture (see e.g. Saillenfest et al. 2020); hence, we actually just
need a lower bound for the resonance widths, that is, a lower
bound for the amplitudes S j in Eq. (12). If we show that the res-
onance capture operates flawlessly for this lower bound, then we
can be assured that it will operate as well or even better for the
true amplitudes S j. To this aim, we consider that: i) the orbital
inclinations of all planets with respect to the sky plane lie on the
same side of 90◦, and ii) all planets have exactly the same longi-
tude of ascending node Ωk in the sky plane. When applied to the
HIP 41378 system, this idealised system gives the solution shown
in Table 2 for planet f.

In order to produce a resonance capture, the migration of
the moon must be slow compared to the oscillations of the reso-
nance angle, so that the parameter change is close to the adiabatic
regime (see e.g. Su & Lai 2020). For a given resonance, the
oscillation frequency near the resonance centre can be computed
through Eq. (7); the frequency scales as the square root of the
amplitude S j. When applying Eq. (7) to HIP 41378 f by consid-
ering the orbital series in Table 2, one finds that the libration
period of the s6 resonance angle when the separatrix appears
is Tlib ≈ 547 000 years. This value is much smaller than the
age of the system (2.1+0.4

−0.3 Gyr; see Lund et al. 2019). There-
fore, even when considering the minimum possible width of the

Table 2. Solution for the long-term inclination dynamics of planet
HIP 41378 f given by the Lagrange–Laplace system.

j Identification ν j (′′ yr−1) S j × 107 ϕ(0)
j (o)

1 s5 0.000 7 046 055 0.0
2 s3 −15.600 18 545 0.0
3 s6 −144.623 5682 0.0
4 s1 −170.310 972 180.0
5 s4 −477.109 26 180.0
6 s2 −477.679 5 180.0

Notes. All planets have their nominal masses, semi-major axes, and
inclinations given in Table 1. The amplitudes S j are minimised by
assuming that all planets have orbital inclinations lying on the same side
of 90◦ (chosen to be Ik ⩽ 90◦), and all planets have the same longitude
of ascending node in the sky plane (chosen to be Ωk = 0).

resonance, the available time span is more than enough for the
planet to oscillate many times within the s6 resonance, allowing
an adiabatic drift to occur within this resonance.

This point can be verified by performing a numerical integra-
tion of the coupled equations of motion of the planet’s spin axis
and the orbit of its moon. We used the same setting as Saillenfest
et al. (2022): we integrated the secular equations of Correia et al.
(2011) expanded at quadrupole order, and forced the orbital evo-
lution of the planet with the quasi-periodic series in Table 2. A
typical example of evolution is displayed in Fig. 4. In this exam-
ple, the mass of the moon is m/M = 7 × 10−4 (i.e. about the
mass of Jupiter’s moon Europa), and we made the moon migrate
outwards at a constant rate, chosen to emulate a tidal parameter
k2/Q ≈ 10−5. For such a tidal parameter, the moon is expected
to migrate from a distance am = 5 R to a distance am = 10 R
in about 1.2 Gyr. The planet was initialised with an obliquity of
0.05 rad and a random precession phase. The eccentricity of the
moon and its inclination with respect to its local Laplace plane
were both initialised to 10−4, with random argument of pericen-
tre and longitude of ascending node. As expected, Fig. 4 shows
that the adiabatic capture and tilting in resonance s6 is guaran-
teed on a gigayear timescale. Due to the large separation between
timescales, the obliquity oscillations of the planet inside the res-
onance are not even noticeable in the figure, but they build up in
the curve width.

When the system reaches the unstable region, the eccentric-
ity of the moon increases rapidly, which produces chaotic jumps
in the planet’s obliquity. Indeed, near the border of the unstable
region, the timescale for the moon’s eccentricity to be multiplied
by 100 is a few times the characteristic timescale τ defined in
Eq. (6). Here, one obtains τ ≈ 100 yr, which means that the
eccentricity increase is extremely fast compared to the planet’s
spin-axis precession timescale (T ≈ 52 000 yr), to the oscilla-
tions of the planet inside the resonance (Tlib ≈ 547 000 yr), or to
the tidal eccentricity damping of the moon (whose timescale is a
few millions of years; see e.g. Murray & Dermott 1999).

