
HAL Id: hal-04127629
https://hal.science/hal-04127629

Preprint submitted on 3 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Can Software Containerisation Fit The Car On-Board
Systems ?

David Fernández Blanco, Frédéric Le Mouël, Trista Lin, Amir Rekik

To cite this version:
David Fernández Blanco, Frédéric Le Mouël, Trista Lin, Amir Rekik. Can Software Containerisation
Fit The Car On-Board Systems ?. 2023. �hal-04127629�

https://hal.science/hal-04127629
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Can Software Containerisation Fit The Car
On-Board Systems ?

David Fernández Blanco∗†, Frédéric Le Mouël∗, Trista Lin† and Amir Rekik†
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Abstract—As the automotive industry evolves towards inter-
connected and intelligent vehicles, the integration of complex
electronic and software components has become paramount.
However, this increased complexity brings new challenges in
ensuring system safety, security, and life-cycle management.
In this article, we focus on virtualisation (virt.), particularly
containerisation (cont.), as a solution to mitigate integration stress
in multi-node environments. We present a detailed review of the
automotive constraints and ecosystem, along with the selection
criteria for virt. technologies, justifying the scope of our study.
Our main contribution is a two-phased evaluation of cont. tools.
Firstly, we assess popular single-node container engines (Docker,
Containerd, and Linux Containers LXC) based on CPU, RAM,
and file I/O overhead over multiple hardware configurations.
Secondly, we evaluate their multi-node scalability. The results
show that Docker performs in average better than the other
solutions for automotive on-board architectures.

Index Terms—Containerisation, Automotive ICT systems,
Micro-processor Units (MPUs), Multi-node, Dynamicity

I. INTRODUCTION

In recent decades, Information and Communication Tech-
nologies (ICT) have played a dominant role in transforming the
automotive industry and seamlessly integrating it into Smart
City ecosystems. This transformation has significantly en-
hanced vehicle connectivity and computational power, leading
to the emergence of new services such as AI-based Advanced
Driver Assistance Systems (ADAS) or customizable In-Vehicle
Infotainment (IVI) systems. Furthermore, recent technological
advancements such as Over-The-Air (OTA) software updates,
partial vehicle operation, or software-defined vehicle variants
have stimulated automakers to explore more flexible and
dynamic software business opportunities.

However, in their pursuit of innovation, automakers have
primarily focused on introducing new features to enhance
passenger experience, continuously adding more resources to
meet the growing computing demands. Unfortunately, this
approach has not been accompanied by corresponding evo-
lutions in software architecture and control panel design. As
a result, system complexity has significantly increased [1],
giving rise to numerous challenges [2] related to system safety,
security, flexibility, and software life-cycle management. Con-
sequently, software development, integration, and maintenance
costs have escalated, hindering the automakers’ objectives.
Additionally, with the increasing adoption of fleet-control
Vehicle-to-Everything (V2X) applications, in-vehicle systems
need to allocate additional resources to coordinate with their

surroundings, particularly for ADAS purposes. However, as
shown in §III, these applications may not require continuous
operation. Therefore, the ability to dynamically instantiate
the necessary software applications presents an intriguing
opportunity for resource optimisation and cost reduction.

Traditionally, to mitigate integration stress and achieve full
isolation of software contexts, the IT domain recommends im-
plementing a common middleware. This middleware handles
installation, integration, and run-time maintenance procedures,
consolidating the complexity into the development of this
shared framework instead of each individual application. By
adopting this approach, although it may entail higher initial
costs, the risk of conflicts is minimized, and the system’s
safety, dynamism, and security are ensured in a flexible and
simplified manner [3]. These frameworks typically rely on
virt., a widely used technique. However, there are two main
types of virt.: Hardware Abstraction Layer (HAL) level virt.
and Operating System (OS) level virt.. While both can be
suitable for automotive in-vehicle systems [4], their contexts
of use differ significantly. HAL level virt. excels in providing
high levels of security and isolation by creating fully isolated
software environments with their own operating systems,
drivers, and allocated hardware resources. On the other hand,
OS level virt. offers greater resource efficiency, flexibility,
scalability, and dynamism, albeit with some trade-offs in
security and isolation. In this paper, we will primarily focus
on OS level virt. as it aligns better with the objectives of
flexibility and dynamism for automakers.

