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. In this contribution, we show the continuous dependence of the solutions on the physical parameters in addition to the initial data, and set an optimal control problem where the cost functional depends on function target, but most importantly on physical parameters targets. We show the existence of a unique minimizer and provide an optimality condition. Eventually, we provide basic numerical tests confirming the obtained theoretical results.

Introduction

Nowadays, mathematical modeling plays a role of utmost importance in our daily life at all levels. In particular, mathematical biology became one the most active field of research for biologists, healthcare practitioners, and mathematicians leading to a very active community of researchers tackling advanced problems such as cancer and tumor growth control through several types of therapies. Moreover, this infatuation for mathematical modeling in biology, and the extraordinary development of new breakthrough technologies such as artificial intelligence algorithms, promises solutions to healthcare providers, in particular in the fight against cancer. The complexity of the mechanisms involved in the development of a cancer or a tumor makes it a subject of prediction for mathematicians using advanced mathematical modeling and strategies giving quantitative and qualitative predictions and insights, and most importantly serving as theoretical labs for studying this disease. Several roadmaps are being developed to fight cancer such as the Europe's Beating Cancer Plan: Implementation Roadmap, A Cancer Strategy for Northern Ireland 2022-2032, NHS Long Term Plan ambitions for cancer etc. Undoubtedly, despite the striking advances in the clinical battle against cancer (surgery, chemotherapy, radiation therapy, immunotherapy, hormone therapy, etc.) and the tremendous efforts committed by interdisciplinary researchers for the theoretical understanding of tumors mechanisms, progression and response to therapies, cancer remains one of the major challenges facing humanity. "Whether the nom de guerre is Mathematical Oncology, Computational or Systems Biology, Theoretical Biology, Evolutionary Oncology, Bioinformatics, or simply Basic Science, there is no denying that mathematics continues to play an increasingly prominent role in cancer research", this was the opening statement of the 2019 mathematical oncology roadmap, [START_REF] Rockne | The 2019 mathematical oncology roadmap[END_REF]. This paper is part of a series modestly tackling the question of personalization of tumor growth models based on optimal control theory from purely mathematical point of view. More specifically, our strategy is twofold. The first is based on an optimal control theory approach for diffuse-interface-type models of tumor growth based on Cahn-Hilliard equations. The second approach is based on a novel data assimilation algorithm inspired from weather forecasting applications, and we refer to the original paper [START_REF] Azouani | Continuous data assimilation using general interpolant observables[END_REF] (and the list of contributions citing it including [START_REF] Kadiri | Data assimilation algorithm for Cahn-Hilliard equations modeling tumor growth[END_REF]) for more insights about this particular method. In this paper, we are interested in a model introduced in [START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF] as a continuum-mixture model for tumor growth.

The mathematical model

This paper is dedicated to the mathematical analysis of a system modeling the long-time behavior of a tumor growth taking into account chemotaxis and active transport. From a purely mathematical point of view, we consider a system composed of two coupled partial differential equations subjected to Newmann boundary conditions. More precisely, we are interested in the following system

             ϕ t = ν∆µ + p(ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ), in (0, T ) × Ω µ = -∆ϕ + F ′ (ϕ) -χ ϕ ψ, in (0, T ) × Ω ψ t = χ ψ ∆ψ -χ ϕ ∆ϕ -p(ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ), in (0, T ) × Ω ∂ n ψ = ∂ n ϕ = ∂ n µ = 0, in (0, T ) × Γ (2.1)
with initial conditions ϕ(0) = ϕ 0 ; ψ(0) = ψ 0 , (2.2) where the subscript • t denotes the time derivative. Basically, system 2.1 is composed of two coupled Cahn-Hilliard-type equations describing the evolution of two-phase process modeling tumor growth. More particularly, Ω denotes a bounded domain of R 3 with smooth boundary Γ, and ∂ n denotes the normal derivative with n being the outer unit normal on the boundary Γ. The order parameter ϕ ∈ [-1, 1] is equal to 1 in the tumorous phase and equal to -1 in the healthy phase. Equivalently, ψ denotes the nutrient-rich extracellular water volume fraction. In system 2.1, µ denotes a chemical potential and F a double-well potential function with minima in ±1. Basically, the ψ equation is a reaction diffusion equation where ψ represents the chemical concentration that serves as nutrient for the tumor. The model (2.1-2.2) differs from traditional tumor growth models by considering the chemotaxis and active transport through the parameter χ ϕ ≥ 0, whereas χ ψ ≥ 0 stands for the chemical mobility. This model was originally introduced in [START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF] to model a tumor tissue as a mixture of cancerous and healthy cells. For simplicity and clarity of the presentation, we assume that the mobilities denoting the diffusivity of the binary mixture and the chemicals are constant compared to [START_REF] Garcke | Long-time dynamics for a Cahn-Hilliard tumor growth model with chemotaxis[END_REF] where the mathematical analysis was achieved. Specifically, the authors prove an asymptotic compactness result for the weak solutions of the problem in the whole phase space H 1 (Ω)×L 2 (Ω) and show the existence of a global attractor equals to the unstable manifold emanating from the set of stationary points. However, our results remain valid in the case of non-constant mobilities satisfying the assumptions M1 of [START_REF] Garcke | Long-time dynamics for a Cahn-Hilliard tumor growth model with chemotaxis[END_REF]. To the best of our knowledge, this paper provides the first result ever about the optimal control of a system modeling tumor growth based on Cahn-Hilliard system of equations taking into account chemotaxis and active transport.

2.1. Technical assumptions. Along this paper, we shall assume the following regarding the doublewell potential function F and the proliferation rate function. We warn the reader that these assumptions will be used implicitly, and therefore the results below are obviously subjected to these hypothesis. Specifically, we assume:

I. The potential function F ∈ R is such that F = F 0 (s) + λ(s), where F 0 ∈ C 2 (R) and λ ∈ C 2 (R)
satisfying |λ ′′ (s)| ≤ α for all s ∈ R and α ≥ 0. In addition, we assume that for all s ∈ R,

c 1 , c 2 > 0, c 3 > 2 χ 2 ϕ χ -1 ψ , and c 4 ∈ R c 1 1 + |s| ρ-2 ≤ F ′′ 0 (s) ≤ c 2 1 + |s| ρ-2 , F (s) ≥ c 3 |s| 2 -c 4 ,
for all ρ ∈ [2, 6). II. The proliferation function p ∈ C 0,1 l oc (R) satisfies either one of the following properties for all

s ∈ R 0 ≤ p(s) ≤ c 5 (1 + |s| q ) and q ∈ [1, 9), c 5 ⩾ 0, |p ′ (s)| ≤ c 6 (1 + |s| q-1 ) and q ∈ [1, 4], c 6 ⩾ 0.
In the sequel, we shall use Const. to denote a positive generic constant depending on the norms of the initial data and the systems parameters, and not affecting the mathematical analysis. This constant may change from a line to another line of the same inequality.

Known results.

As stated in the introduction, this model was introduced in [START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF] as a continuummixture model for tumor growth. To the best of our knowledge, the only well-posedness result regarding system (2.1-2.2) is due to Garcke et al. in [START_REF] Garcke | Long-time dynamics for a Cahn-Hilliard tumor growth model with chemotaxis[END_REF]. Specifically, they show the existence and uniqueness of weak solutions and their continuous dependence on the initial data. Before recalling the known results on this system, let T > 0 be an arbitrary positive time, Q = [0, T ] × Ω, and define the following Sobolev spaces

H := L 2 (Ω), V := H 1 (Ω),
endowed with their usual respective scalar products

(u, v) H := Ω uv d x (u, v) V := (u, v) H + ∇u • ∇v d x.
The topological dual space of V is V ′ := H -1 (Ω), and is endowed with its standard product. The dual product between V and V ′ will be noted 〈

•, •〉. Next, the Riesz isomorphism A : V -→ V ′ is defined by 〈Au, v〉 := (u, v) V , for all u, v ∈ V,
where the domain of the operator A by

D(A) = ϕ ∈ H 2 (Ω) : ∂ n ϕ = 0 on ∂Ω Considering u ∈ D(A)
, the operator A is given by Au = -∆u + u. The restriction of A to D(A) is an isomorphism from D(A) onto H , and we have 〈Au,

A -1 v * 〉 = 〈u, v * 〉 for all u ∈ V and v ⋆ ∈ V ′ , and 〈u * , A -1 v * 〉 = (u * , v * ) V ′ for all u ⋆ , v ⋆ ∈ V ′ . Observe that we have 〈v * , u〉 = Ω v * u d x if v * ∈ H , and d d t ∥v * ∥ 2 V ′ := 2〈∂ t v * , A -1 v * 〉 for all v * ∈ H 1 (0, T ;V ′ ).
Eventually, we introduce the shorthand notation

N ψ = χ ψ ψ + χ ϕ (1 -ϕ).
On the well-posedness of (2.1-2.2), we have the following due to [START_REF] Garcke | Long-time dynamics for a Cahn-Hilliard tumor growth model with chemotaxis[END_REF] THEOREM 2.1. For all initial data (ϕ 0 , ψ 0 ) ∈ V × H and T > 0, system (2.1-2.2) has a unique weak solution satisfying

ϕ ∈ L 2 (0, T ; H 3 (Ω)), ψ ∈ L ∞ (0, T ;V ) ∩ L 2 (0, T,V ), F (ϕ) ∈ L ∞ (0, T ; L 1 (Ω)), p(ϕ)(N ψ -µ) ∈ L 2 (0, T ; H ), ∇N ψ ∈ L 2 (0, T ; L 2 (Ω)), Furthermore, if q ≤ 4, it follows that ϕ t , ψ t ∈ L 2 0, T ;V ′ .
2.3. Continuous dependence on the physical parameters. In [START_REF] Garcke | Long-time dynamics for a Cahn-Hilliard tumor growth model with chemotaxis[END_REF], the authors show the continuous dependence of the solutions of system (2.1-2.2) on the initial data, and therefore their uniqueness. The first result of this paper is an extension of this continuous dependence to the system's physical parameters χ ϕ , χ ψ and ν. More precisely, we show the following THEOREM 2.2. For all initial data (ϕ 0 , ψ 0 ) ∈ V × H and T > 0, the weak solutions of system (2.1-2.2) are unique. Moreover, let (ϕ 0i , ψ 0i ) ∈ V × H , i = 1, 2 be two initial data. Then, the associated respective weak solutions

(ϕ i , ψ i ), i = 1, 2 to system (2.1-2.2) satisfy for all t ∈ [0, T ] ∥ϕ 2 (t ) -ϕ 1 (t )∥ V ′ + ∥ψ 2 (t ) -ψ 1 (t )∥ V ′ + ν∥ϕ 2 (t ) -ϕ 1 (t )∥ L 2 (0,t ;V ) + χ ψ 2 ∥ψ 2 -ψ 1 ∥ L 2 (0,t ;H ) ≤ Λ(t ) ∥ϕ 02 -ϕ 01 ∥ V ′ + ∥ψ 02 -ψ 01 ∥ V ′ + Const. |χ ϕ 2 -χ ϕ 1 | 2 + |ν 2 -ν 1 | 2 + |χ ψ 2 -χ ψ 1 | 2 ,
where Λ(t ) denotes a continuous positive function depending on the norms of the initial data, the doublewell potential function F , the proliferation rate p, the system's parameters, and the size of the domain Ω.