The simulation in Fig. 4 is stopped when the moon’s peri-
centre goes below the Roche limit of the planet. At this point, the
moon is expected to be disrupted into pieces which would rapidly
reorganise into an equatorial disc confined inside the Roche limit
(see e.g. Canup 2010; Hyodo et al. 2017). As the moon is lost, the
planet is suddenly released from any kind of spin-orbit coupling,
and its obliquity remains permanently frozen. In the example
shown in Fig. 4, the final obliquity of the planet is about 77◦. This
value is roughly compatible at 2σ with the obliquity ε = 92 ± 7◦
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Fig. 4. Example of tidal evolution of the planet HIP 41378 f and a hypothetical former moon. The mass of the moon is chosen to be m/M = 7× 10−4.
The moon migrates away at constant rate emulating a tidal parameter k2/Q = 10−5. The trajectory of the system is shown in black; it goes from the
leftmost to the rightmost point in about 1.3 Gyr. The available resonances are shown in pink, with their separatrices in red; they are labelled with
the frequencies sk of the corresponding modes (see Sect. 3). In this example, the resonances have the minimum possible widths according to the
planets’ orbital elements in Table 1. In the hatched blue region, the moon is unstable (same as Fig. 1). The top axis shows the moon distance in unit
of the planetary radius.

proposed by Akinsanmi et al. (2020). However, we stress that
the final obliquity of the planet is the result of a chaotic phase;
its value strongly depends on initial conditions, on the mass of
the moon, and on the widths of nearby secular spin-orbit reso-
nances (Saillenfest et al. 2022). More massive moons and larger
resonances increase the obliquity excitation of the planet during
the chaotic phase. Due to chaos, obliquity values larger than 90◦
can be reached, but the detailed exploration of possible outcomes
would require a precise knowledge of the orbital dynamics of the
planet. Without this knowledge, we can only conclude that the
obliquity of the planet ends up within the hatched blue region in
Fig. 4, that is, between about7 70◦ and 110◦.

6. Discussions

6.1. Refining the tilting mechanism

Under the ring hypothesis, we have presented a proof of concept
for producing the unusual configuration proposed for super-puff
exoplanets through the tidal migration of a former moon. We
have considered the effect of a single massive moon on the
planet’s spin axis dynamics. This does not mean that the planet
only had one moon – we expect it to possibly have many – but
that this big moon gathered most of the mass of the satellite sys-
tem, similarly to Titan around Saturn. Now that this big moon is
lost, the remaining moons (either pre-existing or formed in the
debris ring) are expected to be very small and undetectable with
current facilities.

The presence of several pre-existing big moons, as the
Galilean satellites around Jupiter, would complicate the picture
outlined here. Through their mutual gravitational perturbations,
several massive moons could either inhibit or facilitate the tilting
process (see Saillenfest et al. 2022). The exploration of this more
complicated scenario is out of the scope of this article. More gen-
erally, additional work can refine the scenario proposed here for a

7 The closed-form expression for the border of the unstable region is
cos2 ε = (51 + 25

√
3)/726; see Saillenfest & Lari (2021).

given target exoplanet, including the efficiency of ring formation,
the distribution of possible final obliquities, and the combined
effect of several massive moons. However, this level of detail
would require an in-depth knowledge of the orbital dynamics of
the planetary system.

In the case of HIP 41378 f, confirmed periods and masses are
still missing for planets d, planet e, and the candidate planet g.
The analysis presented here reflects our current understanding of
the system, and some results may change in case of substantial
modifications in the system’s hierarchy. Our correlation analysis
shows that planets d and g are only weakly coupled with the
frequency s6 of the resonance involved. A mass measurement for
these planets would therefore not alter much the picture outlined
above. However, substantial changes could be produced if future
observations reveal a substantially different mass or period for
planet e, or if the system contains an additional outer planet; the
calculations presented here should therefore be updated. In this
respect, the simplicity of the analytical formulas involved is a
great advantage.