Within the context of this paper, we will propose a per-
formance analysis of the most widely used OS level tools,
from now on called containerisation frameworks, such as
Docker [5], [6], Kubernetes [7], and Linux Containers (LXC
and LXD) [8]. We will assess their individual performance
when operating in a single-node and their collective perfor-
mance when operating within a cluster of nodes. Addition-
ally, it’s worth noting that for this study, we will be using
automotive-like hardware and orchestrating it following near
future Zonal Architecture patterns. Thus, this paper proposes:

– A detailed description of the current automotive con-
text, architecture, and challenges hindering the adop-
tion of OS-level virt. within automotive in-vehicle sys-
tems (cf. § II-A). Followed by a comprehensive survey
of virt. techniques, specifically focusing on the different
OS-level virt. engines (cf. § II-B).



– A realistic use-case scenario highlighting the significance
of software dynamism and flexibility in in-vehicle sys-
tems, justifying the emphasis on OS-level virt. over HAL-
level virt. and showing relevant the performance metrics,
supported by scientific literature and innovation reports
from automakers (cf. § III).

– A detailed performance analysis (cf. § V) of the above-
mentioned cont. solutions, in single node and cluster
scenarios over varied automotive-like hardware.

– A discussion on the suitability of containerisation for the
automotive context based on the obtained results, along
with an identification of remaining challenges (cf. § VI).

This paper is organised as follows: Section II explores
the automotive and virt. context. Section III presents a de-
tailed use-case scenario illustrating the importance of software
dynamism and flexibility in future vehicles, along with the
performance metrics to study. Section IV describes the testing
procedures and experiment choices. Section V presents and
analyses the experiment results. Section VI discusses the
performance analysis results, their limitations, and proposes
future works for virt. in automotive systems. Finally, Section
VII synthesises the paper findings.

II. BACKGROUND

This section provides an overview of the automotive and
virt. backgrounds, exploring key developments and their in-
tersection in shaping the future of mobility. By understanding
the evolution of these domains, we can uncover the potential
at the intersection of cars and virt. technologies.

A. Automotive Background

In this subsection, we explore the causes behind the current
automotive IT evolution. We then delve into two main aspects
of in-vehicle architectures: the automotive software environ-
ment and the Electrical/Electronic (E/E) architecture.

1) Evolution Causes: Societal changes have triggered a
significant transformation in the automotive industry. Younger
generations are more inclined towards mobility options rather
than owning cars, relying heavily on shared and on-demand
services [9]. Simultaneously, there has been a decline in
interest in driving as it is now perceived as a mundane task,
given the advancements in autonomous driving systems and
V2X applications [10], [11]. Consequently, the traditional
notion of vehicles as symbols of status has shifted towards
a focus on utility and software customisation. Accordingly,
the automotive software architecture must adapt to effectively
manage the increasingly diverse passenger preferences and the
dynamic needs of V2X applications.

2) Automotive Software Environment: Within the auto-
motive ecosystem, there exists a diverse and collaborative
environment where automakers play the role of integrating
various software components developed by different suppliers.
Thus, automakers are in charge of managing the centralised
software hub, update campaigns, security certificates, etc.
On the one hand, the evolution of software development

methodologies in the automotive industry has been driven by
increasing complexity and the need to meet quality, safety, and
efficiency requirements. It has transitioned from traditional wa-
terfall to more agile approaches like Automotive SPICE [12].
However, as this standard predates the software boom in
automotive systems, it lacks modern software dynamism and
has high hardware-software coupling, complicating innovation.
New initiatives seek to merge IT-oriented Agile models with
automotive requirements. On the other hand, the evolution
of business use-cases and the enhancement of in-vehicle
computing and connectivity has led to the creation of new
application profiles [13]. These include collaborative V2X ser-
vices, highly dynamic and computed in multiple vehicles and
infrastructures, enhanced IVI services with high networking
and computing capabilities for specific scenarios, and remote
services with direct cloud interaction, impacting integration
pipelines and software life-cycle management.

GATEWAY

TELEMATICS

ADAS

POWERTRAIN BODY

...

INFOTAINMENT COCKPIT

High-end MCU / MPU Low-end MCU
Actuator / Sensor

Fig. 1. Current Automotive Domain Vehicle E/E Architecture.