Let us mention that in [START_REF] Kadiri | Cahn-Hilliard equation: continuous dependence on physical parameters and sensitivity analysis[END_REF] (see also [START_REF] Kadiri | Optimal control and parameters identification for the Cahn-Hilliard equations modeling tumor growth[END_REF]), we considered a much simpler model introduced in [START_REF] Frigeri | On a diffuse interface model of tumour growth[END_REF] where we developed a sensitivity analysis of the solutions of the system on the physical parameters, including an amplitude-type parameter introduced to the proliferation rate. The sensitivity analysis developed in [START_REF] Kadiri | Cahn-Hilliard equation: continuous dependence on physical parameters and sensitivity analysis[END_REF] relies on a different argument than the one used in the proof of Theorem 2.2. Basically, we write a PDE on the rate of change of the solutions with respect to the amplitude-type parameter, and establish well-posedness and uniqueness results.

PROOF. The existence of weak solutions to system (2.1-2.2) is given by Theorem 2.1. In this section, we will develop formal a priori estimates to show the continuous dependence of these solutions on the initial data and the system's physical parameters χ ϕ , χ ψ and ν. First, let us define G as G(s) = F (s)s 2 /2. Then, the weak formulation of equation (2.1) can be written as finding (ϕ, ψ) ∈ V × H such that

〈ϕ t , η〉 + ν(∇µ, ∇η) = p(ϕ)(N ψ -µ), η , 〈ψ t , ξ〉 + χ ψ (∇ψ, ∇ξ) = χ ϕ (∇ϕ, ∇ξ) -p(ϕ)(N ψ -µ), ξ ,
for all η and ξ in D(A). Now, we introduce the following notation

Φ = ϕ 2 -ϕ 1 , Ψ = ψ 2 -ψ 1 , Σ = µ 2 -µ 1 , χϕ = χ ϕ 2 -χ ϕ 1 , ν = ν 2 -ν 1 , χψ = χ ψ 2 -χ ψ 1 .
Let (ϕ i , ψ i ), i = 1, 2 be two solutions of system (2.1-2.2) associated to initial data (ϕ 0 , ψ 0 ) ∈ V × H . A straightforward calculation leads to the following difference system

〈Φ t , η〉 + ν 2 (AΣ, η) = -ν(Aµ 1 , η) + ν(µ 1 , η) + (p(ϕ 2 ) -p(ϕ 1 ))(N ψ 2 -µ 2 ), η + p(ϕ 1 )( χψ ψ 2 + χϕ (1 -ϕ 2 )), η + p(ϕ 1 )(χ ψ 1 Ψ -χ ϕ 1 Φ) -(p(ϕ 1 ) -ν 2 )Σ, η , (2.3) 〈Ψ t , ξ〉 + χ ψ 2 (AΨ, ξ) = χ ϕ 2 (AΦ, ξ) + χϕ (Aϕ 1 , ξ) -χϕ (ϕ 1 , ξ) -χψ (Aψ 1 , ξ) + χψ (ψ 1 , ξ) -p(ϕ 1 )( χψ ψ 2 + χϕ (1 -ϕ 2 )), ξ -(p(ϕ 2 ) -p(ϕ 1 ))(N ψ 2 -µ 2 ), ξ -χ ψ 1 (p(ϕ 1 ) -1)Ψ -χ ϕ 1 p(ϕ 1 )Φ -p(ϕ 1 )Σ, ξ , with Σ = AΦ +G ′ (ϕ 2 ) -G ′ (ϕ 1 ) -χ ψ 2 Ψ -χψ ψ 1 .
(2.4)

Now, setting η = A -1 Φ in equation (2.3) 1 and ξ = A -1 Ψ in equation (2.
3) 2 , and using equation (2.4), we get

1 2 d d t ∥Φ∥ 2 V ′ + 1 2 d d t ∥Ψ∥ 2 V ′ + ν 2 ∥Φ∥ 2 V + ν 2 G ′ (ϕ 2 ) -G ′ (ϕ 1 ), Φ + χ ψ 2 ∥Ψ∥ 2 = -ν(Aµ 1 -µ 1 , A -1 Φ) + χ ϕ 2 (AΦ, A -1 Ψ) + χϕ (Aϕ 1 -ϕ 1 , A -1 Ψ) -χψ (Aψ 1 -ψ 1 , A -1 Ψ) + p(ϕ 1 )( χψ ψ 2 + χϕ (1 -ϕ 2 )), A -1 Φ -p(ϕ 1 )( χψ ψ 2 + χϕ (1 -ϕ 2 )), A -1 Ψ + p(ϕ 1 )(χ ψ 1 Ψ -χ ϕ 1 Φ) -(p(ϕ 1 ) -ν 2 )Σ, A -1 Φ + (p(ϕ 2 ) -p(ϕ 1 ))(N ψ 2 -µ 2 ), A -1 Φ -χ ψ 1 (p(ϕ 1 ) -1)Ψ -χ ϕ 1 p(ϕ 1 )Φ -p(ϕ 1 )Σ, A -1 Ψ -(p(ϕ 2 ) -p(ϕ 1 ))(N ψ 2 -µ 2 ), A -1 Ψ + χ ϕ 2 (Ψ, Φ) + χϕ (ψ 1 , Φ) := I 1 + I 2 + I 3 + • • • + I 12 .
(2.5)

In the sequel, we will collect estimates for the terms I k , for k = 1, • • • , 12. First, for I k , k = 7, . . . , 10, we refer to the proof Theorem 2.3 in [START_REF] Kadiri | Cahn-Hilliard equation: continuous dependence on physical parameters and sensitivity analysis[END_REF] where the exact estimates are provided, we do not retranscript them here for shortness. Second, we will mainly use Cauchy Schwarz and Young inequalities to obtain estimates for the remaining terms in the right hand side of (2.5). Indeed, simple calculation gives

|I 1 | = -ν(µ 1 , Φ) + ν(µ 1 , A -1 Φ) ⩽ ν 2 16 ∥Φ∥ 2 V + 4 ν 2 β 2 0 ∥ϕ 1 ∥ 2 V + 1 |ν| 2 + β 2 0 ∥ϕ 1 ∥ 2 V ∥Φ∥ 2 V ′ , |I 2 | = |χ ϕ 2 (AΦ, A -1 Ψ)| ⩽ χ ϕ 2 ∥Φ∥∥Ψ∥ ⩽ ν 2 16 ∥Φ∥ 2 V + 4 ν 2 χ 2 ϕ 2 ∥Ψ∥ 2 V ′ , |I 3 | = | χϕ (Aϕ 1 -ϕ 1 , A -1 Ψ)| ⩽ ∥ϕ 1 ∥ 2 V + ∥ϕ 1 ∥ 2 V ′ | χϕ | 2 + ∥Ψ∥ 2 V ′ , |I 4 | = | χψ (Aψ 1 -ψ 1 , A -1 Ψ)| ⩽ ∥ψ 1 ∥ 2 V + ∥ψ 1 ∥ 2 V ′ | χψ | 2 + ∥Ψ∥ 2 V ′ , |I 5 | ⩽ ∥ψ 2 ∥ 2 V ′ | χψ | 2 + ∥1 -ϕ 2 ∥ 2 V ′ | χϕ | 2 + 1 + α 2 1 (t ) ∥Φ∥ 2 V ′ , |I 6 | ⩽ ∥ψ 2 ∥ 2 V ′ | χψ | 2 + ∥1 -ϕ 2 ∥ 2 V ′ | χϕ | 2 + 1 + α 2 1 (t ) ∥Ψ∥ 2 V ′ ,
where β 0 denotes a constant arising from Sobolev embedding and the fact that the solutions of system (2.1-2.2) satisfy ϕ i ∈ L ∞ (0, T,V ) ∩ L 2 (0, T, H 2 (Ω)). In particular, we have

∥Σ∥ V ′ ⩽ ∥Φ∥ V + ∥G ′ (ϕ 2 ) -G ′ (ϕ 1 )∥ V ′ ⩽ ∥Φ∥ V + Const.(1 + ∥ϕ 1 ∥ ρ-2 L 3(ρ-2)/2 (Ω) + ∥ϕ 2 ∥ ρ-2 L 3(ρ-2)/2 (Ω) ) ∥Φ∥ L 6 (Ω) ⩽ Const. (1 + ∥ϕ 1 ∥ ρ-2 V + ∥ϕ 2 ∥ ρ-2 V ) ∥Φ∥ V ≤ β 0 ∥Φ∥ V .
Using similar arguments, we can write

|I 11 | = χ ϕ 2 (Ψ, Φ) ⩽ ν 2 16 ∥Φ∥ 2 V + 4χ 2 ϕ 2 ν 2 ∥Ψ∥ 2 V ′ , |I 12 | = χϕ (ψ 1 , Φ) ⩽ ν 2 16 ∥Φ∥ 2 V + 4 ν 2 ∥ψ 1 | 2 V ′ | χϕ | 2 .
Gathering the latter estimates with the ones from [START_REF] Kadiri | Cahn-Hilliard equation: continuous dependence on physical parameters and sensitivity analysis[END_REF] together, we infer

1 2 d d t ∥Φ∥ 2 V ′ + d d t ∥Ψ∥ 2 V ′ + ν 2 ∥Φ∥ 2 V + χ ψ 2 ∥Ψ∥ 2 ⩽ γ 1 (t )∥Φ∥ 2 V ′ + γ 2 (t )∥Ψ∥ 2 V ′ + 2∥1 -ϕ 2 ∥ 2 V ′ + ∥ϕ 1 ∥ 2 V + ∥ϕ 1 ∥ 2 V ′ + 4 ν 2 ∥ψ 1 | 2 V ′ |χ ϕ 2 -χ ϕ 1 | 2 + 4 ν 2 β 2 0 ∥ϕ 1 ∥ 2 V + 1 |ν 2 -ν 1 | 2 + 2∥ψ 2 ∥ 2 V ′ + ∥ψ 1 ∥ 2 V + ∥ψ 1 ∥ 2 V ′ |χ ψ 2 -χ ψ 1 | 2 , (2.6) 
where γ 1 and γ 2 are given by

γ 1 (t ) := α 2 1 (t ) 1 + χ 2 ψ 1 + 8 ν 2 β 2 0 + 8 ν 2 β 2 0 ν 2 2 -χ ϕ 1 + 4 ν 2 α 4/3 2 (t ) + 5 4 + β 2 0 ∥ϕ 1 ∥ 2 V , γ 2 (t ) := α 2 1 (t ) 4 ν 2 β 2 0 + χ 2 ψ 1 + +χ 2 ϕ 1 + α 2 1 (t ) + 4 ν 2 α 4/3 2 (t ) + χ 2 ϕ 2 + 13 4 ,
and