6.2. The true nature of super-puffs

Future characterisation of super-puff exoplanets is fundamental
to assess the actual nature of their anomalously large radii.
Unfortunately, due to the nearly face-on configuration of the
proposed ring, an unambiguous detection of the ring by transit
photometry or by the Rossiter-McLaughlin effect would be
challenging with current instruments (Akinsanmi et al. 2020).
Spectroscopic observations are much more promising. Even
though the spectra of several super-puffs have been revealed
to be featureless in near infrared (Libby-Roberts et al. 2020;
Chachan et al. 2020; Alam et al. 2022), rings are expected to
be transparent in far infrared, which would strongly reduce the
transit depth of the planet. As noted by Alam et al. (2022), mid-
infrared observations by the JWST would be enough to break
the degeneracy between high-altitude hazes, a high-metallicity
atmosphere, or the ring hypothesis. The nominal JWST mission
offers only two opportunities to observe a transit of HIP 41378 f:
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Fig. 5. Probability of underestimating the density of a transiting exo-
planet by a factor q due to the presence of an opaque ring with outer
radius 2.5 R and no inner gap. The enhanced transit depth due to the ring
is supposed to be fully misinterpreted as an enlarged planetary radius.
The red curve is obtained by computing the ring inclination required to
divide the measured planet density by a factor q, and by assuming that
the inclination of the ring (or equivalently, its precession angle ψ; see
text) is uniformly distributed between 0 and 2π. The three planet pic-
tures show the approximate geometries corresponding to the factor q in
abscissa. The probability goes from 1 at q = 1 (exact edge-on configura-
tion) to 0 at q = 2.53 (exact face-on configuration). In case it possesses
a ring, planet HIP 41378 f would have q ≈ 13 (Akinsanmi et al. 2020).

October 2025 and March 2027. Considering their high scientific
value, these opportunities should not be missed. In addition,
the high cadence and high photometric resolution of the future
PLATO mission may allow small distortions in the transit light
curve to be detected (due to the non-zero inclination of the ring
with respect to the sky plane and/or to a possible thin inner gap
in the ring; see Akinsanmi et al. 2020).

6.3. The rarity of enlarged planets

Due to the generic nature of the mechanism presented here,
one may wonder why in this case we do not observe many dis-
tant exoplanets with anomalously large radii. This rarity can be
explained by several factors. First, the transit and radial-velocity
methods are strongly biased towards the detection of short-
period exoplanets (Perryman 2018). In this regard, the detection
of HIP 41378 f with a period of 542 days is already an exception
(the transit probability is 0.5%). In turn, the long-period plan-
ets observed in direct imaging are strongly biased towards young
systems, which cannot have gone through the gigayear adiabatic
tilting process described here. As of today, this leaves us with
only a handful of exoplanet detections for which this mechanism
may have played a role.

The second rarity factor is geometric: a strong radius
enhancement able to cast suspicion requires a roughly face-on
ring. The mechanism proposed here produces a final planetary
obliquity more or less equal to 90◦, which is a necessary condi-
tion for observing a transiting face-on ring, but is not sufficient:
the precession phase ψ of the planet must also have an adequate
value. For a ring with typical radius 2.5 R, the increase in transit
depth leading to underestimating the planet density by a factor
q > 10 requires a precession phase within ±40◦ of the exact
face-on configuration (see e.g. Zuluaga et al. 2015). As shown
in Fig. 5, this occurs about 45% of the time. This fraction is low-
ered if we consider the ring to have an inner optically thin gap
similar to Saturn’s ring.

Finally, even though the mechanism described in this article
is generic, not all giant planets are expected to reach the final

instability phase in only a few gigayears. Depending on the ini-
tial configuration of its moons and the geometry of the available
resonances, the planet’s obliquity may only have time to increase
by a few tens of degrees during its lifetime. In the Solar System,
which is aged 4.5 Gyr, only Uranus may have completed the final
stage today (Saillenfest et al. 2022). In contrast, Jupiter is only
starting the tilting phase8 (Saillenfest et al. 2020), while Saturn
is seemingly halfway in (Saillenfest et al. 2021a,b) – and it may
have recently been ejected from resonance (see Wisdom et al.
2022).

Hence, even though many exoplanets are probably affected
by this mechanism, the conjunction of observational biases, ring
geometry, and the long timescales at play drastically reduces the
probability of detecting targets as exquisite as HIP 41378 f. In this
regard, the future PLATO mission is particularly promising, as
its observing strategy is tailored to long-period planets, and it
will be accompanied by an intensive radial-velocity follow-up
to get accurate planet masses and detect possible non-transiting
companions. Hopefully, the PLATO discoveries will enable us to
estimate the fraction of the exoplanet population that may have
gone through the mechanism described in this article.