3) In-vehicle E/E architectures: As mentioned earlier, the
increasing software functionalities in cars have led to a rise in
in-vehicle computing power, resulting in a significant increase
in embedded ECUs. This has led to unmanageable system
complexity and challenges in keeping up with app. demands
for computing, network, and energy consumption [2], [14].
Consequently, the E/E architecture has evolved, transitioning
from a fully distributed architecture composed mostly of
mono-functional micro-controllers (MCUs) connected through
low-efficient networks like Controller Area Network (CAN),
Local Interconnect Network (LIN), or FlexRay. Modern ar-
chitectures, inspired by the Domain Vehicle E/E reference
architecture (cf. Fig. 1), employ fewer, more powerful mi-
croprocessors (MPUs) primarily connected via Ethernet. This
trend has reduced the price, weight, space, and complexity of
these systems. In near future, systems are likely to evolve to be
more centralised as in Central Computer Arch. or Zonal Arch.,
where one or a few higher-end MPUs would encompass all
functions within a sub-region or even the entire vehicle.

B. Virtualisation Background

Virt. has been traditionally employed to tackle issues like
inflexibility, lack of dynamism, software integration, and man-
agement challenges in modern automotive systems. In this
subsection, we’ll examine various types of virt., their pros and



cons. Then, we’ll focus on the most suitable technique for the
automotive context: OS Level virt., as shown in Table I.

1) Virtualisation levels: Virt. is a technology that combines
or divides computing resources to create one or multiple
operating environments. It enables hardware and software
partitioning, aggregation, simulation, emulation, and time-
sharing. This technique allows a single Electronic Control Unit
(ECU) to run sets of code independently and securely in iso-
lation. Virt. enhances hardware/software decoupling, software
modularity, and provides the necessary flexibility, security,
and dynamism required by automotive systems (cf. § III).
It also facilitates environment maintenance, reduces the cost
of software sand-boxing, and enables testing and simulating
complex real-world scenarios, all of which are highly desired
by automakers. However, virt. can be implemented at various
levels with varying performance characteristics, which are:

– Instruction Set Architecture (ISA) level virt.: ISA serves
as an interface between hardware and software, defining
CPU control, data types, registers, and memory man-
agement. At this level, virt. interprets instructions one
by one, translating source ISA instructions into host
machine-compatible ones. This allows running legacy
code on newer hardware but introduces significant system
overhead. Some examples are Bochs and Crusoe.

– Hardware Abstraction Layer (HAL) level virt.: In an
effort to reduce the interpretation latency associated with
ISA level virt., HAL level virt. aims to leverage the
architectural similarities between systems. It maps virtual
resources to physical ones and uses native hardware for
computations within the virtual machine (VM) through a
hypervisor middleware. It can be implemented making all
the guest OSs independent from each other (i.e., full-virt.)
either over the physical hardware (bare-metal) or over an
existing OS (hosted) or modifying the guest OS kernel
to act as a bridge between applications and hardware
resources to improve performance slightly (i.e. para-virt.).
Some examples are Linux KVM or XEN for full-virt. and
Lguest for para-virt.

– Operating System (OS) level virt.: OS level virt. creates
an abstraction layer between the OS and user apps,
enabling isolated app containers with server-like func-
tionality, improved efficiency, and scalability. Cont., the
fundamental unit, operate on a Linux-based host OS with

a cont. control engine. Unlike hypervisor-based solutions,
OS level virt. doesn’t require individual guest OSs per
each app. Instead, the host kernel runs multiple isolated
user-space instances with necessary libraries and binaries
added. This approach offers higher performance, faster
boot times, and reduced resource overhead. OS level
virt. incorporates isolation mechanisms, resource man-
agement, network abstraction, and more. Some examples
are Docker, LXC/LXD, Rkt, and Podman.

– Library level virt.: Library level virt. relies on APIs pro-
vided by user-level library implementations, abstracting
OS-specific details for ease of use. It creates a virtual
environment above the OS layer, exposing different but
equivalent binary interfaces to emulate required applica-
tion binary interfaces and program APIs. Some examples
are WINE, WABI, and LxRun.

– Application level virt.: App. level virt. runs an application
as if it were a virtual machine. The virt. middleware
operates as an app. process on top of the OS, providing
an abstraction of a VM that executes programs written
in a specific abstract machine definition language. Some
examples are Java VM and Parrot.

When comparing the automotive evolution causes and trends
discussed in § II-A to the different virt. layers in Table I, OS-
level virt. stands out as offering superior efficiency, flexibility,
and scalability. Consequently, it is the most suitable choice for
achieving the automotive objectives in software dynamism and
flexibility. However, OS-level virt. raises concerns regarding
software security and isolation properties.