α 1 (t ) := Const. ∥p(ϕ 1 (t ))∥ L 3 (Ω) + ∥ϕ 1 (t )∥ q L ∞ (Ω) + ∥p ′ (ϕ 1 (t ))∇ϕ 1 (t )∥ L 3 (Ω) + 1 , α 2 (t ) := Const. 1 + ∥ϕ 1 (t )∥ q-1 L ∞ (Ω) + ∥ϕ 2 (t )∥ q-1 L ∞ (Ω) ∥N ψ 2 (t )∥ L 3 (Ω) + β 0 ∥µ 2 (t )∥ 3/4 V . Now, we set for all t ∈ [0, T ] γ(t ) = max 0⩽t ⩽T γ 1 (t ), γ 2 (t ) , δ(t ) = max 0⩽t ⩽T β(t ), 2∥ψ 2 ∥ 2 V ′ + ∥ψ 1 ∥ 2 V + ∥ψ 1 ∥ 2 V ′ ,
with β defined as

β(t ) = max 0⩽t ⩽T 2∥1 -ϕ 2 ∥ 2 V ′ + ∥ϕ 1 ∥ 2 V + ∥ϕ 1 ∥ 2 V ′ + 4 ν 2 ∥ψ 1 | 2 V ′ , 4 ν 2 β 2 0 ∥ϕ 1 ∥ 2 V + 1 .
Thus, thanks to Gronwall's inequality, along with (2.6), we infer

∥ϕ 2 (t ) -ϕ 1 (t )∥ V ′ + ∥ψ 2 (t ) -ψ 1 (t )∥ V ′ + ν∥ϕ 2 (t ) -ϕ 1 (t )∥ L 2 (0,t ;V ) + κ∥ψ 2 -ψ 1 ∥ L 2 (0,t ;H ) ≤ e t 0 γ(s) d s max 1, t 0 δ(s) d s × × ∥ϕ 02 -ϕ 01 ∥ V ′ + ∥ψ 02 -ψ 01 ∥ V ′ + |χ ϕ 2 -χ ϕ 1 | 2 + |ν 2 -ν 1 | 2 + |χ ψ 2 -χ ψ 1 | 2 .
This shows the continuous dependence of the weak solutions of system (2.1-2.2) on the initial data and its physical parameters. □ 2.4. The optimal control problem. The main objective of this paper is to provide theoretical insights on the feasibility of the personalization of tumor growth models for a given set of a patient data. Our first theoretical results going in this direction are [START_REF] Kadiri | Cahn-Hilliard equation: continuous dependence on physical parameters and sensitivity analysis[END_REF][START_REF] Kadiri | Optimal control and parameters identification for the Cahn-Hilliard equations modeling tumor growth[END_REF]. An alternative approach, to the optimal control one considered in this paper, is being in development and is based on feedback controllers (interpolant operators), [START_REF] Kadiri | Data assimilation algorithm for Cahn-Hilliard equations modeling tumor growth[END_REF]. The latter method has the advantage of being numerically very tacklable and no optimization algorithms are needed. In this paper, we follow a classical control theory where a cost functional is introduced and optimized towards target solutions and physical parameters. More in detail, we define the functions

ϕ Q : Q -→ R such that ϕ Q (t , x) = ϕ(t , x) for all (t , x) ∈ Q, ϕ Ω : Ω -→ R such that ϕ Ω (x) = ϕ(t , x) for all t ∈ [0, T ].
Also, we let β Q and β Ω be positive constants such that β Ω + β Q > 0, and β ν , β χ ϕ , β χ ψ be nonnegative constants such that

β ν + β χ ϕ + β χ ψ ⩾ 0.
Moreover, we let ν d , χ ϕ,d , and χ ψ,d be fixed positive constants, and define the following set of admissible triplet (ν, χ ϕ , χ ψ )

U ad = (ν, χ ϕ , χ ψ ) ∈ R 3 : 0 ⩽ ν ⩽ ν ∞ , 0 ≤ χ ϕ ≤ χ ϕ,∞ , and 0 ⩽ χ ψ ⩽ χ ψ,∞ ,
where ν ∞ , χ ϕ,∞ , and χ ψ,∞ are fixed values. The optimal control problem we are interested in reads

min J (ϕ, ν, χ ϕ , χ ψ ) := min β Q 2 ∥ϕ -ϕ Q ∥ 2 L 2 (Q) + β Ω 2 ∥ϕ(T ) -ϕ Ω ∥ 2 L 2 (Ω) + β ν 2 |ν -ν d | 2 + β χ ϕ 2 |χ ϕ -χ ϕ,d | 2 + β χ ψ 2 |χ ψ -χ ψ,d | 2 ,
where ϕ is solution of (2.1 -2.2), and ν, χ ϕ , χ ψ ∈ U ad ,

Assuming the unique solvability of (2.1-2.2), we can define the solution operator S as

S (ν, χ ϕ , χ ψ ) = (ϕ, µ, ψ),
where (ϕ, ψ) is the unique solution (2.1-2.2) corresponding to the parameters (ν, χ ϕ , χ ψ ) and initial data (ϕ 0 , ψ 0 ) ∈ V × H . In the sequel, we will use the notation S 1 (ν, χ ϕ , χ ψ ) = ϕ for the first component of S (ν, χ ϕ , χ ψ ). Now, we are ready to present our first result on the existence of minimizers to the cost function J . More specifically, we have

THEOREM 2.3. Let ϕ Ω ∈ H , and ϕ Q ∈ L 2 (Q).
Then there exists at least one minimizer (ν * , χ ϕ, * , χ ψ, * ) to the the functional J such that ϕ * = S 1 (ν * , χ ϕ, * , χ ψ, * ), and we write

J (ϕ * , ν * , χ ϕ, * , χ ψ, * ) = inf (a, b, c) i n U ad s.t φ = S 1 (a, b, c) J (φ, a, b, c).
(2.7) PROOF. We use a direct method. Assume that

β ν ⩾ 0, β χ ϕ ⩾ 0, β χ ψ ⩾ 0.
The functional J is a positive function, which gives the existence of a minimizing sequence

(ν n , χ ϕ,n , χ ψ,n ) ∈ U ad associated to the solution (ϕ n , µ n , ψ n ) of system (2.1-2.2) . Assume that the corresponding initial data (ϕ, ψ) is fixed such that J (ϕ n , ν n , χ ϕ,n , χ ψ,n ) = inf (a, b, c) i n U ad s.t φ = S 1 (a, b, c) J (φ, a, b, c).
Using the compactness property and the regularity of ϕ n and ψ n , and the nature of the space U ad , we deduce that

ϕ n j → ϕ * strongly in L 2 (Q) ∩C 0 ([0, T ]; L 2 (Ω)) ν n j → ν * , χ ϕ,n j → χ ϕ, * , χ ψ,n j → χ ψ, * .
Thanks to the regularity of ϕ, the definition of the limit parameters (ν * , χ ϕ, * , χ ψ, * ) in U ad , and applying the weak lower semi-continuity of the L 2 (Q) and L 2 (Ω) norms, (2.7) follows. □ 2.5. Study of the linearized-state system. This section is dedicated to the setting and analysis of a linearization of system (2.1-2.2). For this purpose, we let (ν, χ ϕ , χ ψ ) ∈ U ad be fixed values associated to the solution (ϕ, µ, ψ) of system (2.1-2.2). Also, we introduce u = (u ν , , u χ ϕ , u χ ψ ) ∈ R 3 and an arbitrary vector (ν u , χ ϕ,u , χ ψ,u ) ∈ U ad such that

ν u = ν + u ν , χ ϕ,u = χ ϕ + u χ ϕ , χ ψ,u = χ ψ + u χ ψ .
Denoting by (ϕ u , µ u , ψ u ) the unique weak solution corresponding to the parameters (ν u , χ ϕ,u , χ ψ,u ), we claim the Fréchet differentiability of the solution operator S with respect to (ν, χ ϕ , χ ψ ). To prove this claim, we linearize system (2.1-2.2) around the parameter (u ν , u χ ϕ , u χ ψ ). We denote by (Φ u , Ψ u , , Σ u ) the solution of the following linearized system

                               (Φ u ) t = ν∆Σ u + u ν ∆µ + p(ϕ)(χ ψ Ψ u -χ ϕ Φ u -Σ u ) + p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)Φ u + p(ϕ)(u χ ψ ψ + u χ ϕ (1 -ϕ) -µ) Σ u = -∆Φ u + F ′′ (ϕ)Φ u -χ ϕ Ψ u -u χ ϕ ψ, (Ψ u ) t = χ ψ ∆Ψ u + u χ ψ ∆ψ -χ ϕ ∆Φ u -u χ ϕ ∆ϕ -p(ϕ)(χ ψ Ψ u -χ ϕ Φ u -Σ u ) -p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)Φ u -p(ϕ)(u χ ψ ψ + u χ ϕ (1 -ϕ) -µ).
(2.8)

This system is obviously supplemented with the following boundary conditions

     (Φ u (0), Ψ u (0)) = (Φ u,0 , Ψ u,0 ), in Ω, ∂ n Φ u = ∂ n Ψ u = ∂ n Σ u = 0, in [0, T ] × ∂Ω.
(2.9) Regarding the linearized system (2.8-2.9), we have the following THEOREM 2.4. For all initial data (Φ u,0 , Ψ u,0 ) ∈ V × H , system (2.8-2.9) has a weak solution satisfying

Φ u ∈ L ∞ (0, T ; H ) ∩ L 2 (0, T ; H 2 (Ω)), Ψ u ∈ L ∞ (0, T ; H ) ∩ L 2 (0, T ;V ), Σ u ∈ L 2 (0, T ; L 2 (Ω)).
PROOF. The existence of solutions can be achieved using any classical approximation method such as Faedo-Galerkin to obtain smooth solutions using fixed point theorem for ordinary differential equations. In order to extend the time range of existence of these solutions we need compactness arguments to pass to the limit in the approximating sequences of solutions. These compactness arguments are based on a priori estimates.