7. Conclusion

The apparent enlarged radius of some long-period exoplanets
may be due to the presence of a ring observed roughly face
on (Piro & Vissapragada 2020; Akinsanmi et al. 2020). Despite
their unconventional configuration, such hypothetical rings and
the nearly 90◦ obliquity of their host planets can be the natural
end state of former migrating moons. This mechanism involves
the capture of the planet in secular spin-orbit resonance as the
moon migrates away on a gigayear timescale. The planet is
then gradually tilted until the moon is destabilised and may be
destructed into a debris disc.

For a given exoplanet, the plausibility of this formation
mechanism can be assessed through simple analytical calcula-
tions. First, we need to determine the list of secular spin-orbit
resonances that may tilt the planet. The frequencies ν j of the
main orbital precession harmonics of the planet can be obtained
through the Lagrange-Laplace theory; in this theory, orbital fre-
quencies are the eigenvalues of a matrix which depends only
on the masses and spacings of the planets contained in the sys-
tem. The probability density function of each frequency can be
built from numerous realisations of the system (e.g. 106 or more)
which are sampled according to our uncertainties on the param-
eters. Simple correlation analysis can then quantify the influence
of each planet in the frequency values.

Then, for each frequency ν j, the simple formula in Eq. (5)
gives the minimum mass of a moon that the planet must have
in order to trigger an adequate secular spin-orbit resonance.
This formula depends on the unknown parameters J2 and ωλ
of the planet, but thanks to the approximate relation J2 ∝ ω

2,
this lack of knowledge only weakly affects the final result.
The moon-to-planet mass ratio obtained is the first plausibil-
ity check of this dynamical mechanism. Moons with mass ratio
m/M ∼ 10−4 or smaller are expected to be ubiquitous around
gaseous planets (see e.g. Canup & Ward 2006). Substantially
larger moons cannot be categorically ruled out, but they would
require non-generic formation pathways such as captures or giant

8 As Jupiter possesses four massive moons interacting with each other,
its tilting process is somewhat different from what is presented here.
Jupiter may never be able to reach an obliquity close to 90◦ even if it
was given infinite time.
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impacts, and are therefore much less likely (see e.g. Kipping
2014).

A second consistency check is provided by the age of the
planetary system considered. The Laplace radius of the planet
(see Eq. (4)) sets the distance over which the moon needs to
migrate to fully tilt the planet. The migration range obtained
must have been covered by the moon in a smaller timespan than
the age of the system. As the migration of moons is powered
by tidal dissipation inside the planet, the required distance and
migration timescale can be translated into a tidal parameter k2/Q
for the planet. Expected values are of the order of 10−5 to 10−4

from a Solar System perspective (Lainey et al. 2009, 2017).
The last plausibility check is the consistency of timescales

between the age of the planetary system and the hypothesis of an
adiabatic capture into resonance. An adiabatic capture requires
the libration period inside the resonance to be much shorter that
the age of the system, such that many oscillations of the reso-
nance angle may possibly have occurred during the tilting of the
planet. The characteristic libration frequency is given in Eq. (7);
it depends on the frequencies ν j obtained above, but also on the
amplitudes S j of the corresponding harmonics in the planet’s
orbital precession spectrum. Using the Lagrange–Laplace the-
ory, the computation of these amplitudes requires to know the
inclinations Ik and longitudes of nodes Ωk of the planets (e.g.
measured in the sky plane). As the libration frequency scales
as the square root of the amplitude of the resonant term, only a
lower bound for S j is actually needed. This lower bound can be
obtained even in case the longitudes of nodes Ωk of the planets
are unknown, allowing one to compute a maximum value for the
libration period inside the resonance considered.

We applied this methodology to the planet HIP 41378 f, and
obtained that all consistency checks are fulfilled. In order to tilt
the planet through an adequate resonance, the hypothetical exo-
moon must have had a moon-to-planet mass ratio ranging from
m/M ≳ 2 × 10−4 to 10 × 10−4, that is, a mass comparable to
that of Neptune’s moon Triton, Jupiter’s moon Europa, or to that
of our own Moon. Even though such small exomoons are very
hard to detect due to the weakness of their observational signals
(Kipping 2014), we expect them to be ubiquitous around giant
exoplanets. Provided that the exomoon was initially formed at a
distance of about 3 to 10 planetary radii (similarly to Jupiter’s
moons Io or Europa), its outward migration leads to a guaran-
teed capture of HIP 41378 f in a secular spin-orbit resonance. The
migration timescale required for the moon is found to be in line
with what is observed in the Solar System, with a corresponding
tidal dissipation factor k2/Q larger than 2 × 10−5 (for the small-
est possible moon) or larger than about 6 × 10−6 (for a bigger
moon). Finally, the libration timescale inside the resonance is
found to be orders of magnitude smaller than the age of the sys-
tem (2.1+0.4

−0.3 Gyr; see Lund et al. 2019), allowing for the whole
tilting mechanism to have possibly occurred.