2) Container run-times: Having highlighted the benefits
of cont. in the previous subsection, we now delve into the
core of this technology: the container engines (or run-times).
These engines are responsible for executing and managing
containers over the host OS, interacting with the OS kernel to
dynamically isolate and allocate resources. The performance
of the cont. solution critically depends on this software block.
In this section, we will explore the main cont. engines, upon
which we will base our study later on.

– Linux Containers (LXC) [8]. LXC was the pioneering
comprehensive containerisation solution. It creates and
manages multiple isolated Linux Virtual Environments on
a standard Linux kernel using cgroups and Linux name-
spaces, avoiding hardware preloading emulation or ad-

TABLE I
COMPARISON OF DIFFERENT VIRTUALISATION LAYERS.

Layer Type Safety
Possibilities Isolation Efficiency Complexity Flexibility Scaling Boot Time

ISA Level Low Medium Medium Medium High Medium Medium

Bare-metal hypervisor High High High Medium Medium Medium Low

Hosted hypervisor Medium Medium Medium Medium Medium Medium Medium

H
A

L
L

ev
el

Para-virtualisation Medium Medium High High Medium High Low

OS Level Low Low Very High Medium Very High Very High Very Low

Library Level Low Low Low Low Low Low High

Application Level - Low Medium - - - Medium



ditional overhead. To enhance LXC and incorporate fea-
tures from other container solutions, LXD was introduced
as a container manager built on top of LXC, providing an
improved UX with a control daemon accessible through
a REST API based on liblxc.

– Containerd [5], [6]. Containerd, the default run-time used
by Docker, follows the Open Container Initiative (OCI)
standard specification through runc implementation. It
aims to provide minimal application virt. capabilities
while facilitating image and snapshot storage, along with
execution contexts. Containerd dynamically allocates host
resources among containers based on their application
requirements. Containerd’s versatility extends beyond
Docker, as it is also employed as a container runtime
in other solutions like Kubernetes.

– CRI-O [7]. CRI-O is a standardised interface designed for
Kubernetes plugins responsible for managing and mon-
itoring containers. It establishes a stable communication
interface between kubelet (the primary node agent of
Kubernetes) and the host container run-time. CRI-O uses
gRPC, a cross-language library for remote procedure calls
using Protocol Buffers, to connect OCI run-times with
higher-level Kubernetes components. The interaction life-
cycle with CRI-O is similar to containerd, utilising the
CRI endpoint, and runc serves as the default OCI run-
time when using CRI-O.

– CoreOS RKT [15]. RKT is a cont. run-time developed
by CoreOS, offering enhanced security through strong
signature verification for image downloads and invoca-
tions. It also reduces the authorisation level required
to manage containers, improving system security. RKT
implements mechanisms for auditing containers, making
it valuable for critical systems like those in automobiles.
Its composability allows compatibility with traditional
service management tools and higher-level orchestrators
like Kubernetes. However, as the RKT project has been
recently abandoned and lacks ARM architecture support,
it is unsuitable for the automotive systems.

C. Automotive containerisation open issues

Even though cont. has gained significant popularity and
adoption in software development and deployment, its im-
plementation within cars and other industrial sectors is still
relatively new and faces several ongoing concerns.
Resource Constraints. Cars have limited computing resources
compared to data centers or cloud environments. Cont. in-
volves running multiple apps. within isolated environments,
which can consume additional CPU, memory, and storage.
Optimising resource allocation and managing container den-
sity while meeting performance requirements is a significant
challenge [16] in maintaining system efficiency while offering
dynamicity and flexibility.
Hardware and Platform Diversity. The automotive industry
includes various car manufacturers, models, and embedded
systems with diverse hardware architectures and platforms.
Ensuring cont. compatibility and adaptability across this

ecosystem (legacy, present, future...) presents challenges in
standardisation, portability, and cross-platform support [17].
Safety and Security. These properties are critical in the auto-
motive industry, especially for in-vehicle systems. While cont.
offer advantages in software integration and system dynamism,
it also faces significant security issues [18]. Addressing them
is essential to prevent potential exploits and vulnerabilities
without adding complexity.
Certification and Regulatory Compliance. Automobiles un-
dergo strict certification procedures to meet safety and regula-
tory standards such as ISO-26262 or ISO-21434. The adoption
of cont. in car systems may require the development of new
certification frameworks and standards tailored to address the
unique challenges and risks posed by cont. environments [19].