A priori estimates: In this section, we focus on the obtention of the necessary a priori estimates, and we refer to any textbook of PDEs for more details (e.g. [START_REF] Miranville | The Cahn-Hilliard equation: recent advances and applications[END_REF]). For this purpose, we start by testing equation (2.8) 1 against Φ u , and equation (2.8) 2 against -∆Φ u and DΣ u , where D denotes a positive constant to be determined later on. Eventually, we test equation (2.8) 3 against Ψ u . Summing-up the obtained equalities, we obtain

1 2 d d t ∥Φ u ∥ 2 + 1 2 d d t ∥Ψ u ∥ 2 + ν∥∆Φ u ∥ 2 + χ ψ ∥∇Ψ u ∥ 2 + D∥Σ u ∥ 2 = u ν Ω µ∆Φ u d x + ν Ω F ′′ (ϕ)Φ u ∆Φ u d x + Ω p(ϕ)(χ ψ Ψ u -χ ϕ Φ u -Σ u )Φ u d x + Ω p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)Φ 2 u d x + Ω p(ϕ)(u χ ψ ψ + u χ ϕ (1 -ϕ) -µ)Φ u d x -χ ϕ D Ω Ψ u Σ u d x -u χ ϕ D Ω ψΣ u d x + D Ω F ′′ (ϕ)Φ u Σ u d x -D Ω ∆Φ u Σ u d x - Ω p(ϕ)(χ ψ Ψ u -χ ϕ Φ u -Σ u )Ψ u d x - Ω p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)Φ u Ψ u d x - Ω p(ϕ u )(u χ ψ ψ + u χ ϕ (1 -ϕ) -µ)Ψ u d x -νχ ϕ Ω ∆Φ u Ψ u d x -u χ ϕ Ω ∆ϕΨ u d x -νu χ ϕ Ω ψ∆Φ u d x = J 1 + J 2 + J 3 + ... + J 15 .
Now, we establish estimates for the terms appearing in the right hand side of the equality above denoted as J i , for i = 1, . . . , 15. Basically, we shall use Cauchy-Schwarz and Young inequalities. The first two terms can be estimated as follows

|J 1 | = u ν Ω µ∆Φ u d x ⩽ ν 8 ∥∆Φ u ∥ 2 + 2 ν ∥µ∥ 2 |u ν | 2 , |J 2 | = ν Ω F ′′ (ϕ)Φ u ∆Φ u d x ⩽ ν 8 ∥∆Φ u ∥ 2 + 2 νβ 2 1,ϕ (t )∥Φ u ∥ 2 ,
where

β 1,ϕ (t ) = Const.(1 + ∥ϕ∥ ρ-2 L ∞ (Ω) ) ∈ L 2 (0, T ) for ρ ⩽ 6.
(2.10)

Next, using the same arguments, we have

J 3 = Ω p(ϕ)(χ ψ Ψ u -χ ϕ Φ u -Σ u )Φ u d x = χ ψ Ω p(ϕ)Ψ u Φ u -χ ϕ Ω p(ϕ)Φ 2 u d x - Ω p(ϕ)Σ u Φ u d x ⩽ D 8 ∥Σ u ∥ 2 + χ 2 ψ β 2 2,ϕ (t )∥Ψ u ∥ 2 + 1 4 + 2 D β 2 2,ϕ (t ) ∥Φ u ∥ 2 -χ ϕ Ω p(ϕ)Φ 2 u d x,
where

β 2,ϕ (t ) = Const.(1 + ∥ϕ(t )∥ q L ∞ (Ω) ) ∈ L 2 (0, T ) for q ⩽ 4.
(2.11) Also, we have

J 10 = - Ω p(ϕ)(χ ψ Ψ u -χ ϕ Φ u -Σ u )Ψ u d x = -χ ψ Ω p(ϕ u )Ψ 2 u d x + χ ϕ Ω p(ϕ)Φ u Ψ u d x + Ω p(ϕ)Σ u Ψ u ⩽ D 8 ∥Σ u ∥ 2 + β 2 2,ϕ (t ) 2 D + 1 ∥Ψ u ∥ 2 + χ 2 ϕ 4 ∥Φ u ∥ 2 -χ ψ Ω p(ϕ)Ψ 2 u d x.
Thanks to Poincaré inequality, we have

|J 4 | = Ω p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)Φ 2 u d x ⩽ β 3,ϕ (t ) χ ψ ψ + χ ϕ (1 -ϕ) -µ L 6 (Ω) ∥Φ u ∥ L 3 (Ω) ∥Φ u ∥ L 2 (Ω) ⩽ ν 8 (∥∆Φ u ∥ 2 + ∥Φ u ∥ 2 ) + 2 ν β 2 3,ϕ (t ) χ 2 ψ ∥ψ∥ 2 V + ∥µ∥ 2 V + χ 2 ϕ ∥1 -ϕ∥ 2 V ∥Φ u ∥ 2 , (2.12) 
where

β 3,ϕ (t ) = Const.(1 + ∥ϕ(t )∥ q-1 L ∞ (Ω) ) ∈ L 2 (0, T ) for q ⩽ 4.
(2.13)

The same arguments, basically Cauchy-Schwarz and Young inequalities allow us to write the following

|J 5 | = Ω p(ϕ)(u χ ψ ψ + u χ ϕ (1 -ϕ) -µ)Φ u d x ⩽ β 1,ϕ (t ) u χ ψ ψ + u χ ϕ (1 -ϕ) -µ ∥Φ u ∥ ⩽ 1 4 ∥1 -ϕ∥ 2 V |u χ ϕ | 2 + ∥ψ∥ 2 V |u χ ψ | 2 + ∥µ∥ 2 V + β 2 2,ϕ (t ) ∥Φ u ∥ 2 ,
and

|J 12 | = Ω p(ϕ)(u χ ψ ψ + u χ ϕ (1 -ϕ) -µ)Ψ u d x ⩽ 1 4 ∥ψ∥ 2 V |u χ ψ | 2 + ∥1 -ϕ∥ 2 V |u χ ϕ | 2 + ∥µ∥ 2 V + β 2 2,ϕ (t )∥Ψ u ∥ 2 .
Moreover,

|J 6 | = χ ϕ D Ω Ψ u Σ u d x ⩽ D 8 ∥Σ u ∥ 2 + 2 D χ 2 ϕ ∥Ψ u ∥ 2 , |J 7 | = u χ ϕ D Ω ψΣ u d x ⩽ D 8 ∥Σ u ∥ 2 + 2 D ∥ψ∥ 2 |u χ ϕ | 2 , |J 8 | = D Ω F ′′ (ϕ)Φ u Σ u d x ⩽ D 8 ∥Σ u ∥ 2 + 2 D β 2 1,ϕ (t )∥Ψ u ∥ 2 , |J 9 | = D Ω ∆Φ u Σ u d x ⩽ D 8 ∥Σ u | 2 + 2 D∥∆Φ u | 2 , |J 13 | = νχ ϕ Ω ∆Φ u Ψ u d x ⩽ ν 8 ∥∆Φ u ∥ 2 + 2 ν χ 2 ϕ ∥Ψ u ∥ 2 , |J 14 | = u χ ϕ Ω ∆ϕΨ u d x ⩽ 1 4 ∥ϕ∥ 2 H 2 (Ω) |u χ ϕ | 2 + ∥Ψ u ∥ 2 , |J 15 | = νu χ ϕ Ω ψ∆Φ u d x ⩽ ν 8 ∥∆Φ u ∥ 2 + 2 ν ∥ψ∥ 2 |u χ ϕ | 2 .
Eventually, we estimate J 11 as follows

|J 11 | = Ω p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)Φ u Ψ u d x ⩽ χ ψ 2 ∥Ψ u ∥ 2 + ∥∇Ψ u ∥ 2 + 1 2χ ψ β 2 3,ϕ (t ) χ ψ ψ + χ ϕ (1 -ϕ) -µ 2 V ∥Φ u ∥ 2 .
Gathering together the previous estimates, and picking-up D ⩽ ν 8

, we infer

1 2 d d t ∥Φ u ∥ 2 + ∥Ψ u ∥ 2 + ν 2 ∥∆Φ u ∥ 2 + χ ψ 2 ∥∇Ψ u ∥ 2 + D 2 ∥Σ u ∥ 2 + χ ϕ Ω p(ϕ)Φ 2 u d x + χ ψ Ω p(ϕ)Ψ 2 u d x ⩽ γ 1 (t )∥Φ u ∥ 2 + γ 2 (t )∥Ψ u ∥ 2 + δ 1 (t )|u ν | 2 + δ 2 (t )|u χ ϕ | 2 + δ 3 (t )|u χ ψ | 2 + 1 2 ∥µ∥ 2 V ,
where

γ 1 (t ) = 1 4 + χ 2 ϕ 4 + ν 8 + 2νβ 2 1,ϕ (t ) + 1 + 2 D β 2 2,ϕ (t ) + 2 ν + 1 2χ ψ χ 2 ψ ∥ψ∥ 2 V + ∥µ∥ 2 V + χ 2 ϕ ∥1 -ϕ∥ 2 V β 2 3,ϕ (t ),
and

γ 2 (t ) = 1 + χ ψ 2 + 2 (ν + D) χ 2 ϕ + 2 Dβ 2 1,ϕ (t ) + 2 + χ 2 ψ + 2 D β 2 2,ϕ (t ), δ 1 (t ) = 2 ν ∥µ∥ 2 , δ 2 (t ) = 1 2 ∥1 -ϕ∥ 2 V + 2(D + ν)∥ψ∥ 2 + 1 4 ∥ϕ∥ 2 H 2 (Ω) , δ 3 (t ) = 1 2 ∥ψ∥ 2 V .
Now, defining for all t > 0

γ(t ) = max 0⩽t ⩽T
(γ 1 (t ), γ 2 (t )), and δ(t

) = max 0⩽t ⩽T (δ 1 (t ), δ 2 (t ), δ 3 (t ), 1 2 ∥µ∥ 2 V ),
and using Gronwall's lemma, we can write

∥Φ u ∥ 2 + ∥Ψ u ∥ 2 ⩽ e t 0 γ(s) d s max 1, t 0 δ(s) d s × × ∥Φ u,0 ∥ 2 + ∥Ψ u,0 ∥ 2 + |u ν | 2 + |u ϕ | 2 + |u ψ | 2 + ∥µ∥ 2 V .
This leads to the following regularities

∥Φ u ∥ L ∞ (0,T ;L 2 (Ω))∩L 2 (0,T ;H 2 (Ω)) ⩽ Const. λ 0 + |u ν | + |u ϕ | + |u ψ | , ∥Ψ u ∥ L ∞ (0,T ;L 2 (Ω))∩L 2 (0,T ;H 1 (Ω)) ⩽ Const. λ 0 + |u ν | + |u ϕ | + |u ψ | , ∥Σ u ∥ L 2 (0,T.L 2 (Ω)) ⩽ Const. λ 0 + |u ν | + |u ϕ | + |u ψ | , (2.14) 
where λ 0 is a positive constant that depends on initial data and the norm of µ in H 1 (Ω).