All these requirements are confirmed by an example of fully
coupled numerical integration of the planet’s spin axis and the
moon’s orbit. The planet’s spin axis is gradually tilted until its
obliquity ε reaches values in the interval [70◦, 110◦], and its
moon becomes unstable (Tremaine et al. 2009; Saillenfest &
Lari 2021). Due to the short instability timescale of the exomoon
(τ ≈ 100 yr in the case of HIP 41378 f), its eccentricity increase
is likely to cause catastrophic events, such as collision chains
between small inner moons or a tidal disruption of the moon
itself when its pericentre goes below the planet’s Roche limit
(see e.g. Canup 2010; Hyodo et al. 2017; Wisdom et al. 2022).
Hence, we argue the dynamical mechanism described here,
which may be responsible for the tilting of planet HIP 41378 f to

an obliquity ε ≈ 90◦, can also naturally provide the material for
its hypothetical ring.

We stress, however, that even though this dynamical mech-
anism is physically realistic for HIP 41378 f, this does not imply
that it necessarily happened. Planet HIP 41378 f may have had
too small and/or too distant moons for the mechanism to operate,
and the anomalous transit depth and flat spectrum of this planet
may still be due to a particularly tenuous atmosphere covered
with high-altitude hazes (Chachan et al. 2020; Alam et al. 2022;
Belkovski et al. 2022). Yet, our analysis does provide further sig-
nificance to the high-obliquity ring hypothesis, by showing that
such an unusual configuration is not only feasible in a physical
point of view, but even expected for some fraction of exoplanets
resembling HIP 41378 f – that is, for old and distant exoplanets in
multi-planetary systems. As detailed above, checking the plausi-
bility of this mechanism only requires a limited knowledge of
the planetary system considered, and this methodology can be
applied to other super-puff exoplanets, and in particular to the
potential future discoveries of PLATO.
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Appendix A: Correlations between parameters and
orbital precession frequencies

-40

-30

-20

-10

0

1 1.1 1.2 1.3 4 6 8 10 2 4 6 8 0 5 10 0 10 20 30 0 10 20 30 0 10 20

-40

-30

-20

-10

0

0.12 0.13 0.2 0.21 0.3 0.32 0.34 0.85 0.9 0.9 1 1.1 1.2 1.3 1.4

s 3
("

ye
ar

−
1
)

M? (M�)

-40

-30

-20

-10

0

1 1.1 1.2 1.3

+0.06

M1 (M⊕)

4 6 8 10

+0.07

M2 (M⊕)

2 4 6 8

+0.01

M3 (M⊕)

0 5 10

−0.29

M4 (M⊕)

0 10 20 30

−0.85

M5 (M⊕)

0 10 20 30

−0.34

M6 (M⊕)

0 10 20

−0.05

s 3
("

ye
ar

−
1
)

a1 (au)

-40

-30

-20

-10

0

0.12 0.13

−0.01

a2 (au)

0.2 0.21

−0.01

a3 (au)

0.3 0.32 0.34

−0.06

a4 (au)

0.85 0.9

+0.08

a5 (au)

0.9 1 1.1 1.2

+0.10

a6 (au)

1.3 1.4

+0.03

Fig. A.1. Scatter plot of the proper frequency s3 and the 13 parameters involved (the stellar mass and the masses and semi-major axes of planets
1 to 6). The black dots show 150 000 realisations of the Lagrange–Laplace system with the mass and semi-major axis uncertainties from Table 1.
The red label gives Spearman’s correlation coefficient ρS as computed from 106 realisations.
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Fig. A.2. Same as Fig. A.1, but for frequency s6.

In a long-term stable planetary system, the orbital motion of
the planets can be approximated by quasi-periodic series as in
Eq. (1), where the frequencies ν j are integer combinations of the
fundamental frequencies of the system. In the Lagrange–Laplace
approximation, the fundamental frequencies sk of the series
governing the inclination dynamics of the planets are the eigen-
values of the matrix B (see e.g. Murray & Dermott 1999) which
only depends on the masses and semi-major axes of the planets.