III. USE CASE SCENARIO

The goal of this section is to show the importance of
software flexibility and dynamicity, and how these attributes
are closely tied to the system’s performance and resource
utilisation. The scenario takes place within the context of a
smart city ecosystem, where an autonomous vehicle navigates
through different situations, leveraging various applications
and services. This scenario is part of a wider study realised
in collaboration with STELLANTIS1. Thus, we will focus on
the first two situations of that scenario, as they are sufficient
to match our purposes, which are:

– Leaving the parking lot. When leaving the parking lot, the
vehicle gains access to the network, allowing seamless
integration with real-time traffic data and communication
with nearby cars and pedestrians. The efficiency of the
system’s CPU, memory utilisation, and file I/O operations
are essential for real-time data processing and communi-
cation, enabling the identification of potential threats and
accident prevention. Furthermore, the ability to dynam-
ically allocate resources and handle mutexes efficiently
becomes crucial as multiple apps, such as navigation and
music streaming, are initiated simultaneously.

– Going through an intersection. When approaching an
intersection, the vehicle needs to communicate with the
driving infrastructure, specifically the traffic light, to ob-
tain additional information for safe navigation, initiating
now new inactive apps. This communication relies on
V2X apps and requires the system to handle locks effi-
ciently, ensuring smooth coordination between different
components. Besides, as the vehicle has internet access,
it is able to download and build new apps. or updates.

Throughout the use-case scenario, the system’s performance
and efficiency are assessed using selected test metrics that
reflect the demands of in-vehicle archs. These metrics include
CPU, memory access, file I/O operations, multi-threading,
mutex handling, image build efficiency and container start
time. By evaluating these metrics, we can gauge the system’s
ability to meet the performance requirements.

1The detailed use-case scenario and benchmark are accessible at: https:
//github.com/DavidFdezBlanco/containerisation performance analysis.git



IV. MATERIALS AND METHODS

In light of the evolving trends in E/E architecture, which
suggest a notable decline in highly-constrained MCUs within
vehicle archs. in favour of more advanced MPUs, this study
specifically concentrates on the latter. This section provides
an overview of the experiment objectives, hardware/software
setup and benchmark employed for our perf. study.

A. Experiment objectives

Performance profiling and evaluation have gained increasing
importance in the container research community. Earlier stud-
ies primarily compared containerisation pioneers like Docker
and LXC with traditional HAL virtualisation solutions such as
XEN or KVM on server-like devices [20]–[23]. More recent
research expanded the comparison to newer containerisation
tools, including RKT [15], LXD [24], and Kubernetes [25].
However, there remains a gap in performance evaluations
focusing on multi-node extensions of these container solutions.
Only a few examples, such as [26] comparing Kubernetes
variants on IoT nodes and [27] comparing Docker Swarm to
Kubernetes on cloud-like servers, exist. As a result, our paper
aims to address three unexplored research gaps in the field:

– The suitability study of widely used containerisa-
tion engines (Docker, LXC/LXD, and Kubernetes) for
automotive-like nodes in singleton architectures.

– The investigation of the impact of automotive-like hard-
ware variants (legacy nodes and future improvements) on
container engine performance in singleton architectures.

– The examination of the impact of multi-node clustering
on container engine performance, this time using Docker
Swarm, Kubernetes, and LXD Clustering extensions.

Further details on the automotive-like hardware selection
and software configuration are given next subsection.

B. Experimental Setup

1) Hardware Configuration: The tests were conducted
on a publicly-accessible Fog/Edge platform [28]. For the
automotive-like nodes, we utilised the Raspberry Pi 3B,
which features an ARM Cortex-A53 chip-set similar to those
deployed in current vehicle systems [2]. Legacy nodes are
composed of Raspberry Pi 2 boards, bearing an ARM Cortex-
A7 chip-set, representing a previous automotive chip-set gen-
eration. For future nodes, we selected the latest Raspberry Pi
4, as we expect future chip-sets to follow in the footsteps of
Raspberry generations. A comprehensive description of these
three boards is available in Table II. All these cards had a

TABLE II
HARDWARE DETAILED DESCRIPTION

CPU RAM

Card model Chipset Cores Clock-speed Size Generation

Raspberry Pi 2
ARM Cortex-A7

(32-bit) 4 0.9 GHz 1 GB LPDDR2

Raspberry Pi 3B
ARM Cortex-A53

(64-bit) 4 1.2 GHz 1 GB LPDDR2

Raspberry Pi 4
ARM8 Cortex-A72

(64-bit) 4 1.5 GHz 4 GB LPDDR4

32GB Micro-SD card SDCS2 Class 10 storage and are inter-
connected through Ethernet backbone (Cat. 6 cables) forming
a mesh as in Zonal Architectures.