Uniqueness: Basically, the uniqueness follows similar arguments and estimates used to establish (2.14). We consider the difference of two systems satisfied by (Φ u,i , Ψ u,i ), i = 1, 2. More specifically, we let

Φ u = Φ u,2 -Φ u,1 , Ψ u = Ψ u,2 -Ψ u,1 , and Σ u = Σ u,2 -Σ u,1 , with Φ u,i , Ψ u,i
, and Σ u,i , for i = 1, 2 being solutions of the system (2.8-2.9). Formal calculation leads to the following difference system

                             (Φ u ) t = ν∆Σ u + ûν ∆µ + p(ϕ)(χ ψ Ψ u -χ ϕ Φ u -Σ u ) + p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)Φ u + p(ϕ)( ûχ ψ ψ + ûχ ϕ (1 -ϕ)), Σ u = -∆Φ u + F ′′ (ϕ)Φ u -χ ϕ,u Ψ u -ûχ ϕ ψ, (Ψ u ) t = χ ψ ∆Ψ u + ûχ ψ ∆ψ -χ ϕ,u ∆Φ u -ûχ ϕ ∆ϕ -p(ϕ)(χ ψ Ψ u -χ ϕ Φ u -Σ u ) -p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)Φ u -p(ϕ)( ûχ ψ ψ + ûχ ϕ (1 -ϕ)), (2.15) 
where

ûν = u ν 2 -u ν 1 , ûχ ϕ = u χ ϕ 2 -u χ ϕ 1 , , ûχ ψ = u χ ψ 2 -u χ ψ 1 .
Without loss of generality, we obtain

∥Φ u ∥ L ∞ (0,T ;L 2 (Ω))∩L 2 (0,T ;H 2 (Ω)) ⩽ Const. ∥Φ 0 u,1 -Φ 0 u,2 ∥ + ∥Ψ 0 u,1 -Ψ 0 u,2 ∥ + | ûχ ϕ | + | ûν | + | ûχ ψ | , ∥Ψ u ∥ L ∞ (0,T ;L 2 (Ω))∩L 2 (0,T ;H 1 (Ω)) ⩽ Const. ∥Φ 0 u,1 -Φ 0 u,2 ∥ + ∥Ψ 0 u,1 -Ψ 0 u,2 ∥ + | ûχ ϕ | + | ûν | + | ûχ ψ | , ∥Σ u ∥ L 2 (0,T.L 2 (Ω)) ⩽ Const. ∥Φ 0 u,1 -Φ 0 u,2 ∥ + ∥Ψ 0 u,1 -Ψ 0 u,2 ∥ + | ûχ ϕ | + | ûν | + | ûχ ψ | .
which is the desired result. □ 2.6. Fréchet differentiability of the control to state map. This section is dedicated to the proof of the Fréchet differentiability of the control to state map. More notably, we will prove the following THEOREM 2.5. For all (u ν , u χ ϕ , u χ ψ ) ∈ R 3 such that (ν u , χ ϕ,u , χ ψ,u ) ∈ U ad , there exists a positive constant not depending on (u ν , u χ ϕ , u χ ψ ) such that

∥(θ u , ρ u , ξ u )∥ Y ⩽ Const., where θ u = ϕ u -ϕ -Φ u , ρ u = µ u -µ -Σ u , ξ u = ψ u -ψ -Ψ u , and Y is the product space Y = L 2 (0, T ; H 2 (Ω)) ∩ H 1 (0, T ; (H 2 N (Ω)) ′ ) ∩C 0 ([0, T ]; L 2 (Ω)) ×L 2 (Q) × L 2 (0, T ; L 2 (Ω)) ∩ L ∞ (0, T ;V ) ∩ H 1 (0, T ; L 2 (Ω)) ,
in particular the solution operator S : R 3 → Y is Fréchet differentiable.

PROOF. Thanks to Taylor's Theorem with integral reminder, we have the following for all function g ∈ C 2 (R), and a, x ∈ R:

g (x) = g (a) + g ′ (a)(x -a) + (x -a) 2 1 0 g ′′ (a + z(x -a))(1 -z) d z.
For the function F , using the definitions of (θ u , ρ u , ξ u ), we can write

F (ϕ u ) -F (ϕ) -F ′ (ϕ)Φ u = F ′ (ϕ)θ u + (ϕ u -ϕ) 2 R F , with R F = 1 0 F ′′ (ϕ + z(ϕ u -ϕ))(1 -z) d z.
Applying the previous equality to p and F , we get

p(ϕ u )(χ ψ,u ψ u + χ ϕ,u (1 -ϕ u ) -µ u ) -p(ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ) -p(ϕ)(χ ψ Ψ u + χ ϕ (1 -Φ u ) -Σ u ) -p ′ (ϕ)Φ u (χ ψ ψ + χ ϕ (1 -ϕ) -µ) -p(ϕ)(u χ ψ ψ + u χ ϕ (1 -ϕ) -µ) = (p(ϕ u ) -p(ϕ))((χ ψ,u -χ ψ )(ψ u -ψ) + (χ ϕ,u -χ ϕ )(1 -(ϕ u -ϕ)) -(µ u -µ)) + (p(ϕ u ) -p(ϕ))(χ ψ (ψ u -ψ) + χ ϕ (1 -(ϕ u -ϕ)) -(µ u -µ)) + (p(ϕ u ) -p(ϕ))(χ ψ ψ + χ ϕ (1 -ϕ) -µ) + (p(ϕ u ) -p(ϕ) -p ′ (ϕ)Φ u )(χ ψ ψ + χ ϕ (1 -ϕ) -µ) + p(ϕ)((χ ψ,u -χ ψ )(ψ u -ψ) + (χ ϕ,u -χ ϕ )(1 -(ϕ u -ϕ)) -(µ u -µ)) + p(ϕ)(χ ψ (ψ u -ψ) + χ ϕ (1 -(ϕ u -ϕ)) -(µ u -µ) -χ ψ Ψ u -χ ϕ (1 -Φ u ) + Σ u ) + p(ϕ)((χ ψ,u -χ ψ -u χ ψ )ψ + (χ ϕ,u -χ ϕ -u χ ϕ )(1 -ϕ) -µ).
In particular, this leads to

p(ϕ u )(χ ψ,u ψ u + χ ϕ,u (1 -ϕ u ) -µ u ) -p(ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ) -p(ϕ)(χ ψ Ψ u + χ ϕ (1 -Φ u ) -Σ u ) -p ′ (ϕ)Φ u (χ ψ ψ + χ ϕ (1 -ϕ) -µ) -p(ϕ)(u χ ψ ψ + u χ ϕ (1 -ϕ) -µ) = (p(ϕ u ) -p(ϕ))((χ ψ,u -χ ψ )ξ u + (χ ϕ,u -χ ϕ )(1 -θ u ) -ρ u ) + (p(ϕ u ) -p(ϕ))(χ ψ ξ u + χ ϕ (1 -θ u ) -ρ u ) + (p(ϕ u ) -p(ϕ))((χ ψ,u -χ ψ )ψ + (χ ϕ,u -χ ϕ )(1 -ϕ) -µ) + p ′ (ϕ)θ u + (ϕ u -ϕ) 2 R p (χ ψ ψ + χ ϕ (1 -ϕ) -µ) + p(ϕ)(χ ψ,u ξ u + χ ϕ,u (1 -θ u ) -ρ u ) =: X ϕ,ψ,ν,χ ϕ ,χ ψ .
Thanks to the regularity provided in Theorem 2.1, and Theorem 2.4, we can write for (θ u , ρ u , ξ u ):

θ u ∈ L ∞ (0, T,V ) ∩ L 2 (0, T ; H 2 (Ω) ∩ H 3 (Ω)), ρ u ∈ L 2 (0, T ; L 2 (Ω)), ξ u ∈ L ∞ (0, T ;V ) ∩ L 2 (0, T ; H 2 (Ω)), with                              ∂ t θ u = ν∆ρ u + X ϕ,ψ,ν,χ ϕ ,χ ψ , in Q ρ u = F ′′ (ϕ)θ u + (ϕ u -ϕ) 2 R F -∆θ u -χ ϕ ξ u , in Q ∂ t ξ u = χ ψ ∆ξ u -χ ϕ ∆θ u -X ϕ,ψ,ν,χ ϕ ,χ ψ , in Q ∂ n θ = ∂ρ u = ∂ n ξ u = 0, on Γ × [0, T ] θ u (0) = 0, ξ u (0) = 0.
(2.16)

For shortness and the reader convenience, we avoid going into the details of the calculation leading to the following obvious bound for X ϕ,ψ,ν,χ ϕ ,χ ψ

∥X ϕ,ψ,ν,χ ϕ ,χ ψ ∥ 2 L 2 (0,s,L 2 ) ⩽ Const. ∥θ u ∥ 2 L 2 (0,s,L 2 ) + ∥ξ u ∥ 2 L 2 (0,s,L 2 ) + ∥ρ u ∥ 2 L 2 (0,s,L 2 ) + 1 .
Now, testing equation (2.16) 3 against ξ u , we get

1 2 d d t ∥ξ u ∥ 2 + χ ψ ∥∇ξ u ∥ 2 = χ ϕ Ω ∇ξ u • ∇θ u d x - Ω X ϕ,ψ,ν,χ ϕ ,χ ψ ξ u d x.
Using Young's inequality, we obtain

1 2 d d t ∥ξ u ∥ 2 + χ ψ 2 ∥∇ξ u ∥ 2 ⩽ χ 2 ϕ 2χ ψ ∥∇θ u ∥ 2 + Const. ∥θ u ∥ 2 + ∥ξ u ∥ 2 + ∥ρ u ∥ 2 + 1 .
Next, integrating the previous equation with respect to s ∈ [0, T ], we infer

∥ξ u (s)∥ 2 L 2 (Ω) + χ ψ ∥∇ξ u ∥ 2 L 2 (0,s,L 2 ) ⩽ χ 2 ϕ χ ψ ∥∇θ u ∥ 2 L 2 (0,s,L 2 ) + Const. ∥θ u ∥ 2 L 2 (0,s,L 2 ) + ∥ξ u ∥ 2 L 2 (0,s,L 2 ) + ∥ρ u ∥ 2 L 2 (0,s,L 2 ) + 1 .
(2.17) Now, testing the equation (2.16) 1 against θ u and equation (2.16) 2 against D θ u and E ρ u , with D and E being positive constants to be determined later, we get

1 2 d d t ∥θ u ∥ 2 +(ν -E )∥∆θ u ∥ 2 + E ∥ρ u ∥ 2 + χ ϕ D∥∇θ u ∥ 2 = Ω X ϕ,ψ,ν,χ ϕ ,χ ψ θ u d x + D Ω ρ u θ u d x +(ν -E ) Ω F ′′ (ϕ)θ u + (ϕ u -ϕ) 2 R F ∆θ u d x -D Ω F ′′ (ϕ)θ u + (ϕ u -ϕ) 2 R F θ u d x +E Ω F ′′ (ϕ)θ u + (ϕ u -ϕ) 2 R F ρ u d x + Dχ ϕ Ω ξ u θ u d x -E χ ϕ Ω ξ u ρ u d x +(E -ν)χ ϕ Ω ξ u ∆θ u d x.
Thanks to Young's inequality, and optimizing in the parameter E , we can write

d d t ∥θ u ∥ 2 + ν∥∆θ u ∥ 2 + E ∥ρ u ∥ 2 + χ ϕ D∥∇θ u ∥ 2 ⩽ Const. ∥θ u ∥ 2 + ∥ξ u ∥ 2 + ∥ρ u ∥ 2 + 1 . (2.18)
Combining equations (2.17) and (2.18), and integrating with respect to s ∈ [0, T ], we get

∥θ u (s)∥ 2 L 2 (Ω) +∥ξ u (s)∥ 2 L 2 (Ω) + χ ψ ∥∇ξ u ∥ 2 L 2 (0,s;L 2 (Ω) + ν∥∆θ u ∥ 2 L 2 (0,s;L 2 (Ω) + E ∥ρ u ∥ 2 L 2 (0,s;L 2 (Ω) + χ ϕ D - χ ϕ χ ψ ∥∇θ u ∥ 2 L 2 (0,s;L 2 (Ω) ⩽ Const. s 0 ∥θ u ∥ 2 + ∥ξ u ∥ 2 + ∥ρ u ∥ 2 d t + 1 ,
Thanks to Gronwall's lemma, we have

∥θ u ∥ L ∞ (0,T ;L 2 (Ω)∩L 2 (0,T ;H 2 (Ω)) + ∥ξ u ∥ L ∞ (0,T ;L 2 (Ω)∩L 2 (0,T ;H 1 (Ω)) + ∥ρ u ∥ L 2 (Q) ⩽ Const. (2.19)
Now, testing the equation (2.16) 3 against (ξ u ) t , and using Young's inequality, we can write

1 2 ∥(ξ u ) t ∥ 2 + χ ψ 2 d d t ∥∇ξ u ∥ 2 ⩽ χ 2 ϕ ∥∆θ u ∥ 2 + ∥X ϕ,ψ,ν,χ ϕ ,χ ψ ∥ 2 .
Thus, using the regularity of θ u given in (2.19), we have

∥(ξ u ) t ∥ 2 L 2 (Q) + χ ψ ∥∇ξ u ∥ L ∞ (0,T ;L 2 (Ω))
⩽ Const. Now, using the elliptic regularity and equations (2.16) 1 and (2.16) 3 , we have

∥ξ u ∥ L 2 (0,T ;H 2 (Ω)) ⩽ ∥(ξ u ) t ∥ L 2 (Q) + ∥X ϕ,ψ,ν,χ ϕ ,χ ψ ∥ L 2 (Q) ⩽ Const. ∥θ u ∥ L 2 (0,T ;H 2 (Ω)) ⩽ Const. ∥θ u ∥ L 2 (0,T ;H 1 (Ω)) + ∥ρ u ∥ L 2 (Q) + ∥F ′′ (ϕ)θ u + (ϕ u -ϕ) 2 R F ∥ L 2 (Q) ⩽ Const.