The values of the frequencies sk and their role in the dynam-
ics are intrinsic properties of the matrix B. As the fundamental
frequencies reflect the gravitational couplings between the plan-
ets, some parameters contribute much more than others in the
value of a given frequency; however, this contribution is not lin-
ear and it is not obvious a priori which parameters contribute the
most. Here, we are mostly interested in the frequencies s3 and s6
as defined in Sect. 3, because they are expected to dominate the
inclination dynamics of planet HIP 41378 f. Figures A.1 and A.2
show the scatter of the values of s3 and s6 as a function of all
parameters.

From these scatter plots, it is visible that the value of s3
mostly depends on M4, while the value of s6 mostly depends
on M5. The strength of these correlations can be quantified by
Spearman’s correlation coefficient ρS. The coefficients obtained
are given in Figs. A.1 and A.2 for each parameter. The correla-
tions between s3 and M4 (ρS = −0.85) and between s6 and M5
(ρS = −0.76) are the strongest by more than a factor of two.

Appendix B: Influence of the unknown physical
parameters of the planet

In Sect. 4, we estimate the properties of a hypothetical former
moon needed to tilt a planet from a low obliquity and create a
ring of debris. The formulas, however, depend on the unknown
parameters J2 and ωλ of the planet. In this section, we consider
them as free parameters and study their influence on our results.

The values of J2 and ωλ are related and depend on the inte-
rior properties of the planet. In the simplest case of a homoge-
neous planet, J2 and ω are linked through the law of Maclaurin’s
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Fig. B.1. Minimum moon mass needed for HIP 41378 f to undergo the
full tilting mechanism through a resonance with s6. Each panel corre-
sponds to a given possible value of s6 (labels). The minimum moon
mass mmin (colour scale) is obtained from Eq. (5) as a function of
the unknown parameters J2 and ωλ of HIP 41378 f. The white curves
highlight three mass levels, namely mmin/M = 3 × 10−4, 6 × 10−4, and
10 × 10−4. The grey region is forbidden by the left inequality in Eq. (5).
The black dotted line shows the relation between J2 and ωλ obtained for
a homogeneous planet (see Eq. B.1). For reference, the black dots show
the parameters (ωλ, J2) of the Solar System giant planets (Yoder 1995).

ellipsoid (see e.g. Chandrasekhar 1969), while λ = 2/5. This law
simplifies to J2 ∝ ω

2 for a nearly spherical planet, and it can be
rewritten as

J2 ≈
25
8

R3

GM
(ωλ)2 . (B.1)

Even though planets are not homogeneous, this approximate
relation gives an idea of where to look for realistic combinations
of parameters in the plane (ωλ, J2) without any assumption on
its composition. Figure B.1 shows that the Solar System giant
planets do fall roughly along this curve.

For a given frequency ν j in the orbital precession spectrum
of a planet, the conditions p ⩽ |ν j| in Eq. (5) corresponds to a
straight line J2 ∝ ωλ, whereas the condition |ν j| ⩽ pη/2 cor-
responds to a power law J2 ∝ (ωλ)5/2. Both conditions can be
visualised in Fig. B.1 for planet HIP 41378 f using three differ-
ent values of the frequency ν j (most probable value of s6 and
95.4% bounds; see Sect. 3). Because the exponent 2 in Eq. (B.1)
is close to 5/2, the realistic combinations of J2 and ωλ (which
are located in a rough neighbourhood of the dotted curve) fol-
low more or less the level curves of the minimum moon mass
mmin. As a consequence, our estimate of the minimum moon
mass is not affected much by our total ignorance of the parame-
ters J2 and ωλ. Whatever realistic values are chosen, we obtain a
minimum moon mass mmin/M ≈ 6 × 10−4 for the most probable
value of s6 (Fig. B.1b), with a dispersion at 95.4% ranging from
mmin/M ≈ 3×10−4 (Fig. B.1a) to mmin/M ≈ 1×10−3 (Fig. B.1c).
These values are similar to those obtained in Sect. (4) using the
parameters of Uranus.