2) Software Configuration: Table III provides an overview
of the software configurations employed in the experiment,
including the host operating systems and container engine
versions. However, when utilising Kubernetes (k3s) on Rasp-
berry Pi 2 and Raspberry Pi 3B with the Ubuntu Server 22.04
host OS, constant memory swapping significantly impacted
the functionality of k3s. Therefore, a lighter OS (RPI OS Lite
v6.1 Bullseye 64-bits) was used for conducting these tests.

TABLE III
SOFTWARE DETAILED DESCRIPTION

Host OS Ubuntu Server 22.04 lts 64-bits

Docker v24.0.2

Kubernetes (k3s) v1.27.3

LXC / LXD v5.0.2

C. Benchmark Specification

Regarding the evaluation criteria, in conjunction with the
use-case scenario in §III, all concurs on the significance
of assessing CPU performance, memory utilisation, and
File I/O operations. Some also emphasise evaluating mu-
tex synchronisation and multi-threading scheduling perfor-
mance. Moreover, when comparing to HAL level virtualisa-
tion, certain papers focus on system boot time, provision-
ing, and fail-over time. However, the selection of bench-
marks varies among the papers. The most commonly used
benchmarks include Sysbench (https://github.com/akopytov/
sysbench), Phoronix (https://www.phoronix-test-suite.com/),
and OCCT (https://www.ocbase.com/). For our performance
experiment, we opted for Sysbench as our comparative bench-
mark. Although we considered Phoronix and OCCT, they
proved either incompatible or exhibited inconsistent behavior
on ARM architectures. From Sysbench, we considered several
benchmarks that align with most of the metrics described in the
use case scenario. These benchmarks include the CPU stress
benchmark, the memory access benchmark, the filesystem-
level benchmark, the thread-based scheduler benchmark, and
the POSIX mutex benchmark. However, since Sysbench does
not include some important properties specifically relevant to
the automotive context, we chose to extend Sysbench with
custom container-oriented tests. These additional tests were
developed to measure the image build and start time, allowing
us to assess the efficiency of the application installation and
launch processes. We also included a test for error detection
reactivity, which measures the responsiveness of the container-
isation system in identifying and handling errors or faults
within the containerised environment. It’s important to note
that to ensure experiment repeatability, the complete bench-
mark used and the results are accessible in our repository.

V. RESULTS

The section presents the findings of our performance evalua-
tion and analysis of cont. technologies for automotive on-board



systems. The results are divided into two main sections. The
first section focuses on the suitability of cont. for automotive
on-board systems in singleton archs., covering the two primary
objectives outlined in §IV-A. The second section explores the
impact of clustering on container engine performance, which
matches the third aforementioned objective.

A. Container Suitability in Singleton Architectures

For this experiment, we used three distinct hardware con-
figurations, each not interconnected with the others. These
nodes were chosen to represent the past, present, and future
of automotive nodes, as described in §IV-B1.

1) CPU Stress & Memory Access Benchmarks: With regard
to CPU stress benchmark (Fig. 2 - top), Docker performs
exceptionally well with an overhead of less than 0.1% across
all hardware configurations. LXC/LXD follows closely as the
second-best performer, with a low overhead of less than 8.1%
for all configurations. However, Kubernetes shows poor per-
formance on current and legacy hardware, with approximately
90% overhead and significant memory swap, even with Rasp-
bian. Interestingly, Kubernetes performs significantly better
on future hardware, approaching Docker’s performance and
slightly outperforming it when using the CRI-O configuration.
With regard to Memory access performance benchmark (Fig.
2 - bottom), Docker remains the top performer. The ranking
between LXC/LXD and Kubernetes configurations is less
clear. LXC/LXD performs similarly to Docker on legacy
hardware but shows slightly higher overhead (approximately
15%) compared to the CPU stress benchmark on actual
and future hardware. Kubernetes exhibits reduced overhead
(approximately 50%) on actual hardware, and its performance
on future hardware approaches that of Docker.
Fig. 2. CPU and Memory access performance over heterogeneous hardware.
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2) File I/O Benchmarks: Fig. 4 presents the results for
the sequential and random read and write benchmarks. These
figures demonstrate that all the solutions achieve similar
performance, with Kubernetes, particularly when using the
CRI-O engine, slightly outperforming the other three solutions.
Interestingly, for the first and only time, we observe a higher
overhead in future hardware configurations compared to cur-
rent hardware. However, despite the higher overhead, the mean

speed is still higher for the future hardware configuration,
indicating that overall perf. is better on the newer hardware.