Eventually, testing equation (2.16) 1 against any arbitrary function

η ∈ L 2 (0, T ; H 2 N (Ω)) leads to T 0 〈(θ u ) t , η〉d t = T 0 Ω ρ u ∆η + X ϕ,ψ,ν,χ ϕ ,χ ψ η d t d x ⩽ ∥ρ u ∥ L 2 (Q) + ∥X ϕ,ψ,ν,χ ϕ ,χ ψ ∥ L 2 (Q) ∥η∥ L 2 (0,T ;H 2 (Ω)) ⩽ Const. ∥η∥ L 2 (0,T ;H 2 (Ω)) .
Using the regularity (2.19), we have

s 0 ∥θ u ∥ L 2 (Ω) ∥µ∥ H 3 (Ω) d t ⩽ ∥µ∥ L 2 (0,s;H 3 (Ω)) ∥θ u ∥ L ∞ (0,s;L 2 (Ω) ⩽ Const,
which gives

∥ξ u ∥ L 2 (0,T ;H 2 (Ω)) + ∥θ u ∥ L 2 (0,T ;H 2 (Ω))∩H 1 (0,T ;(H 2 N ) ′ ⩽ Const.
This leads to the desired result, namely the differentiability of the solution operator S : R 3 → Y , and therefore finishes the proof of Theorem 2.5. □ 2.7. Adjoint system. This section is dedicated to the setting and mathematical analysis of the adjoint system. For this purpose, we let (φ, η, σ) ∈ (L 2 (0, T ;V )) 3 as test functions and write the weak formulation of system (2.1-2.2). That is: Find (φ, η, σ) ∈ (L 2 (0, T ;V )) 3 such that

〈ϕ t , φ〉 + ν(∇µ, ∇φ) = (p(ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ), φ), (µ, η) = (∇ϕ, ∇η) + (F ′ (ϕ), η) -χ ϕ (ψ, η), 〈ψ t , σ〉 + χ ψ (∇ψ, ∇σ) = χ ϕ (∇ϕ, ∇σ) -(p(ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ), σ).
Now, we define the following function for an arbitrary time T > 0

A (ϕ, µ, ψ, ν, P , κ, φ, η, σ) = T 0 Ω ϕ t φ d t d x + ν T 0 Ω ∇µ • ∇φ d t d x + T 0 Ω ψ t σ d t d x + χ ψ T 0 Ω ∇ψ • ∇σ d t d x -χ ϕ T 0 Ω ∇ϕ • ∇σ d t d x - T 0 Ω p(ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)φ d t d x + T 0 Ω p(ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)σ d t d x.
Thus, if (ϕ, ψ) denotes a solution of system (2.1-2.2), then the adjoint system associated to the system (2.1-2.2) reads

                                               -φ t + ν∆η -νF ′′ (ϕ)η = -χ ϕ ∆σ + p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)φ -χ ϕ p(ϕ)φ + ∆(p(ϕ)φ) -p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)σ + χ ϕ p(ϕ)σ -∆(p(ϕ)σ) -p(ϕ)F ′′ (ϕ)φ + p(ϕ)F ′′ (ϕ)σ + β Q (ϕ -ϕ Q ), in [0, T ] × Ω, η = ∆φ, in [0, T ] × Ω, -σ t = χ ψ ∆σ -(χ ψ + χ ϕ )p(ϕ)σ + (χ ψ + χ ϕ )p(ϕ)φ -νχ ϕ ∆φ, in [0, T ] × Ω, φ(T ) = β Ω (ϕ(T ) -ϕ Ω ), σ(T ) = 0,
in Ω,

∂ n φ = ∂ n χ = ∂ n σ = 0. in [0, T ] × ∂Ω.
(2.20) This is based on the introduction of an adequate Lagrangian function. Indeed, let

L(ϕ, µ, ψ, ν, χ ϕ , χ ψ , φ, η, σ) = J (ϕ, ν, χ ϕ , χ ψ ) -A (ϕ, µ, ψ, ν, χ ϕ , χ ψ , φ, η, σ).
Integrating by parts, we have

T 0 Ω ϕ t φ d t = Ω ϕφ T 0 d x - T 0 Ω ϕφ t d t d x. T 0 Ω ∇µ • ∇φ d t d x = T 0 Γ µ∇φ d t d γ - T 0 Ω µ∆φ d t d x = T 0 Γ (µ∇φ d t d γ + T 0 Ω ∆ϕ∆φ d t d x - T 0 Ω F ′ (ϕ)∆φ d t d x + χ ϕ T 0 Ω ψ∆φ d t d x. T 0 Ω ψ t σ d t d x = Ω ψσ T 0 d x - T 0 Ω ψσ t d t d x. T 0 Ω ∇ψ • ∇σ d t d x = T 0 Γ ψ • ∇σ d t d γ - T 0 Ω ψ∆σ d t d x.
On the one side, differentiating the Lagrangian function with respect to the state variable ϕ, we get

                                       -φ t + ν∆η -νF ′′ (ϕ)η = -χ ϕ ∆σ + p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)φ -χ ϕ p(ϕ)φ + ∆(p(ϕ)φ) -p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)σ + χ ϕ p(ϕ)σ -∆(p(ϕ)σ) -p(ϕ)F ′′ (ϕ)φ + p(ϕ)F ′′ (ϕ)σ + β Q (ϕ -ϕ Q ), in [0, T ] × Ω, η = ∆φ, in [0, T ] × Ω, φ(T ) = β Ω (ϕ(T ) -ϕ Ω ),
in Ω,

∂ n φ = ∂ n χ = 0. in [0, T ] × ∂Ω.
(2.21)

On the opposite side, differentiating the Lagrangian function with respect to the state variable ψ, we obtain

           -σ t = χ ψ ∆σ -(χ ψ + χ ϕ )p(ϕ)σ + (χ ψ + χ ϕ )p(ϕ)φ -νχ ϕ ∆φ, in [0, T ] × Ω, σ(T ) = 0,
in Ω,

∂ n σ = 0. in [0, T ] × ∂Ω.
(

Combining systems (2.21) and (2.22), we obtain (2.20). Now, we have the following on the well-posedness of the adjoint system (2.20) THEOREM 2.6. Let ϕ Q ∈ L 2 (Q), and ϕ Ω ∈ L 2 (Ω). Then, system (2.20) has an unique solution (φ, χ, σ) associated the solution (ϕ, ψ) of system (2.1-2.2) and satisfying

φ ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 2 (Ω)), η ∈ L 2 (0, T ; L 2 (Ω)), σ ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 (Ω)).
In addition, we have

0 = -〈φ t , ξ〉 H 2 + ν Ω η∆ξ d x -ν Ω F ′′ (ϕ)ηξ d x + χ ϕ Ω ∆σξ d x + χ ϕ Ω p(ϕ)φξ d x - Ω ∆(p(ϕ)φ)ξ d x - Ω p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)φξ d x + Ω p ′ (ϕ)(χ ψ ψ -χ ϕ (1 -ϕ) -µ)σξ d x -χ ϕ Ω p(ϕ)σξ d x + Ω ∆(p(ϕ)σ)ξ d x + Ω p(ϕ)F ′′ (ϕ)φξ d x - Ω , p(ϕ)F ′′ (ϕ)σξ d x - Ω β Q (ϕ -ϕ Q )ξ d x.
PROOF. The proof follows standard line for proving the existence of solutions to system's of PDEs, and we refer to any textbook for more details (e.g. [START_REF] Miranville | The Cahn-Hilliard equation: recent advances and applications[END_REF]). Basically, one uses any approximation method such as Faedo-Galerkin combined with fixed point argument for ODEs to show the existence of smooth solutions, and then pass to the limit. Passing to the limit requires the use of compactness arguments such as Aubin-Lions compactness Lemma. In order to obtain the necessary compactness, one needs to obtain a priori estimates. In this section, we focus on this latter part by performing formal calculation. First, testing (2.20) 3 against σ, and integrating with respect to s ∈ [0, T ), we get -1 2

d d t ∥σ∥ 2 + χ ψ ∥∇σ∥ 2 + (χ ψ + χ ϕ ) Ω p(ϕ)σ 2 d x = (χ ψ + χ ϕ ) Ω p(ϕ)φσ d x -νχ ϕ Ω σ∆φ d x ⩽ ν 4 ∥∆φ∥ 2 + ∥φ∥ 2 + νχ 2 ϕ + (χ ψ + χ ϕ ) 2 4 β 2 3,ϕ (t ) ∥σ∥ 2 ,
thanks to Young's inequality. Second, testing equations (2.20) 1 and (2.20) 2 against φ and D η, respectively, where D denotes a positive constant to be determined later on, and summing-up the obtained equalities, we obtain

- 1 2 
d d t ∥φ∥ 2 + (ν -D)∥∆φ∥ 2 + D∥η∥ 2 = ν Ω F ′′ (ϕ)ηφ d x + Ω p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)φ 2 d x - Ω p ′ (ϕ)(χ ψ ψ -χ ϕ (1 -ϕ) -µ)σφ d x -χ ϕ Ω ∆σφ d x + Ω ∆(p(ϕ)φ)φ d x + χ ϕ Ω p(ϕ)σφ d x - Ω ∆(p(ϕ)σ)φ d x - Ω p(ϕ)F ′′ (ϕ)φ 2 d x + Ω p(ϕ)F ′′ (ϕ)σφ d x + Ω β Q (ϕ -ϕ Q )φ d x -χ ϕ Ω p(ϕ)φ 2 d x := J 1 + • • • + J 11 .
(2.23)