The value of characteristic length rM, however, depends on
J2, but not on ωλ (see Eq. 4). The distance covered by the
migrating moon depends therefore on the value chosen for J2.
Yet, this dependence is not very steep (rM ∝ J1/5

2 ). Moreover,
extreme values of J2, either very small or very large, can be ruled
out because giant planets are expected to spin at a fraction of
their breakup velocity (see e.g. Batygin 2018; Dong et al. 2021;
Dittmann 2021). As a consequence, the value obtained for rM
only varies by a small amount when considering realistic values
of J2 (see the right vertical axis in Fig. B.1).

Appendix C: Inclination amplitudes and transit
probabilities

In the Lagrange–Laplace approximation, the long-term inclina-
tion dynamics of planets are described by quasi-periodic series
as in Eq. (12), in which the frequencies solely depend on the
masses and spacing of the planets. The orientations of the plan-
ets’ orbital planes enter into play only in the amplitudes of the
terms of the series. Apart from the zero-frequency term (which
merely gives the orientation of the planetary invariant plane),
the amplitudes S j in Eq. (12) depend on the mutual inclinations
between the planets’ orbital planes. The mutual inclination Ψik
of two planets i and k can be written as

cosΨik = cos Ii cos Ik + sin Ii sin Ik cos(Ωi −Ωk) , (C.1)

where I and Ω are the orbital inclination and longitude of
ascending node of the planets measured with respect to a given
reference plane (e.g. the sky plane). As a simple rule of thumb,
the larger the mutual inclinations between each pair of planets,
the larger the amplitudes S j. For unknown longitudes of node
Ωk, the orbital inclinations Ik of a set of planets provide mini-
mum and maximum bounds to the mutual inclinations between
each pair of planets. From Eq. (C.1), the minimum mutual incli-
nation of two planets is Ψik = |Ii − Ik | reached for Ωi − Ωk = 0.
In practice, inclination values measured from transit data have a
mirror degeneracy with respect to 90◦ (see Table 1 of the main
text); Ψik is minimised if Ii and Ik lie on the same side of 90◦.

Here, we quantify the influence of the unknown longitudes of
nodes on the orbital dynamics of planet HIP 41378 f by drawing
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Fig. C.1. Possible values of the amplitudes S j for the inclination terms of planet HIP 41378 f. The frequency of each term is labelled. The amplitude
of the zero-frequency term s5 is not shown. The masses, semi-major axes, and inclinations of all planets are set to their nominal observed values
(see Table 1); all inclinations values Ik are assumed to be Ik ⩽ 90◦. The unknown longitudes of node Ωk of the planets in the sky plane are drawn
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of each amplitude is built from 106 realisations of the Lagrange–Laplace system (colour scale). A bin is coloured grey if no occurrence is found
among our 106 realisations. The scale is the same for all graphs to highlight the disparity of amplitude between the different terms.

randomly the longitudes of nodes of all planets in a given inter-
val ∆Ω0 and building a histogram of the amplitudes S j obtained.
The result is shown in Fig. C.1 for an interval ∆Ω0 ranging
from 0◦ to 2◦. As expected, the terms s1 and s2 have very small
amplitudes; they contribute negligibly to the dynamics of planet
HIP 41378 f. The dominant terms of the dynamics are s3 and s6,
with the qualitative roles described in Sect. 3. The amplitudes of
all terms are generally minimum for ∆Ω0 = 0, and they cover a
wider and wider range of possibilities when we allow the plan-
ets’ longitudes of nodes to be substantially distinct. This effect
is particularly visible for the s4 term, for which a dispersion as
small as ∆Ω0 = 1◦ can make the amplitude increase by a factor
1000 or so.

Figure C.2 shows the probability of observing five transit-
ing planets or more in the same experiment as in Fig. C.1. For a
given realisation of the planetary system, the transit probability
of a set of planets is the fraction of time their orbits simultane-
ously pass in front of the star. If we assume the same longitude of
node for all planets in the HIP 41378 system (i.e. ∆Ω0 = 0), then
five planets or more transit about 30% of the time. If we allow a
dispersion of ∆Ω0 = 1◦, this fraction can be reduced to less than
5%.
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Fig. C.2. Probability of observing five transiting planets in the
HIP 41378 system over the planets’ precession cycles. The unknown
longitudes of node Ωk of the planets in the sky plane are drawn from
a uniform random distribution in an interval ∆Ω0 common for all plan-
ets. For a given value of the range ∆Ω0 (vertical axis), a histogram of
the transit probability is built from 106 realisations of the Lagrange–
Laplace system (colour scale). A bin is coloured grey if no occurrence
is found among our 106 realisations.
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