Fig. 3. File I/O performance over heterogeneous hardware.
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3) Multi-threading Scheduler & POSIX Mutex Management
Benchmarks: These two tests evaluate different aspects but
share a reliance on interacting with system locks. In the multi-
threading scheduler bench. (Fig. 4 - left), each worker thread
is assigned a mutex. During execution, it repeatedly takes the
lock, yields it (requesting the scheduler to suspend its execu-
tion and place it back at the end of the run-queue), and then
unlocks it when scheduled again. This process assesses the
multi-threading scheduler’s performance and its handling of
concurrent locking mechanisms. LXC performs the best in this
test, followed by Docker and then Kubernetes. On the other
hand, for the POSIX mutex workload (Fig. 4 - medium left),
the system application runs a single request per thread. Each
request involves taking a random lock, incrementing a global
variable, and then releasing the lock. This benchmark focuses
on evaluating the performance of the system’s handling of
POSIX mutexes and its ability to manage concurrent access
to shared resources. This test is not influenced by the memory
swap issues of kubernetes, being the two configurations of
this last the most performant solutions, followed by LXC/LXD
and Docker. The results for both legacy and future hardware



Fig. 4. Multi-threading and Mutex Mgmt. in singleton (two left) and CPU Stress and Memory Access in multi-node (two right) both over current hardware.
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for these two tests (not presented given the page limit) were
similar to those with current hardware.

TABLE IV
BUILD, UPDATE & START BENCHMARK RESULTS.

Container Engine Build time (s) Update time (s) Start time (s)

Native execution 0.3426± 0.83% 0.3411± 0.37% 0.0221± 1.91%

Docker 112.55± 0.94%

112.23± 1.25%
(no cache)

2.12± 1.61%
3.36± 1.64%

(cached)

LXC/LXD 558.18± 0.98% 554.90± 1.07% 4.42± 1.05%

k3s (CRI-O) 85.67± 1.92% 74.86± 1.52% 1.95± 0.34%

R
as

pb
er

ry
PI

2

k3s (containerd) 96.03± 1.07% 95.47± 1.04% 2.59± 2.18%

Native execution 0.3245± 0.59% 0.3211± 0.70% 0.0132± 1.92%

Docker 79.98± 1.34%

79.83± 1.18%
(no cache)

2.17± 1.24%
2.97± 1.57%

(cached)

LXC/LXD 494.90± 0.62% 493.10± 0.65% 3.9001± 1.36%

k3s (CRI-O) 60.7765±1.71% 60.4787±1.04% 1.5558± 0.61%R
as

pb
er

ry
PI

3B

k3s (containerd) 77.5373±1.48% 77.4710±1.81% 2.0891± 1.05%

Native execution 0.26± 0.07% 0.26± 0.07% 0.97± 1.54%

Docker 50.46± 1.50%

50.20± 0.72%
(no cache)

2.12± 1.61%
1.31± 1.47%

(cached)

LXC/LXD 388.43± 0.27% 379.85± 0.22% 3.12± 1.94%

k3s (CRI-O) 46.92± 0.98% 43.89± 0.34% 0.99± 0.17%

R
as

pb
er

ry
PI

4

k3s (containerd) 51.23± 1.14% 44.83± 1.49% 1.29± 1.28%

4) Build and Start time Benchmarks: Software dynamicity
is a critical feature for enabling reactivity within automotive
systems. The tests were conducted over three apps: a ADAS-
like function, a real-time function, and a IVI-like function.
The results of the tests (cf. Table IV) showed that the nature
of the app had no significant influence on the build, update,
and start times. This means that regardless of the complexity
or size of the app, the overhead for both build and start
times was substantial and not satisfactory for meeting the real-
time dynamicity objectives required in automotive systems.
Besides, the performance metrics revealed that Kubernetes
with CRI-O achieved the best results among the tested options,
followed by Docker and Kubernetes with containerd. However,
LXC/LXD’s performance was notably poorer compared to
the other three container technologies. Although the container
engine start and build times need improvement, they can still
be integrated into on-board systems by initiating applications

pre-emptively based on various context information such as
maps, trajectory, and other relevant data.