The rest of the proof is dedicated to provide estimates for the terms J 1 +• • • +J 11 where Cauchy-Schwarz and Young inequalities will be used implicitly. First, we have

|J 1 | = ν Ω F ′′ (ϕ)ηφ d x ⩽ D 2 ∥η∥ 2 + ν 2 2D β 2 1,ϕ (t )∥φ∥ 2 ,
where β 1,ϕ is the function of time defined in (2.10). Similarly to estimate (2.12), we have

|J 2 | = Ω p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)φ 2 d x ⩽ ν 10 ∥∆φ∥ 2 + ν 10 + 5 2ν β 2 3,ϕ (t )(χ 2 ϕ ∥1 -ϕ∥ 2 V + χ 2 ψ ∥ψ∥ 2 V + ∥µ∥ 2 V ) ∥φ∥ 2 ,
and

|J 3 | = Ω p ′ (ϕ)(χ ψ ψ + χ ϕ (1 -ϕ) -µ)σφ d x ⩽ 5 2ν β 2 3,ϕ (t ) χ 2 ϕ ∥1 -ϕ∥ 2 V + χ 2 ψ ∥ψ∥ 2 V + ∥µ∥ 2 V ) ∥σ∥ 2 + ν 10 ∥∆φ∥ 2 + ∥φ∥ 2 ,
where β 3,ϕ is the function of time defined in (2.13). Next, we provide estimates for the remaining terms (also, we refer to [START_REF] Kadiri | Cahn-Hilliard equation: continuous dependence on physical parameters and sensitivity analysis[END_REF][START_REF] Kadiri | Optimal control and parameters identification for the Cahn-Hilliard equations modeling tumor growth[END_REF] for more details on structurally similar terms)

|J 4 | = χ ϕ Ω ∆σφ, d x ⩽ ν 10 ∥∆φ∥ 2 + 5χ 2 ϕ 2ν ∥σ∥ 2 , |J 5 | = Ω ∆(p(ϕ)φ)φ d x = Ω p(ϕ)φ∆φ d x ⩽ ν 10 ∥∆φ∥ 2 + 5 2ν β 2 2,ϕ (t )∥φ∥ 2 , |J 6 | = χ ϕ Ω p(ϕ)σφ d x ⩽ ∥σ∥ 2 + χ 2 ϕ 4 β 2 2,ϕ (t )∥φ∥ 2 , |J 7 | = Ω ∆(p(ϕ)σ)φ d x | = Ω p(ϕ)σ∆φ d x ⩽ ν 10 ∥∆φ∥ 2 + 5 2ν β 2 2,ϕ (t )∥σ∥ 2 , |J 8 | = Ω p(ϕ)F ′′ (ϕ)φ 2 d x ⩽ 1 2 β 2 1,ϕ (t ) + β 2 2,ϕ (t ) ∥φ∥ 2 , |J 9 | = Ω p(ϕ)F ′′ (ϕ)σφ d x ⩽ ∥σ∥ 2 + 1 8 β 2 1,ϕ (t ) + β 2 2,ϕ (t ) ∥φ∥ 2 ,
where where β 2,ϕ is the function of time defined in (2.11), and

|J 10 | = Ω β Q (ϕ -ϕ Q )φ d x ⩽ β 2 Q 2 ∥ϕ -ϕ Q ∥ 2 + 1 2 ∥φ∥ 2 .
Observing that the term J 11 is negative, gathering the latter estimates together, and picking-up D ⩽ ν 12 , equality (2.23) leads to ⩽ Const.

- d d t ∥φ∥ 2 + ∥σ∥ 2 + ν∥∆φ∥ 2 + D∥η∥ 2 + χ ψ ∥∇σ∥ 2 ⩽ β 2 Q ∥ϕ -ϕ Q ∥ 2 L 2 (Ω) + Const. 1 + β 2 1,ϕ (t ) + β 2 2,ϕ (t ) + β 2 3,ϕ (t ) ∥φ∥ 2 + ∥σ∥
T s ∥φ∥ 2 + ∥σ∥ 2 d τ + β 2 Q ∥ϕ -ϕ Q ∥ 2 L 2 (Q) + β 2 Ω ∥ϕ(T ) -ϕ Ω ∥ 2 L 2 (Ω) .
(2.25)

Eventually, thanks to Gronwall's lemma, we have ∥φ∥ L ∞ (0,T ;L 2 (Ω))∩L 2 (0,T ;H 2 (Ω)) ⩽ Const., and ∥σ∥ L ∞ (0,T ;L 2 (Ω))∩L 2 (0,T ;H 1 (Ω)) ⩽ Const.

This gives the necessary a priori estimates for the compactness argument to pass to the limit in the approximating sequences of solutions.

The uniqueness of the obtained solutions can be shown in a straightforward way. Indeed, let φ i , σ i , for i = 1, 2, be solutions of the adjoint system (2.20), and set

Φ = φ 2 -φ 1 , Ψ = σ 2 -σ 1 , and Σ = η 2 -η 1 .
Therefore, tedious but easy calculation leads the a difference system satisfied by (Φ, Ψ, Σ). Estimates as the ones developed above leads to the following equivalent expression to (2.25)

∥Φ(s)∥ 2 + ∥Ψ(s)∥ 2 + ν∥∆Φ∥ 2 L 2 (s,T ;L 2 (Ω)) + D∥Σ∥ 2 L 2 (s,T ;L 2 (Ω)) + χ ψ ∥∇Ψ∥ 2 L 2 (s,T ;L 2 (Ω)) ⩽ Const. T s ∥Φ∥ 2 + ∥Ψ∥ 2 d τ.
This gives the uniqueness of solutions to the adjoint system (2.20), and thereby finishes the proof of Theorem 2.6. □ 2.8. Necessary optimality condition. This section is dedicated to the development of the optimality condition associated to our control problem. Specifically, we show the following THEOREM 2.7. Let ϕ Ω ∈ L 2 (Ω), ϕ Q ∈ L 2 (Q), and initial data (ϕ 0 , ψ 0 ) ∈ V × H . Let (ν * , χ ϕ * , χ ψ * ) ∈ U ad denotes a minimizer to (2.4) with corresponding state variables (ϕ * , µ * , ψ * ), and adjoint variables (φ, η, σ) solution system (2.20). Then, (ν * , χ ϕ * , χ ψ * ) necessarily satisfies

T 0 Ω (ν -ν * )∇µ * ∇φ d t d x + T 0 Ω (χ ψ -χ ψ * )∇ψ * ∇σ d t d x + ν * (χ ϕ -χ ϕ * ) T 0 Ω ∇φ∇ψ * d t d x + T 0 Ω p(ϕ * )((χ ψ -χ ψ * )ψ * + (χ ϕ -χ ϕ * )(1 -ϕ * ))φ d t d x -(χ ϕ -χ ϕ * ) T 0 Ω p(ϕ * )φψ * d t d x - T 0 Ω p(ϕ * )((χ ψ -χ ψ * )ψ * + (χ ϕ -χ ϕ * )(1 -ϕ * ))σ d t d x + (χ ϕ -χ ϕ * ) T 0 Ω p(ϕ * )σψ * d t d x + β ν (ν * -ν d )(ν -ν * ) + β χ ϕ (χ ϕ * -χ ϕ,d )(χ ϕ -χ ϕ * ) + β χ ψ (χ ψ * -χ ψ,d )(χ ψ -χ ψ * ) ⩾ 0, (2.26) 
where (ν, χ ϕ , χ ψ ) ∈ U ad .

PROOF. We start by testing (2.20)

1 against Φ u in L 2 (0, T ; H 2 (Ω)) to get Ω β Ω (ϕ * (T ) -ϕ Ω )Φ u (T ) d x + T 0 Ω β Q (ϕ * -ϕ Q )Φ u d t d x = 〈φ, (Φ u ) t 〉 H 2 + ν * T 0 Ω η∆Φ u d t d x -ν * T 0 Ω F ′′ (ϕ * )ηΦ u d t d x + χ ϕ * T 0 Ω ∆σΦ u d t d x + χ ϕ * T 0 Ω p(ϕ * )φΦ u d t d x - T 0 Ω ∆(p(ϕ * )φ)Φ u d t d x -χ ϕ * T 0 Ω p(ϕ * )σΦ u d t d x - T 0 Ω p ′ (ϕ * )(χ ψ * ψ * + χ ϕ * (1 -ϕ * ) -µ * )φΦ u d t d x + T 0 Ω ∆(p(ϕ * )σ)Φ u d t d x + T 0 Ω p ′ (ϕ * )(χ ψ * ψ * -χ ϕ * (1 -ϕ * ) -µ * )σΦ u d t d x + T 0 Ω p(ϕ * )F ′′ (ϕ * )φΦ u d t d x - T 0 Ω p(ϕ * )F ′′ (ϕ * )σΦ u d t d x.
Using the definition of the linearized system, in particular equation (2.8) 2 , we can write

Ω β Ω (ϕ * (T ) -ϕ Ω )Φ u (T ) d x + T 0 Ω β Q (ϕ * -ϕ Q )Φ u d t d x = 〈φ, (Φ u ) t 〉 H 2 -ν * T 0 Ω ηΣ u d t d x -ν * χ ϕ * T 0 Ω ηΨ u d t d x -ν * u χ ϕ T 0 Ω ηψ * d t d x + χ ϕ * T 0 Ω ∆σΦ u d t d x + χ ϕ * T 0 Ω p(ϕ * )φΦ u d t d x + T 0 Ω p(ϕ * )φΣ u d t d x -χ ϕ * T 0 Ω p(ϕ * )φΨ u d t d x -u χ ϕ Ω p(ϕ * )φψ * d t d x - T 0 Ω p(ϕ * )σΣ u d t d x + χ ϕ * T 0 Ω p(ϕ * )σΨ u d t d x + u χ ϕ T 0 Ω p(ϕ * )σψ * d t d x -χ ϕ * Ω p(ϕ * )σΦ u d t d x - T 0 Ω p ′ (ϕ * )(χ ψ * ψ * + χ ϕ * (1 -ϕ * ) -µ * )φΦ u d t d x + T 0 Ω p ′ (ϕ * )(χ ψ * ψ * -χ ϕ * (1 -ϕ * ) -µ * )σΦ u d t d x.
Next, testing equation (2.8) 1 against φ, we obtain

T 0 〈(Φ u ) t , φ〉 H 1 (Ω) d t -ν * T 0 Ω Σ u ∆φ d t d x + u ν T 0 Ω ∇µ∇φ d t d x = T 0 Ω p(ϕ * )(χ ψ * Ψ u -χ ϕ * Φ u -Σ u )φ d t d x + T 0 Ω p ′ (ϕ * )(χ ψ * ψ * + χ ϕ * (1 -ϕ * ) -µ * )φΦ u d t d x + T 0 Ω p(ϕ * )(u χ ψ ψ * + u χ ϕ (1 -ϕ * ) -µ * )φ d t d x.
Also, testing equation (2.20) 3 against Ψ u , we have

- T 0 〈σ t , Ψ u 〉 d t = χ ψ * T 0 Ω ∆σΨ u d t d x -(χ ψ * + χ ϕ * ) T 0 Ω p(ϕ * )σΨ u d t d x + (χ ψ * + χ ϕ * ) T 0 Ω p(ϕ * )φΨ u d t d x -ν * χ ϕ * T 0 Ω ∆φΨ u d t d x.
Eventually, testing equation (2.8) 3 against σ, we get

T 0 〈(Ψ u ) t , σ〉 d t = χ ψ * T 0 Ω ∆Ψ u σ d t d x + u χ ψ T 0 Ω ∆ψ * σ d t d x -u ϕ T 0 Ω ∆ϕ * σ d t d x -χ ϕ * T 0 Ω ∆Φ u σ d t d x - T 0 Ω p(ϕ * )(χ ψ * Ψ u -χ ϕ * Φ u -Σ u )σ d t d x - T 0 Ω p ′ (ϕ * )Φ u (χ ψ * ψ * + χ ϕ * (1 -ϕ * ) -µ * )σ d t d x - T 0 Ω p(ϕ * )(u χ ψ ψ * + u χ ϕ (1 -ϕ * ) -µ * )σ d t d x.
All in all, combining the previous equalities, we can write

Ω β Ω (ϕ * (T ) -ϕ Ω )Φ u (T ) d x + T 0 Ω β Q (ϕ * -ϕ Q )Φ u d t d x = u ν T 0 Ω ∇µ * ∇φ d t d x + ν * u χ ϕ T 0 Ω ∇φ∇ψ * d t d x -u χ ϕ T 0 Ω p(ϕ * )φψ * d t d x + u χ ϕ T 0 Ω p(ϕ * )σψ * d t d x + u χ ψ T 0 Ω ∇ψ * • ∇σ d t d x -u χ ϕ T 0 Ω ∇ϕ * • ∇σ d t d x + T 0 Ω p(ϕ * )(u χ ψ ψ * + u χ ϕ (1 -ϕ * ) -µ * )φ d t d x - T 0 Ω p(ϕ)(u χ ψ ψ * + u χ ϕ (1 -ϕ * ) -µ * )σ d t d x.
(2.27) Now, we define the function

g (ν, χ ϕ , χ ψ ) = J (S 1 (ν, χ ϕ , χ ψ ), ν, χ ϕ , χ ψ ).
Thanks to the convexity of the space U ad , we have (g ′ (ν * , χ ϕ * , χ ψ * ), U ) ⩾ 0 where g ′ denotes the Jacobian matrix of the function g and U the vector

U =   ν -ν * χ ϕ -χ ϕ * χ ψ -χ ψ *   .
Furthermore, we have

g ′ (ν, χ ϕ , χ ψ ) = J ′ ϕ (S 1 (ν, χ ϕ , χ ψ ), ν, χ ϕ , χ ψ ) • S ′ 1 (ν, χ ϕ , χ ψ ) +    J ′ ν (S 1 (ν, χ ϕ , χ ψ ), ν, χ ϕ , χ ψ ) J ′ χ ϕ (S 1 (ν, χ ϕ , χ ψ ), ν, χ ϕ , χ ψ ) J ′ χ ψ (S 1 (ν, χ ϕ , χ ψ ), ν, χ ϕ , χ ψ )    , where J ′ ϕ (S 1 (ν, χ ϕ , χ ψ ), ν, χ ϕ , χ ψ )
is the Fréchet derivative of J with respect to ϕ, and J ′ ν , J ′ χ ϕ ,, and J ′ χ ψ are the Fréchet derivatives of J with respect to ν, χ ϕ , and χ ψ , respectively. Thus, we have

J ′ ϕ (S 1 (ν, χ ϕ , χ ψ ), ν, χ ϕ , χ ψ )(ξ) = β Q T 0 Ω (ϕ -ϕ Q )ξ d t d x + β Ω Ω (ϕ(T ) -ϕ Ω )ξ(T ) d x,
and

J ′ ν (S 1 (ν, χ ϕ , χ ψ ), ν, χ ϕ , χ ψ )(w) = β ν (ν -ν d )w, J ′ χ ϕ (S 1 (ν, χ ϕ , χ ψ ), ν, χ ϕ , χ ψ )(w) = β χ ϕ (χ ϕ -χ ϕ,d )w, J ′ χ ψ (S 1 (ν, χ ϕ , χ ψ ), ν, χ ϕ , χ ψ )(w) = β χ ψ (χ ψ -χ ψ,d )w.
Using the definition of a solution to system (2.8), we observe that

S ′ 1 (ν, χ ϕ , χ ψ * ).U = Φ u .
All in all, the previous results combined to equality (2.27) leads to the desired result, namely the optimal condition (2.26). □

Numerical illustration

In this section, we present the results of a numerical simulation of the control problem we set-up and analyzed above. The numerical code was implemented in FreeFem++ software (see [6]) using a finite element method for space meshing and a finite difference scheme for the time discretization. Although our aim is not to provide the numerical analysis of the scheme, we present it below briefly. More precisely, it reads as follows

Ω ϕ m+1 -ϕ m ∆t φ h d x = ν 3 i =1 Ω ∂ i µ m • ∂ i φ h d x + Ω p(ϕ m )(χ ψ ψ m + χ ϕ (1 -ϕ m ) -µ m )φ h d x, Ω µ m η h d x = 3 i =1 Ω ∂ i ϕ m • ∂ i η h d x + Ω F ′ (ϕ m )η h d x -χ ϕ Ω ψ m η h d x, Ω ψ m+1 -ψ m ∆t σ h d x = χ ψ 3 i =1 Ω ∂ i ψ m • ∂ i σ h d x -χ ϕ 3 i =1 Ω ∂ i ϕ m • ∂ i σ h d x - Ω p(ϕ m )(χ ψ ψ m + χ ϕ (1 -ϕ m ) -µ m )σ h d x,
where ϕ m and ψ m are the approximate values of solutions ϕ and ψ at time t + m ∆t respectively, and ∆t denotes the time step for the algorithm iterations. The variables φ h , η h , and σ h are finite element test functions, and h denotes the meshing size. The double-well potential function F and the proliferation rate function p are chosen as F (s) = 1 4 (s 2 -1) and p(s) = 1s 2 . In our numerical test, we consider the following synthetic data: the domain Ω is [-1, 1] 3 , the parameters (ν d , χ ϕ,d , χ ψ,d ) = (0.01, 0.5, 0.5), and the initial data of the tumor cell parameter ϕ 0 and the nutrient fraction ψ 0 defined in (2. 2) at times t = 5, 15, 30, 40 and t = 50. Observe that Figure 5 shows that the solutions go to a stationary point which is in agreement with the theoretical results of [START_REF] Garcke | Long-time dynamics for a Cahn-Hilliard tumor growth model with chemotaxis[END_REF] (see also [START_REF] Kadiri | Optimal control and parameters identification for the Cahn-Hilliard equations modeling tumor growth[END_REF][START_REF] Frigeri | On a diffuse interface model of tumour growth[END_REF] for a model without chemotaxis and active transport enjoying the same theoretical properties). The corresponding optimal parameters (obtained through the minimization of the cost functional J are given by (ν, χ ϕ , χ ψ ) = (0.0099, 0.4951, 0.4945). Our numerical tests show that, although theoretically the solutions of system (2.1-2.2) depend continuously of the initial data and the system's physical parameters, the converges of the algorithm depends strongly on the choice of the weight parameters in the cost functional. For instance our choice of β ν = β χ ϕ = β χ ψ = 10 2 leads to a fast convergence of the optimization algorithm to the target values (ν d , χ ϕ,d , χ ψ,d ), whereas other values slow it down. Also, let us mention that in our simulation we focused on the convergence to the target parameters by setting arbitrary values for the target functions. However, we considered as well the case of ν d = χ ϕ,d = χ ψ,d = 0, and observed that the Gauss-Newton scheme converges as well to the values picked up to have the solutions ϕ Ω , ϕ Q . We do not pretend that the simulation, and the tests we performed correspond to realistic clinical case such as the choice of the weigh constants in the cost functional, the initial data, the target values etc. The only conclusions we can draw from these numerical tests are that the convergence of the numerical scheme holds in all runs satisfying the theoretical hypothesis, and most importantly, that the target functions and parameters were recovered. The strong dependence of the algorithm's convergence on β ν , β χ ϕ , β χ ψ and β Ω , β Q suggests that careful numerical analysis of the scheme, in the scope of the theoretical 

Conclusion

In this paper, we developed an optimal control theory for a system of Cahn-Hilliard-type equations modeling tumor growth, and taking into account chemotaxis and active transport. The latter phenomenon were introduced to the system through constants χ ϕ ≥ 0 and χ ψ ≥ 0 included in the linear term (χ ψ ψ + χ ϕ (1 -ϕ) -µ).

We showed the continuous dependence of the solutions on the initial data, and most importantly on the system's physical parameters. Next, we showed the existence of a unique minimizer to a cost functional we introduced. Specifically, this cost function does not depends only on target functions, but also on target physical parameters of the system. A linearization of the state system was introduced and mathematically analyzed, and the Fréchet differentiability of the state map was proven. Next, we set and analyzed the adjoint system and provided a necessary optimality condition. Eventually, numerical simulation based on a purely synthetic scenario was provided.

  2) are given by ϕ 0 = -0.5 × e -x 2 -y 2 -z 2 , ψ 0 = 0.5 × e -x 2 -y 2 -z 2 , where x and y denote the coordinates of the space meshing. The parameters (β Ω , β Q ) are set to (0.25, 0.25), and the values (β ν , β χ ϕ , β χ ψ ) are set to β ν = β χ ϕ = β χ ψ = 10 2 . The meshing size h is set to h = 0.001.

Figures 1 - 5

 15 Figures 1-5 below, show the evolution of the solution (ϕ, ψ) of system (2.1-2.2) at times t = 5, 15, 30, 40 and t = 50. Observe that Figure5shows that the solutions go to a stationary point which is in agreement with the theoretical results of[START_REF] Garcke | Long-time dynamics for a Cahn-Hilliard tumor growth model with chemotaxis[END_REF] (see also[START_REF] Kadiri | Optimal control and parameters identification for the Cahn-Hilliard equations modeling tumor growth[END_REF][START_REF] Frigeri | On a diffuse interface model of tumour growth[END_REF] for a model without chemotaxis and active transport enjoying the same theoretical properties). The corresponding optimal parameters (obtained through the minimization of the cost functional J are given by (ν, χ ϕ , χ ψ ) = (0.0099, 0.4951, 0.4945).

FIGURE 1 .

 1 FIGURE 1. The fraction ϕ (left), and ψ (right) after T=5.

FIGURE 2 .

 2 FIGURE 2. The fraction ϕ (left), and ψ (right) after T=15.

FIGURE 3 .

 3 FIGURE 3. The fraction ϕ (left), and ψ (right) after T=30.

FIGURE 4 .FIGURE 5 .

 45 FIGURE 4. The fraction ϕ (left), and ψ (right) after T=40.

Figures 6 and 7

 7 Figures 6 and 7 illustrate the evolution of the tumor viscosity ν, the active transport mobility χ ϕ , and the chemical mobility χ ψ in term of the algorithm iterations with initial parameters ν = 0.0001, χ ϕ = 0.0005, χ ψ = 0.0002.Equivalently, in a scenario where the initial parameters are picked-up as

FIGURE 7 .

 7 FIGURE 7. The variation of χ ϕ (left) and χ ψ in term of algorithm iterations.

FIGURE 8 .

 8 FIGURE 8. The variation of the viscosity ν in term of algorithm iterations.

FIGURE 9 .

 9 FIGURE 9. The variation of χ ϕ (left) and χ ψ (right) in term of algorithm iterations.
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