B. Container Suitability in Multi-node Architectures

In this section, after analysing and presenting the results
for singleton architectures, the focus shifted to multi-node
architectures. After conducting the same tests as in the prece-
dent scenario without significant changes between them, we
decided to present only two specific tests: the CPU stress test
and the memory access test. The results of these tests over
the current hardware configuration are depicted in Fig. 4 -
medium right & right. A significant difference was observed
between LXC/LXD and the other three solutions (Kubernetes
with CRI-O, Docker, and Kubernetes with containerd). In the
case of LXC/LXD, the performance of their worker nodes was
impacted, whereas for the other three solutions, this impact
was directly felt by the master node. Considering automotive
architectures, the researchers concluded that centralising the
impact on the master node is a better approach, especially
since the master node is likely to be the most powerful one
in the on-board systems. As for the other three solutions,
although there was an impact on the performance of the
master node, it was deemed acceptable, with a relatively low
overhead of around 10-15% for small architectures like in-
vehicle systems. Importantly, the performance of the worker
nodes remained unaffected regardless of the number of nodes.

VI. DISCUSSION & FUTURE WORKS

In this discussion section, we will analyse and interpret
the results to understand the implications for the automotive
industry and potential areas for improvement.
Effectiveness of Containerisation Technologies Nowadays.
Docker excelled in benchmarks with minimal overhead and
high performance. LXC/LXD followed closely behind, while
Kubernetes showed subpar performance with notable overhead
and memory swap. Choosing the right technology is crucial
for optimal results, though start-time may still pose challenges
for real-time dynamicity requirements in some use cases.
Real-world Performance vs. Future Expectations. The study
emphasised hardware’s role in cont. performance. Kubernetes
showed promising improvements on future hardware, bridging
the gap with Docker and even surpassing it with CRI-O. Yet,



for current and legacy hardware, it proved less efficient, urging
thoughtful cont. decisions for automotive applications.
Scalability: The multi-node study provides valuable insights
for the automotive industry adopting cont. in multi-node
architectures. Understanding the impact on master and worker
nodes helps make informed decisions on the best cont. tech-
nology. Notably, the multi-node impact is mainly observed on
master node performance for most cont. options.

Despite these encouraging results, there remain several open
issues and research challenges that need to be addressed in
the near future to fully incorporate containers into on-board
architectures. One crucial area is investigating new ways to
enhance real-time invocation and reactivity in cont. environ-
ments, which is of utmost importance for ADAS. Additionally,
exploring hybrid cont. architectures that combine traditional
real-time systems with cont. applications could be a promising
avenue. Moreover, developing a virt. framework for MCU
nodes, which are more cost-effective than MPU nodes and
commonly used in legacy systems, would be highly beneficial
during the transition phases. Another area of interest is explor-
ing the potential of seamlessly integrating cont. and synchroni-
sation with edge computing and fog computing architectures,
leveraging their capabilities to optimise performance and re-
source utilisation. Besides, it is essential to bolster container
security by adding further layers of protection, such as hard-
ware isolation or trusted computing, to ensure the integrity
of the environments they run in. Finally, standardisation and
regulations are crucial aspects to consider, especially for the
automotive industry. Establishing a company-wide standard for
containers can significantly expedite the software innovation
ecosystem, fostering collaboration and compatibility.

VII. CONCLUSION

In this paper, we presented a performance study of con-
tainerisation for automotive-like hardware architectures. This
study sheds light on the strengths and weaknesses of different
containerisation technologies in varying on-board hardware
configurations. The findings shows that Docker emerged as
a top performer, achieving low overhead for every test-case
in any hardware configuration. LXC/LXD followed closely,
showcasing its potential dealing with mutli-threading schedul-
ing. While Kubernetes struggled on current and legacy hard-
ware, it showed promise on future hardware, especially with
the CRI-O configuration. However, even though in terms of
resource-consumption containers look that they can be a good
fit for the automotive industry, bringing flexibility, reusability
and reducing considerably the integration efforts, the current
frameworks are not yet prepared to deal with the real-time
invocation dynamicity wish by the automakers.

VIII. ACKNOWLEDGEMENT

The research leading to the results presented in this study
was supported by Stellantis under the collaborative framework
OpenLab VAT@Lyon, involving STELLANTIS and CITI Lab
(ANRT contract n°2020/1415).

REFERENCES

[1] R. Charette, “How Software Is Eating the Car,” in IEEE Spectrum, 2021.
[2] D. Fernández Blanco, F. Le Mouël, T. Lin, and M. Escudié, “A
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